点的轨迹方程的求法

合集下载

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。

从而得到轨迹方程,这种求轨迹方程的方法称作直接法。

例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。

解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0),B (a,0)。

设动点C为(x, y),••• | AC |2 |BC |2 |AB|2,a)2y2]2h(x a)2y2]24a2,即x2由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点,故所求方程为x2y2a2( x a )。

2•代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。

例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。

解:设 A (a,0) , B (0, b), M (x, y),一方面,. 另一方面,36 , M分AB的比为1,2评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。

此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。

3.几何法:求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。

求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法点的轨迹方程是描述点在运动过程中所经过的路径的数学方程。

在数学和物理等领域,有许多方法可以推导和描述点的轨迹方程。

下面介绍六种常见的方法。

一、直角坐标系方法直角坐标系方法是最常见的一种方法,通常用于平面分析。

在直角坐标系下,点的位置可以用横坐标x和纵坐标y来表示。

如果已知点的坐标与时间的关系,可以通过方程联立或者曲线拟合的方法得到点的轨迹方程。

二、参数方程方法参数方程方法是一种将点的位置用参数表示的方法。

通过引入参数t,点的坐标可以用关于t的函数表示,如x=f(t)和y=g(t),这样就可以得到点的轨迹方程。

参数方程方法适用于描述直线、圆和其他曲线的方程。

三、极坐标系方法极坐标系方法是一种将点的位置用极径r和极角θ来表示的方法。

通过引入极径和极角的关系表达式,可以得到点的轨迹方程。

例如,对于圆的方程可以表示为r=f(θ),其中f(θ)是关于极角θ的函数。

四、矢量方程方法矢量方程方法是一种用矢量表示点的位置的方法。

通过引入位置矢量r(t),可以得到点的轨迹方程。

位置矢量r(t)通常用分量表示,如r=(x,y,z)。

矢量方程方法适用于描述曲线在三维空间中的轨迹。

五、微分方程方法微分方程方法是一种通过点的运动规律和动力学方程来推导轨迹方程的方法。

通过对点的位置向量或者其分量进行微分,并代入运动规律方程,可以得到点的轨迹方程。

微分方程方法适用于描述受力作用下点的运动。

六、变分原理方法变分原理方法是一种通过极小化或者极大化一些物理量来推导轨迹方程的方法。

通过对点的位置或路径的泛函进行变分,可以得到使泛函取得极值的轨迹方程。

变分原理方法适用于描述光的传播、质点在介质中的传播等问题。

综上所述,点的轨迹方程可以通过直角坐标系方法、参数方程方法、极坐标系方法、矢量方程方法、微分方程方法和变分原理方法等六种常见方法推导和描述。

不同的方法适用于不同的情况和问题,选择合适的方法可以更方便地求解轨迹方程。

高中数学-学生-轨迹方程的求法

高中数学-学生-轨迹方程的求法
自我测试
例1.已知中心在原点,焦点在 轴上的椭圆的焦距等于 ,它的一条弦所在的直线方程是 ,若此弦的中点坐标为 ,求椭圆的方程。
例2已知点 动点 满足条件 ,记动点 的轨迹为 。(1)求 的方程。(2)若 是 上的不同两点, 是坐标原点,求 的最小值。
例3如图,矩形ABCD中, ,以AB边所在的直线为x轴,AB的中点为原点建立直角坐标系,P是x轴上方一点,使PC、PD与线段AB分别交于 、 两点,且 成等比数列,求动点P的轨迹方程
(1)求 两点的横坐标之积和坐标之积;(2)求证:直线 过定点;
(3)求弦 中点 的轨迹方程;(4)求 面积的最小值。
4.设过点 的直线分别与 轴和 轴的正半轴交于 两点,点 与点 关于 轴对称。若 ,且 ,求点 的轨迹方程。
巩固练习
1.已知抛物线 的内接三角形 的垂心在此抛物线的焦点 上, 的面积等于 ,求此抛物线的方程。
(3)直接法:直接通过建立x、y之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法;
(4)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可
(5)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x、y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。
2.已知双曲线C的两条渐近线经过原点,并且与圆 相切,双曲线 的一个顶点 的坐标是
(1)求双曲线 的方程;
(2)已知直线 ,在双曲线 的上支求点 ,使点 与直线 的距离等于 。
3.已知抛物线 的顶点在原点,它的准线 经过双曲线 的焦点,且准线 与双曲线 交于 和 两点,求抛物线 和双曲线 的方程。

高中数学求轨迹方程的六种常用技法

高中数学求轨迹方程的六种常用技法

求轨迹方程的六种常用技法轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。

学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。

本文通过典型例子阐述探求轨迹方程的常用技法。

1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程。

解:以AB 所在直线为x 轴,AB 垂直平分线为y 轴建立坐标系,则(3,0),(3,0)A B -,设点M 的坐标为(,)x y ,则直线AM 的斜率(3)3AM y k x x =≠-+,直线BM 的斜率(3)3AM y k x x =≠- 由已知有4(3)339y y x x x •=≠±+- 化简,整理得点M 的轨迹方程为221(3)94x y x -=≠± 练习:1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。

2.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于A 、B 两点,P 是l 上满足1PA PB ⋅=的点,求点P 的轨迹方程。

3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 A .直线 B .椭圆 C .抛物线 D .双曲线 2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法
BC CD DA
解:以AB所在直线为x轴,过o垂直AB 直线为y轴,建立如图直角坐标系.
DF
y
C
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)
P
E
设 BE CF DG =k(0≤k≤1),由此有
G
BC CD DA
A
o
Bx
E(2,4ak), F(2-4k,4a), G(-2,4a-4ak) 直线OF的方程为 2ax+(2k-1)y=0……………①
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
使得P到两定点距离的和为定值.按题意有A(2, 0),B(2, 0),C(2, 4a),D(, 2, 4a).
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
2
2
• 以下举一个例子说明:
1.定义法
【例1】在ΔABC中,已知BC=a,当动点A满足条件sinC-sinB= 1 sinA时, 2
求动点A的轨迹方程.
解:以BC边所在直线为x轴,以线段BC的垂直平分线为y轴建立直角坐标系.
因为sinC-sinB= 1 sinA,由正弦定理得:AB - AC = 1 BC ,

求轨迹方程的方法

求轨迹方程的方法

求轨迹方程的方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法.2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P 的坐标(x,y)表示该等量关系式,即可得到轨迹方程.3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g (t),进而通过消参化为轨迹的普通方程F(x,y)=0.4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程.5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单.6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用.(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变.2. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解.(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充.检验方法:研究运动中的特殊情形或极端情形.3.求轨迹方程还有整体法等其他方法.。

求轨迹方程的五种方法

求轨迹方程的五种方法

求轨迹方程的五种方法有五种方法可以求解轨迹方程,分别是:1.参数方程法2.一般方程法3.极坐标方程法4.隐函数方程法5.线性方程组法接下来将对这五种方法进行详细解释。

1.参数方程法:参数方程法是指将坐标轴上的点的位置用一个参数表示,通过参数的变化来表示轨迹。

例如,一个点在x轴上运动,其速度为v,经过时间t后的位置可以用参数方程表示为x = vt。

参数方程法可以很方便地描述物体的运动轨迹,特别适用于描述曲线的参数方程。

2.一般方程法:一般方程法是指将轨迹上的点的位置用一般方程表示。

例如,对于一个圆形轨迹x^2+y^2=r^2,其中r为半径,可以通过该一般方程来描述圆的轨迹。

一般方程法可以描述各种曲线轨迹,但是求解过程可能较为繁琐。

3.极坐标方程法:极坐标方程法是指将轨迹上的点的位置用极坐标系表示。

极坐标系由极径和极角两个参数组成,其中极径表示点到原点的距离,极角表示点在极坐标系中的方向角度。

通过给定极径和极角的值可以唯一确定一个点的位置。

例如,对于一个以原点为中心的圆形轨迹,可以用极坐标方程表示为r=R,其中R为圆的半径。

极坐标方程法适用于描述具有对称性的轨迹,如圆形、椭圆形等。

4.隐函数方程法:隐函数方程法是指将轨迹上的点的位置用隐函数方程表示。

隐函数方程是一个含有多个变量的方程,其中至少有一个变量无法用其他变量表示。

通过给定其他变量的值,可以计算出不能用其他变量表示的变量的值,从而确定轨迹上的点的位置。

例如,对于一个抛物线轨迹y = ax^2 + bx + c,其中a、b、c为常数,可以根据给定的x的值求解出y的值,从而确定轨迹上的点的位置。

5.线性方程组法:线性方程组法是指将轨迹上的点的位置用线性方程组表示。

线性方程组是由多个线性方程组成的方程组,其中每个方程的未知数是轨迹上的点的坐标。

通过求解线性方程组可以得到轨迹上的点的坐标。

线性方程组法适用于描述由多个轨迹组成的复杂图形,如多边形等。

以上就是求解轨迹方程的五种方法,分别是参数方程法、一般方程法、极坐标方程法、隐函数方程法和线性方程组法。

求点的轨迹方程常用方法

求点的轨迹方程常用方法

求点的轨迹方程的常用方法一.直接法.1.设点()()1,0,1,0A B -,直线,AM BM 相交于点,M 且它们的斜率之积为2,求点M 轨迹方程.2.已知动点(),Px y 与定点()4,0F 的距离和它到直线25:4l x =的距离的比是常数45,求点P 轨迹方程.二.定义法3.y 轴及y 轴右侧的点M 到点()1,0F 的距离比它到y 轴的距离大1,求点M 轨迹方程.4. 已知动圆M 过定点()4,0P-,且与圆22:80C x y x +-=相切,求动圆圆心M 的轨迹方程.5.已知椭圆2214x y +=的左、右焦点12,;F F P 是椭圆上一个动点,如果延长1F P 到Q ,使2,PQ PF =那么动点Q 的轨迹方程.6. 已知ABC ∆的顶点()()4,0,4,0,A B -C 为动点,且满足5sin sin sin ,4B A C +=求顶点C 轨迹方程.三.相关点法(代入法)7.已知点()4,0D,在圆224x y +=上任取一点P ,求线段PD 的中点M 的轨迹方程.8.在圆224x y +=上任取一点P ,过点P 做x 轴的垂线段PD ,D 为垂足,当点M 在DP 的延长线上,且3,2DM DP =当点P 在圆上运动时,求点M 的轨迹方程.9.已知椭圆2214x y +=的焦点12,;F F P 是椭圆上一个动点,12F PF ∠的外角平分线,l 点2F 关于直线l 的对称点为Q ,2F Q 交l 于点,R 求动点R 的轨迹方程.四.参数法10.已知动圆222:42640,Mx y bx by b ++-+-=求动圆圆心M 的轨迹方程.11.已知动圆22:6cos 4sin 0,Mx y x y ββ++-=求动圆圆心M 的轨迹方程.高考实战(2013年)1.已知动圆P 与圆()22:11Mx y ++=外切,且与圆()22:19N x y -+=相内切,求动圆圆心P 的轨迹方程.(2014年)2.已知点()2,2P ,圆22:80C x y y +-=,过点P 的动直线l 与圆C 交于,A B ,求线段AB 的中点M 的轨迹方程.(2017年)3.在椭圆22:12x C y +=上任取一点M ,过点M 做x 轴的垂线段MN ,N 为垂足,点P 满足2,NPNM =求点P 的轨迹方程.(2013年)4.在平面直角坐标系xoy 中,已知圆P 在x 轴上,截得线段长为P 在y 轴上,截得线段长为求点P 的轨迹方程.参考答案; 1. ()22102y x y -=≠ 2. 221259x y += 3. 24y x =4. 221412x y -=5. (2216x y ++=6. ()2210259x y y +=≠ 7. ()2221x y -+= 8. ()221049x y y +=≠ 9. ()2240x y y +=≠ 10. ()2044x y x +=-<< 11.22194x y += 1. ()221243x y x +=≠- 2. ()()22132x y -+-= 3. 222x y += 4. 221y x -=。

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题(含答案) 轨迹方程是描述一条曲线在平面上的运动轨迹的方程。

在二维平面上,轨迹方程通常由一元二次方程、三角函数方程等形式表示。

在三维空间中,轨迹方程可能会更加复杂,可以由参数方程或参数化表示。

一、轨迹方程的求解方法:1. 根据题目给出的条件,确定轨迹上的点的特点或特殊性质。

2. 将轨迹上的点的坐标表示为一般形式。

3. 将坐标表示代入到方程中,消去多余的变量,得到轨迹方程。

二、典型例题及其解答:【例题1】已知点P(x,y)到坐标原点O的距离为定值d,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,根据勾股定理,可以得到点P到原点O的距离公式:d = √(x^2 + y^2)3. 将坐标表示代入到距离公式中,得到轨迹方程:d^2 = x^2 + y^2【例题2】已知点P(x,y)到直线Ax+By+C=0的距离为定值d,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,点P到直线Ax+By+C=0的距离公式为:d = |Ax+By+C| / √(A^2 + B^2)3. 将点P的坐标表示代入到距离公式中,得到轨迹方程:(Ax+By+C)^2 = d^2(A^2 + B^2)【例题3】已知点P(x,y)满足|x|+|y|=a,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,可以得到两种情况下的轨迹方程:当x≥0,y≥0时,有x+y=a,即y=a-x;当x≥0,y<0时,有x-y=a,即y=x-a;当x<0,y≥0时,有-x+y=a,即y=a+x;当x<0,y<0时,有-x-y=a,即y=-a-x。

3. 将上述四种情况合并,得到轨迹方程:|x|+|y|=a【例题4】已知点P(x,y)满足y = a(x^2 + b),求点P的轨迹方程。

几种常见求轨迹方程的方法

几种常见求轨迹方程的方法

几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1:(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P,当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0) ∵BP∶PA=1∶2,且P为线段AB 的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y 轴上,所以可设双曲线方ax2-4b2x+a2b2=0 ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=1664-4Q4b2=0,即a2=2b.(以下由学生完成) 由弦长公式得:即a2b2=4b2-a2.。

轨迹方程的五种求法

轨迹方程的五种求法

轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程.例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =u u u r u u u r·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线解析:由题知(2)PA x y =---u u u r ,,(3)PB x y =--u u u r ,,由2PA PB x =u u u r u u u r·,得22(2)(3)x x y x ---+=,即26y x =+,P ∴点轨迹为抛物线.故选D .二、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 三、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题.例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ②又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来 例4:已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OP OP '=u u u r u u u u r·,求直线AP与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta =+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变. 五、待定系数法:当曲线的形状已知时,一般可用待定系数法解决.例5:已知A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD =u u u r ,1()2AE AB AD =+u u u r u u u r u u u r.(1)求E 点轨迹方程;(2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+u u u r u u u r u u u r知E 为BD 中点,易知(222)D x y -,.又2AD =u u u r,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,1=,解得k =.将y =(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.配套训练一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2. 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y x D.14922=-x y二、填空题3. △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________.4. 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 三、解答题5. 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6. 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7. 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。

求轨迹方程的几种方法

求轨迹方程的几种方法

求轨迹方程的几种方法
求轨迹方程是力学研究中一个重要而复杂的问题,在物理学和航空工程中也得到了广泛的应用。

求轨迹方程的方法主要有四种,分别是绝对运动方程法、局部运动方程法、递归法和坐标变换法。

(1)绝对运动方程法
绝对运动方程法是在任意时刻求解物体运动参数的一种方法,它根据给定物体运动学模型,由物体在某时刻的力学状态参数和动力学参数,通过解绝对运动方程组,来确定物体在任一时刻的动力学状态参数,从而求出物体的轨迹方程。

局部运动方程法是将物体分别在短时间间隔以及限定范围(敏感区域)内求解物体的运动参数。

近似地将本征方程的原始状态矢量化分割为N个有限子空间(子步空间),而在每个子步空间内以满足其局部特性的运动学方程进行求解,最后给出物体整个运动过程的轨迹方程。

(3)递归法
递归法是以递归定理为依据,从原始状态矢量的速度和加速度的代数形式出发,进行递归求解的运动学方法。

根据求轨迹方程的思路,它将复杂的原始状态矢量特性表达式逐步分解局部状态矢量,最终得到物体运动轨迹方程。

(4)坐标变换法
坐标变换法是求轨迹方程的一种新方法,它将物体运动学模型和坐标变换方法结合起来,以坐标变换统一计算附近各点的物体坐标及其速度矢量,从而求得物体在时变情况下的轨迹方程。

与传统的求轨迹运动的方法相比,坐标变换法更容易理解,更加准确,并能节约计算量。

以上就是求轨迹方程的几种方法,在实际工程中也会用到上述某种方法,从而分析对象在特定状态下的运动特性,为有效分析建立良好的基础。

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1.直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。

从而得到轨迹方程,这种求轨迹方程的方法称作直接法。

例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。

解:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则有A (,0)a -,B (,0)a 。

设动点C 为(,)x y ,∵222||||||AC BC AB +=,∴2224a +=,即222x y a +=.由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点,故所求方程为222x y a +=(x a ≠±)。

2.代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。

例2:已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且:1:2AM MB =,求动点M 的轨迹方程。

解:设A (,0)a ,B (0,)b ,M (,)x y ,一方面,∵||6AB =,∴2236a b +=, ①另一方面,M 分AB 的比为12,∴1022133122130121312a x a a xb y b y b ⎧+⨯⎪==⎪⎪+⎧=⎪⎪⇒⎨⎨⎪⎪=+⎩⎪==⎪+⎪⎩ ② ②代入①得:223()(3)362x y +=,即221164x y +=。

评注:本例中,由于M 点的坐标随着A 、B 的变化而变化,因而动点M 的坐标(,)x y 可以用A 、B 点的坐标来表示,而点M 又满足已知条件,从而得到M 的轨迹方程。

轨迹方程的五种求法

轨迹方程的五种求法

轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程 •uur uuu 例1 :已知点A( 2,0, B(3,0),动点P(x, y)满足PA-PB x 2,则点P 的轨迹是()A •圆B.椭圆C •双曲线D •抛物线uuu uuu uun UUJI 2222解析:由题知 PA ( 2 x, y) , PB (3 x, y),由 PA PB x ,得(2 x)(3 x) y x ,即 y x 6,••• P 点轨迹为抛物线•故选 D . 二、 定义法:运用有关曲线的定义求轨迹方程.例2 :在厶ABC 中,BC 24, AC, AB 上的两条中线长度之和为39,求△ ABC 的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为2 BM | |CM 39 26 . 3• M 点的轨迹是以B, C 为焦点的椭圆,其中 c 12, a 13 . • b . a 2—』5.y 轴建立直角坐标系,如图 1 , M 为重心,则有、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题 例3 :已知A ABC 的顶点B( 3,0) C(1,0),顶点A 在抛物线y又••• A(x ), y °)在抛物线 y x 2上, •四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量与AP 的交点M 的轨迹方程.解:如图2,以线段AA 所在直线为x 轴,以线段AA 的中垂线为y 轴建立直角坐•所求△ ABC 的重心的轨迹方程为169251(y0) •解:设G(x, y) , A(x 0, y °),由重心公式,3 1 x3 Y Q 3x 0 y。

3x 3y ・2,将①,②代入③,得3y (3x 2)2(y0),即所求曲线方程是3x 24x 3(y0)•例4 :已知线段AA 2a ,直线I 垂直平分AA 于O ,在I 上取两点P, P ,使其满足uuur , OP-OP 4 ,求直线AP UUU D上运动,求△ ABC 的重心G 的轨迹方程.y 0把x , y 联系起来标系.设点 P(0, t)(t 0), 则由题意,得P 0,,-t 4由点斜式得直线AP, A P 的方程分别为y —(x a), y — (x a). a ta 两式相乘,消去t ,得4x 2a 2y 24a 2(y 0) •这就是所求点 M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变五、待定系数法: 当曲线的形状已知时,一般可用待定系数法解决(1 )求E 点轨迹方程;与E 点的轨迹相切,求椭圆方程.uuu 1 uur uuir解:(1 )设 E(x, y),由 AE -(AB AD)知 E 为 BD 中点,易知 D(2x 2,2y) • 2例5 :已知A , B , D 三点不在一条直线上,且uurA( 2,0),B(2,0), AD uuu i uuu uuir 2, AE -(AB AD) •(2 )过A 作直线交以A B 为焦点的椭圆于 M ,N 两点,线段MN的中点到y 轴的距离为 4-,且直线MN5nnr 又AD 2 22,贝U (2x 2 2) (2 y) 即E 点轨迹方程为 i(y 0);(2 )设 M (X i, yj, N(X 2,y 2),中点(心y 。

求点轨迹方程的方法

求点轨迹方程的方法

求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法(相关点法):所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程。

常见的曲线特征及要素有:①圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上确定方程的要素:圆心坐标(),a b ,半径r②椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和2a ,定点距离2c③双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值2a ,定点距离2c④抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p 。

若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程。

【题型一】直接法求轨迹【典例分析】设点(A,B ,M 为动点,已知直线AM 与直线BM 的斜率之积为定值13,点M 的轨迹是()A .()22109x y y -=≠B .()22109y x y -=≠C .()22103x y y -=≠D .()22103y x y -=≠【详解】解:设动点(),M x y,则x ≠,则MA k =MB k =,(x ≠,直线AM 与直线BM 的斜率之积为定值13,13=,化简可得,()22103x y y -=≠,故点M 的轨迹方程为()22103x y y -=≠.故选:C.例1:设一动点P 到直线:3l x =的距离到它到点()1,0A的距离之比为3,则动点P 的轨迹方程是()A.22132x y +=B.22132x y -= C.()224136x y --= D.22123x y +=解:设(),P x y33P ld PA-∴=33x ∴-=()()222331x x y ⇒-=-+2221626x x y ⇒--=-()()22224246136x y x y -⇒--=⇒-=答案:C 【变式演练】1.若两定点A ,B 的距离为3,动点M 满足2MA MB =,则M 点的轨迹围成区域的面积为()A .πB .2πC .3πD .4π【答案】D 【详解】以点A 为坐标原点,射线AB 为x 轴的非负半轴建立直角坐标系,如图,设点(,)Mx y=22(4)4x y -+=,于是得点M 的轨迹是以点(4,0)为圆心,2为半径的圆,其面积为4π,所以M 点的轨迹围成区域的面积为4π.2.已知点(0,1)F ,直线:1l y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP QF FP PQ ⋅=⋅,则动点P 的轨迹C 的方程为()A .24x y=B .23y x=C .22x y=D .24y x=【答案】A 【详解】设点(,)P x y ,则(,1)Q x -,因为(0,1)F 且QP QF FP PQ ⋅=⋅,所以(0,1)(,2)(,1)(,2)y x x y x +⋅-=-⋅-,即22(1)2(1)y x y +=--,整理得24x y =,所以动点P 的轨迹C 的方程为24x y =.故选:A 3.已知M (4,0),N (1,0),若动点P 满足MN →·MP →=6|NP →|.(1)求动点P 的轨迹C 的方程;解(1)设动点P (x ,y ),则MP →=(x -4,y ),MN →=(-3,0),PN →=(1-x ,-y ),由已知得-3(x -4)=6(1-x )2+(-y )2,化简得3x 2+4y 2=12,即x 24+y 23=1.∴点P 的轨迹方程是椭圆C :x 24+y 23=1.【题型二】相关点代入法【典例分析】已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程.【解析】解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴.③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.例3:已知F 是抛物线24x y =的焦点,P 是该抛物线上的动点,则线段PF 中点M 的轨迹方程是()A.212x y =-B.21216x y =-C.222x y =- D.221x y =-思路:依题意可得()0,1F ,(),M x y ,()00,P x y ,则有0000221212x x x x y y y y ⎧=⎪=⎧⎪⇒⎨⎨+=-⎩⎪=⎪⎩,因为()00,P x y 自身有轨迹方程,为:204x y =,将00221x xy y =⎧⎨=-⎩代入可得关于,x y 的方程,即M 的轨迹方程:()()22242121x y x y =-⇒=-答案:D例4:已知F 是抛物线24y x =上的焦点,P 是抛物线上的一个动点,若动点M 满足2FP FM =,则M 的轨迹方程是__________解:由抛物线24y x =可得:()1,0F 设()()00,,,M x y P x y ()()001,,1,FP x y FM x y ∴=-=-2FP FM = ()00002112122x x x x y y y y =--=-⎧⎧∴⇒⎨⎨==⎩⎩①P 在24y x =上2004y x ∴=,将①代入可得:()()22421y x =-,即221y x =-【变式演练】1.已知抛物线24C y x =:的焦点为F .(1)点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程;【答案】(1)设动点P 的坐标为( )x y ,,点A 的坐标为( )A A x y ,,则( )A A AP x x y y =--,,因为F 的坐标为(1 0),,所以(1 )A A FA x y =-,,由2AP FA =- 得( )2(1 )A A A A x x y y x y --=--,,.即2(1)2A A A Ax x x y y y -=--⎧⎨-=-⎩解得2A A x x y y=-⎧⎨=-⎩代入24y x =,得到动点P 的轨迹方程为284y x =-.2.已知圆()2221:0C x y r r +=>与直线01:2l y x =+相切,点A 为圆1C 上一动点,AN x ⊥轴于点N ,且动点M满足()22OM AM ON +=-,设动点M 的轨迹为曲线C .(1)求动点M 的轨迹曲线C 的方程;【答案】(1)试题解析:(I)设动点,由于轴于点又圆与直线即相切,∴圆由题意,,得即将代入,得曲线的方程为3.设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →,当点P 在y 轴上运动时,求点N 的轨迹方程.【解析】解设M (x 0,0),P (0,y 0),N (x ,y ),∵PM →⊥PF →,PM →=(x 0,-y 0),PF →=(1,-y 0),∴(x 0,-y 0)·(1,-y 0)=0,∴x 0+y 20=0.由MN →=2MP →得(x -x 0,y )=2(-x 0,y 0),-x 0=-2x 0=2y 0,0=-x 0=12y.∴-x +y 24=0,即y 2=4x .故所求的点N 的轨迹方程是y 2=4x .【题型三】定义法【典例分析】已知动圆M 过定点(4,0)P -,且与圆2280C x y x +-=:相外切,求动圆圆心M 的轨迹方程.【解析】依题意,4MC MP -=,说明点M 到定点C P 、的距离的差为定值,∴动点M 的轨迹是双曲线的一支,∵24a =,∴2a =.∵4c =,∴22212b c a =-=∴动圆圆心M 的轨迹方程是221(2)412x y x -=≤-.例6:若动圆过定点()3,0A -且和定圆()22:34C x y -+=外切,则动圆圆心P 的轨迹方程是___________思路:定圆的圆心为()3,0C ,观察到恰好与()3,0A -关于原点对称,所以考虑P 点轨迹是否为椭圆或双曲线,设动圆P 的半径为r ,则有PA r =,由两圆外切可得2PC r =+,所以2PC PA -=,即距离差为定值,所以判断出P 的轨迹为双曲线的左支,则1,3a c ==,解得2228b c a =-=,所以轨迹方程为()22118y x x -=≤-【变式演练】已知两个定圆O1:(x+2)2+y 2=1:和O 2(x-2)2+y 2=4,它们的半径分别是1和2,.动圆M 与圆O 1内切,又与圆O 2外切,求动圆圆心M 的轨迹方程,【解析】解由|O1O2|=4,得O1(-2,0)、O2(2,0).设动圆M 的半径为r,则由动圆M 与圆O1内切,有|MO1|=r-1;由动圆M 与圆O2外切,有|MO2|=r+2.∴|MO2|-|MO1|=3.∴点M 的轨迹是以O1、O2为焦点,实轴长为3的双曲线的左支.∴a=32,c=2,∴b2=c2-a2=74.∴点M 的轨迹方程为4x29-4y27=1(x≤-32).2、已知点⎪⎭⎫⎝⎛0,41F ,直线41:-=x l ,点B 是直线l 上动点,若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是()A 、双曲线B 、抛物线C 、椭圆D 、圆【答案】B【解析】由题意知MF MB =,点M 的轨迹为抛物线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求点的轨迹方程的步聚: 1、建立适当的直角坐标系, 设动点的坐标为(x,y)
2、列出动点满足的几何等式
3、列方程(即将几何等式代数化)
4、化简
5、检验(除去不满足题意的点)
一、求动点的轨迹方程的常用方法
1、直接法
1. 已知点M与两个定点O(0,0) 、A(3,0) 1 距离的比为 2 求点M的轨迹方程,说明它是什么图形
【小结】 求一个随着已知曲线上的动点而动的点的 轨迹方程用的方法叫 相关点法
求动点的轨迹方程的常用方法
1、直接法: 2、相关点法 (也称坐标转移法): 所求动点M 的运动依赖于一已知曲线上的一个动点M0的 运动,将M0的坐标用M的坐标表示,代入已知 曲线,所得的方程即为所求.
练习: 1、已知点P是圆x2+y2=1上的一个动点,又A(3,0) 求线段AP的中点M 的轨迹方程;
2 2 2 2
10 ( x 4) 2 (y 2) 2 2 2 ( x 4) (y 2) 10
画图检验
点B(3,5)关于点A(4,2)对称的点B/的坐标是
(5,-1) 因为ABC构成三角形 所以点C不能与点B、点B/重合 所以点C的轨迹是以(4,2)为圆心,
半径长是 10 的圆,除去点(5,-1)和点(3,5)
解:设点M的坐标是 ( x, y )
1 由题意得 MA 2
两边平方,得 化简,得
2 2
2
MO
1 即 2 2 2 ( x 3) y
2
x y
2
2
x y 1 2 2 ( x 3) y 4
x y 2x 3 0
即为点M的轨迹方程。
即( x 1) y 4
即为AB中点的轨迹方程。 点M的轨迹是以(0,0)为圆心,a为半径长的圆
3. 等腰三角形的顶点是A(4,2),底边一个 端点是B(3,5),求另一个端点C的轨迹方程, 并说明它是什么图形? 解:设另一个端点C的坐标是 ( x, y ) 因为 ABC 是等腰三角形
所以 AB AC
(4 3) (2 5) ( x 4) (y 2)
4、已知线段AB的端点B的坐标 2 2 是(4,3),端点A在圆 ( x 1) y 4 上运动,求线段AB的中点M的轨 迹方程,并说明轨迹的形状
图像
解:设点M的坐标是( x, y ) 点A的坐标是( x0 , y0 ) 因为M是AB的中点, 所以, x x0 4 x0 2 x 4 ① 2
2 2
点M的轨迹是圆心为(-1,0),半径长是2的圆
2. 长为2a的线段的两个端点A和B分别在 x轴,y轴上滑动,求线段AB中点的轨迹方程。
解:设AB中点M坐标是 ( x, y )
1 由题意得 MO AB 2 1 2 2 即 x y 2a a 2 两边平方,得 x2 y 2 a2
3 2 1 2 (x ) y 2 4
练习: 2、过点A(4,0)作直线l交圆O:x2+y2=4于B,C两点, 求线段BC的 ) 由题意得 OP BC
即( x 2)2 y2 4
y y0 1 x x4 化简,得
即OP AP kOP k AP 1
由图可知,
0 x 1
所以点P的轨迹方程是: ( x 2)2 y 2 4 (0 x 1)
x2 4 x y 2 0
y y0 3 2
y0 2 y 3
因为点A ( x0 , y0 ) 在圆 ( x 1)2 y 2 4 上运动 2 2 ② ( x0 1) y0 4 2 2 将①代入②中,得 (2 x 4 1) (2 y 3) 4
3 2 3 2 化简,得 ( x ) ( y ) 1 2 2 3 3 所以点M的轨迹是以 ( , ) 为圆心,半径长是1的圆 2 2
相关文档
最新文档