2017年中考数学试卷分类汇编:21_三角形的边与角

合集下载

2017中考数学试题分类汇编 (三角形全等 )

2017中考数学试题分类汇编 (三角形全等 )

专题09 三角形一、选择题1.(2017甘肃庆阳第8题) 已知a ,b ,c 是△ABC 的三条边长,化简|a+b-c|-|c-a-b|的结果为( ) A .2a+2b-2c B .2a+2b C .2c D .0【答案】D2.(2017浙江嘉兴第2题)长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( ) A .4 B .5C .6D .9【答案】C.3.(2017天津第11题)如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC 【答案】B.4. (2017湖南长沙第5题)一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 【答案】B5.(2017山东滨州第8题)如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为( )A .40°B .36°C .80°D .25°【答案】B.6. (2017山东滨州第11题)如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MPN 在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M 、N 两点,则以下结论:(1)PM =PN 恒成立,(2)OM +ON 的值不变,(3)四边形PMON 的面积不变,(4)MN 的长不变,其中正确的个数为( )A .4B .3C .2D .1AB CDPAONBM【答案】B.7. (2017山东菏泽第5题)如图,将t ABC∆R绕直角顶点C顺时针旋转90o,得到''A B C∆,连接'AA,若125∠=o,则'BAA∠的度数是()A.55o B.60o C.65o D.70o8. (2017浙江金华第3题)下列各组数中,不可能成为一个三角形三边长的是()A.2,3,4 B.5,7,7 C.5,6,12 D.10,8,6【答案】C.9. (2017浙江省台州市)如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2 B.3 C.3D.4【答案】A.10. (2017浙江省台州市)如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE【答案】C.11.(2017山东省枣庄市)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【答案】B12.(2017广西四市)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC【答案】D.13.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A .5B .6C .7D .8 【答案】B .14. (2017湖南株洲第5题)如图,在△ABC 中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BA D=( )A .145°B .150°C .155°D .160°【答案】B.15. (2017郴州第8题)小明把一副45,30o o的直角三角板如图摆放,其中090,45,30C F A D ∠=∠=∠=∠=,则αβ∠+∠等于 ( )A .0180 B .0210 C .0360 D .0270【答案】B . 【解析】试题分析:∵∠α=∠1+∠D ,∠β=∠4+∠F ,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选B .16. (2017河池第9题)三角形的下列线段中,能将三角形分成面积相等的两部分是() A .中线 B .角平分线 C.高 D .中位线 【答案】A.二、填空题1. (2017湖南怀化第15题)如图,AC DC=,BC EC=,请你添加一个适当的条件:,使得ABC DEC△≌△.【答案】CE=BC.本题答案不唯一.2.(2017江苏盐城第12题)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=°.【答案】120°.3.(2017贵州黔东南州第12题)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.【答案】∠A=∠D.4.(2017新疆建设兵团第15题)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=12AC•BD.正确的是(填写所有正确结论的序号)【答案】①④5.(2017四川省达州市)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是.【答案】1<m <4.6. (2017黑龙江绥化第20题)在等腰ABC ∆中,AD BC ⊥交直线BC 于点D ,若12AD BC =,则ABC ∆的顶角的度数为 . 【答案】30°或150°或90°.. 【解析】试题分析:①BC 为腰, ∵AD⊥BC 于点D ,AD=12BC ,∴∠ACD=30°, 如图1,AD 在△ABC 内部时,顶角∠C=30°,如图2,AD 在△ABC 外部时,顶角∠ACB=180°﹣30°=150°, ②BC 为底,如图3, ∵AD⊥BC 于点D ,AD=12BC ,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD =12×180°=90°, ∴顶角∠BAC=90°,综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°..三、解答题1. (2017湖北武汉第18题)如图,点,,,C F E B 在一条直线上,CFD BEA ∠=∠,,CE BF DF AE ==.写出CD 与AB 之间的关系,并证明你的结论.2.(2017四川泸州第18题)如图,点A 、F 、C 、D 在同一条直线上,已知AF=DC ,∠A=∠D,BC∥EF,求证:AB=DE .3.(2017四川宜宾第18题) 如图,已知点B 、E 、C 、F 在同一条直线上,AB=DE ,∠A=∠D,AC∥DF.求证:BE=CF .4.(2017北京第19题)如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D . 求证:AD BC =.2. (2017北京第28题)在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M .(1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.【答案】(1)【解析】分析:(1)由直角三角形性质,两锐角互余,可得∠AMQ=180°-∠AHM -∠PAM ,解得∠AMQ=45°+α.(2)由题意得AP=AQ=QM,再证RT△APC≌RT△QME,.全等三角形对应边相等得出PC=ME ,得出△MEB 为等腰直角三角形,则2本题解析:(1) ∠AMQ=45°+α.理由如下:∵∠PAC=α,△ACB是等腰直角三角形,∴∠PAB=45°-α,∠AHM=90°,∴∠AMQ=180°-∠AHM-∠PAM=45°+α .(2)线段MB与PQ之间的数量关系:PQ=2 MB.理由如下:连接AQ,过点M做ME⊥QB,∵AC⊥QP,CQ=CP, ∴∠QAC=∠PAC=α,∴∠QAM=α+45°=∠AMQ, ∴AP=AQ=QM,在RT△APC和RT△QME中,MQE PACACP QEMAP QM∠=⎧⎪∠=∠⎨⎪=⎩∴RT△APC≌RT△QME, ∴PC=ME, ∴△MEB是等腰直角三角形,∴122PQ MB=,∴PQ=2 MB.考点:全等三角形判定,等腰三角形性质 .5. (2017福建第19题)如图,ABC∆中,90,BAC AD BC∠=⊥o,垂足为D.求作ABC∠的平分线,分别交AD.AC于P,Q两点;并证明AP AQ=.(要求:尺规作图,保留作图痕迹,不写作法)【答案】作图见解析;证明见解析.【解析】8. (2017广东广州第18题)如图10,点,E F在AB上,,,AD BC A B AE BF=∠=∠=.求证:ADF BCE∆≅∆ .【答案】详见解析 【解析】试题分析:先将AE BF =转化为AF =BE ,再利用SAS 证明两个三角形全等 试题解析:证明:因为AE =BF ,所以,AE +EF =BF +EF ,即AF =BE , 在△ADF 和△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩所以,ADF BCE ∆≅∆14. (2017四川泸州第18题)如图,点,,,A F C D 在同一直线上,已知,,//AF DC A D BC EF =∠=∠,.求证:AB DE =.20. (2017江苏苏州第24题)(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ∆AE ≌D ∆BE ; (2)若142∠=o,求D ∠B E 的度数.【答案】(1)详见解析;(2)69BDE ∠=o 【解析】试题分析:(1)用ASA 证明两三角形全等;(2)利用全等三角形的性质得出,EC ED C BDE =∠=∠,再利用等边对等角求解即可 .试题解析: (1)证明:AE Q 和BD 相交于点,O AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠Q .在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠Q .在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=ooQ ,69BDE C ∴∠=∠=o .考点:全等三角形的判定与性质43.(2017四川省南充市)如图,DE⊥AB,CF⊥AB,垂足分别是点E 、F ,DE=CF ,AE=BF ,求证:AC∥BD.58.(2017广东省)如图,在△ABC 中,∠A>∠B.(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法); (2)在(1)的条件下,连接AE ,若∠B=50°,求∠AEC 的度数.【答案】(1)作图见见解析;(2)100°. 【解析】试题分析:(1)根据题意作出图形即可;(2)由于DE 是AB 的垂直平分线,得到AE=BE ,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.试题解析:(1)如图所示;(2)∵DE 是AB 的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.考点:1.作图—基本作图;2.线段垂直平分线的性质.63.(2017江苏省连云港市)如图,已知等腰三角形ABC 中,AB=AC ,点D 、E 分别在边AB .AC 上,且AD=AE ,连接BE 、CD ,交于点F .(1)判断∠ABE 与∠ACD 的数量关系,并说明理由;(2)求证:过点A 、F 的直线垂直平分线段BC .【答案】(1)∠ABE=∠ACD;(2)证明见解析.【解析】试题分析:(1)证得△ABE≌△ACD 后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.试题解析:(1)∠ABE=∠ACD;在△ABE 和△ACD 中,∵AB=AC,∠A=∠A,AE=AD ,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A 、F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC .考点:1.等腰三角形的性质;2.线段垂直平分线的性质;3.探究型.3. (2017郴州第19题)已知ABC ∆中,ABC ACB ∠=∠,点,D E 分别为边,AB AC 的中点,求证:BE CD =.【答案】详见解析.【解析】试题分析:由∠ABC=∠ACB 可得AB=AC ,又点D 、E 分别是AB 、AC 的中点.得到AD=AE ,通过△ABE≌△ACD,即可得到结果.考点:全等三角形的判定及性质.9. (2017哈尔滨第24题)已知:ACB △和DCE △都是等腰直角三角形,90ACB DCE ==∠∠°,连接AE ,BD 交于点O ,AE 与DC 交于点M ,BD 与AC 交于点N .(1)如图1,求证:AE BD =;(2)如图2,若AC DC =,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【答案】(1)证明见解析;(2)△ACB≌△DCE(SAS ),△EMC≌△BCN(ASA ),△AON≌△DOM(AAS ),△AOB≌△DOE(HL )考点:1.全等三角形的判定与性质;2.等腰直角三角形.10. (2017黑龙江齐齐哈尔第23题)如图,在ABC ∆中,AD BC ⊥于D ,BD AD =,DG DC =,E ,F 分别是BG ,AC 的中点.(1)求证:DE DF =,DE DF ⊥;(2)连接EF ,若10AC =,求EF 的长.【答案】(1)证明见解析;(2)2 .考点:1.全等三角形的判定与性质;2.勾股定理.11. (2017湖北孝感第18题)如图,已知,,AB CD AE BD CF BD =⊥⊥ ,垂足分别为,,E F BF DE = .求证AB CD P .【答案】证明见解析【解析】试题分析:根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.试题解析:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB 和Rt△CFD 中,AB CD BE DF =⎧⎨=⎩,∴Rt△AFB≌Rt△CFD(HL ),∴∠B=∠D,∴AB∥CD. 考点:全等三角形的判定与性质.。

全国各地数学中考试题分类汇编三角形的边与角含答案.doc

全国各地数学中考试题分类汇编三角形的边与角含答案.doc

2010年全国各地数学中考试题分类汇编26三角形的基础知识一、选择题1.(2010江苏苏州)如图,在△ABC 中,D 、E 两点分别在BC 、AC 边上. 若BD=CD ,∠B=∠CDE ,DE=2,则AB 的长度是 A .4 B .5 C .6 D .7【答案】A2.(2010安徽省中中考) 如图,直线1l ∥2l ,∠1=550,∠2=650,则∠3为…………………………( ) A )500. B )550 C )600 D )650【答案】C3.(2010广东广州,4,3分)在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的长是( ) A .2.5B .5C .10D .15【分析】由D 、E 分别是边AB 、AC 的中点可知,DE 是△ABC 的中位线,根据中位线定理可知,DE =12BC =2.5. 【答案】A【涉及知识点】中位线【点评】本题考查了中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.4.(10湖南益阳)如图3,已知△ABC ,求作一点P ,使P 到∠A的两边的距离相等,且PA =PB .下列 确定P 点的方法正确的是 A.P 为∠A 、∠B 两角平分线的交点B.P 为∠A 的角平分线与AB 的垂直平分线的交点 C.P 为AC 、AB 两边上的高的交点 D.P 为AC 、AB 两边的垂直平分线的交点【答案】B5.(2010山东济宁)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是 A . 直角三角形 B . 锐角三角形 C . 钝角三角形 D . 等边三角形 【答案】B6.(2010四川凉山)将一副三角板按图中的方式叠放,则角α等于A .75B .60C .45D .30 【答案】A7.(2010 浙江义乌)下列长度的三条线段能组成三角形的是( ▲ )A .1、2、3.5B .4、5、9C .20、15、8D .5、15、8 【答案】C8.(2010 重庆)如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC . 若︒=∠50C ,︒=∠60BDE ,则CDB ∠的度数等于( )A .︒70B .100︒C .︒110D .120︒3图构成直角三9.(2010湖南长沙)下列每一组数据中的三个数值分别为三角形的三边长,不能..角形的是().A、3、4、5B、6、8、10 C2D、5、12、13【答案】C.10.(2010 四川南充)三根木条的长度如图,能组成三角形的是().错误!未指定书签。

2017年浙江中考数学真题分类汇编--解直角三角形(解析版)

2017年浙江中考数学真题分类汇编--解直角三角形(解析版)

2017年浙江中考真题分类汇编(数学):专题09 解直角三角形一、单选题(共3题;共6分)1、(2017·金华)在直角三角形Rt ABC中,C=90°,AB=5,BC=3,则tanA的值是()A、B、C、D、2、(2017•湖州)如图,已知在中,,,,则的值是()A、B、C、D、3、(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα= ,则小车上升的高度是()A、5米B、6米C、6.5米D、12米二、填空题(共1题;共2分)4、(2017·嘉兴)如图,把个边长为1的正方形拼接成一排,求得,,,计算________,……按此规律,写出________(用含的代数式表示).三、解答题(共6题;共40分)5、(2017·衢州)计算:6、(2017·金华)(本题6分)计算:2cos60°+(−1)2017+|−3|−(2−1)0.7、(2017·台州)如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧与墙MN平行且距离为0.8米,已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由。

(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)8、(2017•绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶总D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(结果精确到0.1m。

参考数据:tan20°≈0.36,tan18°≈0.32)(1)求∠BCD的度数.(2)求教学楼的高BD9、(2017·嘉兴)如图是小强洗漱时的侧面示意图,洗漱台(矩形)靠墙摆放,高,宽,小强身高,下半身,洗漱时下半身与地面成(),身体前倾成(),脚与洗漱台距离(点,,,在同一直线上).(1)此时小强头部点与地面相距多少?(2)小强希望他的头部恰好在洗漱盆的中点的正上方,他应向前或后退多少?(,,,结果精确到)10、(2017·丽水)如图是某小区的一个健向器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)答案解析部分一、单选题1、【答案】A【考点】勾股定理,锐角三角函数的定义【解析】【解答】解:在△ABC中,∵∠C=90°,AB=5,BC=3,∴AC===4,∴tanA==;故答案为A。

2017年中考数学真题分类汇编 三角函数

2017年中考数学真题分类汇编 三角函数

三角函数一、选择题1.(2017·天津)的值等于( ) AB. C .D . 【答案】D.2.(2017·重庆A 卷)如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为40°,若3米,2米,平行于江面,迎水坡的坡度1:0.75,坡长10米,则此时的长约为( )(参考数据:40°≈0.64,40°≈0.77,40°≈0.84).A .5.1米B .6.3米C .7.1米D .9.2米【答案】A.【解析】试题解析:如图,延长交延长线于点P ,作⊥于点Q ,060cos 312221∵140.753 CQBQ==,∴设4x、3x,由222可得(4x)2+(3x)2=102,解得:2或﹣2(舍),则8,6,∴11,在△中,∵11tan tan40DPA=∠︒≈13.1,∴﹣﹣13.1﹣6﹣2=5.1,故选A.考点:解直角三角形的应用.3.(2017·重庆B卷)如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡行走195米至坡顶D处,斜坡的坡度(或坡比)1:2.4,在D 处测得该建筑物顶端A的俯视角为20°,则建筑物的高度约为(精确到0.1米,参考数据:20°≈0.342,20°≈0.940,20°≈0.364)( )A .29.1米B .31.9米C .45.9米D .95.9米【答案】A .【解析】试题分析:作⊥于E 点,作⊥于F 点,如图,设,2.4,由勾股定理,得x 2+(2.4x )2=1952,解得x ≈75m ,75m ,2.4180m ,﹣306﹣180=126m .∵∥,∴∠1=∠20°,∠1∠ =0.364.126m ,∠10.364,0.3640.364×126=45.9,﹣75﹣45.9≈29.1m ,故选A .考点:解直角三角形的应用﹣坡度坡角问题.4.(2017·山东烟台)如图,数学实践活动小组要测量学校附近楼房的高度,在水平地面A 处安置测倾器测得楼房顶部点D 的仰角为45°,向前走20米到达A′处,测得点D 的仰角为67.5°,已知测倾器的高度为1.6米,则楼房的高度约为(结果精确到0.1米,≈1.414)( )sin 20cos 20DF AFA.34.14米B.34.1米C.35.7米D.35.74米【考点】:解直角三角形的应用﹣仰角俯角问题.【分析】过B作⊥于F,于是得到′B′1.6米,解直角三角形即可得到结论.【解答】解:过B作⊥于F,∴′B′1.6米,在△′中,B′,在△中,,∵′′=20,∴﹣B′﹣=20,∴≈34.1米,∴35.7米,答:楼房的高度约为35.7米,故选C.二、填空题1.(2017·山西)如图,创新小组要测量公园内一棵树的高度,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高1.5米,则这颗树的高度约为米(结果保留一位小数.参考数据:54°≈0.8090,54°≈0.5878,54°≈1.3764).【答案】15.3.【解析】试题分析:如图,在△中,•54°≈10×1.3764=13.764米,≈1.5+13.764≈15.3米.故答案为:15.3米.考点:解直角三角形的应用﹣仰角俯角问题.2.(2017·江苏无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,与相交于O,则∠的值等于.【答案】3.【解析】试题解析:平移到C′D′交于O′,如图所示,则∠′D′=∠,∴∠∠′D′,设每个小正方形的边长为a ,则O′,O′D′=,′=3a , 作⊥O′D′于点E ,则, ∴O′, ∴′, ∴∠3.考点:解直角三角形. 3.(2017·山东烟台)在△中,∠90°,2,,则 . 【考点】T5:特殊角的三角函数值.【分析】根据∠A 的正弦求出∠60°,再根据30°的正弦值求解即可.【解答】解:∵, ∴∠60°,∴30°=. 22(2)5a a a +=22(2a)(2)22a a +=3a 232222BD O F a a O D a''==''2222322(5)()22a a O B BE a '-=-=32a2322BE O E a=='故答案为:.三、解答题1.(2017·安徽)如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=︒,45β=︒,求DE 的长.(参考数据:sin750.97︒≈,cos750.26︒≈,2 1.41≈)【答案】579DE DF EF =+=【解析】试题分析:两次利用三角函数求解即可.试题解析:解:在Rt BDF △中,由sin DF BD b =得, 2sin 600sin 4560030024232DF BD b =???°≈(m).在Rt ABC △中,由cos BC AB a =可得, cos 600cos756000.26156BC AB a =???°(m).所以423156579DE DF EF DF BC =+=+=+=(m).考点: 三角函数的实际应用.2.(2017·山东青岛)如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行B 地,已知B 位于A 地北偏东67°方向,距离A地520,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数)(参考数据:)[来源]【答案】596【解析】试题分析:作⊥于点D,利用67°和520,求480;利用67°和520,求200;最后利用30°和200,求116;最终得到的长.∴在△中,∠30°,∴∴答:之间的距离约为596。

2017年浙江中考数学真题分类汇编--三角形(解析版)

2017年浙江中考数学真题分类汇编--三角形(解析版)

2017年浙江中考数学真题分类汇编--三角形(解析版)2017年浙江中考真题分类汇编(数学)三角形一、单选题(共4题;共8分)1、(2017·金华)下列各组数中,不可能成为一个三角形三边长的是()A、2,3,4B、5,7,7C、5,6,12D、6,8,102、(2017·台州)如图,已知△ABC,AB=AC,若以点B 为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A、AE=ECB、AE=BEC、∠EBC=∠BACD、∠EBC=∠ABE向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是________;翻滚2017次后AB中点M经过的路径长为________.6、(2017•绍兴)如图,∠AOB=45°,点M,N在边OA 上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是________.7、一副含和角的三角板和叠合在一起,边与重合,(如图1),点为边的中点,边与相交于点.现将三角板绕点按顺时针方向旋转(如图2),在从到的变化过程中,点相应移动的路径长为________.(结果保留根号)8、(2017•杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于________.三、解答题(共5题;共53分)9、(2017·衢州)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。

类比研究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。

(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;(2)△DEF是否为正三角形?请说明理由;(3)进一步探究发现,△ABD的三边存在一定的等量关系,设,,,请探索,,满足的等量关系。

中考数学三角形的边与角真题归类(附答案)

中考数学三角形的边与角真题归类(附答案)

中考数学三角形的边与角真题归类(附答案)以下是查字典数学网为您推荐的中考数学三角形的边与角真题归类(附答案),希望本篇文章对您学习有所帮助。

中考数学三角形的边与角真题归类(附答案)一.选择题1. (2019荆门)已知:直线l1∥l2,一块含30角的直角三角板如图所示放置,1=25,则2等于()A. 30B. 35C. 40D. 45解析:∵3是△ADG的外角,A+1=30+25=55,∵l1∥l2,4=55,∵EFC=90,EFC=90﹣55=35,2=35.故选B.2.(2019中考)如图,在△ABC中,C=70,沿图中虚线截去C,则2=【 B 】A.360B.250C.180D.1403.(2019连云港)如图,将三角尺的直角顶点放在直线a上,a∥b,1=50,2=60,则3的度数为()A. 50B. 60C. 70D. 80考点:平行线的性质;三角形内角和定理。

分析:先根据三角形内角和定理求出4的度数,由对顶角的性质可得出5的度数,再由平行线的性质得出结论即可. 解答:解:∵△BCD中,1=50,2=60,4=1801-2=180-50-60=70,4.(2019深圳)如图所示,一个60o角的三角形纸片,剪去这个600角后,得到一个四边形,则么的度数为【】A. 120OB. 180O.C. 240OD. 3000【答案】C。

【考点】三角形内角和定理,平角定义。

【分析】如图,根据三角形内角和定理,得4+600=1800,又根据平角定义,3=1800,4=1800,1800-1+1800-2+600=1800。

2=240O。

故选C。

5.(2019聊城)将一副三角板按如图所示摆放,图中的度数是()A.75B.90C.105D.120考点:三角形的外角性质;三角形内角和定理。

专题:探究型。

分析:先根据直角三角形的性质得出BAE及E的度数,再由三角形内角和定理及对顶角的性质即可得出结论.解答:解:∵图中是一副直角三角板,BAE=45,E=30,6.(2019毕节)如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若1=120,2=80,则3的度数是( )A.40B.60C.80D.120解析:根据平行线性质求出ABC,根据三角形的外角性质得出1-ABC,代入即可得出答案.7.(2019十堰)如图,直线BD∥EF,AE与BD交于点C,若ABC=30,BAC=75,则CEF的大小为( D )A.60B.75C.90D.105【考点】平行线的性质;三角形内角和定理.【专题】探究型.【分析】先根据三角形外角的性质求出1的度数,再由平行线的性质即可得出结论.【解答】解:∵1是△ABC的外角,ABC=30,BAC=75,ABC+BAC=30+75=105,∵直线BD∥EF,CEF=1=105.故选D.【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.8.(2019梅州)如图,在折纸活动中,小明制作了一张△ABC 纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A重合,若A=75,则2=()A.150B.210C.105D.75考点:三角形内角和定理;翻折变换(折叠问题)。

2017中考数学真题汇编-----解直角三角形(含解析)

2017中考数学真题汇编-----解直角三角形(含解析)

2017中考数学真题汇编-----解直角三角形一.选择题(共12小题)1.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD 的长为()A.B.C.D.2.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2C.3+D.33.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=214.如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A.B.C.D.5.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm6.在Rt△ABC中,∠C=90°,cosA=,AC=,则BC等于()A.B.1 C.2 D.37.如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=()A.B.C.D.8.在数学活动课上,老师出示两张等腰三角形纸片,如图所示.图1的三角形边长分别为4,4,2;图2的三角形的腰长也为4,底角等于图1中三角形的顶角;某学习小组将这两张纸片在同一平面内拼成如图3的四边形OABC,连结AC.该学习小组经探究得到以下四个结论,其中错误的是()A.∠OCB=2∠ACB B.∠OAB+∠OAC=90°C.AC=2D.BC=49.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,若点E是BC的中点,则sin∠CAE的值为()A.2 B.C.D.10.如图,四边形BDCE内接于以BC为直径的⊙A,已知:BC=10,cos∠BCD=,∠BCE=30°,则线段DE的长是()A.B.7C.4+3D.3+411.如图,在Rt△ABO中,斜边AB=1,若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点A到OC的距离为sin36°sin54°C.点B到AO的距离为tan36°D.点A到OC的距离为cos36°sin54°12.将一副三角板如下图摆放在一起,连接AD,则∠ADB的正切值为()A.B.C.D.二.填空题(共12小题)13.如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB=.14.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.15.如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=,则tan2α=.16.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).17.如图,在Rt△ABC中,∠ACB=90°,sinB=,D是BC上一点,DE⊥AB于E,CD=DE,AC+CD=9.则BC=.18.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.19.如图,在等腰三角形中,AB=AC,BC=4,D为BC的中点,点E、F在线段AD 上,tan∠ABC=3,则阴影部分的面积是.20.在正方形ABCD中,N是DC的中点,M是AD上异于D的点,且∠NMB=∠MBC,则tan∠ABM=.21.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是.22.如图,正△EFG内接于正方形ABCD,其中E,F,G分别在边AB,AD,BC 上,若,则=.23.四边形ABCD中,∠A=∠C=90°,∠ADC=60°,AB=11,BC=2,则BD=.24.如图,已知∠BAC=60°,在角的内部有一点P,P到AB的距离为,P 到AC的距离为3,则点P到顶点A的距离为.三.解答题(共16小题)25.把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1=,sin2A2+cos2A2=,sin2A3+cos2A3=;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.26.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).27.如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)28.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.29.阅读下面的材料:(1)锐角三角函数概念:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,称sinA=,sinB=是两个锐角∠A,∠B的“正弦”,特殊情况:直角的正弦值为1,即sin90°=1,也就是sinC==1.由sinA=,可得c=;由sinB=,可得c=,而c==,于是就有(2)其实,对于任意的锐角△ABC,上述结论仍然成立,即三角形各边与对角的正弦之比相等,我们称之为“正弦定理”,我们可以利用三角形面积公式证明其正确性.证明:如图1作AD⊥BC于D则在Rt△ABD中,sinB=,∴AD=c•sinB,∴S△ABC=a•AD=ac•sinB,在Rt△ACD中,sinC=,∴AD=b•sinC.∴S△ABC =a•AD=ab•sinC.同理可得S△ABC=bc•sinA.因此有S△ABC=ac•sinB=ab•sinC=bc•sinA.也就是=ac•sinB=ab•sinC=bc•sinA.每项都除以abc,得,故请你根据对上面材料的理解,解答下列问题:(1)在锐角△ABC中,∠B=60°,∠C=45°,c=2,求b;(2)求问题(1)中△ABC的面积;(3)求sin75°的值(以上均求精确值,结果带根号的保留根号)30.如图,四边形ABCD中,AB=AD,∠ABC=∠ADC.(1)求证:CB=CD;(2)若∠BCD=90°,AO=2CO,求tan∠ADO.31.已知:如图,等腰△ABC中,AB=BC,AE⊥BC于E,EF⊥AB于F,若CE=2,cos∠AEF=,求BE的长.32.如图,已知在△ABC中,AB=AC=10,tan∠B=.(1)求BC的长;(2)点D在边AB上,且AD=1,M为边BC上一动点,连接DM.当△BDM是直角三角形时,求BM的长.33.如图,在四边形ABCD中,∠ABC=90°,DE⊥AC于点E,且AE=CE,DE=5,EB=12.(1)求AD的长;(2)若∠CAB=30°,求四边形ABCD的周长.34.已知:如图,在Rt△ABC和Rt△BCD中,∠ABC=∠BCD=90°,BD与AC相交于点E,AB=9,cos∠BAC=,tan∠DBC=.求:(1)边CD的长;(2)△BCE的面积.35.定义:在△ABC中,∠C=30°,我们把∠A的对边与∠C 的对边的比叫做∠A 的邻弦,记作thi A,即thi A==.请解答下列问题:已知:在△ABC中,∠C=30°.(1)若∠A=45°,求thi A的值;(2)若thi A=,则∠A=°;(3)若∠A是锐角,探究thi A与sinA的数量关系.36.在一节数学实践课上,老师出示了这样一道题,如图1,在锐角三角形ABC 中,∠A、∠B、∠C所对边分别是a、b、c,请用a、c、∠B表示b2.经过同学们的思考后,甲同学说:要将锐角三角形转化为直角三角形来解决,并且不能破坏∠B,因此可以经过点A,作AD⊥BC于点D,如图2,大家认同;乙同学说要想得到b2要在Rt△ABD或Rt△ACD中解决;丙同学说那就要先求出AD=,BD=;(用含c,∠B的三角函数表示)丁同学顺着他们的思路,求出b2=AD2+DC2=(其中sin2α+cos2α=1);请利用丁同学的结论解决如下问题:如图3,在四边形ABCD中,∠B=∠D=90°,∠BAD=60°,AB=4,AD=5.求AC的长(补全图形,直接写出结果即可).37.如图,在平面直角坐标内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=.(1)求点B的坐标;(2)求tan∠BAO的值.38.如图所示,在Rt△ACB中,∠C=90°,AC=3,BC=2,AD为中线.(1)比较∠BAD和∠DAC的大小.(2)求sin∠BAD.39.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AB=10,tan∠BAC=,求菱形ADCE的面积.40.喜欢钻研的小亮对75°角的三角函数发生了兴趣,他想:75度虽然不是特殊角,但和特殊角有着密切的关系,能否通过特殊角的三角函数值求75°的正弦值呢?经研究,他发现:sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°,于是他大胆猜想:sin(α+β)=sinαcosβ+cosαsinβ(α和β为锐角).将图1(a)等积变形为图1(b)可用于勾股定理的证明,现将这两幅图分别“压扁”成图2(a)和图2(b).如图,锐角为α的直角三角形斜边为m,锐角为β的直角三角形斜边为n,请你借助图2(a)和图2(b)证明上述结论能成立.参考答案与解析一.选择题(共12小题)1.(2017•安顺)如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为()A.B.C.D.【分析】首先由切线的性质得出OB⊥BC,根据锐角三角函数的定义求出cos∠BOC的值;连接BD,由直径所对的圆周角是直角,得出∠ADB=90°,又由平行线的性质知∠A=∠BOC,则cos∠A=cos∠BOC,在直角△ABD中,由余弦的定义求出AD的长.【解答】解:连接BD.∵AB是直径,∴∠ADB=90°.∵OC∥AD,∴∠A=∠BOC,∴cos∠A=cos∠BOC.∵BC切⊙O于点B,∴OB⊥BC,∴cos∠BOC==,∴cos∠A=cos∠BOC=.又∵cos∠A=,AB=4,∴AD=.故选B.【点评】本题综合考查切线、平行线、圆周角的性质,锐角三角函数的定义等知识点的运用.此题是一个综合题,难度中等.2.(2017•滨州)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2 C.3+D.3【分析】通过解直角△ABC得到AC与BC、AB间的数量关系,然后利用锐角三角函数的定义求tan∠DAC的值.【解答】解:如图,∵在△ABC中,AC⊥BC,∠ABC=30°,∴AB=2AC,BC==AC.∵BD=BA,∴DC=BD+BC=(2+)AC,∴tan∠DAC===2+.故选:A.【点评】本题考查了解直角三角形,利用锐角三角函数的概念解直角三角形问题.3.(2017•杭州)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BQ=CQ=6,求出CM=QM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.4.(2017•怀化)如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A.B.C.D.【分析】作AB⊥x轴于B,如图,先利用勾股定理计算出OA=5,然后在Rt△AOB 中利用正弦的定义求解.【解答】解:作AB⊥x轴于B,如图,∵点A的坐标为(3,4),∴OB=3,AB=4,∴OA==5,在Rt△AOB中,sinα==.故选C.【点评】本题考查了解直角三角形:充分利用勾股定理和三角函数的定义计算三角形的边或角.也考查了坐标与图形性质.5.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm【分析】根据垂直平分线的性质得出BD=AD,再利用cos∠BDC==,即可求出CD的长,再利用勾股定理求出BC的长.【解答】解:∵∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,∴BD=AD,∴CD+BD=8,∵cos∠BDC==,∴=,解得:CD=3,BD=5,∴BC=4.故选A.【点评】此题主要考查了线段垂直平分线的性质以及解直角三角形等知识,得出AD=BD,进而用CD表示出BD是解决问题的关键.6.在Rt△ABC中,∠C=90°,cosA=,AC=,则BC等于()A.B.1 C.2 D.3【分析】根据题意画出图形,利用勾股定理求出BC的长.【解答】解:如图:∵cosA=,∴=,又∵AC=,∴BC==1.故选B.【点评】本题主要考查了解直角三角形,画出图形并利用勾股定理和三角函数是解题的关键.7.如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=()A.B.C.D.【分析】方法1、利用待定系数法求得直线AB的解析式,然后求得B的坐标,进而利用正切函数定义求解.方法2、先求出AD,即可得出结论.【解答】解:方法1、设直线AB的解析式是y=kx+b,根据题意得:,解得,则直线AB的解析式是y=﹣x+2.在y=﹣x+2中令y=0,解得x=.则B的坐标是(,0),即OB=.则tan∠OAB===.故选B.方法2、过点C作CD⊥y轴,∵C(﹣2,5),∴CD=2,OD=5,∵A(0,2),∴OA=2,∴AD=OD﹣OA=3,在Rt△ACD中,tan∠OAB=tan∠CAD=,故选B.【点评】本题考查了三角函数的定义以及待定系数法求函数解析式,正确求得B 的坐标是关键.8.在数学活动课上,老师出示两张等腰三角形纸片,如图所示.图1的三角形边长分别为4,4,2;图2的三角形的腰长也为4,底角等于图1中三角形的顶角;某学习小组将这两张纸片在同一平面内拼成如图3的四边形OABC,连结AC.该学习小组经探究得到以下四个结论,其中错误的是()A.∠OCB=2∠ACB B.∠OAB+∠OAC=90°C.AC=2D.BC=4【分析】A、根据∠OBC=∠AOB即可得出OA∥BC,由平行线的性质即可得出∠OAC=∠ACB,再由等腰三角形的性质即可得出∠OAC=∠OCA,替换后即可得出∠OCB=2∠ACB,结论A正确;B、根据等腰三角形的性质结合三角形内角和定理即可得出∠OAB+∠AOB=90°,结合结论A即可得出∠OAB+∠OAC=90°,结论B正确;C、过点O作OE⊥AB于点E,过点O作OF⊥AC于点F,则△AOE≌△OAF,利用勾股定理即可AF=OE==,从而得出AC=2AF=2,结论C正确;D、过点B作BM⊥OA于点M,过点O作ON⊥BC于点N,则△AOE∽△ABM,根据相似三角形的性质即可得出AM=,OM=AO﹣AM=,由BC∥AO、BM⊥AO、ON⊥BC即可得出四边形MBNO为矩形,再根据矩形的性质以及等腰三角形的性质即可得出BC=2BN=2OM=7,结论D错误.综上即可得出结论.【解答】解:A、∵∠OBC=∠AOB,∴OA∥BC,∴∠OAC=∠ACB.∵OA=OC,∴∠OAC=∠OCA,∴∠OCA=∠ACB,∴∠OCB=2∠ACB,结论A正确;B、∵OA=OB,∴∠OAB+∠AOB+∠OBA=180°.∵∠OAC=∠OCB=∠AOB,∠OAB=∠OBA,∴∠OAB+∠AOB=90°,即∠OAB+∠OAC=90°,结论B正确;C、过点O作OE⊥AB于点E,过点O作OF⊥AC于点F,如图4所示.∵OA=OB,∴∠AOE=∠AOB=∠OAF.在△AOE和△OAF中,,∴△AOE≌△OAF(AAS),∴AF=OE==,∴AC=2AF=2,结论C正确;D、过点B作BM⊥OA于点M,过点O作ON⊥BC于点N,如图5所示.∵∠OAB+∠AOE=90°,∠MAB+∠ABM=90°,∴∠AOE=∠ABM.∵∠AEO=∠AMB=90°,∴△AOE∽△ABM,∴,∴AM=,OM=AO﹣AM=.∵BC∥AO,BM⊥AO,ON⊥BC,∴四边形MBNO为矩形,∴BN=OM=.∵OB=OC,ON⊥BC,∴BC=2BN=7,结论D错误.故选D.【点评】本题考查了等腰三角形的性质、解直角三角形、相似三角形的判定与性质、全等三角形的判定与性质以及矩形的判定与性质,逐一分析四个选项的正误是解题的关键.9.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,若点E是BC的中点,则sin∠CAE的值为()A.2 B.C.D.【分析】如图,由于在边长为1的小正方形组成的网格中,△ABC的边长可以利用勾股定理求出,然后利用三角函数的定义即可求解.【解答】解:依题意得AB==,AC==2BC==5,∴AB2+AC2=BC2,∴△ABC是直角三角形,又∵E为BC的中点,∴AE=CE,∴∠CAE=∠ECA,∴sin∠CAE=sin∠ECA==.故选D.【点评】此题主要考查了三角函数的定义,也考查了勾股定理及其逆定理,首先根据图形求出三角形的边长,然后利用勾股定理及其逆定理和三角函数即可解决问题.10.如图,四边形BDCE内接于以BC为直径的⊙A,已知:BC=10,cos∠BCD=,∠BCE=30°,则线段DE的长是()A. B.7 C.4+3D.3+4【分析】在Rt△CDB和Rt△CBE中,通过解直角三角形易求得BD、BE的长.过B作BF⊥DE于F,由圆周角定理知∠BCE=∠BDE,∠BED=∠BCD.根据这些角的三角函数值以及BD、BE的长,即可求得DF、EF的值,从而得到DE的长.【解答】解:过B作BF⊥DE于F.在Rt△CBD中,BC=10,cos∠BCD=,∴BD=8.在Rt△BCE中,BC=10,∠BCE=30°,∴BE=5.在Rt△BDF中,∠BDF=∠BCE=30°,BD=8,∴DF=BD•cos30°=4.在Rt△BEF中,∠BEF=∠BCD,即cos∠BEF=cos∠BCD=,BE=5,∴EF=BE•cos∠BEF=3.∴DE=DF+EF=3+4,故选D.【点评】此题主要考查的是圆周角定理和解直角三角形的综合应用,难度适中.11.如图,在Rt△ABO中,斜边AB=1,若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点A到OC的距离为sin36°sin54°C.点B到AO的距离为tan36°D.点A到OC的距离为cos36°sin54°【分析】根据图形得出B到AO的距离是指BO的长,过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出BO=ABsin36°,即可判断A、C;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出AD=AOsin36°,AO=AB•sin54°,求出AD,即可判断B、D.【解答】解:B到AO的距离是指BO的长,∵AB∥OC,∴∠BAO=∠AOC=36°,∵在Rt△BOA中,∠BOA=90°,AB=1,∴sin36°=,∴BO=ABsin36°=sin36°,故A、C选项错误;过A作AD⊥OC于D,则AD的长是点A到OC的距离,∵∠BAO=36°,∠AOB=90°,∴∠ABO=54°,∵sin36°=,∴AD=AO•sin36°,∵sin54°=,∴AO=AB•sin54°,∵AB=1,∴AD=AB•sin54°•sin36°=1×sin54°•sin36°=sin54°•sin36°,故B选项正确,D选项错误;故选:B.【点评】本题考查了解直角三角形的应用,解此题的关键是①找出点A到OC的距离和B到AO的距离,②熟练地运用锐角三角形函数的定义求出关系式,题目较好,但是一道比较容易出错的题目.12.将一副三角板如下图摆放在一起,连接AD,则∠ADB的正切值为()A.B.C.D.【分析】过点A构造∠ADB所在的直角三角形,设AE为1,得到DE的值,相除即可.【解答】解:作AE⊥BD,交DB的延长线于点E.由题意可得:∠ABE=∠CBD=45°,设AE=1,则AB=∴BC=,∵Rt△BCD是等腰直角三角形,∴BD=,∴DE=1+,∴tan∠ADB=1÷(+1)=.故选D.【点评】考查解直角三角形的知识;构造出所求角所在的直角三角形是解决本题的难点.二.填空题(共12小题)13.(2017•广州)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB=17.【分析】根据∠A的正切求出AC,再利用勾股定理列式计算即可得解.【解答】解:∵Rt△ABC中,∠C=90°,tanA=,BC=15,∴=,解得AC=8,根据勾股定理得,AB===17.故答案为:17.【点评】本题考查了解直角三角形,勾股定理,主要利用了锐角的正切等于对边比邻边.14.(2017•无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于3.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值,本题得以解决.【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.【点评】本题考查解直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用勾股定理和等积法解答.15.(2017•铜仁市)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=,则tan2α=.【分析】根据题目中的数据和锐角三角函数可以求得tan2α的值,本题得以解决.【解答】解:连接BE,∵点D是AB的中点,ED⊥AB,∠A=α,∴ED是AB的垂直平分线,∴EB=EA,∴∠EBA=∠A=α,∴∠BEC=2α,∵tanα=,设DE=x,∴AD=3a,AE=,∴AB=6a,∴BC=,AC=∴CE=,∴tan2α==,故答案为:.【点评】本题考查解直角三角形、线段垂直平分线,解答本题的关键是明确题意,找出所求问题需要的条件,利用解直角三角形的相关知识解答.16.(2017•舟山)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).【分析】作CH⊥BA4于H,根据正方形的性质、勾股定理以及三角形的面积公式求出CH、A4H,根据正切的概念求出tan∠BA4C,总结规律解答.【解答】解:作CH⊥BA4于H,由勾股定理得,BA4==,A4C=,△BA4C的面积=4﹣2﹣=,∴××CH=,解得,CH=,则A4H==,∴tan∠BA4C==,1=12﹣1+1,3=22﹣2+1,7=32﹣3+1,∴tan∠BA n C=,故答案为:;.【点评】本题考查的是正方形的性质、勾股定理的应用以及正切的概念,掌握正方形的性质、熟记锐角三角函数的概念是解题的关键.17.如图,在Rt△ABC中,∠ACB=90°,sinB=,D是BC上一点,DE⊥AB于E,CD=DE,AC+CD=9.则BC=8.【分析】可设DE为未知数,表示出AC,CD,根据∠B的正弦值得到BD的值,易得∠B的正切值,进而在△ABC中利用得到的正切值即可求得未知数,也就求得了BC长.【解答】解:设DE为x,则CD=x,AC=9﹣x,∵sinB=,∴BD=x,tanB=,∴=,=,解得x=3,∴BC=x+x=8,故答案为8.【点评】考查解直角三角形的相关知识;熟练掌握三角函数的定义并灵活进行应用是解决本题的关键.18.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.【分析】首先在△ABC中,根据三角函数值计算出AC的长,再利用勾股定理计算出AD的长,然后根据余弦定义可算出cos∠ADC.【解答】解:∵∠B=90°,sin∠ACB=,∴=,∵AB=2,∴AC=6,∵AC⊥CD,∴∠ACD=90°,∴AD===10,∴cos∠ADC==.故答案为:.【点评】此题主要考查了解直角三角形,以及勾股定理的应用,关键是利用三角函数值计算出AC的长,再利用勾股定理计算出AD的长.19.如图,在等腰三角形中,AB=AC,BC=4,D为BC的中点,点E、F在线段AD 上,tan∠ABC=3,则阴影部分的面积是6.【分析】由图,根据等腰三角形是轴对称图形知,阴影部分的面积是三角形面积的一半.根据BC=4,D为BC的中点,tan∠ABC=3可求AD,然后利用阴影部分即可求解.面积=S△ABC【解答】解:∵AB=AC,D为BC的中点,∴△ABC是等腰三角形,∴△ABC是轴对称图形,AD所在直线是对称轴,.∴阴影部分面积=S△ABC∵AB=AC,BC=4,D为BC的中点,∴BD=DC=BC=2,AD⊥BC,∴tan∠ABC===3,∴AD=6,=××4×6=6.∴阴影部分面积=S△ABC故答案为6.【点评】本题考查了解直角三角形,等腰三角形的性质及轴对称性质;利用对称发现阴影部分的面积是三角形面积的一半是正确解答本题的关键.20.在正方形ABCD中,N是DC的中点,M是AD上异于D的点,且∠NMB=∠MBC,则tan∠ABM=.【分析】根据∠NMB=∠MBC,延长MN,BC相交于T,得到等腰△TBM,连接点T和MB的中点,得到相似三角形,然后由相似三角形的性质进行计算,求出∠ABM的正切.【解答】解:如图:延长MN交BC的延长线于T,设MB的中点为O,连TO,则OT⊥BM,∵∠ABM+∠MBT=90°,∠OTB+∠MBT=90°,∴∠ABM=∠OTB,则△BAM∽△TOB,∴=,即=,即MB2=2AM•BT ①令DN=1,CT=MD=K,则:AM=2﹣K,BM=,BT=2+K,代入①中得:4+(2﹣K)2=2(2﹣K)(2+K),解方程得:K1=0(舍去),K2=.∴AM=2﹣=.tan∠ABM===.故答案是:.【点评】本题考查的是解直角三角形,运用正方形的性质,根据题目中角的关系,判断两个三角形相似,然后用相似三角形的性质进行计算,求出直角三角形中边的长度,再用正切的定义求出角的正切值.21.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是 4.8.【分析】设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x﹣2,解直角△ABE即可求得x的值,即可求得BE、AE的值,根据AB、PE的值和△ABE的面积,即可求得PE的最小值.【解答】解:设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x﹣2,因为AE⊥BC于E,所以在Rt△ABE中,cosB=,又cosB=,于是,解得x=10,即AB=10.所以易求BE=8,AE=6,当EP⊥AB时,PE取得最小值.故由三角形面积公式有:AB•PE=BE•AE,求得PE的最小值为4.8.故答案为 4.8.【点评】本题考查了余弦函数在直角三角形中的运用、三角形面积的计算和最小值的求值问题,求PE的值是解题的关键.22.如图,正△EFG内接于正方形ABCD,其中E,F,G分别在边AB,AD,BC 上,若,则=.【分析】如图所示,作出辅助线,可知三角形ABK是等边三角形,设出正方形的边长,解直角三角形求出BG.再计算比值.【解答】解:如图,作EK⊥FG,K是FG的中点,连AK、KB,易知E、K、G、B 和E、K、F、A分别四点共圆∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°.∴三角形ABK是等边三角形作KM⊥AB,M是AB的中点,设AB=6则EB=AB=2,MB=3,ME=1,MK=6sin60°=3∴EK=;;.故.故答案为.【点评】此题是一个综合性很强的题目,主要考查等边三角形的性质、解直角三角形、三角函数等知识.难度很大,有利于培养同学们钻研和探索问题的精神.23.四边形ABCD中,∠A=∠C=90°,∠ADC=60°,AB=11,BC=2,则BD=14.【分析】延长AB与DC的延长线相交于点E,构造了两个30°的直角三角形,首先在直角三角形CBE中求得BE的长,再进一步在直角三角形ADE中,求得AD 的长,再在直角三角形BAD中由勾股定理求得BD.【解答】解:如图,延长AB与DC的延长线相交于点E.在Rt△ADE中,∵∠ADE=60°,∴∠E=30°.在Rt△BCE中,sinE=,∴BE==4,∴AE=AB+BE=11+4=15.在Rt△DAE中,tanE=,∴AD=AE•tanE=15×=5,在Rt△BAD中,BD===14,故答案为:14.【点评】此题考查的知识点是解直角三角形,关键要特别注意构造30°的直角三角形,熟练运用锐角三角函数求解.24.如图,已知∠BAC=60°,在角的内部有一点P,P到AB的距离为,P 到AC的距离为3,则点P到顶点A的距离为5.【分析】延长BP,AC交于点D,构造出两个特殊的直角三角形,易得PD的值,也就求得了BP的值,进而求得AB的值,利用勾股定理即可求得AP的值.【解答】解:延长BP,AC交于点D,连接AP.∵∠D=30°,PC=3,∴PD=6,∴BD=BP+PD=4.5+2,∴AB=+2,PA===5.故答案为5.【点评】考查解直角三角形的相关知识;把四边形转换为直角三角形求解是常用的解题思路.三.解答题(共16小题)25.(2017•黔西南州)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1=1,sin2A2+cos2A2=1,sin2A3+cos2A3=1;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=1;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.【分析】(1)根据正弦函数和余弦函数的定义分别计算可得;(2)由(1)中的结论可猜想sin2A+cos2A=1;(3)由sinA=、cosA=且a2+b2=c2知sin2A+cos2A=()2+()2===1;(4)根据直角三角形中sin2A+cos2A=1知()2+cosA2=1,据此可得答案.【解答】解:(1)sin2A1+cos2A1=()2+()2=+=1,sin2A2+cos2A2=()2+()2=+=1,sin2A3+cos2A3=()2+()2=+=1,故答案为:1、1、1;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=1,故答案为:1;(3)在图2中,∵sinA=,cosA=,且a2+b2=c2,则sin2A+cos2A=()2+()2=+===1,即sin2A+cos2A=1;(4)在△ABC中,∠A+∠B=90°,∴∠C=90°,∵sin2A+cos2A=1,∴()2+cosA2=1,解得:cosA=或cosA=﹣(舍),∴cosA=.【点评】本题主要考查解直角三角形,熟练掌握正弦函数和余弦函数的定义是解题的关键.26.(2017•湘潭)某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).【分析】(1)在Rt△ABE中,利用三角函数即可直接求得BE的长;(2)在Rt△CDE中,利用三角函数求得DE的长,然后利用DB=DE+EB求解.【解答】解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=AE=×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°﹣30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=≈=40(米),则BD=DE+BE=40+40=80(米).【点评】本题考查了解直角三角形,正确理解三角函数的定义,理解边角关系是关键.27.如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)【分析】作BE⊥l于点E,DF⊥l于点F,求∠ADF的度数,在Rt△ABE中,可以求得AB的值,在Rt△ADF中,可以求得AD的值,即可计算矩形ABCD的周长,即可解题.【解答】解:作BE⊥l于点E,DF⊥l于点F.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin ,∴mm在Rt△ADF中,cos ,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.【点评】本题考查了矩形对边相等的性质,直角三角形中三角函数的应用,锐角三角函数值的计算.28.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.【分析】(1)在△ABC中根据正弦的定义得到sinA==,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD=AB=5;(2)在Rt△ABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到S△BDC =S△ADC,则S△BDC=S△ABC,即CD•BE=•AC•BC,于是可计算出BE=,然后在Rt△BDE中利用余弦的定义求解.【解答】解:(1)在△ABC中,∵∠ACB=90°,∴sinA==,而BC=8,∴AB=10,∵D是AB中点,∴CD=AB=5;(2)在Rt△ABC中,∵AB=10,BC=8,∴AC==6,∵D是AB中点,∴BD=5,S△BDC =S△ADC,∴S△BDC =S△ABC,即CD•BE=•AC•BC,∴BE==,在Rt△BDE中,cos∠DBE===,即cos∠ABE的值为.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了直角三角形斜边上的中线性质和三角形面积公式.29.阅读下面的材料:(1)锐角三角函数概念:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,称sinA=,sinB=是两个锐角∠A,∠B的“正弦”,特殊情况:直角的正弦值为1,即sin90°=1,也就是sinC==1.由sinA=,可得c=;由sinB=,可得c=,而c==,于是就有(2)其实,对于任意的锐角△ABC,上述结论仍然成立,即三角形各边与对角的正弦之比相等,我们称之为“正弦定理”,我们可以利用三角形面积公式证明其正确性.证明:如图1作AD⊥BC于D则在Rt△ABD中,sinB=,∴AD=c•sinB,∴S△ABC=a•AD=ac•sinB,在Rt△ACD中,sinC=,∴AD=b•sinC.∴S△ABC =a•AD=ab•sinC.同理可得S△ABC=bc•sinA.因此有S△ABC=ac•sinB=ab•sinC=bc•sinA.也就是=ac•sinB=ab•sinC=bc•sinA.每项都除以abc,得,故请你根据对上面材料的理解,解答下列问题:(1)在锐角△ABC中,∠B=60°,∠C=45°,c=2,求b;(2)求问题(1)中△ABC的面积;(3)求sin75°的值(以上均求精确值,结果带根号的保留根号)【分析】(1)根据阅读材料得到,则=,可计算出b=;(2)作AD⊥BC于D,如图,在Rt△ABD中,利用余弦的定义得cosB=cos60°=,可计算出BD=1,在Rt△ADC中,根据等腰直角三角形的性质得AD=CD=AC=,所以BC=BD+CD=+1,然后根据三角形面积公式计算得到△ABC的面积=;(3)先根据三角形内角和定理得到∠A=180°﹣∠B﹣∠C=75°,再根据阅读材料得到△ABC的面积=bcsinA,即••2•sin75°=,可计算出sin75°=.【解答】解:(1)∵,∴=,∴b==;(2)作AD⊥BC于D,如图,在Rt△ABD中,cosB=cos60°==,∴BD=1,在Rt△ADC中,AD=CD=AC=×=,∴BC=BD+CD=+1,∴△ABC的面积=××(+1)=;(3)∵∠B=60°,∠C=45°,∴∠A=180°﹣∠B﹣∠C=75°,∴△ABC的面积=bcsinA,∴••2•sin75°=,∴sin75°=.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.30.如图,四边形ABCD中,AB=AD,∠ABC=∠ADC.(1)求证:CB=CD;(2)若∠BCD=90°,AO=2CO,求tan∠ADO.【分析】(1)根据等腰三角形的性质得到∠ABD=∠ADB,根据角的和差得到∠CBD=∠CDB,于是得到结论;。

2017年全国中考数学真题分类 三角形与多边形2017(选择题)

2017年全国中考数学真题分类  三角形与多边形2017(选择题)

2017年全国中考数学真题分类三角形与多边形选择题一、选择题1. (2017山东滨州,8,3分)如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为A .40°B .36°C .80°D .25°答案:B ;解析:设∠C =x °,由于DA =DC ,可得∠DAC =∠C =x °,由AB =AC 可得∠B =∠C =x °.∴∠ADB =∠C +∠DAC =2x °,由于BD =BA ,所以∠BAD =∠ADB =2x °,根据三角形内角和定理,得x °+x °+3x °=180°,解得x =36°.所以∠B =36°.2. (2017浙江舟山,2,3分)长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( )A . 47B .5C .6D .9答案:C ,解析:利用“三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边”可得,7-2< x <7+2 ,解得5< x <9,x 的值可以是6.3. (2017四川德阳,6,3分)如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,∠BAC = 60°,∠ABE =50°,则∠DAC 的大小是A .15°B .20°C .25°D .30° 答案:B ,解析:由角平分线和三角形内角和的知识,可以知道∠ABC =50°,∠BAC =60°,∠C =70°.则∠DAC =20°4. 7.(2017江苏淮安,7,3分)若—个三角形的两边长分别为5和8,则第三边长可能是( )A .14B .10C .3D .2答案:B ,解析:设第三边长为a ,根据“三角形三边之间的关系”得8-5<a <8+5,即3<A B C Da<13,所以10可能是第三边长.5. 8.(2017江苏苏州,7,3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为A.30°B.36°C.54°D.72°答案:B,解析:根据“正多边形的定义:各边都相等,各角都相等”可计算出正五边形一个内角的度数∠A=108°,再根据等腰△ABE两底角相等,可计算底角∠ABE=36°.6. 6.(2017江苏扬州,,3分)若一个三角形的两边长分别为2和4,则该三角形的周长可能是A.6 B.7 C.11 D.12【答案】C【解析】根据“两边之差<第三边<两边之和”,所以第三边大于2小于6,因此周长大于8小于12,所以三角形的周长可能是11.7. 4.(2017江苏泰州,4,3分)三角形的重心是( )A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点答案:A,解析:三角形的重心是三角形三条边上中线的交点,故选A.8.10.(2017湖北宜昌,3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①② B.①③ C.②④ D.③④答案:B ,解析:根据剪开所得图形的内角和进行识别与判断,都是四边形,符合要求,第2个剪开所得两个图形分别是五边形和三角形,不符合,第3个剪开所得两个图形分别是三角形,符合要求,第4个剪开所得两个图形分别是三角形和四边形,不符合.9. (2017甘肃庆阳,8,3分)已知,,a b c 是ABC △的三条边长,化简a b c c a b 的结果为( ) A.222a b cB.22a bC.2cD.0 答案:D ,解析:根据三角形三边满足的条件:两边和大于第三边,两边的差小于第三边,即可确定a b c >0,c a b <0,所以a b c c a b =a b c +c a b =0,故选D .10. (2017·湖南株洲,5,3分)如图,在△ABC 中,∠BAC =x ,∠B =2x ,∠C =3x ,则∠BAD 的度数是A . 145°B .150°C .155°D .160° 答案:B ,解析:由∠BAC =x ,∠B =2x ,∠C =3x 以及三角形内角和定理可得x =30°.因此∠BAD =180°-∠BAC =180°-30°=150°,故选B .11. 2017北京,6,3分)若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .18 答案:B ,解析:由内角为150°可知外角为30°,由外角和为360°,得n =360°÷30°=12.12. (2017新疆乌鲁木齐,5,4分)如果正n 边形每一个内角等于与它相邻外角的2倍,则n 的值是( )A.4B.5C.6D.7答案:C , 解析:设多边形的外角为x °,则相邻的内角为2x °,根据“外角与相邻的内角互补”,得x+2x=180,解得x=60°,根据多边形的外角和是360°,所以360660n ==,故选C. D A C B2x3x x ?第5题图13. (2017广西百色,2,3分)多边形外角和等于( )A. 180° B. 360° C.720° D.(n2)180︒-答案:B,解析:所有多边形的外角和都是360°.14. 2.(2017年贵州省黔东南州,2,4分)如图,∠ACD=120°,∠B=20°,则∠A的度数是A.120° B.90° C.100° D.30°答案:C,解析:∵∠ACD=120°,∠B=20°,∴∠A=∠ACD-∠B=120°-20°=100°.15. (2017年湖南长沙,5,3分)一个三角形三个内角的度数之比为1:2:3,刚这个三角形一定是A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形答案:B,解析:设内角分别为x度,2x度,3x度,由内角和180°=x+2x+3x,得x=30°,则3x=90°,所以是直角三角形。

2017年中考真题分类解析 等腰三角形与等边三角形

2017年中考真题分类解析   等腰三角形与等边三角形

一、选择题1. 6. 7.(2017年四川南充,7,3分)如图4,等边△OAB 的边长为2,则点B 的坐标为( ) A .(1,1) B .1) C .D .(1答案:D 解析:过点B 作BC ⊥OA 于点C ,则OC =1,BCB 的坐标为与则点P 到AB 所在直线的距离等于 A .1 B C.32D .2(第6题)PB答案:A ,解析:在Rt △ABC 中,连接CP 并延长至AB 于点D ,由三角形的重心性质得到,重心到顶点的距离与重心到对边中点的距离之比为2:1,即:21CP PD =:;又∵AC=BC ,在等腰直角△ABC 中,由三线合一,得到CD 垂直平分线段AB ,AB =6,∴CD =BD =3,点P 到AB 所在直线的距离即为PD 的长度,即PD =1.4. (2017浙江台州,8,4分)如图,已知等腰三角形ABC AB AC =,,若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A . AE =ECB .AE =BEC . ∠EBC =∠BACD .∠EBC =∠ABE答案:C ,解析:∵△ABC 是等腰三角形, AB =AC ,∴∠ABC =∠ACB .又∵BC =BE ,∴∠ACB =∠BEC ,∴∠BAC =∠EBC ,因此选C .5. (2017内蒙古包头)若等腰三角形的周长为10cm ,其中一边长为2cm ,则该等腰三角形的底边长为( ) A . 2cm B . 4cm C . 6cm D .8cm答案:A ,解析:考点等腰三角形的性质及三角形的三边关系.(1)若底边长为2cm ,则腰长为(102)24cm -÷=,4+2>4符合三角形三边关系,所以该等腰三角形的底边长为2cm ;(2)若腰长为2cm ,则底边长为10226cm -⨯=,2+2<6不符合三角形三边关系,所以该等腰三角形的底边长为6cm 舍去.6. (2017广西河池,12,3分)已知等边△ABC 的边长为12, D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3B.4C.8D.9答案:C解析:由题易知△DEF为等边三角形,x+2x=12解得x=4,∴AD=2x=87.(2017湖北荆州,6,3分)如图,在△ABC中,AB=AC, ∠A=30°,AB的垂直平分线交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°答案:B,解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.8.(2017四川雅安,7,3分)一个等腰三角形的底边长是6,腰长是一元二次方程x2-7x+12=0的一根,此三角形的周长是A.12 B.13 C.14 D.12或14答案:C,解析:一元二次方程x2-7x+12=0的两根分别为3,4,所以腰长有两种情况:①腰长为3,底边为6,此时三角形三边关系为3+3=6,不符合“三角形任意两边之和大于第三边”,故不成立;②腰长为4,此时三角形三边符合“三角形任意两边之和大于第三边”,所以周长为4+4+6=14.9. 13.(2017海南,13,3分)已知△ABC 的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条A.3 B.4 C.5 D.6【答案】B【解析】如图所示,共有4种画法二、填空题1.(2017浙江丽水·12·4分)等腰三角形的一个内角为100°,则顶角的度数是答案:100°.解析:根据三角形的内角和等于1800,又等腰三角形的一个内角为100°,所以这个100°的内角只可能是顶角,2.⊥以3.∴12×4×DE+12×4×DF=12×4×CG.∴DE+DF=CG=23.4.∴1.(2017四川内江,18,9分)如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.思路分析:如图,直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B =∠BDE ,即可得出答案.证明:∵DE ∥AC ,∴∠1=∠3. ∵AD 平分∠BAC ,∴∠1=∠2. ∴∠2=∠3.∵AD ⊥BD ,∴∠2+∠B =90°,∠3+∠BD E =90°. ∴∠B =∠BDE .∴△BDE 是等腰三角形.2. (2017江苏连云港,22,10分) 如图,已知等腰三角形ABC 中,AB AC =,点D ,E 分别在边AB 、AC 上,且AD AE =,连接BE 、CD ,交于点F .(1)判断ABE ∠与ACD ∠的数量关系,并说明理由; (2)求证:过点A 、F 的直线垂直平分线段BC .思路分析:(1)根据全等三角形的判定SAS 可证明△ABE ≌△ACD ,然后证ABE ∠=ACD ∠,(2)根据(1)的结论可得AB =AC ,从而得ABC ACB =∠∠,∵ABE ACD =∠∠∴FBC FCB =∠∠∴FB FC =,得点A 、F 均在线段BC 的垂直平分线上,即可证出结论,解:(1)ABE ACD =∠∠.因为AB AC =,BAE CAD =∠∠,AE AD =,所以ABE ACD △≌△. 所以ABE ACD =∠∠.(2)因为AB AC =,所以ABC ACB =∠∠.由(1)可知ABE ACD=∠∠,所以FBC FCB=∠∠,所以FB FC=.又因为AB AC=,所以点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.3. 18.(2017呼和浩特)(6分)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD=CE(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点.当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.(1)证明:∵AB、AC为等腰三角形的两腰∴AB=AC∵BD,CE分别是两腰上的中线∴AE=AD在△AEC与△ADB中AE=AD∠A=∠AAC=AB∴△AEC≌△ADB∴BD=CE(2)四边形DEMN为正方形4. 26.(2017宁夏,9分在边长为2的等边三角形ABC中,P是BC边上任意一点,过点P分别作PM⊥AB,PN⊥AC,M、N分别为垂足.(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.NMP CBA思路分析:(1)连结AP,将△ABC分割成两个三角形,结合等边三角形的三条边相等,利用面积公式,即可求证结论;(2)设BP的长为x,利用面积的和差关系,将四边形AMPN的面积S用含x的代数式表示,将几何问题转换成代数式求最值问题,在此即是S关于x 的二次函数,运用配方法求出最值.(1)解:连结AP,∵△ABC是等边三角形,故不妨设AB=BC=AC=a,其中BC边上的高记作h,∴S四边形AMPN= S△ABC -S△BMP -S△PNC28x-8(2-x)2= -4(x-1)2+4∴ 当BP =1时,四边形AMPN 的面积最大,是334.5. (2017北京,19,5分)如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于点D . 求证:AD =BC .DCB A思路分析:由等腰三角形性质及三角形内角和定理,可求出∠AB D =∠C =BDC . 再据等角对等边,及等量代换即可求解.解:∵AB =AC , ∠A =36°∴∠ABC =∠C =12(180°-∠A )=12×(180°-36°)=72°,又∵BD 平分∠ABC ,∴∠ABD =∠DBC =12∠ABC =12×72°=36°,∠BDC =∠A +∠ABD =36°+36°=72°, ∴∠C=∠BDC ,∠A =∠ABD ,∴AD =BD =BC .6. (2017黑龙江大庆,24, 7分)如图,以BC 为底边的等腰ABC ∆,点G E D ,,分别在AC AB BC ,,上,且BC EG //,AC DE //,延长GE 至点F ,使得BF BE =.(1)求证:四边形BDEF 为平行四边形;(2)当045=∠C ,2=BD 时,求F D ,两点间的距离.思路分析:(1)证明两组对比分别平行(2)构造直角△DHF ,利用勾股定理求解解:(1)∵EG ∥BC ,∴EF ∥BD ,∴∠AEG =∠ABC ,AB =AC ,∴∠ABC =∠ACB =∠AGF ,又BE =BF ,∴∠F =∠FEB =∠AEG =∠AGE ,∴BF ∥AC ,∵ED ∥AC ,∴BF ∥DE ,∴四边形BDEF 为平行四边形.(2)如图,作FH ⊥DE ,交DE 延长线于点H ,则四边形FBEH 为正方形,FH =EH =EB .∵∠ACB=45°,∴△ABC 和△EDB 都是等腰直角三角形,∵BD =2,∴BE =2×sin45°=2,∴FH =2,HD =22,在Rt △FHD 中,DF =22FH HD +=82+=107.、OQE =45°,写出结论.(2)(1)中的结论成立.证△PCE ≌△EDQ 可得EP =EQ . (3)∠AOB 的度数=12(四边形的内角和-∠AGB 的度数). 解:(1)EP =EQ .连接OE .∵∠AOB =90°,E 是AB 的中点,∴OE =AE .又∵OP=AP,∴PE垂直平分OA,∴点C在PE上.∵∠OP A=90°,∴∠OPE=12∠OP A=45°.同理可证∠OQE=45°.∴EP=EQ.(2)∵△OP A等腰直角三角形,点C是OA的中点,∴OC=PC,∠PCA=90°.∵点C、D、E分别是OA、OB、AB的中点,∴CE∥OD,OC∥DE.∴四边形ODEC是平行四边形.∴OC=DE.∴PC=DE.同理可证CE=DQ,∠BDQ=90°.∵CE∥OD,OC∥DE,∴∠ACE=∠AOD=∠EDB.∴∠PCE=∠EDQ.∴△PCE≌△EDQ.∴EP=EQ.(3)连接OG.∵△OP A等腰直角三角形,点C是OA的中点,∴OC=PC,∠PCA=90°.∴PC垂直平分OA.∵点G在PC上,∴AG=OG.同理可证点G在QC上,∴BG=OG.∴∠PCA=∠PCA,∠PCA=∠PCA.∵△ABG为等边三角形,∴∠AGB=60°.∵四边形的内角和为360°,∴∠AOB的度数=12(四边形的内角和-∠AGB的度数)=12(360°-60°)=150°.8. 21.(本题满分9分)(2017山东莱芜,21,9分)己知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE、DB.试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.思路分析:(1)通过证明Rt △ACE ≌Rt △BCD 即可解决;(2)通过证明△EBD ≌△ADF 即可得解.解:(1)AE =DB ,AE ⊥DB .理由:由题意可知,CA =CB ,CE =CD ,∠ACE =∠BCD =90°,∴Rt △ACE ≌Rt △BCD .∴AE =DB .延长DB 交AE 于点M ,∵Rt △ACE ≌Rt △BCD ,∴∠AEC =∠BDC .又∵∠AEC +∠EAC =90°,∴∠BDC +∠EAC =90°,∴在△AMD 中,∠AMD =180°-90°=90°,∴AE ⊥DB .(2)DE =AF ,DE ⊥AF .理由:设ED 与AF 相交于点N ,由题意可知,BE =AD .① C E B ② F C E B (第21题图)∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,又∵DB=DF,∴△EBD≌△ADF.∴DE=AF.∠E=∠F AD,∵∠E=45°,∠EDC=45°,∴∠F AD=45°. ∴∠AND=90°.∴DE⊥AF.9. 20. (2017吉林,7分)图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点在格点上.(1)在图①、图②中,以AB为边各画一个等腰三角形,且第三个顶点在格点上.(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.思路分析:(1)观察发现,线段AB相等与是两边长为2和1的一个三角形的第三边,∴在图中再找一条边是边长为2和1的一个三角形的一边即可;(2)平移线段AB,使平移后的线段端点也在格点上,连结平移前与平移后的对应顶点,构成的四边形就是平行四边形.解析:(1)答案不唯一,符合题意即可;(2)答案不唯一,符合题意即可.。

2017年中考数学试题 三角形分项版解析汇编(原卷+解析卷)

2017年中考数学试题 三角形分项版解析汇编(原卷+解析卷)

专题09 三角形一、选择题1.(2017重庆A卷第8题)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9【答案】A.【解析】试题解析:∵△ABC~△DEF,相似比为3:2,∴对应高的比为:3:2.故选A.考点:相似三角形的性质.2. (2017重庆A卷第11题)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米【答案】A.【解析】试题解析:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i=140.753 CQBQ==,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP=11tan tan40DPA=∠︒≈13.1,∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选A.考点:解直角三角形的应用.3.(2017甘肃庆阳第6题)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135°D.145°【答案】C.【解析】试题解析:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选C .考点:平行线的性质;余角和补角.4. (2017甘肃庆阳第8题) 已知a ,b ,c 是△ABC 的三条边长,化简|a+b-c|-|c-a-b|的结果为( )A .2a+2b-2cB .2a+2bC .2cD .0【答案】D【解析】试题解析:∵a 、b 、c 为△ABC 的三条边长,∴a+b-c >0,c-a-b <0,∴原式=a+b-c+(c-a-b )=0.故选D .考点:三角形三边关系.5.(2017广西贵港第11题)如图,在Rt ABC ∆中,90ACB ∠= ,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,P 是''A B 的中点,连接PM ,若230BC BAC =∠= ,,则线段PM 的最大值是 ( )A .4B .3 C.2 D .1【答案】B【解析】试题解析:如图连接PC .在Rt △ABC 中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=12A′B′=2, ∵CM=BM=1,又∵PM ≤PC+CM ,即PM ≤3,∴PM 的最大值为3(此时P 、C 、M 共线).故选B .考点:旋转的性质.6.(2017湖北武汉第10题)如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C . 6D .7【答案】C【解析】试题解析:①以B 为圆心,BC 长为半径画弧,交AB 于点D ,△BCD 就是等腰三角形;②以A 为圆心,AC 长为半径画弧,交AB 于点E ,△ACE 就是等腰三角形;③以C 为圆心,BC 长为半径画弧,交AC 于点F ,△BCF 就是等腰三角形;④作AC 的垂直平分线交AB 于点H ,△ACH 就是等腰三角形;⑤作AB 的垂直平分线交AC 于G ,则△AGB 是等腰三角形;⑥作BC 的垂直平分线交AB 于I ,则△BCI 是等腰三角形.故选C.考点:画等腰三角形.7.(2017江苏无锡第10题)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .75 【答案】D .【解析】试题解析:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3,∴BC=2234 =5,∵CD=DB ,∴AD=DC=DB=52, ∵12•BC•AH=12•AB•AC, ∴AH=125, ∵AE=AB ,DE=DB=DC ,∴AD 垂直平分线段BE ,△BCE 是直角三角形, ∵12•AD•BO=12•BD•AH, ∴OB=125, ∴BE=2OB=245, 在Rt △BCE 中,EC=22222475()55BC BE -=-= . 故选D . 考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.8.(2017甘肃兰州第3题)如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡与水平地面夹角的正切值等于( )A.513B.1213C.512D.1312【答案】C .【解析】试题解析:如图,在Rt △ABC 中,∵∠ACB=90°,AB=130m ,BC=50m ,∴AC=222213050AB BC -=-=120m ,∴tan∠BAC=50512012 BCAC==.故选C.考点:解直角三角形的应用﹣坡度坡角问题.9. (2017甘肃兰州第13题)如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(0.5DE BC==米,,,A B C三点共线),把一面镜子水平放置在平台上的点G处,测得15CG=米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得3CG=米,小明身高 1.6EF=米,则凉亭的高度AB约为( )A.8.5米B.9米C.9.5米D.10米【答案】A.【解析】试题解析:由题意∠AGC=∠FGE,∵∠ACG=∠FEG=90°,∴△ACG∽△FEG,∴AC CG EF GD=∴15 1.53 AC=∴AC=8,∴AB=AC+BC=8+0.5=8.5米.故选A.点:相似三角形的应用.10.(2017贵州黔东南州第2题)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A .120°B .90°C .100°D .30°【答案】C .【解析】 试题解析:∠A=∠ACD ﹣∠B=120°﹣20°=100°,故选:C .考点:三角形的外角性质.11.(2017山东烟台第12题)如图,数学实践活动小组要测量学校附近楼房CD 的高度,在水平底面A 处安置侧倾器得楼房CD 顶部点D 的仰角为045,向前走20米到达'A 处,测得点D 的仰角为05.67.已知侧倾器AB 的高度为1.6米,则楼房CD 的高度约为( )(结果精确到0.1米,414.12 )A .14.34米B .1.34米 C.7.35米 D .74.35米【答案】C .【解析】试题解析:过B 作BF ⊥CD 于F ,∴AB=A′B′=CF=1.6米,在Rt △DFB′中,B′F=tan 67.5DF︒,在Rt △DFB 中,BF=DF , ∵BB′=AA′=20,∴BF ﹣B′F=DF﹣tan 67.5DF︒=20,∴DF ≈34.1米,∴CD=DF+CF=35.7米,答:楼房CD 的高度约为35.7米,故选C .考点:解直角三角形的应用﹣仰角俯角问题.12.(2017四川泸州第10题)已知三角形的三边长分别为a 、b 、c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S=()()()p p a p b p c ---,其中p=2a b c++;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S=2222221()22a b c a b +--,若一个三角形的三边长分别为2,3,4,则其面积是( ) A.3158 B. 3154 C. 3152 D. 152【答案】B.考点:二次根式的应用.13.(2017浙江嘉兴第2题)长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( )A.4B.5C.6D.9【答案】C.【解析】试题解析:由三角形三边关系定理得7-2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选C.考点:三角形的三边关系.二、填空题1.(2017浙江宁波第16题)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知500AB=米,则这名滑雪运动员的高度下降了米.(参考数据:sin340.56°≈,cos340.83°≈,tan340.67°≈)【答案】280.【解析】试题分析:在RtΔABC中,sin34°=AC AB∴AC=AB×sin34°=500×0.56=280米.考点:解直角三角形的应用.2.(2017甘肃庆阳第16题)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于 cm.【答案】154cm . 【解析】试题解析:如图,折痕为GH ,由勾股定理得:AB=226+8=10cm ,由折叠得:AG=BG=12AB=12×10=5cm ,GH ⊥AB , ∴∠AGH=90°,∵∠A=∠A ,∠AGH=∠C=90°,∴△ACB ∽△AGH , ∴AC BC AG GH=, ∴865GH=, ∴GH=154cm . 考点:翻折变换3.(2017广西贵港第16题)如图,点P 在等边ABC ∆的内部,且6,8,10PC PA PB ===,将线段PC 绕点C 顺时针旋转60得到'P C ,连接'AP ,则sin 'PAP ∠的值为 .【答案】35【解析】试题解析:连接PP′,如图,∵线段PC 绕点C 顺时针旋转60°得到P'C ,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC 为等边三角形,∴CB=CA ,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB 和△P′CA 中PC P C PCB P CA CB CA '⎧=⎪'∠=∠⎨⎪=⎩∴△PCB ≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP 2=P′A 2,∴△APP′为直角三角形,∠APP′=90°,∴sin ∠PAP′=63105PP P A '=='. 考点:旋转的性质;等边三角形的性质;解直角三角形.4.(2017贵州安顺第13题)三角形三边长分别为3,4,5,那么最长边上的中线长等于 .【答案】2.5【解析】试题解析:∵32+42=25=52,∴该三角形是直角三角形, ∴12×5=2.5. 考点:勾股定理的逆定理;直角三角形斜边上的中线.5.(2017湖北武汉第15题)如图△ABC 中,AB=AC ,∠BAC=120°,∠D AE=60°,BD=5,CE=8,则DE 的长为 .【答案】7.【解析】试题解析:∵AB=AC,∴可把△AEC 绕点A 顺时针旋转120°得到△AE′B,如图,∴BE′=EC=8,AE′=AE,∠E′AB=∠EAC,∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠EAC=60°,∴∠E′AD=∠E′AB+∠BAD=60°,在△E′AD 和△EAD 中AE =AE E AD =EAD AD =AD ⎧'∠'∠⎪⎨⎪⎩∴△E′AD≌△EAD(SAS ),∴E′D=ED,过E′作EF⊥BD 于点F ,∵AB=AC,∠BAC=120°,∴∠ABC=∠C=∠E′BA=30°,∴∠E′BF=60°,∴∠BE′F=30°,∴BF=12BE′=4,E′F=43,∵BD=5,∴FD=BD-BF=1,在Rt△E′FD中,由勾股定理可得E′D=22(43)+1=7,∴DE=7.考点:1.含30度角的直角三角形;2.等腰三角形的性质.6.(2017湖南怀化第15题)如图,AC DC=,BC EC=,请你添加一个适当的条件:,使得ABC DEC△≌△.【答案】CE=BC.本题答案不唯一.【解析】试题解析:添加条件是:CE=BC,在△ABC与△DEC中,AC DC BC EC CE BC⎧=⎪=⎨⎪=⎩,∴△ABC≌△DEC.故答案为:CE=BC.本题答案不唯一.点:全等三角形的判定.7.(2017江苏无锡第18题)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D 都在格点处,AB与CD相交于O,则tan∠BOD的值等于.【答案】3.【解析】试题解析:平移CD 到C′D′交AB 于O′,如图所示,则∠BO′D′=∠BOD ,∴tan ∠BOD=tan ∠BO′D′,设每个小正方形的边长为a ,则O′B=22(2)5a a a +=,O′D′=22(2a)(2)22a a +=,BD′=3a,作BE ⊥O′D′于点E ,则BE=3a 232222BD O F a a O D a''=='' , ∴O′E=2222322(5)()22a a O B BE a '-=-=, ∴tanBO′E=32a2322BE O E a==', ∴tan ∠BOD=3.考点:解直角三角形.8.(2017江苏盐城第12题)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.【答案】120°.【解析】试题解析:由三角形的外角的性质可知,∠1=90°+30°=120°. 考点:三角形的外角性质;三角形内角和定理.9.(2017甘肃兰州第17题)如图,四边形ABCD与四边形EFGH相似,位似中心点是O,3 5OE OA =,则FGBC=.【答案】3 5【解析】试题解析:如图所示:∵四边形ABCD与四边形EFGH位似,∴△OEF∽△OAB,△OFG∽△OBC,∴35 OE OFOA OB==,∴35 FG OFBC OB==.考点:位似变换.10.(2017贵州黔东南州第12题)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.【答案】∠A=∠D .【解析】试题解析:添加∠A=∠D .理由如下:∵FB=CE ,∴BC=EF .又∵AC ∥DF ,∴∠ACB=∠DFE .∴在△ABC 与△DEF 中,A D ACB DFEBC EF ⎧∠=∠⎪∠=∠⎨⎪=⎩ ,∴△ABC ≌△DEF (AAS ).考点:全等三角形的判定.11.(2017山东烟台第14题)在ABC Rt ∆中,090=∠C ,2=AB ,3=BC ,则=2sin A . 【答案】12. 【解析】试题解析:∵sinA=32BC AB =, ∴∠A=60°,∴sin 2A =sin30°=12. 考点:特殊角的三角函数值.12. (2017山东烟台第16题)如图,在平面直角坐标系中,每个小方格的边长均为1.AOB ∆与''OB A ∆是以原点O 为位似中心的位似图形,且相似比为2:3,点B A ,都在格点上,则点'B 的坐标是.【答案】(﹣2,43) 【解析】试题解析:由题意得:△A′OB′与△AOB 的相似比为2:3,又∵B (3,﹣2)∴B′的坐标是[3×2()3-,﹣2×2()3-],即B′的坐标是(﹣2,43) 考点:位似变换;坐标与图形性质.13.(2017四川泸州第16题)在△ABC 中,已知BD 和CE 分别是边AC 、AB 上的中线,且BD ⊥CE ,垂足为O .若OD=2cm ,OE=4cm ,则线段AO 的长度为 cm .【答案】45.【解析】试题解析:连接AO 并延长,交BC 于H ,由勾股定理得,DE=22=25OE OD +,∵BD 和CE 分别是边AC 、AB 上的中线,∴BC=2DE=45,O 是△ABC 的重心,∴AH是中线,又BD⊥CE,∴OH=12BC=25,∵O是△ABC的重心,∴AO=2OH=45.考点:1.三角形的重心;2.勾股定理.14.(2017四川自贡第14题)在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN 的长为.【答案】1.【解析】试题解析:∵MN∥BC,∴△AMN∽△ABC,∴AM MNAB BC=,即1123WN=+,∴MN=1.考点:相似三角形的判定与性质.15.(2017新疆建设兵团第15题)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=12 AC•BD.正确的是(填写所有正确结论的序号)【答案】①④【解析】试题解析:①在△ABC和△ADC中,∵AB AD BC CD AC AC⎧=⎪=⎨⎪=⎩,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=12BD•AO+12BD•CO=12BD•(AO+CO)=12AC•BD.故④结论正确;所以正确的有:①④考点:全等三角形的判定与性质;线段垂直平分线的性质.16.(2017江苏徐州第13题)ABC ∆中,点,D E 分别是,AB AC 的中点,7DE =,则BC = .【答案】14.【解析】试题解析:∵D ,E 分别是△ABC 的边AC 和AC 的中点,∴DE 是△ABC 的中位线,∵DE=7,∴BC=2DE=14.考点:三角形中位线定理.17. (2017江苏徐州第18题)如图,已知1OB =,以OB 为直角边作等腰直角三角形1A BO .再以1OA 为直角边作等腰直角三角形21A AO ,如此下去,则线段n OA 的长度为 .【答案】2n .【解析】试题解析:∵△OBA 1为等腰直角三角形,OB=1,∴AA 1=OA=1,OA 1=2OB=2;∵△OA 1A 2为等腰直角三角形,∴A 1A 2=OA 1=2,OA 2=2OA 1=2;∵△OA 2A 3为等腰直角三角形,∴A 2A 3=OA 2=2,OA 3=2OA 2=22;∵△OA 3A 4为等腰直角三角形,∴A 3A 4=OA 3=22,OA 4=2OA 3=4.∵△OA 4A 5为等腰直角三角形,∴A 4A 5=OA 4=4,OA 5=2OA 4=42,∵△OA 5A 6为等腰直角三角形,∴A 5A 6=OA 5=42,OA 6=2OA 5=8.∴OA n 的长度为2n .考点:等腰直角三角形.18.(2017浙江嘉兴第15题)如图,把n 个边长为1的正方形拼接成一排,求得1tan 1BAC ∠=,21tan 3BA C ∠=,31tan 7BA C ∠=,计算4tan BA C ∠= ,……按此规律,写出tan n BA C ∠= (用含n 的代数式表示).【答案】113,211n n -+. 【解析】试题解析:作CH⊥BA 4于H ,由勾股定理得,BA 4=22471=1+,A 4C=10,△BA 4C 的面积=4-2-32=12, ∴12×17×CH=12, 解得,CH=1717,则A 4H=223A C CH -=131717, ∴tan∠BA 4C=4CH A H =113, 1=12-1+1,3=22-2+1,7=32-3+1,∴tan∠BA n C=211n n -+.考点:1.解直角三角形;2.勾股定理;3.正方形的性质.三、解答题1.(2017浙江衢州第23题)问题背景如图1,在正方形A BCD 的内部,作∠DAE=∠ABF=∠BCG=∠CDH ,根据三角形全等的条件,易得△DAE ≌△ABF ≌△BCG ≌△CDH ,从而得到四边形EFGH 是正方形。

2017中考全国真题数学分类专项测评卷 初三总复习专项训练二 三角形(答案和超详解析)

2017中考全国真题数学分类专项测评卷 初三总复习专项训练二  三角形(答案和超详解析)

2017中考全国真题数学分类专项测评卷总复习专题二三角形班级姓名一、选择题1.(2017·浙江金华)列各组数中,不可能成为一个三角形三边长的是( )A .B .C .D .2.(2017·浙江金华)在中,,则的值是( )A .B . C. D .3.(2017·广西贵港)如图,在Rt △ABC 中,∠ACB=90°,将△ABC 绕顶点C 逆时针旋转得到△A'B'C ,M 是BC 的中点,P 是A'B'的中点,连接PM .若BC=2,∠BAC=30°,则线段PM 的最大值是( )A .4B .3C .2D .14.(2017·贵州黔东南州)如图,∠ACD=120°,∠B=20°,则∠A 的度数是( )2,3,45,7,75,6,1210,8,6t ABC ∆R 90,5,3C AB BC ∠=== tan A 34433545A .120°B .90°C .100°D .30°5.(2017·湖北荆州)如图,在△ABC 中,AB=AC ,∠A=30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75°6.(2017·天津)如图,在中,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是( )A .B . C. D .7.(2017·河北)如图是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确的()ABC ∆AC AB =CE AD ,ABC ∆P AD EP BP+BC CE AD AC8.(2017·江苏无锡)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .C .D .9.(2017·四川泸州)已知三角形的三边长分别为,,a b c ,求其面积问题,中外数学家曾经进行过深入的研究,故希腊的几何学甲海伦给出求其面积的海伦公式S =2a b c p ++=;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S =若一个三角形的三边分别为2,3,4,其面积是( )ABC. D545375二、填空题1.(2017·河北)如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使MN m=,则A,B间的距离为m.=,测得200AM AC=,BN BC2.(2017·安徽)在三角形纸片ABC中,90AC cm=.∠=︒,30CA∠=︒,30将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去CDE∆(如图2),再沿着∆后得到双层BDE边BDE∆某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为cm.3.(2017·广西贵港)如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.4.(2017·甘肃)如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于cm .5.(2017·贵州黔东南州)如图,点B 、F 、C 、E 在一条直线上,已知FB=CE ,AC ∥DF ,请你添加一个适当的条件 ∠A=∠D 使得△ABC ≌△DEF .6.(2017·河南) 如图1,点从的顶点出发,沿匀速运动到点.图2是点运动时,线段的长度随时间变化的关系图象,其中为曲线部分的最低点,则的面积是.P ABC ∆B B C A →→A P BP y x M ABC ∆7.(2017·河南)如图,在中,,,,点,分别是边,上的动点,沿所在的直线折叠,使点的对应点始终落在边上.若为直角三角形,则的长为.8.(2017·湖北黄冈)已知:如图,在中,,将绕顶点,按顺时针方向旋转到处,此时线段与的交点恰好为的中点,则线段.9.(2017·山西)一副三角板按如图方式摆放,得到△ABD 和△BCD ,其中∠ADB =∠BCD =90°,∠A =60°,∠CBD =45°.E 为AB 的中点,过点E 作EF ⊥CD 于点F .若AD =4cm ,则EF 的长为cm .Rt ABC ∆90A ∠=︒AB AC=1BC =M N BC AB MN B ∠B 'B AC 'MB C ∆BM10.(2017·江苏徐州)△ABC中,点D,E分别是AB,AC的中点,DE=7,则BC=.11.(2017·四川成都)在ABC∠的度数∠∠∠=,则AA B C∆中,::2:3:4为______________.12.(2017·四川泸州)在ABCAC AB上∆中,已知BD和CE分别是边,的中线,且BD CE⊥,垂足为O,若2,4==,则线段AO的长为cm.OD cm OE cm三、解答题1.(2017·河北)如图,16AB=,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270︒后得到扇形COD,AP,BQ分别切优弧 CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP BQ=;(2)当BQ= QD的长(结果保留π);(3)若APO∆的外心在扇形COD的内部,求OC的取值范围.2.(2017·北京)如图,在中,,平分交于点.求证:.ABC ∆0,36AB AC A =∠=BD ABC ∠AC D AD BC=3.(2017·北京)在等腰直角中,,是线段上一动点(与点不重合),连接,延长至点,使得,过点作于点,交于点.(1)若,求的大小(用含的式子表示).(2)用等式表示线段与之间的数量关系,并证明.4.(2017·重庆A 卷)在△ABC 中,∠ABM=45°,AM ⊥BM ,垂足为M ,点C 是BM 延长线上一点,连接AC .ABC ∆090ACB ∠=P BC B C 、AP BC Q CQ CP =Q QH AP ⊥H AB M PAC α∠=AMQ ∠αMBPQ(1)如图1,若BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.5.(2017·重庆B卷)如图,△ABC中,∠ACB=90°,AC=BC,点E 是AC上一点,连接BE.(1)如图1,若AB=,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.6.(2017·浙江金华)如图1,将纸片沿中位线折叠,使点的对称点落在边上,再将纸片分别沿等腰和等腰的底边上的高线,折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将纸片按图2的方式折叠成一个叠合矩形,则操作形成的折痕分别是线段_____,_____;______.(2)纸片还可以按图3的方式折叠成一个叠合矩形,若,,求的长.(3)如图4,四边形纸片满足.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出的长.ABC ∆EH A D BC BED ∆DHC ∆EFHG ABCD AEFG :ABCD AEFG S S = 矩形 ABCD EFGH 5EF =12EH =AD ABCD ,,,8,10AD BC AD BC AB BC AB CD <⊥== ,ADBC7. (2017·河南)如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.(1)观察猜想图1中,线段与的数量关系是,位置关系是;(2)探究证明把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;(3)拓展延伸把绕点在平面内自由旋转,若,,请直接写出面积的最大值.8.(2017·湖北荆州)如图,在矩形ABCD 中,连接对角线AC 、BD ,Rt ABC ∆90A ∠=︒AB AC =D E AB AC AD AE =DC M P N DE DCBC PM PN ADE ∆A MN BD CE PMN ∆ADE ∆A 4AD =10AB =PMN ∆将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.9.(2017·湖南湘潭)如图,在ABCD连接AE并延长交BC中,DE CE的延长线于点F.(1)求证:ADE FCE∆≅∆;(2)若2∠=°,求BFAB BC=,36∠的度数.10.(2017·江苏徐州)如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.11.(2017·江苏徐州)如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点.(1)探求AO到OD的数量关系,并说明理由;(2)如图②,若P,N分别为BE,BC上的动点.①当PN+PD的长度取得最小值时,求BP的长度;②如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值=.12.(2017·山东烟台)【操作发现】(1)如图1,△ABC为等边三角形,现将三角板中的60°角与∠ACB 重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:①求∠EAF的度数;②线段AE,ED,DB之间的数量关系.13.(2017·四川泸州)如图,点,,,A F C D在同一直线上,已知=∠=∠,.求证:AB DEAF DC A D BC EF,,//=.14.(2017·四川泸州)如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile到达B处,此时测得小岛C位于B的北偏东30方向上;求该渔船此时与小岛C之间的距离.答案与解析一、选择题1.【答案】C.【解析】根据三角形的三边关系:三角形任意两边的和大于第三边,可得:选项A ,2+3>4,能组成三角形;选项B ,5+7>7,能组成三角形;选项C ,5+6<12,不能组成三角形;选项D ,6+8>10,能组成三角形,故选C.2.【答案】A.【解析】试题分析:在△ABC 中,∠C=90°,AB=5,BC=3, 根据勾股定理可求得AC=4, 所以tanA=,故选A. 3.【答案】B【解答】如图连接PC .在Rt △ABC 中,∵∠A=30°,BC=2, ∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′, ∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM ,即PM≤3,∴PM 的最大值为3(此时P 、C 、M 共线).故选B .【考点】旋转的性质. 4.34BC AC【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.考点:三角形的外角性质.5.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.6.【答案】B.【解析】试题分析:在中,,AD 是的中线,可得点B 和点D 关于直线AD 对称,连结CE ,交AD 于点P ,此时最小,为EC 的长,故选B.7.【答案】A.【解析】 试题分析:正方形的对角线的长是10214.14≈,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A. 考点:正方形的性质,勾股定理.8.(2017·江苏无锡)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .C .D . 9.(2017·四川泸州)已知三角形的三边长分别为,,a b c ,求其面积问题,中外数学家曾经进行过深入的研究,故希腊的几何学甲海伦给出求其面积的海伦公式S =2a b c p ++=;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S =若一个三角形的三边分别为2,3,4,其面积是( )ABC ∆AC AB =ABC ∆EP BP +545375A.8 B.4 C.2 D.2二、填空题1.【答案】100.考点:三角形的中位线定理.2.【答案】40【解析】试题解析:先判断该平行四边形是菱形,在求出周长,注意分类讨论.(1)H(2)P考点:菱形的判定及性质.3【答案】【考点】旋转的性质;等边三角形的性质;解直角三角形.【解答】连接PP′,如图,先利用旋转的性质得CP=CP′=6,∠PCP′=60°,则可判定△CPP′为等边三角形得到PP′=PC=6,再证明△PCB≌△P′CA得到PB=P′A=10,接着利用勾股定理的逆定理证明△APP′为直角三角形,∠APP′=90°,然后根据正弦的定义求解.连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠PAP′===.故答案为.4.考点:翻折变换(折叠问题).【分析】根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即折痕的长.【解答】解:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴=,∴=,∴GH=cm.故答案为:.5.【考点】全等三角形的判定.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D .理由如下:∵FB=CE ,∴BC=EF .又∵AC ∥DF ,∴∠ACB=∠DFE .∴在△ABC 与△DEF 中,,∴△ABC ≌△DEF (AAS ).故答案是:∠A=∠D .6.【答案】12.考点:动点函数图象.7.【答案】1. 【解析】试题分析:在中,,,可得∠B=∠C=45°,由折叠可知,BM= ,若使为直角三角形,分两种情况:①,由∠C=45°可得=,设BM=x ,则==x ,,所以=,解得x=1,即BM=1;②,此时点B 和点C 重合,BM=.所以BM 的长为1或.考点:折叠(翻折变换).8.【考点】直角三角形,勾股定理,旋转【分析】由勾股定理,确定圆锥的母线长,再由表面积=πrl 确定其表面积.【解答】解:∵ ∴AB=5,∵恰好为的中点 ∴OD=2.5 ∵将绕顶点,按顺时针方向旋转到处 ∴OB 1=OB=4∴ 1.5故答案为:1.5.【点评】考查学生对直角三角形性质掌握,必须牢记知识点:直角三Rt ABC ∆90A ∠=︒AB AC ='MB 'MB C ∆0'90MB C ∠='MB 'CB 'MB 'CB 1BC =0'90B MC ∠=12BC =12角形斜边的中线等于斜边的一半.9.考点:直角三角形的性质;梯形中位线定理;综合题.10.【考点】三角形中位线定理.【分析】根据三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半可知,BC=2DE,进而由DE的值求得BC.【解答】解:∵D,E分别是△ABC的边AC和AC的中点,∴DE是△ABC的中位线,∵DE=7,∴BC=2DE=14.故答案是:14.11.【答案】40°【解析】试题分析:根据题意可设∠A=2x°,则∠B=3x°,∠C=4x°,然后根据三角形的内角和可得2x+3x+4x=180,解得x=20,即∠A=20°.故答案为:40°.考点:三角形的内角和12..【答案】【解析】三、解答题【答案】(1)见解析;(2)143;(3)4<OC <8.考点:全等三角形的判定与性质,切线的性质,解直角三角形,外心. 2.【答案】见解析.【解析】试题分析: 由等腰三角形性质及三角形内角和定理,可求出∠AB D=∠C=BDC. 再据等角对等边,及等量代换即可求解.试题解析:∵AB=AC, ∠A=36°∴∠ABC=∠C=(180°-∠A)= 1212×(180°-36°)=72°,又∵BD 平分∠ABC, ∴∠ABD=∠DBC=∠ABC=×72°=36°, ∠BDC=∠A+∠ABD=36°+36°=72°, ∴∠C=∠BDC, ∠A=AB∴AD=BD=BC.考点:等腰三角形性质.3.【答案】(1)试题解析:(1) ∠AMQ=45°+.理由如下:∵∠PAC=,△ACB 是等腰直角三角形, ∴∠PAB =45°-,∠AHM=90°,∴∠AMQ=180°-∠AHM-∠PAM =45°+ .(2)线段MB 与PQ 之间的数量关系:MB.1212αααα理由如下:连接AQ ,过点M 做ME ⊥QB ,∵AC ⊥QP,CQ=CP, ∴∠QAC=∠PAC=,∴∠QAM=+45°=∠AMQ,∴AP=AQ=QM,在RT △APC 和RT △QME 中,∴RT △APC ≌RT △QME, ∴PC=ME, ∴△MEB 是等腰直角三角形,∴,∴MB.考点:全等三角形判定,等腰三角形性质 .4.【答案】(2)证明见解析.【解析】(2)延长EF 到点G ,使得FG=EF ,连接BG .ααMQE PAC ACP QEM AP QM ∠=⎧⎪∠=∠⎨⎪=⎩12PQ =由DM=MC ,∠BMD=∠AMC ,BM=AM ,∴△BMD ≌△AMC (SAS ),∴AC=BD ,又CE=AC ,考点:1.全等三角形的判定与性质;2.勾股定理.5.【答案】(1)1;(2)证明见解析.【解析】试题分析:(1)根据等腰直角三角形的性质得到AC =BC=AB =4,根据勾股定理得到CE ==3,于是得到结论;(2)根据等腰直角三角形的性质得到∠CAB =45°,由于∠AFB =∠ACB =90°,推出A ,F ,C ,B 四点共圆,根据圆周角定理2222BE BC得到∠CFB =∠CAB =45°,求得∠DFC =∠AFC =135°,根据全等三角形的性质即可得到结论.考点:全等三角形的判定与性质;勾股定理.6.【答案】(1)(1)AE ;GF ;1:2;(2)13;(3)按图1的折法,则AD=1,BC=7;按图2的折法,则AD=,BC=. 【解析】试题分析:(1)由图2观察可得出答案为AE,GF,由折叠的轴对称性质可得出答案为1:2;(2)由EF 和EH 的长度根据勾股定理可求出FH 的长度,再由折叠的轴对称性质易证△AEH ≌△CGF ;再根据全等三角形的性质可得出AD 的长度;(3)由折叠的图可分别求出AD 和BC 的长度.试题解析:(1)AE ;GF ;1:2 134374(3)解:本题有以下两种基本折法,如图1,图2所示.按图1的折法,则AD=1,BC=7.按图2的折法,则AD=,BC=. 7.【答案】(1)PM=PN ,;(2)等腰直角三角形,理由详见解析;(3). 134374PM PN 492试题解析:(1)PM=PN ,;PM PN∴PM=CE ,且,同理可证PN=BD ,且∴PM=PN, ∠MPD=∠ECD ,∠PNC=∠DBC ,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD ,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN ,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC +∠ACB=90°,即△PMN 为等腰直角三角形.(3). 考点: 旋转和三角形的综合题.8.【考点】矩形的性质;全等三角形的判定与性质;平移的性质.【分析】(1)由矩形的性质得出AB=DC ,AC=BD ,AD=BC ,∠ADC=∠ABC=90°,由平移的性质得:DE=AC ,CE=BC ,∠DCE=∠ABC=90°,DC=AB ,得出AD=EC ,由SAS 即可得出结论; (2)由AC=BD ,DE=AC ,得出BD=DE 即可.【解答】(1)证明:∵四边形ABCD 是矩形,∴AB=DC ,AC=BD ,AD=BC ,∠ADC=∠ABC=90°,由平移的性质得:DE=AC ,CE=BC ,∠DCE=∠ABC=90°,DC=AB , ∴AD=EC ,12//PM CE 12//PN BD 492在△ACD和△EDC中,,∴△ACD≌△EDC(SAS);(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形.9考点:平行四边形,全等三角形【解析】试题分析:(1)利用AAS或ASA,证明ADE FCE∆≅∆.(2)先证明三角形ABF是等腰三角形,再B∠的度数.【解答】(1)∵ABCD∴AD∥DF∴∠ADE=∠EFC∵DE CE∆≅∆=,∠AED=∠CEF∴ADE FCE(2)∵ABCD∆≅∆∴AD=FC∴FC=BC∴AD=BC∵ADE FCE∵2F∠=°∴B=∴AB=BF∵36AB BC∠=108°10.【考点】R2:旋转的性质.【分析】(1)证明△ACD是等边三角形,据此求解;(2)作DE⊥BC于点E,首先在Rt△CDE中利用三角函数求得DE 和CE的长,然后在Rt△BDE中利用勾股定理求解.【解答】解:(1)∵AC=AD,∠CAD=60°,∴△ACD是等边三角形,∴DC=AC=4.故答案是:4;(2)作DE⊥BC于点E.∵△ACD是等边三角形,∴∠ACD=60°,又∵AC⊥BC,∴∠DCE=∠ACB﹣∠ACD=90°﹣60°=30°,∴Rt△CDE中,DE=DC=2,CE=DC•cos30°=4×=2,∴BE=BC﹣CE=3﹣2=.∴Rt△BDE 中,BD===.11.【考点】RB:几何变换综合题.【分析】(1)根据等边三角形的性质得到∠BAO=∠ABO=∠OBD=30°,得到AO=OB,根据直角三角形的性质即可得到结论;(2)如图②,作点D关于BE的对称点D′,过D′作D′N⊥BC于N 交BE于P,则此时PN+PD的长度取得最小值,根据线段垂直平分线的想知道的BD=BD′,推出△BDD′是等边三角形,得到BN=BD=,于是得到结论;(3)如图③,作Q关于BC的对称点Q′,作D关于BE的对称点D′,连接Q′D′,即为QN+NP+PD的最小值.根据轴对称的定义得到∠Q′BN=∠QBN=30°,∠Q BQ′=60°,得到△BQQ′为等边三角形,△BDD′为等边三角形,解直角三角形即可得到结论.【解答】解:(1)AO=2OD,理由:∵△ABC是等边三角形,∴∠BAO=∠ABO=∠OBD=30°,∴AO=OB,∵BD=CD,∴AD⊥BC,∴∠BDO=90°,∴OB=2OD,∴OA=2OD;(2)如图②,作点D关于BE的对称点D′,过D′作D′N⊥BC于N 交BE于P,则此时PN+PD的长度取得最小值,∵BE垂直平分DD′,∴BD=BD′,∵∠ABC=60°,∴△BDD′是等边三角形,∴BN=BD=,∵∠PBN=30°,∴=,∴PB=;(3)如图③,作Q关于BC的对称点Q′,作D关于BE的对称点D′,连接Q′D′,即为QN+NP+PD的最小值.根据轴对称的定义可知:∠Q′BN=∠QBN=30°,∠QBQ′=60°,∴△BQQ′为等边三角形,△BDD′为等边三角形,∴∠D′BQ′=90°,∴在Rt△D′BQ′中,D′Q′==.∴QN+NP+PD的最小值=,故答案为:.12.【考点】RB:几何变换综合题.【分析】(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF 即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.【解答】解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°,∵∠DCF=60°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF;理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°,∵∠DCF=90°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF,在Rt△AEF中,AE2+AF2=EF2,又∵AF=DB ,∴AE 2+DB 2=DE 2.13.【答案】详见解析.【解析】试题分析:利用ASA 定理证明△ABC 全等于△DEF ,根据全等三角形的性质即可得结论.试题解析:证明: BC //EF⎪⎩⎪⎨⎧∠=∠=∠=∠∆∆=+=+∴=∠=∠∴DFE ACB DEAC D A DEF ABC DFAC FCDC FC AF DCAF DFEACB 中与在即:又DE AB ASA DEF ABC =∴∆≅∆∴)( 14.【答案】渔船此时与C 岛之间的距离为50海里.【解析】试题分析:过点C 作AB CD ⊥于点D ,由题意可得,30 =∠BCD 设,x BC =在RT △BCD 中,用x 表示出BD=12x ,x ,即可得AD=30+12x ,在RT △ACD 中,根据勾股定理列出方程求得x 的值即可.试题解析:过点C 作AB CD ⊥于点D ,由题意得: ,30 =∠BCD 设,x BC =则: x BC BD BCD Rt 2130sin ==∆ 中:在,x BC CD 2330cos == ; x AD 2130+=∴ 222t AC CD AD ACD R =+∆∴中,在,即:22270)23()230(=++x x 解之得:)(80,5021舍去-==x x 答:渔船此时与C 岛之间的距离为50海里.。

2017年中考数学真题分类解析直角三角形、勾股定理

2017年中考数学真题分类解析直角三角形、勾股定理

、选择题1. 9.(2017浙江温州,9,4 分)四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH .己知AM为Rt△ABM 较长直角边,AM=2,则正方形ABCD 的面积为答案:C,解析:由题意可知小正方形边长: EF=EH=HG=GF=,4个白色的矩形全等,且矩形的长均为,宽为(),则直角三角形的短直角边长为:.由勾股定理得AB==3所以正方形ABCD的面积为9S.2. (2017·辽宁大连,8,3分)如图,在△ ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD =DE=a,则AB 的长为A.2a B.2 2 a C.3a D . a3答案:B 解析:由于CD⊥AB,CD=DE=a,所以CE=CD2DE2=a2a2=2 a,又△ ABC中,∠ ACB=90°,点E是AB的中点,所以AE=BE=CE,所以AB=2CE= 2 2 a,故选B.3. (2017山东淄博,12,4分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB 的平分A.12S B.10S D.8SC.9SC线相交于点 E ,过点 E 作 EF ∥BC 交 AC 于点 F ,则 EF 的长为 ( )又易证四边形 EMBN 为正方形,所以 BN = 2,得到 CN = CH =6. 设 EF =x ,由 CE 平分∠ ACB ,EF ∥BC ,得到△ CEF 为等腰三角形,C 落在边 AB 上,连接 B 'C .若∠ ACB =∠ AC 'B '=90°,AC =BC =3,则 B 'C 的长为A . 3 3B .6C . 3 2D . 21答案: A ,解析:由题意得∠ CAB =∠CAB '=45°,△ABC ≌△A 'B 'C ',由勾股定理得 AB = AB '= 3 2 ,B 'C = 3 3 ,故选 A .5 ( 2017黑龙江大庆, 8,3分)如图, ABD 是以 BD 为斜边的等腰直角三角形, BCD 中, DBC 900,由勾股定理,得EH 2+HF 2=EF 2,22+(6-x )2=x 5,解得 x =10 .3故 EF =FC = x.所以 HF =6-x. A .5 *2 答案: B . 8C.3 解10 3易得 D .15 4Rt △ABC 的内切圆半径为 2,所以 EM =EH =2.4. (2017 陕西, 6,3 分)如图,两两个大小形状相同的是 △ABC 和△A 'B 'C '拼在一起,其中点 A 与 A '重合,点 C ,BA .300 B .150 C .450 D . 250答案: B ,解析: AFB =∠ADE - ∠ DEB =75° - 60 °=15°.7,3 分)如图,△ ABC 中,E 为 BC 边的中点, CD ⊥AB ,AB=2,AC=1,则∠ CDE +∠ACD =在△ ABC 中, AC 2+BC 2=1+( 3 ) 2=4=AB 2, 故∠ CDE+∠ ACD=90° , 选 C.6. ( 2017 湖北黄石, A . 60 B . 75 C . 90 D .105答案:C ,解析:因为 E 为 BC 边的中点,CD ⊥AB,,DE= ,所以 BE=CE =DE =,即∠ CDE =∠DCE , BC= 3 .7.(2017 内蒙古包头)如图,在Rt ABC 中,ACB 900,CD AB ,垂足为D,AF 平分CAB,交CD 于点E ,交CB于点F,若AC 3,AB 5,则CE 的长为(第12题)A.34B.3C. 5D.答案:A,解析:考点直角三角形的性质与三角形相似的性质的应用.。

专题09 三角形-2017年中考数学试题分项版解析汇编(解析版)

专题09 三角形-2017年中考数学试题分项版解析汇编(解析版)

专题9:三角形一、选择题1.(2017天津第2题)060cos 的值等于( )A 3B .1C .22D .21 【答案】D.2.(2017天津第9题)如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD = 【答案】C.3. (2017天津第11题)如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC 【答案】B. 【解析】试题分析:在ABC ∆中,AC AB =,AD 是ABC ∆的中线,可得点B 和点D 关于直线AD 对称,连结CE ,交AD 于点P ,此时EP BP +最小,为EC 的长,故选B.4. (2017湖南长沙第5题)一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形 【答案】B 【解析】试题分析:根据三角形的内角和为180°,可知最大角为90°,因式这个三角形是直角三角形. 故选:B. 考点:直角三角形5.(2017山东滨州第7题)如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( ) A .2+3B .23C .3+3D .33【答案】A.6.(2017山东滨州第8题)如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为( )A .40°B .36°C .80°D .25°【答案】B.【解析】设∠B=x ,因AB=AC,根据等腰三角形的性质可得∠B=∠C=x ,因AD=CD ,根据等腰三角形的性质可得∠DAC=∠C=x ,因BD=BA ,根据等腰三角形的性质和三角形外角的性质可得∠BAD=∠ADB=2x ,在△ABD 中,根据三角形的内角和定理可得x+2x+2x=180°,解得x=36°,即∠B=36°,故选B.8. (2017山东滨州第11题)如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MPN 在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M 、N 两点,则以下结论:(1)PM =PN 恒成立,(2)OM +ON 的值不变,(3)四边形PMON 的面积不变,(4)MN 的长不变,其中正确的个数AB CD为()A.4 B.3 C.2 D.1PAONBM【答案】B.9. (2017山东日照第4题)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【答案】B.试题分析:在Rt△ABC中,根据勾股定理求得BC=12,所以sinA=1213BCAB=,故选B.考点:锐角三角函数的定义.10.(2017江苏宿迁第8题)如图,在Rt C∆AB中,C90∠=,C6A=cm,C2B=cm.点P在边CA 上,从点A向点C移动,点Q在边C B上,从点C向点B移动,若点P、Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接QP,则线段QP的最小值是A.20cm B.18cm C.25cm D.32cm【答案】C.11. (2017山东菏泽第5题)如图,将t ABC ∆R 绕直角顶点C 顺时针旋转90,得到''A B C ∆,连接'AA ,若125∠=,则'BAA ∠的度数是( )A .55B .60 C.65 D .70 【答案】C. 【解析】试题分析:根据旋转的性质可得∠BAC=∠B 'A 'C,AC=CA ', ∠A 'CA=90°,即可得△ACA '是等腰直角三角形,∴所以∠BAC=∠B 'A 'C=45°-25°,即可得'BAA ∠=65,故选C.12. (2017浙江金华第3题)下列各组数中,不可能成为一个三角形三边长的是( ) A .2,3,4 B .5,7,7 C .5,6,12 D .10,8,6 【答案】C. 【解析】试题分析:根据三角形的三边关系:三角形任意两边的和大于第三边,可得:选项A ,2+3>4,能组成三角形;选项B ,5+7>7,能组成三角形;选项C ,5+6<12,不能组成三角形;选项D ,6+8>10,能组成三角形,故选C.13. (2017浙江湖州第3题)如图,已知在Rt C ∆AB 中,C 90∠=,5AB =,C 3B =,则cos B 的值是( ) A .35 B .45 C .34 D .43【答案】A 【解析】试题分析:根据根据余弦的意义cosB=B ∠的邻边斜边,可得conB=BC AB =35.故选:A 考点:余弦14. (2017浙江舟山第2题)长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( ) A .4 B .5 C .6 D .9 【答案】C. 【解析】试题分析:根据三角形的两边之大于第三边,两边这差小于第三边,可得7-2<x<2+7,即5<x<9,所以x 可以取6.故选C.考点:三角形的三边关系.15. (2017浙江金华第4题)在t ABC ∆R 中,90,5,3C AB BC ∠===,则tan A 的值是( ) A .34 B .43 C.35 D .45【答案】A. 【解析】试题分析:在△ABC 中,∠C=90°,AB=5,BC=3, 根据勾股定理可求得AC=4, 所以tanA=34BC AC =,故选A.16. (2017浙江台州第5题)如图,点P 是AOB ∠平分线OC 上一点,PD OB ⊥,垂足为D .若2PD =,则点P 到边OA 的距离是 ( )A .1B . 2 C. 3 D .4 【答案】B 【解析】试题分析:过P 作PE ⊥OA 于点E ,根据角平分线上的点到角两边的距离相等即可得到PE=PD.从而得出点P 到OA 的距离是2cm. 故选:B.学科网 考点:角平分线的性质17. (2017浙江湖州第6题)如图,已知在Rt C ∆AB 中,C 90∠=,C C A =B ,6AB =,点P 是Rt C ∆AB 的重心,则点P 到AB 所在直线的距离等于( ) A .1 B .2 C.32D .2【答案】A考点:1、三角形的重心,2、等腰直角三角形,3、相似三角形的判定与性质18. (2017浙江台州第8题)如图,已知等腰三角形,ABC AB AC =,若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE EC =B .AE BE = C. EBC BAC ∠=∠D .EBC ABE ∠=∠ 【答案】C 【解析】试题分析:根据AB=AC,BE=BC ,可以得出∠ABC=∠C,∠BEC=∠C,从而得出∠ABC=∠BEC,∠A=∠EBC. 故选:C.考点:1、三角形的外角性质,2、等腰三角形的性质19. (2017浙江湖州第9题)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )【答案】C 【解析】试题分析:根据勾股定理,可判断边长之间的关系,可知构不成C 图案,能构成A 、B 、D 图案.故选:C 考点:勾股定理二、填空题1.(2017北京第13题)如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S ∆=,则ABNM S =四边形 .【答案】3.考点:相似三角形的性质.2.(2017福建第12题)如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .【答案】6【解析】∵E 、F 分别是AB 、AC 的中点,∴BC=2EF=6.3.(2017河南第15题)如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC ∆为直角三角形,则BM 的长为 .【答案】1或212+. 【解析】试题分析:在Rt ABC ∆中,90A ∠=︒,AB AC =,可得∠B=∠C=45°,由折叠可知,BM='MB ,若使'MBC ∆为直角三角形,分两种情况:①0'90MB C ∠=,由∠C=45°可得'MB ='CB ,设BM=x ,则'MB ='CB =x ,MC=2x ,所以x+2x =21BC =+,解得x=1,即BM=1;②0'90B MC ∠=,此时点B 和点C 重合,BM=12122BC +=.所以BM 的长为1或212+. 考点:折叠(翻折变换).4.(2017广东广州第14题)如图7,Rt ABC ∆中,01590,15,tan 8C BC A ∠===,则AB = .【答案】17 【解析】试题分析:因为1515,tan 8BC BC A AC ===,所以,AC =8,由勾股定理,得:AB =17. 考点: 正切的定义.5.(2017山东临沂第16题)已知AB CD ∥,AD 与BC 相交于点O .若23BO OC =,10AD =,则AO = .【答案】4 【解析】试题分析:根据平行线分线段成比例定理,由AB ∥CD 可得BO OAOC OD=,然后根据AD=10,可知OD=10-OA ,代入可得2103BO OA OC OA ==-,解得OA=4. 故答案为:4考点:平行线分线段成比例定理6.(2017四川泸州第16题)在ABC ∆中,已知BD 和CE 分别是边,AC AB 上的中线,且BD CE ⊥,垂足为O ,若2,4OD cm OE cm ==,则线段AO 的长为 cm . 【答案】45. 【解析】试题分析:如图,由BD 和CE 分别是边,AC AB 上的中线,可得DE ∥BC ,且12DE OD OE BC OB OC === , 因BD CE ⊥,2,4OD cm OE cm ==,根据勾股定理可得DE=25 ,又因12DE OD OE BC OB OC ===,可得BC=45,连结AO 并延长AO 交BC 于点M ,由BD 和CE 分别是边,AC AB 上的中线交于点M ,可知AM 也是△ABC 的边BC 上的中线,在Rt △BOC 中,根据斜边的中线等于斜边的一半可得OM= 12BC=25,最后根据三角形重心的性质可得AO=2OM=45.7. (2017江苏宿迁第12题)如图,在C ∆AB 中,C 90∠A B =,点D 、E 、F 分别是AB 、C B 、C A 的中点.若CD 2=,则线段F E 的长是 .【答案】2. 【解析】试题分析:因在C ∆AB 中,C 90∠A B =,点D 是AB 的中点,CD 2=,根据直角三角形中斜边的中线等于斜边的一半可得AB=4,又因,点E 、F 分别是C B 、C A 的中点,根据三角形的中位线定理可得EF=12AB=2. 8. (2017江苏苏州第17题)如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60的方向,在码头B 北偏西45的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).【答案】2 . 【解析】试题分析:作CD AB ⊥ ,垂足为D6302AC CAB CD =∠=︒∴=,,在Rt BCD ∆ 中,45CBD ∠=︒ ,22BC ∴=开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,∴12v v =4222=D.考点:特殊角三角函数的应用 .9. (2017浙江湖州第14题)如图,已知在C ∆AB 中,C AB =A .以AB 为直径作半圆O ,交C B 于点D .若C 40∠B A =,则D A 的度数是 度.【答案】140考点:圆周角定理10. (2017湖南湘潭第14题)如图,在ABC ∆中,D E 、分别是边AB AC 、的中点,则ADE ∆与ABC ∆的面积比:ADE ABC S S ∆∆= .【答案】41 【解析】试题分析:已知D E 、分别是边AB AC 、的中点,即可得DE 是三角形的中位线,所以DE ∥BC,即可判定ADE ∆∽ABC ∆,根据相似三角形的性质可得:ADE ABCS S ∆∆=412122=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛AB AD .11. (2017湖南湘潭第15题)如图,在Rt ABC ∆中,90C ∠=°,BD 平分ABC ∠交AC 于点D ,DE 垂直平分AB ,垂足为E 点,请任意写出一组相等的线段 .【答案】BC=BE 或DC=DE 【解析】试题分析:已知90C ∠=°,BD 平分ABC ∠,DE 垂直平分AB ,利用角平分线性质定理可知DC=DE ;根据已知条件易证BCD ∆≌BED ∆,根据全等三角形的性质可得BC=BE.12. (2017浙江舟山第16题)一副含030和045的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,cm EF BC 12==(如图1),点G 为边)(EF BC 的中点,边FD 与AB 相交于点H ,现将三角板DEF 绕点G 按顺时针方向旋转(如图2),在CGF ∠从00到060的变化过程中,观察点H 的位置变化,点H 相应移动的路径长为 (结果保留根号).【答案】123-18. 【解析】试题分析:如图2和图3,在 ∠ C G F 从 0 ° 到 60 ° 的变化过程中,点H 先向AB 方向移,在往BA 方向移,直到H 与F 重合(下面证明此时∠CGF=60度),此时BH 的值最大,如图3,当F 与H 重合时,连接CF ,因为BG=CG=GF ,所以∠BFC=90度,∵∠B=30度,∴∠BFC=60度,由CG=GF 可得∠CGF=60度.∵BC=12cm ,所以BF=32BC=63;如图2,当GH ⊥DF 时,GH 有最小值,则BH 有最小值,且GF//AB ,连接DG ,交AB 于点K ,则DG ⊥AB ,∵DG=FG ,∴∠DGH=45度,则KG=KH=22GH=22×(12×62)=3,BK=3KG=33,则BH=BK+KH=33+3则点H运动的总路程为63-(33+3)+[12(3-1)-(33+3)]=123-18(cm ).考点:旋转的性质.三、解答题1.(2017北京第19题)如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D . 求证:AD BC =.【答案】见解析. 【解析】考点:等腰三角形性质.2. (2017北京第28题)在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.【答案】(1)【解析】分析:(1)由直角三角形性质,两锐角互余,可得∠AMQ=180°-∠AHM-∠PAM ,解得∠AMQ=45°+α.(2)由题意得AP=AQ=QM,再证RT △APC ≌RT △QME,.全等三角形对应边相等得出PC=ME ,得出△MEB 为等腰直角三角形,则PQ=2BM. 本题解析:(1) ∠AMQ=45°+α.理由如下:∵∠PAC=α,△ACB 是等腰直角三角形, ∴∠PAB =45°-α,∠AHM=90°,∴∠AMQ=180°-∠AHM-∠PAM =45°+α .(2)线段MB 与PQ 之间的数量关系:PQ=2 MB. 理由如下:连接AQ ,过点M 做ME ⊥QB ,∵AC ⊥QP,CQ=CP, ∴∠QAC=∠PAC=α,∴∠QAM=α+45°=∠AMQ, ∴AP=AQ=QM,在RT △APC 和RT △QME中,MQE PAC ACP QEM AP QM∠=⎧⎪∠=∠⎨⎪=⎩∴RT △APC ≌RT △QME, ∴PC=ME, ∴△MEB 是等腰直角三角形,∴1222PQ MB =, ∴PQ=2 MB.考点:全等三角形判定,等腰三角形性质 .3. (2017天津第22题)如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数). 参考数据:05.264tan ,44.064cos ,90.064sin 0≈≈≈,2取414.1.【答案】BP=153;BA=161. 【解析】试题分析:如图,过点P 作PC ⊥AB ,垂足为C ,由题意可知,∠A=64°,∠B=45°,PA=120,在Rt △APC 中,求得PC 、AC 的长;在Rt △BPC 中,求得BP 、BC 的长,即可得BA 的长. 试题解析:如图,过点P 作PCAB ,垂足为C , 由题意可知,∠A=64°,∠B=45°,PA=120, 在Rt △APC 中,sin ∠A=,cos PC ACA PA PA=, ∴PC=PA ·sin ∠A=120×sin64°, AC=PA ×cos ∠A=120×cos64°,在Rt △BPC 中,sin ∠B=,tan PC PCB BP BC=, ∴BP=00120sin 641200.90153sin sin 4522PC B ⨯⨯=≈≈ BC=120sin 64tan tan 45PC PC PC B ===⨯ ∴BA=BC+AC=120×sin64°+120×cos64°≈120×0.90+120×0.44≈161. 答:BP 的长约有153海里,BA 的长约有161海里.4. (2017福建第18题)如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证:A D ∠=∠.【答案】证明见解析. 【解析】试题分析:利用SSS 证明△ABC 与△DEF 全等即可得.试题解析:∵BE=CF ,∴BE+EC=CF+EC ,即BC=EF ,在△ABC 和△DEF 中AB DEAC DF BC EF =⎧⎪=⎨⎪=⎩,∴△ABC≌△DEF(SSS ),∴∠A=∠D .5. (2017福建第19题)如图,ABC ∆中,90,BAC AD BC ∠=⊥o,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)【答案】作图见解析;证明见解析. 【解析】6. (2017河南第19题)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B 船测得渔船C 在其南偏东53︒方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 533︒≈,2 1.41≈)【答案】C 船至少要等待0.94小时才能得到救援.【解析】试题分析:过点C 作CD AB ⊥交AB 的延长线于点D ,可得∠CDA=90°,根据题意可知∠CDA=45°,设CD=x ,则AD=CD=x ,在Rt △BDC 中,根据三角函数求得CD 、BC 的长,在Rt △ADC 中,求得AC 的长,再分别计算出B 船到达C 船处约需时间和A 船到达C 船处约需时间,比较即可求解. 试题解析:过点C 作CD AB ⊥交AB 的延长线于点D ,则∠CDA=90° 已知∠CDA=45°,设CD=x ,则AD=CD=x ∴BD=AD-AB=x-5在Rt △BDC 中,CD=BD ·tan53°,即x=(x-5)·tan53°∴0455tan 533204tan 53113x ⨯=≈=-- ∴BC=0042025sin 53sin 535CD x =≈÷=∴B 船到达C 船处约需时间:25÷25=1(小时) 在Rt △ADC 中,AC=2x ≈1.41×20=28.2∴A 船到达C 船处约需时间:28.2÷30=0.94(小时) 而0.94<1,所以C 船至少要等待0.94小时才能得到救援. 考点:解直角三角形的应用.7. (2017河南第22题)如图1,在R t A B C ∆中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值. 【答案】(1)PM=PN ,PM PN ⊥;(2)等腰直角三角形,理由详见解析;(3)492. 【解析】试题分析:(1)已知 点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得11,22PM EC PN BD ==,//PM EC ,//PN BD ,根据平行线的性质可得∠DPM=∠DCE ,∠NPD=∠ADC ,在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =,可得BD=EC ,∠DCE+∠ADC=90°,即可得PM=PN ,∠DPM+∠NPD=90°,即PM PN ⊥;(2)PMN ∆是等腰直角三角形,根据旋转的性质易证△BAD ≌△CAE ,即可得BD=CE ,∠ABD=∠ACE ,根据三角形的中位线定理及平行线的性质(方法可类比(1)的方法)可得PM=PN, ∠MPD=∠ECD ,∠PNC=∠DBC ,所以∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD ,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN ,即可得∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN 为等腰直角三角形;(3)把ADE ∆绕点A 旋转到如图的位置,此时PN=12(AD+AB)=7, PM=12(AE+AC)=7,且PN 、PM 的值最长,由(2)可知PM=PN ,PM PN ⊥,所以PMN ∆面积的最大值为1497722⨯⨯= .试题解析:(1)PM=PN ,PM PN ⊥; (2)等腰直角三角形,理由如下: 由旋转可得∠BAD=∠CAE , 又AB=AC,AD=AE ∴△BAD ≌△CAE∴BD=CE ,∠ABD=∠ACE ,∵点M ,P 分别为DE ,DC 的中点 ∴PM 是△DCE 的中位线∴PM=12CE ,且//PM CE , 同理可证PN=12BD ,且//PN BD∴PM=PN, ∠MPD=∠ECD ,∠PNC=∠DBC , ∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD , ∠DPN=∠PNC+∠PCN =∠DBC+∠PCN ,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°, 即△PMN 为等腰直角三角形. (3)492. 考点: 旋转和三角形的综合题.8. (2017广东广州第18题)如图10,点,E F 在AB 上,,,AD BC A B AE BF =∠=∠=. 求证:ADF BCE ∆≅∆.【答案】详见解析 【解析】试题分析:先将AE BF =转化为AF =BE ,再利用SAS 证明两个三角形全等 试题解析:证明:因为AE =BF ,所以,AE +EF =BF +EF ,即AF =BE , 在△ADF 和△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩所以,ADF BCE ∆≅∆考点:用SAS 证明两三角形全等9. (2017广东广州第20题) 如图12,在Rt ABC ∆中,0090,30,23B A AC ∠=∠==.(1)利用尺规作线段AC 的垂直平分线DE ,垂足为E ,交AB 于点D ;(保留作图痕迹,不写作法) (2)若ADE ∆的周长为a ,先化简()()211T a a a =+--,再求T 的值. 【答案】(1)详见解析;(2)3310+ 【解析】试题分析:(1)尺规作图——作线段的垂直平分线;(2)化简求值,利用三角函数求其余两边的长度。

各地中考数学解析版试卷分类汇编:三角形的边与角

各地中考数学解析版试卷分类汇编:三角形的边与角

1 三角形的边与角一、选择题1. (2017·湖北咸宁)如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①BC DE =21; ②S S COB DOE△△=21; ③AB AD =OB OE ; ④S S ADE ODE △△=31.其中正确的个数有( )A. 1个B. 2个C.3个D. 4个(第1题)【考点】三角形中位线定理,相似三角形的判定和性质.【分析】①DE 是△ABC 的中位线,根据三角形的中位线等于第三边长度的一半可判断;②利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角面积的比等于相似比的平方可判定.【解答】解:①∵DE 是△ABC 的中位线,∴DE=21BC ,即BC DE =21;故①正确;②∵DE 是△ABC 的中位线,∴DE ∥BC∴△DOE ∽△COB ∴S S COBDOE△△=(BC DE )2=(21)2=41, 故②错误;③∵DE ∥BC ∴△ADE ∽△ABC ∴AB AD =BC DE△DOE ∽△COB ∴OB OE =BC DE ∴AB AD =OB OE,故③正确;④∵△ABC 的中线BE 与CD 交于点O 。

∴点O 是△ABC 的重心,2 根据重心性质,BO=2OE ,△ABC 的高=3△BOC 的高,且△ABC 与△BOC 同底(BC )∴S △ABC =3S △BOC ,由②和③知,S △ODE =41S △COB ,S △ADE =41S △BOC , ∴S S ADE ODE △△=31.故④正确.综上,①③④正确.故选C.【点评】本题考查了三角形中位线定理,相似三角形的判定和性质.要熟知:三角形的中位线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方.2. (2017·四川广安·3分)下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有( )A .1个B .2个C .3个D .4个【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判定与性质;菱形的判定.【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题.【解答】解:①错误,理由:钝角三角形有两条高在三角形外.②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形. ③正确,有一组邻边相等的平行四边形是菱形.④错误,理由两边及一角对应相等的两个三角形不一定全等.⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形. 正确的只有③,故选A .3. (2017·四川乐山·3分)如图2,CE 是ABC ∆的外角ACD ∠的平分线,若35B ∠=,60ACE ∠=,则A ∠=()A 35()B 953()C 85()D 75答案:C 解析:考查三角形的外角和定理,角平分线的性质。

2019全国各地中考数学试题分类汇编-三角形的边与角

2019全国各地中考数学试题分类汇编-三角形的边与角

2019全国各地中考数学试题分类汇编-三角形的边与角注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!全国500套数学试题分类汇编三角形的边与角2017全国各地中考数学真题分类汇编:三角形的边与角【一】选择题1. 〔2017福建福州,10,4分〕如图3,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,假设点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,那么满足条件的点C 个数是〔 〕A 、2B 、3C 、4D 。

5【答案】C2. 〔2017山东滨州,5,3分〕假设某三角形的两边长分别为3和4,那么以下长度的线段能作为其第三边的是( )A. 1B. 5C. 7D.9【答案】B3. 〔2017山东菏泽,3,3分〕一次数学活动课上,小聪将一副三角板按图中方式叠放,那么∠α等于A 、30°B 、45°C 、60°D 、75°【答案】D4. 〔2017山东济宁,3,3分〕假设一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是〔 〕A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形【答案】B5. 〔2017浙江义乌,2,3分〕如图,DE 是△ABC 的中位线,假设BC 的长是3cm ,那么DE 的长是〔 〕图330°45° αA 、2cmB 、1.5cmC 、1.2cmD 、1cm【答案】B6. 〔2017台湾台北,23〕如图(八),三边均不等长的ABC ∆,假设在此三角形内找一点O ,使得OAB ∆、OBC ∆、OCA ∆的面积均相等。

判断以下作法何者正确?A 、 作中线AD ,再取AD 的中点OB 、 分别作中线AD 、BE ,再取此两中线的交点OC 、 分别作AB 、BC 的中垂线,再取此两中垂线的交点OD 、 分别作A ∠、B ∠的角平分线,再取此两角平分线的交点O【答案】B7. 〔2017台湾全区,20〕图(五)为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交 点上,假设灰色三角形面积为421平方公分,那么此方格纸的面积为多少平方公分?A 、 11B 、 12C 、 13D 、 14【答案】B8. 〔2017江苏连云港,5,3分〕小华在电话中问小明:“一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的选项是〔 〕【答案】C9. 〔2017江苏苏州,2,3分〕△ABC 的内角和为A.180°B.360°C.540°D.720°【答案】A10、〔2017四川内江,2,3分〕如图,把一块直角三角板的直角顶点放在直尺的一边上,如E AB C D果∠1=32°,那么∠2的度数是A 、32°B 、58°C 、68°D 、60°【答案】C11. 〔2017湖南怀化,2,3分〕如图1所示,∠A 、∠1、∠2的大小关系是A. ∠A>∠1>∠2B. ∠2>∠1>∠AC. ∠A>∠2>∠1D. ∠2>∠A>∠1【答案】B12. 〔2017江苏南通,4,3分〕以下长度的三条线段,不能组成三角形的是A. 3,8,4B. 4,9,6C. 15,20,8D. 9,15,8【答案】A13. 〔2017四川绵阳5,3〕将一副常规的三角尺按如图方式放置,那么图中∠AOB 的度数为BA 、75°B 、95°C 、105°D 、120°【答案】C14. 〔2017四川绵阳6,3〕王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少要再钉上几根木条?12A、0根 B.1根 C.2根 D.3根【答案】B15. 〔2017广东茂名,2,3分〕如图,在△ABC中,D、E分别是AB、AC的中点,假设DE=5,那么BC=A、6B、8C、10D、12【答案】C16. 〔2017山东东营,5,3分〕一副三角板,如下图叠放在一起,那么图中∠α的度数是〔〕A、75B、60C、65D、55【答案】A17. 〔2017河北,10,3分〕三角形三边长分别为2,x,13,假设x为正整数,那么这样的三角形个数为〔〕A、2B、3C、5D、13【答案】B18. 〔2017湖北孝感,8,3分〕如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是BO、CO的中点,连结AO.假设AO=6cm,BC=8cm,那么四边形DEFG的周长是( )A.14cmB.18cmC.24cmD.28cm【答案】A【二】填空题1.〔2017浙江金华,12,4分〕三角形的两边长为4,8,那么第三边的长度可以是〔写出一个即可〕.【答案】答案不唯一,如5、6等2. 〔2017浙江省舟山,14,4分〕如图,在△ABC中,AB=AC,︒A,那么△ABC的外=∠40角∠BCD=度、【答案】1103. 〔2017湖北鄂州,8,3分〕如图,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,假设∠BPC=40°,那么∠CAP=_______________、【答案】50°4. 〔2017宁波市,17,3分〕如图,在∆ABC 中,AB =AC ,D 、E 是∆ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,假设BE =6cm ,DE =2cm ,那么BC =cm【答案】85. 〔2017浙江丽水,12,4分〕三角形的两边长为4,8,那么第三边的长度可以是 (写出一个即可).【答案】答案不惟一,在4<x <12之间的数都可6. 〔2017江西,13,3分〕如图,在△ABC 中,点P 是△ABC 的内心,那么∠PBC +∠PCA +∠PAB = 度.第13题图【答案】907. 〔2017福建泉州,15,4分〕如图,在四边形ABCD 中,P 是对角线BD 的中点,E F,分别是AB CD ,的中点18AD BC PEF =∠=,,那么PFE ∠的度数是 、(第14题) A BCD第8题图【答案】188. 〔2017四川成都,13,4分〕 如图,在△ABC 中,D 、E 分别是边AC 、BC 的中点,假设DE =4, 那么AB = .【答案】8.9. 〔2017四川内江,加试2,6分〕如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O 。

2017年中考数学专题复习试卷分类汇编(解析版):--解直角三角形专题

2017年中考数学专题复习试卷分类汇编(解析版):--解直角三角形专题

.选择题1. ( 2016山东省荷泽市 3分)如图,△ ABC 与厶A'B'C'都是等腰三角形,且 AB=AC=5, AB 'AC ' =3 若/B+ / B ' =90° 则 A ABC 与厶 A 'B'C 的面积比为( )【考点】互余两角三角函数的关系. 【分析】先根据等腰三角形的性质得到 / B=Z C , / B ' =C ',根据三角函数的定义得到 AD=AB?sinB , A D ' AB ' s ?B BC=2BD=2AB?;osB , B C ' =2 D ' =2B ' c ?sB ',然后根据三角 形面积公式即可得到结论. 【解答】解:过 A 作AD 丄BC 于D ,过A 作A D 丄B C 于D ', •••△ ABC 与厶A B C 都是等腰三角形, •••/ B= / C , / B ' M C ; BC=2BD , B C ' =B D ••• AD=AB?sinB , A D ' AB ' S ?B ; BC=2BD=2AB?cosB , B C ' =B D ' =A B ' c ?sB ; •••/ B+ / B ' =90° • sinB=cosB ', sinB ' cosB , •-S BAC 誌 AD7BC 令 AB?si nB?2AB?sosB=25s in B^osB , S A A B C =*A D ' B ? ' = B ' c ?sB ' A2B ' s ?B ' =9iB ' cosB ',•-S A BAC : S A A B C =25: 9.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知 元素的过程就是解直角三角形•也考查了等腰三角形的性质和三角形面积公式.2. (2016重庆市A 卷•分)某数学兴趣小组同学进行测量大树 CD 高度的综合实践活动, 解直角三角形2'A . 25: 9B . 5: 3C . . ~:D . 5. : 3一扌 故选A .如图,在点A处测得直立于地面的大树顶端C的仰角为36°然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1 : 2.4,那么大树CD的高度约为(参考数据:sin36°~ 0.5%os36°~ 0.8,an36°~ 0.73A . 8.1 米B . 17.2 米C. 19.7 米 D . 25.5 米【分析】作BF丄AE于F,贝U FE = BD=6米,DE = BF,设BF=x米,贝U AF =2.4米,在Rt A ABF 中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AE的长度,在Rt A ACE 中,由三角函数求出CE,即可得出结果.【解答】解:作BF丄AE于F,如图所示:贝U FE=BD=6 米,DE=BF ,•••斜面AB的坡度i=1 : 2.4,••• AF =2.4BF ,设BF=x 米,则AF=2.4x 米,在Rt A ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,•DE = BF=5 米,AF=12 米,•AE=AF + FE=18 米,在Rt A ACE 中,CE=AEtan36°18X0.73=13.14 米,•CD = CE- DE=13.14 米- 5 米~8.1 米;故选:A.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数; 决问题的关键. 3. ( 2016浙江省绍兴市 4分)如图,在 Rt A ABC 中,/ B=90 ° / A=30 °以点A 为圆心, BC 长为半径画弧交 AB 于点D ,分别以点A 、D 为圆心,AB 长为半径画弧,两弧交于点 E , 连接AE , DE ,则/ EAD 的余弦值是( A — B F E C 昼 D . 73 5 . 6 . 3 2 【考点】解直角三角形. 【分析】设BC=x ,由含30°角的直角三角形的性质得出 根据题意得出AD = BC=x , AE=DE=AB= :;x ,作EM 丄AD 于M ,由等腰三角形的性质得出 111 1 AM^-AD^-x , 在 Rt A AEM 中,由三角函数的定义即可得出结果. 【解答】 解:如图所示:设 BC=x , •••在 Rt A ABC 中,/ B=90° , / A=30° ,故选:B . A M I 0 £7 L\ 、 Ec4. (2016重庆市B 卷4分)如图所示,某办公大楼正前方有一根高度是 15米的旗杆ED ,由勾股定理得出方程是解 AC=2BC=2x ,求出 AB= . 】BC=. ; x , 根据题意得: AD=BC=x , AE=DE=AB 「_;x ,在 Rt A AEM 中, cos / EAD= ANAE 13.5 ••• AC=2BC=2x , AB= ';BC= :_;x , 作EM 丄AD 于M ,贝U AM =」-AD= x ,从办公楼顶端A测得旗杆顶端E的俯角a是45°旗杆底端D到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC是12米,梯坎坡度i=1:.则大楼AB的高度约为()(精确到o.i 米,参考数据: 1.41 1.73 2.45I~IC DA. 30.6B. 32.1C. 37.9D. 39.4【考点】解直角三角形的应用-坡度坡角问题.【分析】延长AB交DC于H,作EG丄AB于G,则GH = DE=15米,EG=DH,设BH=x米, 则CH= .「;x米,在Rt A BCH中,BC=12米,由勾股定理得出方程,解方程求出BH=6米,CH=6米,得出BG、EG的长度,证明△ AEG是等腰直角三角形,得出AG=EG=6. :+20(米),即可得出大楼AB 的高度.【解答】解:延长AB交DC于H,作EG丄AB于G,如图所示:贝U GH = DE=15 米,EG=DH ,•••梯坎坡度i=1:「,••• BH : CH=1 ::-.,设BH=x 米,贝U CH= . lx 米,在Rt A BCH 中,BC=12 米,由勾股定理得:x2+ (一「;x)2=122,解得:x=6, • BH=6 米,CH=6. 一;米,•BG = GH - BH=15 - 6=9 (米),EG=DH=CH + CD=6 . :+20 (米),T/ a=45°,•••/ EAG=90°- 45° =45°,•△ AEG是等腰直角三角形,•AG = EG=6 . 1+20 (米),•AB=AG+BG=6 才£+20+A 39.4 (米);故选:D.H C D【点评】本题考查了解直角三角形的应用-坡度、 俯角问题;通过作辅助线运用勾股定理求 出BH ,得出EG 是解决问题的关键.二.填空题1. ( 2016山东省荷泽市 3分)如图,在正方形 ABCD 外作等腰直角 △ CDE , DE = CE ,连 接 BE ,贝U tan / EBC= 二.~~【考点】正方形的性质;等腰直角三角形;解直角三角形.【专题】计算题.【分析】作EF 丄BC 于F ,如图,设DE=CE = a ,根据等腰直角三角形的性质得 CD=*CE=.:a , / DCE=45 °再利用正方形的性质得 CB=CD^2a , / BCD =90 °接着判断△ CEF 为等【解答】解:作 EF 丄BC 于F ,如图,设DE=CE=a ,•••△ CDE 为等腰直角三角形,••• CD= _ 】CE=.】a , / DCE=45° ,•••四边形ABCD 为正方形,• CB=CD^ ■:a , / BCD =90°,•••/ ECF=45° ,• △ CEF 为等腰直角三角形,腰直角三角形得到 CF = EF= V2 CE=^-' a ,然后在Rt A BEF 中根据正切的定义求解.即/ EBC —•3正方形的四条边都相等, 四个角都是直角;正方形的两 条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四 边形、矩形、菱形的一切性质•也考查了等腰直角三角形的性质.2. (2016湖北荆州3分)全球最大的关公塑像矗立在荆州古城东门外•如图,张三同学 在东门城墙上C 处测得塑像底部 B 处的俯角为18°8 ',测得塑像顶部 A 处的仰角为45°点 D 在观测点C 正下方城墙底的地面上,若CD=10米,则此塑像的高 AB 约为 58 米(参考数据:tan 78° 12'~)4.8 7 C* 1 弊:二*「B D【分析】 直接利用锐角三角函数关系得出 EC 的长,进而得出 AE 的长,进而得出答案.【解答】 解:如图所示:由题意可得: CE 丄AB 于点E , BE=DC ,•// ECB=18° 48,'•••/ EBC=78° 12'则 tan78° 12'—=—=4.8, BE 10解得:EC=48 (m ), •// AEC=45° 贝U AE=EC ,且 BE=DC=10m ,•此塑像的高 AB 约为:AE+EB=58 (米).故答案为:58.一一 V2 宁一一 BFa 在 RtA BEF 中,tan / EBFE4啓匚 B D【点评】此题主要考查了解直角三角形的应用,根据题意得出EC 的长是解题关键. 三•解答题1. ( 2016湖北随州8分)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝 雕像高度,已知烈山坡面与水平面的夹角为 30°山高857.5尺,组员从山脚 D 处沿山坡向 着雕像方向前进1620尺到达E 点,在点E 处测得雕像顶端 A 的仰角为60°求雕像AB 的 高度.【考点】 解直角三角形的应用-仰角俯角问题.【分析】构造直角三角形,利用锐角三角函数,进行简单计算即可.【解答】解:如图,过点E 作EF 丄AC , EG 丄CD , 在 Rt A DEG 中,•/ DE=1620, / D=30°•/ BC=857.5, CF=EG ,••• EG=••• BF=BC - CF=47.5, 在 Rt A BEF 中,tan / BEF=三一, EF • EF= -BF , 在 Rt A AEF 中,/ AEF=60° ,设 AB=x , •/ tan / AEF —二 BF • AF =EF xtan / AEF , • x+47.5=3 X 47.5, • x=95, 答:雕像AB 的高度为95尺. 2. (2016吉林7分)如图,某飞机于空中 A 处探测到目标 C ,此时飞行高度 AC=1200m , 从飞机上看地平面指挥台 B 的俯角a =43°,求飞机A 与指挥台B 的距离(结果取整数) (参考数sin43°0.68, cos43°=0.73, tan43° =0.93)答:飞机A 与指挥台B 的距离为1765m . 3. (2016江西8分)如图1是一副创意卡通圆规,图 OB 是旋转臂,使用时,以点 A 为支撑点,铅笔芯端点 OA=OB=10cm . 【考点】 解直角三角形的应用-仰角俯角问题. 【分析】先利用平行线的性质得到 / B= a =43°,然后利用/ B 的正弦计算AB 的长. 【解答】 解:如图,/ B= a =43° , 在 Rt A ABC 中,•/sinB= = AB = & 1765(m ). 2是其平面示意图,OA 是支撑臂,B 可绕点A 旋转作出圆.已知(1)当/ AOB=18°时,求所作圆的半径;(结果精确到O.O1cm)(2)保持/ A0B=18°不变,在旋转臂0B末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度. (结果精确到0.01cm)(参考数据:sin9°~ 0.15@4cos9°~ 0.9877sin 18°~ 0.3090cos18°~ 0.95,可使用科学计算器)圉1【考点】解直角三角形的应用.【分析】(1)根据题意作辅助线OC丄AB于点C,根据OA=OB=10cm, / OCB=90°,/ AOB=18°,可以求得/ BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.【解答】解:(1)作OC丄AB于点C,如右图2所示,由题意可得,OA=OB=10cm, / OCB=90°, / AOB=18°,•••/ BOC=9°••• AB=2BC=2OB?sin9°~ 2X 10X 0.1564 5,即所作圆的半径约为 3.13cm;(2)作AD丄OB于点D,作AE=AB,如下图3所示,•••保持/ AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,•••折断的部分为BE,•••/ AOB=18°, OA=OB , / ODA =90°,•••/ OAB=81°, / OAD =72°,•••/ BAD=9° ,••• BE=2BD=2AB?sin9°~ 2X 3.13 X 0.1564 笔册98 即铅笔芯折断部分的长度是 0.98cm .4. (2016辽宁丹东10分)某中学九年级数学兴趣小组想测量建筑物AB 的高度•他们在 C64 °求建筑物的高度.(测角器的高度忽略不计,结果精确到【考点】 解直角三角形的应用-仰角俯角问题.【分析】Rt A ADB 中用AB 表示出BD 、Rt A ACB 中用AB 表示出BC ,根据CD = BC - BD 可 得关于AB 的方程,解方程可得.【解答】 解:根据题意,得 / ADB=64° , / ACB=48°AB 10 tan48& Ji11• CD = BC - BDsin48°^^, tan48°^^,sin64° J10 101A* #建/ /巩/ // /JT £(参考数据:jf fL_CDBAB 1贝VBD=处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进 6米到达D 处,测得仰角为在 Rt A ADB 中,tan64° -二:,在 Rt A ACB 中,tan48° =.AB ■,tan 64°~)2在 Rt △ ACF 中,tan / ACF肿 -_工 =tan2^ ACP tan Cl i 一丄一「在直角AB =x+ BF =4+ x (米), 在直角 △ ABF 中, =AB :=x+4tan/AEB3•/ CF - 解得:x= 则AB =~2~ 胡打 3V3+12+4=22答:树高AB 是心]"'(米).1 AB -二AB2132 解得:AB=== y•••建筑物的高度约为 14.7 米.5. (2016四川宜宾)如图,CD 是一高为4米的平台,AB 是与CD 底部相平的 棵树,在平台顶C 点测得树顶A 点的仰角a =30° ,从平台底部向树的方向 水平前进3米到达点E ,在点E 处测得树顶A 点的仰角3=60° ,求树高AB (结【分析】作CF 丄AB 于点F ,设AF=x 米,在直角△ ACF 中利用三角函数用x 表示出CF 的长,在直角△ ABE 中表示出BE 的长,然后根据CF - BE = DE 即 可列方程求得x 的值,进而求得AB 的长. 【解答】解:作CF 丄AB 于点F ,设AF =x 米, ~ 14.7(米),三角形的应用-仰角俯角问题.△ ABE中, 则CF,(x+4 )米..,则 BEtan / AEB = BE = DE ,即 (x+4 ) =3 .D6. ( 2016湖北黄石8分)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB 和BC两段,每一段山坡近似是直”的,测得坡长AB=800米,BC=200米,坡角/ BAF=30° / CBE=45°.(1 )求AB段山坡的高度EF ;(2)求山峰的高度CF .(叮[F1.414, CF结果精确到米)【分析】(1)作BH丄AF于H,如图,在Rt A ABF中根据正弦的定义可计算出BH的长, 从而得到EF的长;(2)先在Rt A CBE中利用/ CBE的正弦计算出CE,然后计算CE和EF的和即可.【解答】解:(1)作BH丄AF于H,如图,在Rt A ABF 中,T sin/ BAH==,AB••• BH=800?si n30°=400,/• EF =BH =400m;(2)在Rt A CBE 中,T sin/ CBE=),BC•CE=200?sin45°=100 J 2^ 141.4•CF=CE+EF=141.4+400~541 ( m).答:AB段山坡高度为400米,山CF的高度约为541米.【点评】本题考查了解直角三角形的应用-坡度与坡角问题: 平宽度I 的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i 表示,常写成i=1: m 的形式.把坡面与水平面的夹角 a 叫做坡角,坡度i 与坡角a 之间的关系为:iTan a 7.( 2016湖北荆门6分)如图,天星山山脚下西端 A 处与东端B 处相距800 (1+ '■)米, 小军和小明同时分别从 A 处和B 处向山顶C 匀速行走.已知山的西端的坡角是 45°东端的 坡角是30°小军的行走速度为 *2米/秒•若小明与小军同时到达山顶 C 处,则小明的行走 【考点】解直角三角形的应用-坡度坡角问题.【分析】过点C 作CD 丄AB 于点D ,设AD=x 米,小明的行走速度是 a 米/秒,根据直角三 角形的性质用x 表示出AC 与BC 的长,再根据小明与小军同时到达山顶 C 处即可得出结论. 【解答】 解:过点C 作CD 丄AB 于点D ,设AD=x 米,小明的行走速度是 a 米/秒, •••/ A=45° , CD 丄 AB , ••• AD = CD=x 米, ••• AC=*x. 在 RtA BCD 中,坡度是坡面的铅直高度 h 和水速度是多少?• BC = sin3Q =2x ,•••小军的行走速度为.米/秒.若小明与小军同时到达山顶 C 处,•••/ B=30° ,8. (2016四川内江)(9分)如图8,禁渔期间,我渔政船在 A 处发现正北方向B 处有一艘可 疑船只,测得 A , B 两处距离为200海里,可疑船只正沿南偏东45。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中考数学试卷分类汇编:21 三角形的边与角一、选择题1. (2017福建福州,10,4分)如图3,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( ) A .2B .3C .4D . 5【答案】C2. (2017山东滨州,5,3分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是( )A. 1B. 5C. 7D.9 【答案】B3. (2017山东菏泽,3,3分)一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于A .30°B .45°C .60°D .75°【答案】D4. (2017山东济宁,3,3分)若一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形 【答案】B5. (2017浙江义乌,2,3分)如图,DE 是△ABC 的中位线,若BC 的长是3cm ,则DE 的长是( )30°45°α图3A .2cmB .1.5cmC .1.2cmD .1cm 【答案】B6. (2017台湾台北,23)如图(八),三边均不等长的ABC ∆,若在此三角形内找一点O ,使得OAB ∆、OBC ∆、OCA ∆的面积均相等。

判断下列作法何者正确?A . 作中线AD ,再取AD 的中点OB . 分别作中线AD 、BE ,再取此两中线的交点OC . 分别作AB 、BC 的中垂线,再取此两中垂线的交点OD . 分别作A ∠、B ∠的角平分线,再取此两角平分线的交点O 【答案】B7. (2017台湾全区,20)图(五)为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方公分,则此方格纸的面积为多少平方公分?A . 11B . 12C . 13D . 14 【答案】B8. (2017江苏连云港,5,3分)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )E A BCD【答案】C9. (2017江苏苏州,2,3分)△ABC 的内角和为 A.180° B.360° C.540° D.720° 【答案】A10.(2017四川内江,2,3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是A .32°B .58°C .68°D .60°【答案】C11. (2017湖南怀化,2,3分)如图1所示,∠A、∠1、∠2的大小关系是 A. ∠A>∠1>∠2 B. ∠2>∠1>∠A C. ∠A>∠2>∠1 D. ∠2>∠A>∠1【答案】B12. (2017江苏南通,4,3分)下列长度的三条线段,不能组成三角形的是A. 3,8,4B. 4,9,6C. 15,20,8D. 9,15,8【答案】A13. (2017四川绵阳5,3)将一副常规的三角尺按如图方式放置,则图中∠AOB 的度数为12BA.75° B.95° C.105° D.120°【答案】C14. (2017四川绵阳6,3)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少要再钉上几根木条?A.0根 B.1根 C.2根 D.3根【答案】B15. (2017广东茂名,2,3分)如图,在△ABC中,D、E分别是AB、AC的中点,若DE=5,则BC=A.6 B.8 C.10 D.12【答案】C16. (2017山东东营,5,3分)一副三角板,如图所示叠放在一起,则图中∠ 的度数是()A.75 B.60 C.65 D.55【答案】A17. (2017河北,10,3分)已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.13【答案】B18. (2017湖北孝感,8,3分)如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是BO、CO的中点,连结AO.若AO=6cm,BC=8cm,则四边形DEFG的周长是( )A.14cmB.18cmC.24cmD.28cm【答案】A19.20.21.22.23.24.25.二、填空题1.(2017浙江金华,12,4分)已知三角形的两边长为4,8,则第三边的长度可以是(写出一个即可).【答案】答案不唯一,如5、6等2. (2017浙江省舟山,14,4分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = 度.【答案】1103. (2017湖北鄂州,8,3分)如图,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________.【答案】50°4. (2017宁波市,17,3分)如图,在∆ABC 中,AB =AC ,D 、E 是∆ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm ,则BC =cm【答案】85. (2017浙江丽水,12,4分)已知三角形的两边长为4,8,则第三边的长度可以是 (写出一个即可).【答案】答案不惟一,在4<x <12之间的数都可6. (2017江西,13,3分)如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC +∠PCA +∠PAB = 度.第8题图(第14题)A BCD第13题图 【答案】907. (2017福建泉州,15,4分)如图,在四边形ABCD 中,P 是对角线BD 的中点,E F,分别是AB CD ,的中点18AD BC PEF =∠=,,则PFE ∠的度数是 .【答案】188. (2017四川成都,13,4分) 如图,在△ABC 中,D 、E 分别是边AC 、BC 的中点,若DE =4,则AB = .【答案】8.9. (2017四川内江,加试2,6分)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O 。

若△ADE 的面积为S ,则四边形BOGC 的面积= .【答案】74S 10.(2017江苏淮安,10,3分)如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,BC=8,则DE= .AB CDE G FOCFDBE AP(第15题)B【答案】411. (2017上海,16,4分)如图, 点B 、C 、D 在同一条直线上,CE //AB ,∠ACB =90°,如果∠ECD =36°,那么∠A =_________.【答案】54°12. (2017江苏无锡,17,2分)如图,在△ABC 中,AB = 5cm ,AC = 3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为______________cm .【答案】813. (2017湖北黄冈,6,3分)如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.ABCDE (第17题)EDC BA【答案】214. (2017湖北黄冈,8,3分)如图,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________.【答案】50°15. (2017湖南衡阳,17,3分)如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .【答案】 816. (2017江苏盐城,16,3分)如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,E 是AC 的中点.若DE =5,则AB 的长为 ▲ .AB CD E【答案】1017. (2017重庆市潼南,13,4分)如图,在△ABC 中,∠A=80°,点D 是BC 延长线上一点,∠ACD=150°,则∠B= .第8题图第6题图BCE【答案】70○18. (2017湖北鄂州,6,3分)如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.【答案】219. (2017江苏扬州,16,3分)如图,DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,MN=6,则BC=【答案】820.(2017湖南湘潭市,15,3分)如下图,已知:△ABC 中,DE ∥BC ,AD =3,DB =6,AE =2,则EC =_______.【答案】4 21.A E CBD第6题图BCABD13题图o150o8022.三、解答题1.(2017江苏连云港,28,12分)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:(1)有一条边对应相等的两个三角形的面积之比等于这条边上的对应高之比;(2)有一个角应相等的两个三角形的面积之比等于夹这个角的两边乘积之比;…现请你根据对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分AC.经探究S 四边形P1R1R2R2=13S△ABC,请证明.问题2:若有另一块三角形纸板,可将其与问题1中的△ABC拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究S四边形P1Q1Q2P2与S四边形ABCD之间的数量关系.问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC.若S四边形ABCD=1,求S四边形P2Q2Q3P3.问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3将四边形ABCD 分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.2.。

相关文档
最新文档