王亮,2010级,绿色荧光蛋白的应用
绿色荧光蛋白及其在细胞生物学研究中的应用
绿色荧光蛋白及其在细胞生物学研究中的应用近几十年来,绿色荧光蛋白(GFP)被广泛用于生物学的研究,特别是在细胞生物学领域,它在基因表达分析、膜蛋白研究,以及定位和追踪细胞外状态变化等方面提供了有力的工具。
绿色荧光蛋白最初是从拟南芥中分离出来的,它是一种可以在生物细胞中发出可见的绿光的蛋白质。
GFP可以与其他蛋白质结合在一起,可以用来检测特定蛋白质的表达和定位。
利用绿色荧光蛋白的特性,我们可以实现转基因技术的可视化,同时实现基因的定位,这使得细胞的动态变化以及基因调控可以被直观定量地观察出来。
在GFP的研究过程中,科学家发现GFP本身也有可以改进的特性,不仅可以让它发出绿色的光,也可以被用来实现转基因技术的可视化。
它的发光强度与温度变化和环境改变有关,当温度提升或温度较高时,GFP的发光强度会增强。
GFP还可以用来检测特定的一种或多种蛋白质,能够实现精确的蛋白质定位。
同时,研究人员还发现GFP的表达能力可以被亚细胞定位,发现细胞内部基因表达的动态变化。
GFP也被用于膜蛋白研究,可以很好地实现膜蛋白在细胞表面的定位,从而有助于我们更好地分析膜结构和功能,为细胞生物学研究带来新的视角。
此外,GFP还可以被用于探索和分析细胞外状态变化,它能够通过显示细胞的迁移、聚类、分离等状态变化来揭示细胞的行为和表型特征,成功地帮助了许多细胞生物学研究。
绿色荧光蛋白是一种重要的细胞生物学研究工具,它的出现使得细胞的研究变得更加容易,提高了生物学研究的效率。
它不仅可以被用于基因表达分析和定位,也可以用于膜蛋白研究,使我们更好地了解细胞的行为和表型特征,实现细胞外状态变化的追踪,进而发现基因调控的模式,目前,GFP的技术已经成为细胞生物学研究技术的重要组成部分,将为未来更多的细胞生物学研究带来更多的帮助。
综上所述,GFP在细胞生物学研究中具有重要的意义,它提供了一种强大的分析工具,可以实现基因表达分析、膜蛋白研究和细胞外状态变化的定量观察。
绿色荧光蛋白及其在细胞生物学研究中的应用
绿色荧光蛋白及其在细胞生物学研究中的应用绿色荧光蛋白(Green Fluorescent Protein, GFP)是一种从水母Aequorea victoria中分离出来的荧光蛋白质,可以发射绿色荧光。
由于GFP具有结构简单,对细胞无毒性和较强稳定性等特点,因此被广泛应用于细胞生物学和生命科学研究中。
以下是关于GFP及其在细胞生物学研究中的应用的介绍。
一、荧光蛋白及GFP的来源荧光蛋白质是一种含有环状芳香族氨基酸残基的蛋白质,能够吸收外部能量并将其转化为荧光发射。
GFP最初是在1955年,美国南加州大学的Osamu Shimomura研究水母发光机制时发现的。
GFP由238个氨基酸组成,分子量约27kDa。
GFP基因被克隆后即可在其他生物中表达,使它成为了生物体内最常用的荧光标记物之一。
二、GFP的结构和原理GFP的荧光由3个氨基酸残基Tyr(酪氨酸)、Ser(丝氨酸)和Gly(甘氨酸)构成的环状结构决定。
当氧气与Tyr形成共轭键时,便使荧光激发能量被吸收,并在GFP分子腔内缓慢扩散,直至荧光发射。
三、GFP在细胞生物学中的应用1、荧光定位GFP被广泛用于生命科学中细胞定位的研究。
由于GFP具有细胞膜透性和结构稳定性等特性,可以将其组装到生物体内,使其具有明亮的绿色荧光。
通过转化所需的基因序列来表达GFP,可以使研究人员直接在活细胞中观察到融合GFP蛋白质的定位和空间分布状况。
2、蛋白质交互作用GFP也被用作蛋白质交互作用的研究工具。
在这种情况下,GFP被连接到研究的蛋白质上,而研究人员观察到GFP与其他蛋白质结合的情况,从而确定蛋白质之间是否相互作用。
3、表达和异常行为GFP还可用于研究蛋白质的表达和异常行为。
通过表达GFP基因,可以探究研究对象的分泌情况、活动状态、质量控制和分解情况等。
4、细胞轨迹追踪GFP被广泛应用于细胞追踪研究中。
通过转染GFP基因,可以实时跟踪特定细胞类型的运动和位置,比如细胞分裂、游走和迁移等。
绿色荧光蛋白(GFP)技术在细胞生物学研究中的应用
自催化作用都能产生。荧光生色团非常稳定, 不易变性,
用酸、碱处理或者加入盐酸胍都不会使它失去荧光。但是
当pH 值恢复到中性或者移去变性物时,它的荧光又会恢 复到变性前的水平。GFP 的生色团之间是通过共价键结
合。生色团形成的机理目前尚不清楚,但在有分子氧存在
精选完整ppt课件
8
3 广谱性
首先表现在它的表达几乎不受种属范围的 限制,在微生物、植物、动物中都获得了 成功的表达;其次就是没有细胞种类和位 置的限制,在各个部位都可以表达,发出 荧光。
精选完整ppt课件
9
4 易于载体构建
由于GFP 较小,只含有238 个氨基酸,编 码GFP 的基因序列也较短,约2.6kb,所
1 对细胞生理过程的监控 在过去的几年中,通过随机和人工诱变得到了许多不同颜色的GFP突
变体。通过基因操作,许多蛋白都成功的与GFP进行了融合,通过这 些融合蛋白就可以对相应蛋白的表达和转运及生理反应进行监控。目 前GFP融合蛋白对细胞内迅速的生理反应的报告大概有三种方式:转 移和定位、GFP光谱的生化修饰、荧光共振的能量转移(FRET)。 Shen[10]等在培养的神经元中发现,细胞内的Ca2+瞬间变化就会 引起GFP标记的钙调蛋白激酶Ⅱ(CaM KⅡ)可逆地易位到突触后膜的 densities上。Shi[11]等用GFP标记来监控α-氨基羟甲基恶唑丙酸 (AMPA)的受体,发现它会从细胞内膜转移到树突棘的表面,根据突 触中AMPA受体的含量可以解释突触沉默、活化的原因和机制。 Siegel[12〕等将野生型的GFP插人Shake K十通道的特殊部位,形 成一个异源嵌合体,这个嵌合体发出的荧光将会随着细胞的去极化作 用而缓慢的减少。相反,Yanagawa[13]等将β-内酰胺酶插人GFP得 到了一个融合体,当此融合体与β-内酰胺酶抑制肽(BLIP)结合时,它 的荧光发射量会大大增加。
对绿色荧光蛋白(GFP)的了解及应用
对绿色荧光蛋白的了解及应用学院:生命科学学院姓名:马宗英年级:2011学号:2011012923前言绿色荧光蛋白(green fluorescent protein),简称GFP,是一种具有奇妙特性的“光学蛋白质”。
这种蛋白质从成分和结构上来说,没有丝毫的特殊性,它的组成单元是20种常见的氨基酸,二级结构也是普通的α螺旋和β片层。
但是,这种蛋白质却具有一个非常特别的性质——发出绿色荧光。
【关键词】绿色荧光蛋白生命科学应用一、绿色荧光蛋白绿色荧光蛋白最早是由下村修等人于1962年在一种学名Aequorea victoria的水母中发现的。
其基因所产生的蛋白质,在蓝色波长范围的光线激发下,吸收蓝光的部分能量,发出绿色荧光。
野生型水母GFP的一级序列已由其cDNA序列推导出来[1],它至少存在4种同源GFP,但这些突变并不影响GFP的基本功能,只是使突变的GFP具有了新的性质。
生色团是GFP发出荧光的物质基础,也是GFP结构中的一个重要组成部分。
GFP的生色团位于氨基酸序列64~69位的六肽内,65~67位的丝氨酸、脱氢酪氨酸、甘氨酸通过共价键形成的对羟基苯甲基咪唑环酮是一个独特的、相当稳定的环状三肽结构,构成了GFP生色团的核心[2],见图1。
图2为生色团的形成机制。
图1 多管水母中GFP生色团的化学结构和附近序列图2生色团的形成机制目前人们对GFP的荧光发光机制并不十分清楚,大家只是认为,GFP是生物发光过程中的能量受体,并且是最终的发光体,不同的生物发光机制各不相同,不同的突变体发光机制也有很大差异。
二、GFP在生命科学中的应用1、作为蛋白质标签(protein tagging)利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染到合适的细胞中进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内的活体观察。
绿色荧光蛋白及其在细胞生物学中的应用
绿色荧光蛋白及其在细胞生物学中的应用绿色荧光蛋白(Green Fluorescent Protein,简称GFP)是一种源自于海葵的蛋白质,具有绿色荧光特性。
它的发现和应用为细胞生物学研究带来了巨大的突破,成为了生物学研究中的重要工具。
本文将介绍绿色荧光蛋白的特性和它在细胞生物学中的应用。
绿色荧光蛋白的发现和研究始于上世纪60年代末。
由于GFP具有独特的荧光特性,能够发射绿色荧光,并且不需要外源性荧光素或酶辅助作用,使得它成为细胞生物学研究中的理想标记工具。
通过将GFP基因与其他基因融合,研究人员可以追踪和观察特定基因在活细胞中的表达和运动。
GFP的应用广泛涉及细胞生物学的多个领域。
首先,GFP可以用来研究细胞的结构和形态。
通过将GFP与细胞骨架蛋白或细胞器定位蛋白融合,研究人员可以直接观察细胞骨架的分布和细胞器的定位,进而了解细胞的结构和功能。
GFP在细胞生物学中的应用还包括研究蛋白质的亚细胞定位和动态变化。
通过将GFP与感兴趣的蛋白质融合,研究人员可以实时观察蛋白质在细胞中的定位和运动。
这种技术被广泛应用于研究蛋白质的转运、分泌和降解等过程,有助于揭示蛋白质的功能和调控机制。
GFP还可以用于研究细胞的信号传导和相互作用。
通过将GFP与信号分子或蛋白质相互作用的区域融合,研究人员可以观察信号分子的活动和相互作用过程。
这为研究细胞信号传导通路的调控机制提供了有力的工具。
除了在基础研究中的应用,GFP还被广泛用于生物荧光成像和生物医学研究。
通过将GFP标记的细胞或组织注射到动物体内,研究人员可以实时观察和追踪细胞或组织的活动和变化。
这种技术被应用于研究胚胎发育、神经元活动、肿瘤生长等过程,对于理解生物学的机制和疾病的发生发展具有重要意义。
总结起来,绿色荧光蛋白作为一种重要的标记工具,为细胞生物学研究提供了强大的支持。
通过GFP的应用,研究人员可以实时观察和追踪细胞和蛋白质的活动,揭示细胞的结构和功能,以及了解生物学的机制和疾病的发生发展。
绿色荧光蛋白的研究现状与应用
绿色荧光蛋白的研究现状与应用【摘要】绿色荧光蛋白(GFP)最早发现于水母体中,是一种十分重要的蛋白质。
由于其众多的优点,现已在分子生物和细胞生物的研究中应用十分广泛。
随着技术的进步和研究的进一步深入,GFP基因也在许多其他方面将发挥着越来越重要的作用。
【关键词】绿色荧光蛋白;生色团;报告基因2008年10月8日,瑞典皇家科学院诺贝尔奖委员会授予三位科学家:日裔美国科学家下村修(Osamu Shimomura)、美国科学家马丁?查尔非(Martin Chalfie)和美国华裔科学家钱永健(Roger Y.Tsien)诺贝尔化学奖,以表彰他们在绿色荧光蛋白(GFP)研究方面做出的突出贡献。
1 绿色荧光蛋白的理论研究1.1绿色荧光蛋白的发现绿色荧光蛋白最早于1962年在维多利亚多管发光水母体内被发现,同时它也存在于水螅和珊瑚等腔肠动物体内。
它的内源基团可以在蓝光或紫外光激发下发射绿光,属于生物发光蛋白。
绿色荧光蛋白在水母体内之所以能发光,主要依靠水母素的辅助。
水母素和GFP之间能发生了能量转移,在钙的刺激下,其能量可转移到GFP,刺激GFP发光。
1.2绿色荧光蛋白的结构和发光原理1992年Prasher等克隆了GFP基因的cDNA并分析了其一级结构。
野生型GFP基因组全长2600bp,由3个外显子和2个内含子组成,编码238个氨基酸,分子量约28kDa。
GFP的三维立体结构是由11个β折叠围在四周形成一个中空的圆柱体,1条α折叠贯穿在圆柱体的中间,其中有一段位于65-67位的3个氨基酸残基(Ser-Tyr-Gly)形成的杂环咪唑啉结构组成生色团,位于圆筒中央并附着在α螺旋上。
绿色荧光蛋白的发光原理是位于氨基酸第65位的Ser的羧基和67位的Gly的酰基经过亲核反应生成咪唑基,66位的Tyr通过脱氢使芳香团与咪唑基结合,形成对羟基苯甲酸咪唑环酮生色团发出荧光。
GFP的最大和次大的激发波长分别是395nm和475nm。
绿色荧光蛋白及其应用
《生物工程进展》1999,V ol.19,No.2绿色荧光蛋白及其应用周盛梅1 孟凡国2 黄大年3 黄纯农1(1.杭州大学生命科学院 杭州 310012)(2.山东农业大学生化系)(3.中国水稻所基因工程系)摘要 许多海洋无脊椎动物体内都含有绿色荧光蛋白,这种蛋白质结构很特殊,在受到激发时可以发射绿色或蓝色荧光。
虽然对它的研究从本世纪六十年代才开始,但是它独特的性质逐渐引起了生物学界的广泛关注。
本文将就绿色荧光蛋白的结构、性质及其应用前景作一综述。
关键词 绿色荧光蛋白 荧光 生色基 GFP基因 荧光现象在许多海洋无脊椎动物中普遍存在着。
许多刺胞亚门的动物和几乎所有栉水母类的动物在受到刺激时都可以发出荧光:刺胞亚门的动物多发射绿色荧光,而栉水母类发射蓝色荧光。
1962年,Shimo mura和Johnson等人首先从水螅水母类动物Aequor ea V ictoria中分离、纯化出一种荧光物质,并将其定性为蛋白质,称为绿色荧光蛋白(Gr een Fluorescent Pro-teins,GFPs)。
此后,人们对绿色荧光蛋白的结构、性质进行了不断的深入研究,随着这些研究的进展,人们发现,从不同动物体内提取的荧光蛋白的结构、性质不尽相同,不同动物品种的荧光发生机理也有很大的差别。
目前研究得较为深入的是来自多管水母科(A equorea)和海紫罗兰科(R enilla)的荧光蛋白,即Aequorea GFP 和Renilla GFP(以下简称为A-GFP和R-GFP),其中对前者的研究相对更深入一些,应用也更为广泛。
1 绿色荧光蛋白及其性质A-GFP和R-GFP都是酸性、球状的蛋白质,它们的氨基酸组成也很相似。
前者是分子量为27,000-30,000道尔顿的单体,而后者则是分子量为54,000道尔顿的同型二聚体。
正常状态下这两种蛋白质的吸收光谱不同,A-GFP的最高吸收峰为395nm,肩峰为473nm,R-GFP 的最高吸收峰则为498nm,肩峰为470nm,但是它们的发射光谱却是相同的( max=508-509nm)。
绿色荧光蛋白及其应用
p-HBI 生色团的成熟过程经历 GFP 多肽骨架折叠 和生色团形成两个阶段,期间 4 个保守氨基酸残基发 挥着特殊的功能作用[10]。
2011,31( 1)
邓 超 等: 绿色荧光蛋白及其应用
97
图 1 野生型 avGFP 的结构 Fig. 1 The structure of wild type avGFP
4 不同类型的荧光蛋白
通过 定 点 突 变 和 随 机 突 变 得 到 了 不 同 突 变 型 的 avGFP 样蛋白,珊瑚类荧光蛋白的发现使人们发展出更 多性质各异的荧光蛋白,发射谱覆盖 420 ~ 655 nm,应 用范围不断扩大 [14-15]。部分荧光蛋白及基本性质见表 1 所示。 4. 1 蓝色荧光蛋白
2 绿色荧光蛋白的结构
从维 多 利 亚 多 管 水 母 中 分 离 出 来 的 野 生 型 GFP ( avGFP ) 由 238 个 氨 基 酸 残 基 组 成,分 子 质 量 约 27kDa,二级结构包括 11 个 β 折叠链( β-sheet strand) , 8 个螺旋( helix) ,3 个转折( turn) [图 1 ( a) ],三维结构 ( PDB 登录号 1EMA 和 1GFL,1GFL 为二聚体) 为 42 × 24 ( 高 × 直径) 的 β 圆柱( β-barrel) ,圆柱两端由一 些较短的 α 螺旋盖住,圆柱中央是几段 α 螺旋,生色团 的三肽( Ser65-Tyr66-Gly67) 位于圆柱中央[图 1 ( b) ~ ( d) ]。该结构性质稳定,圆柱内部的微环境对维持生 色团的正确构象从而产生荧光以及保护生色团不被氧 气淬灭等都有重要作用[10][图 1( e) ]。
荧光蛋白的寡聚可能会影响融合蛋白的正确定位和迁移几乎所有荧光蛋白都有寡聚趋势通过对有相互作用的侧链氨基酸进行突变可消除这种趋如蓝色荧光蛋白激发光接近紫外光一些珊瑚类荧光蛋白细胞毒性已有报道荧光蛋白发展至今人们对其在研究生物大分子相互作用及时空变化中的重要作用已没有质疑但相对于复杂的生命来说荧光蛋白还不足以解决许多问题
绿色荧光蛋白的应用及其最新研究进展
绿色荧光蛋白的应用及其最新研究进展一、关键词:绿色萤光蛋白、酵母双杂交系统、流式细胞仪、下修村、马丁·查尔菲、钱永健二、背景2008年10月8日,三位美国科学家——伍兹霍尔海洋生物学实验室(Woods Hole Marine Biological Laboratory, MBL)的Osamu Shimomura、哥伦比亚大学(Columbia University)的Martin Chalfie以及加州大学圣地亚哥分校(University of California, San Diego)的钱永健(Roger Y onchien Tsien),因在研究和发现绿色荧光蛋白(green fluorescent protein,GFP)方面做出突出贡献而获得诺贝尔化学奖。
绿色荧光蛋白(green fluorescent protein, GFP)最早由日裔科学家下村修于1962年在水母(Aequorea victoria )中发现。
而后马丁·查尔菲则证明了GFP在作为多种生物学现象发光遗传标记方面的应用价值。
钱永健阐明了GFP发光的机制,并且发现了除绿色之外可用于标记的其它颜色。
他对细胞生物学和神经生物学领域的贡献具有划时代的意义。
他的多色荧光蛋白标记技术让科学家能够用不同颜色对多个蛋白和细胞进行标记,从而实现了同时对多个生物学过程进行追踪。
现在,三位科学家的研究成果已经作为标记工具在生物科学中得到广泛应用。
三、GFP的主要性能GFP在蓝色波长范围的光照激发下发出绿色荧光,其发光过程需要冷光蛋白质Aequorin 的帮助,而且,这个冷光蛋白质可与钙离子(Ca2+)相互作用。
GFP的激发光谱在400nm 附近有一个主激发峰,在470nm附近有一个次激发峰。
发射光谱在505nm附近有一尖锐的主发射峰,在540nm附近有一肩峰。
在Aequorea victoria 中发现的野生型绿色荧光蛋白的分子量较小,由238个氨基酸残基组成,仅为27~30kDa,而编码GFP的基因序列也很短,为2.6kb。
绿色荧光蛋白GFP的研究进展及应用
绿色荧光蛋白GFP的研究进展及应用绿色荧光蛋白的研究进展及应用姜丽摘要:源于多管水母属等海洋无脊椎动物的绿色荧光蛋白(GFP),是一种极具应用潜力的标记物,有着极其广泛的应用前景。
绿色荧光蛋白的发现具有划时代的重要意义,它不仅为当代生物学研究提供了极为实用的基本研究手段,并且在此基础上改造发展和发现了一些列荧光蛋白,扩展了应用范围。
现就 GFP的理化性质、荧光特性、改进和应用研究进行了综述。
关键词:荧光蛋白(GFP) ;荧光特性;进展;应用一、什么是绿色荧光蛋白(GFP)?发光是海洋无脊椎动物中普遍存在的现象,一些腔肠动物包括水母、水螅和珊瑚等受到机械性干扰时都可发射绿色荧光,而栉水母类发射蓝色荧光。
绿色荧光蛋白(Greenfluorescentprotein,GFP)是一类存在于这些腔肠动物体内的生物发光蛋白。
1962年Shimomura等首先从多管水母 (Aequoriavictoria) 中分离出一种分子量为20kD的称为 Aequorin的蛋白。
由于水母整体荧光及提取的蛋白质颗粒荧光都呈绿色,因此,人们将这种蛋白命名为绿色荧光蛋白。
随后,人们从不同动物体内提取出了各种不同的GFP,其中研究较为深入的是来自多管水母科(Aequorleidae)和海紫罗兰科 (Renillidae)的GFP,即AequoriaGFP和RenillaGFP。
二、GFP的理化性质、荧光性质及其进展2.1GFP的理化性质从水母体内分离到的GFP基因,长达2.6kD,由3个外显子组成,分别编码 69、98和 71个氨基酸。
GFP本身是一种酸性,球状,可溶性天然荧光蛋白。
AequoriaGFP分子量约 27×l03,一级结构为一个由238个氨基酸残基组成的单链多肽;而 RenillaGFP是分子量为54kD的同型二聚体。
两种 GFP有不同的激发光谱,AequoriaGFP在395nm具有最高光吸收峰,肩峰为473rim;RenillaGFP在498Bin具有强烈的光吸收,肩峰为470nin。
绿色荧光蛋白——结构及应用
生物制药与研究2017·08124Chenmical Intermediate当代化工研究绿色荧光蛋白——结构及应用*孙艺佩(山东省实验中学 山东 250000)摘要:绿色荧光蛋白(GFP)有稳定、灵敏度高、无毒害、载体便于构建等优点,因此在各个领域已经有了广泛的应用,在细胞生物学与分子生物学领域中,基因常被用作一个报导基因作为生物探针,拿来映证某些假设的实验方法;在医学领域,常用利用绿色荧光蛋白观测肿瘤发生、生长和转移等过程。
本文就绿色荧光蛋白的发现与应用背景、结构、生色机理、相对于其他荧光分子的优点和在各领域的应用进行了综述。
关键词:绿色荧光蛋白(GFP);荧光生色机理;生色团;技术应用中图分类号:Q 文献标识码:AGreen Fluorescent Protein——Structure and ApplicationSun Yipei(Experimental High School of Shandong Province, Shandong, 250000)Abstract :Green fluorescent protein ( GFP ) has the advantages of stability, high sensitivity, no toxicity, easy construction and so on. Therefore,it has been widely used in various fields. In the field of cell biology and molecular biology, genes are often used as a reporter gene as a biological probe to show some hypothetical experimental methods. In the medical field, the green fluorescent protein is used to observe the process of occurrence, growth and metastasis of tumor. In this paper, the discovery and application background, structure, chromogenic mechanism, advantages compared to other fluorescent molecule and application in all fields of green fluorescent protein were reviewed.Key words :green fluorescent protein (GFP);fluorescent chromogenic mechanism ;chromophore ;application of technology引言绿色荧光蛋白(Green fluorescent protein,GFP)是一类能被蓝紫光激发而发出绿色荧光的蛋白,1962年,下村修等人于维多利亚管状水母中第一次发现并提取出了绿色荧光蛋白。
绿色荧光蛋白在转基因动物研究中的应用
绿色荧光蛋白在转基因动物研究中的应用绿色荧光蛋白(GFP)是一种来自水母的蛋白质,具有独特的荧光性质,可以发出绿色荧光。
近年来,GFP被广泛应用于生物学研究中,特别是在转基因动物研究中得到了广泛应用。
利用GFP基因的表达,科学家可以追踪细胞、组织以及整个生物体系的运动和功能。
通过将GFP基因转入目标细胞或组织中,科学家可以用荧光显微镜观察其在生物中的位置和运动轨迹,繁殖情况以及基因表达水平等重要信息。
在转基因动物研究中,GFP的应用尤其重要。
通过将GFP基因转入小鼠、果蝇等模式动物中,科学家可以追踪这些动物的胚胎发育、器官生长、细胞分化以及疾病模型等过程。
此外,还可以利用GFP的荧光特性,观察细胞内各种蛋白质的表达情况,从而了解其在疾病发生发展中的作用,为药物开发提供参考。
总之,GFP在转基因动物研究中的应用,不仅能够促进科学家对于生物体系的认识和了解,还能够为疾病治疗提供新的思路和方法。
随着技术的进步,GFP的应用前景将会更加广阔。
- 1 -。
绿色荧光蛋白(GFP) 的特性及其在分子生物学研究中 的应用
绿色荧光蛋白(GFP) 的特性及 其在分子生物学研究中 的应用
2.3 GFP融合蛋白用于研究蛋白质定位、移动 及相互作用
异质蛋白可以和GFP的N-端或C-端连接组成融合蛋白。GFP融合蛋白既保留了 异质蛋白的固有特性,也保留了GFP的正常活性。因此,GFP融合蛋白,实际上可 作为一种“荧光标签”用来研究蛋白质在细胞中的定位、转移、相互作用等内 容。Clontech公司构建了6种GFP融合蛋白载体。KaimSR利用GFP融合蛋白载 体研究细菌致病性,即用GFP融合蛋白载体转化沙门氏杆菌 (Salmonellatyphimurium),再侵染人的HEP-2细胞,并用若丹明(rhodaminephalloidin)染色,在荧光显微镜下观察。若细菌只侵染到细胞表面,只在细胞表面 呈现绿色荧光(GFP表达信号);若细菌已侵入细胞内部,则培养细胞呈现黄色荧光, 这是GFP表达的绿色荧55薛启汉:绿色荧光蛋白(GFP)的特性及其在分子生物学 研究中的应用光与细胞若丹明染色的红色荧光的重叠效果。因此,利用GFP融合 蛋白为“荧光标签”,可以直接活体观察到细菌蛋白和报告蛋白在细胞中的确切 位置,以表明细菌在活体细胞中的侵染状况。同样原理,Youvan构建了菸草花叶 病毒和GFP的融合蛋白载体TWV-GFP。Banlcombe DC构建了马铃薯X病毒和 GFP的融合蛋白载体PVX-GFP[41]接种菸草(N.clevelandii)1~2天后,在紫外光 下可以直接观察到病毒侵染的确切部位。再用首次感染的菸草汁液接种另一种 菸草(N.benthamiana),观察到已放大的第二次系统感染的绿色荧光斑点。叶片 提取液蛋白电泳凝胶在紫外光下也能见到GFP荧光信号,从感染叶片中回收的病 毒经鉴定,确认为PVX-GFP。构建载体时,直接用GFP基因替代病毒外壳蛋白基 因,接种后观察到GFP绿色荧光只局限于接种的细胞部位,不扩散。证实了早先 的论断,即PVX外壳蛋白对于病毒在寄主细胞内的增殖,以及在细胞间的移动、 扩展是不可缺少的条件[42,43,44,45,46,47]。显然,GFP融合蛋白作为一种报告 标记,可以为病毒学研究,或以病毒载体为途径研究外源基因在转基因生物细胞 中的表达及蛋白质定位,提供理想的工具[48,49,50]。与传统的荧光抗体相 比,GFP不仅灵敏度高,不需要反应底物,还可以消除因抗体与非靶位点结合带来 的背景荧光的干扰。
绿色荧光蛋白在生物医学研究中的应用
绿色荧光蛋白在生物医学研究中的应用绿色荧光蛋白(Green Fluorescent Protein, GFP)是一种广泛应用于生物医学研究中的蛋白质标记物。
它最初来源于海葵(Aequorea victoria)中的一个蛋白质,因其绿色荧光而被人们发现,并被广泛用于标记生物分子的研究中。
本文将介绍绿色荧光蛋白在生物医学研究中的应用及其优缺点。
I. GFP技术在药物筛选中的应用药物筛选是一种重要的生物医学研究手段,它通过筛选大量的化合物,找到具有治疗作用的药物。
GFP技术则可以帮助科学家在筛选过程中更加方便地观察细胞中的药物靶点。
以前的药物筛选往往需要使用化学荧光染料,这些染料的发光可能会被药物所抑制,影响筛选结果。
而使用GFP标记靶点,则可以直接观察靶点在细胞内的表达情况,无需使用化学荧光染料。
此外,GFP标记靶点也使得科学家可以在单个细胞的水平上观察相应的实验结果,增加了研究的可靠性和精度。
因此,GFP技术在药物筛选中有着广泛的应用前景。
II. GFP技术在细胞成像中的应用GFP技术在细胞成像中也有着广泛的应用。
在一些研究中,科学家将GFP标记在细胞组织或器官中的某一种蛋白质上,以追踪其在细胞中的运动情况。
由于GFP具有高度的特异性和稳定性,因此可以准确的观察标记蛋白质的表达情况。
这种技术使得科学家可以观察特定细胞或组织的病理生理进程,并为疾病的提早诊断和治疗提供了可能性。
III. GFP技术在基因治疗中的应用基因治疗是一种新兴的治疗疾病的手段,其目的是通过简单而直接的方式将治疗的基因导入到细胞中,来治疗一些疾病。
GFP技术可以帮助科学家更好的观察基因治疗的效果。
在基因治疗过程中,科学家可以使用GFP将目标基因标记出来,然后通过观察GFP标记的表达情况,来判断基因治疗的效果。
这种方法非常简单、直接,而且可以提供非常可靠的数据支持,为基因治疗的推广打下了坚实的基础。
IV. GFP技术的优缺点GFP技术具有许多优点,其中最重要的一点是其易于使用和轻松操作。
绿色荧光蛋白在细胞标记及活体示踪领域的应用
1 绿 色 荧 光 蛋 白的 标记 原 理及 优 点
G P是 Mos _ 等 在研 究 源 于西北太 平 洋海 域 的 发光 水 母 ( e u ravc r ) 萤光 F r 2 e A q oe i oi t a
现象时首先报道的。其后 Sio ua3 Wa 等 相继对 G P的结构和功能进行了较详 h m r-和 m r F
作 者简介 :陈子秋 ,男,18 94年 生,广 东医学 院附属 医院 0 8级 骨外科 硕士研 究生 ,主攻 方向
脊 髓 损 伤 的 干 细胞 移 植 ;E— =:c e zqu q . o m8l h n ii @ q c n i
中山大学研究生学刊 ( 自然科学、医学版 )
二 。一 。年第二期
如 :C G公 司的 A P — T g vc r 是一种 能与插入 的 目的基 因产 生融 合蛋 白的标记载 P F aT et s M o
体 ,它能发 出蓝 、绿 色荧光 。Q i ee 司的 S prl 。 F b gn 公 o ueGoM P与 SprGoB P证 明提高 G u e l F 激发 光 的峰值 ,使 其 发射 光谱 用荧 光 共振 能 量转 移技 术 (f oecnersnneeeg l rsec eoac nr u y t nf ,F E )进 行活 细胞 内的荧光 的观察 。B isi cs— C O — T C r sr R T a e DBoce e n LN E H公 司的
光 激发产 生荧 光 是一个 特 异性 的独 立过 程 。在 异 源 细胞 内融 合 表 达后 可 自发 环化 成 熟 ,
自发产生 荧 光 且 对 异 源 细 胞 内 的 生 理 过 程 无 干 扰 ,因 此 可 应 用 于 活 体 细 胞 的 实 时 检
王亮,2010级,绿色荧光蛋白的应用
来源于水母Aequorea victoria的绿色荧光蛋白(green fluorescent protein, GFP)现已成为在生物化学和细胞生物学中研究和开发应用得最广泛的蛋白质之一. 其内源荧光基团在受到紫外光或蓝光激发时(λmax=395 nm, 小峰在479 nm)可高效发射清晰可见的绿光. GFP的高分辨率晶体结构为了解和研究蛋白质结构和光谱学功能关系提供了一个极好的机会. GFP已成为一个监测在完整细胞和组织内基因表达和蛋白质定位的理想标记. 通过突变和蛋白质工程构建的GFP嵌合蛋白在生理指示剂、生物传感器、光化学领域以及生产发光纤维等方面展示了广阔前景.1.分子标记利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein taggi ng),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染合适的细胞进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内活体观察。
由于GFP相对较小,只有238个氨基酸,将其与其他蛋白融合后不影响自身的发光功能,利用GFP的这一特性已经加深了我们对细胞内一些过程的了解,如细胞分裂、染色体复制和分裂,发育和信号转导等。
利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更详尽观察的新方法。
除用于特定蛋白的标记定位外,GFP亦大量用于各种细胞器的标记如细胞骨架、质膜、细胞核等等。
Shi等人曾报道将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这一技术将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境检测以及探测信号转导过程等等。
这些都为传统生物学研究提供了新思路和新方法,成为交叉学科研究的热点。
2.药物筛选许多新发展的光学分析方法已经开始利用活体细胞来进行药物筛选,这一技术能从数量众多的化合物中快速筛选出我们所感兴趣的药物。
荧光探针分布是利用信号传导中信号分子的迁移功能,将一荧光蛋白与信号分子相偶联,根据荧光蛋白的分布情况即可推断信号分子的迁移状况,并推断该分子在迁移中的功能。
绿色荧光蛋白在蛋白质研究中的应用
绿色荧光蛋白在转基因动物中的应用
绿色荧光蛋白在转基因动物中的应用杨军廷 201141804054 华大基因摘要来源于水母 (AequoreaVictoria)的绿色荧光蛋白 (Greenfluorescentprotein ,GFP) ,现已成为细胞生物学和分子生物学中应用最广泛的分子标记之一。
其内源性荧光基团在受到紫外或蓝光激发时可发现清晰可见的绿光。
由于检测方便 ,对生物体基本没有毒性 ,在很多领域已有取代LacZ ,荧光素酶等传统标记方法的趋势 ,在制作转基因动物过程中更是如此。
本文综述了GFP在标记目的基因、筛选阳性胚胎等方面的应用关键词绿色荧光蛋白;转基因在研究基因的表达或蛋白质的定位与时序变化时常用荧光物质或报告基因作为标记。
传统的荧光标记是通过纯化蛋白质再共价结合到荧光染料上!此方法难以控制化学剂量和染料附着部位!若该标记蛋白用于活细胞内检测!则难以通过细胞膜。
因此,该方法已基本淘汰现在常用的报告基因如荧光素酶(LUX)基因和β-葡萄糖苷酶(GUS)基因也不尽人意。
LUX所检测到的荧光产生部位不一定反映荧光素酶基因的特异表达部位;GUS则需要昂贵的反应底物且由于其它因素的干扰。
反应颜色的深浅有时不能说明GUS活性的高低或有无.源于水母等海洋无脊椎动物的绿色荧光蛋白(GFP)可吸收蓝光而后发出绿光是生物发光现象中能量传递的受体之一。
它克服了上述缺陷,具有灵敏度高、操作简便,不需要添加任何底物或辅助因子,不使用同位素,也不需要测定酶的活性等优点。
已成为目前最优良的标记基因之一。
1GFP的生化性质及其发光原理1.1 GFP的发光特性GFP吸收的光谱,最大峰值为395nm(紫外),并有一个峰值为470nm的副峰(蓝光);发射光谱最大峰值为509nm(绿光),并带有峰值为540nm的侧峰(Shouder)。
GFP的光谱特性与荧光素异硫氰酸盐(FITC)很相似,因此为荧光素FITC设计的荧光显微镜滤光片组合同样适用于GFP观察。
绿色荧光蛋白的结构和应用
绿色荧光蛋白的结构和应用【摘要】文章就绿色荧光蛋白(Green fluorescent protein, GFP)的一级结构和其发光基团的形成机理进行了分析,给出了GFP的三维结构,并对GFP的优点、改进方法和实际应用进行概括。
【关键词】GFP 结构改进应用2008年10月8日,三位美国科学家,美国Woods Hole海洋生物学实验室的Osamu Shimomura(下村修)、哥伦比亚大学的Marin Chalfie和加州大学圣地亚哥分校的Roger Y.Tsien(钱永健)因发现并发展了绿色荧光蛋白(Green fluorescent protein,GFP)而获得2008年度诺贝尔化学奖。
GFP也因此进入了更多人的视角。
一、GFP的一级结构和发色团形成机理GFP是存在于水母、珊瑚等腔肠动物体内的生物发光蛋白,是Shimomura等人从Aequorea victoria中发现的。
GFP含238个氨基酸残基,分子量27kDa。
野生型GFP的核苷酸序列和氨基酸序列在1992年即被Prasher等人测定[1]。
表1为其氨基酸序列。
GFP不含辅基,也不需要辅助因子,在22℃左右,氧条件下,用蓝光光源激发下可发出绿色荧光[2]。
其发色团形成于肽链65至67位的Ser-Tyr-Gly,是分子内自催化环化生成的对羟基吡唑啉酮。
首先肽链折叠,Gly67酰胺亲核进攻Ser65的羧基,并脱去一分子水形成咪唑啉酮,最后在氧作用下Tyr66的α,β-键脱氢,此时芳基和咪唑啉酮形成大的共轭体系,发色团成熟,可以吸收辐射并发出荧光[3]。
图1为示意图。
图1:GFP 发色团形成机理表 1:GFP 的氨基酸序列Tsien还根据发色团组分的不同将野生型GFP和其突变体分为了7类,如含中性酚类和酚离子混合发色团的蛋白,含吲哚类的蛋白,含咪唑类的蛋白,具有大π共轭电子体系的酚负离子的蛋白等[3]。
虽然它们的激发波长、吸收波长等荧光性质具有很大不同,但其发光机理都与它们的一级结构密切相关,发色团形成机理类似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绿色荧光蛋白的应用王亮学号:1243410003来源于水母Aequorea victoria的绿色荧光蛋白(green fluorescent protein, GFP)现已成为在生物化学和细胞生物学中研究和开发应用得最广泛的蛋白质之一. 其内源荧光基团在受到紫外光或蓝光激发时(λmax=395 nm, 小峰在479 nm)可高效发射清晰可见的绿光. GFP的高分辨率晶体结构为了解和研究蛋白质结构和光谱学功能关系提供了一个极好的机会. GFP已成为一个监测在完整细胞和组织内基因表达和蛋白质定位的理想标记. 通过突变和蛋白质工程构建的GFP 嵌合蛋白在生理指示剂、生物传感器、光化学领域以及生产发光纤维等方面展示了广阔前景.绿色荧光蛋白- GFP的理论应用1.分子标记利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein taggin g),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染合适的细胞进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内活体观察。
由于GFP相对较小,只有238个氨基酸,将其与其他蛋白融合后不影响自身的发光功能,利用GFP的这一特性已经加深了我们对细胞内一些过程的了解,如细胞分裂、染色体复制和分裂,发育和信号转导等。
利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更详尽观察的新方法。
除用于特定蛋白的标记定位外,GFP亦大量用于各种细胞器的标记如细胞骨架、质膜、细胞核等等。
Shi等人曾报道将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这一技术将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境检测以及探测信号转导过程等等。
这些都为传统生物学研究提供了新思路和新方法,成为交叉学科研究的热点。
2.药物筛选许多新发展的光学分析方法已经开始利用活体细胞来进行药物筛选,这一技术能从数量众多的化合物中快速筛选出我们所感兴趣的药物。
荧光探针分布是利用信号传导中信号分子的迁移功能,将一荧光蛋白与信号分子相偶联,根据荧光蛋白的分布情况即可推断信号分子的迁移状况,并推断该分子在迁移中的功能。
由于GFP分子量小,在活细胞内可溶且对细胞毒性较小,因而常用作荧光探针。
在细胞体内分子之间的相互作用非常复杂,其中很多涉及到信号分子在细胞器之间的迁移。
利用GFP荧光探针,将很容易从数量众多的化合物中判断出那些化合物具有与信号分子相似的能引起配体一受体复合物迁移并介导生理反应的功能,且这一筛选过程简单方便,所需成本也很低。
利用GFP来进行药物筛选由于受其必须与迁移的信号分子相偶联,其筛选容量相对较低,但是由于GFP在细胞内的穿透性强及独特的发光机制,因而在药物筛选中具有相当大的应用潜力。
3.融合抗体单链抗体(Single-chain variable fragment,ScFv)是研究得较多的一种小分子抗体,其优越陛在于可在宿主细胞内大量表达,易于基因工程操作,尤其易于构建抗体融合蛋白。
近年来,关于绿色荧光蛋白融合单链抗体的报道很多,国内也有相关报道,如程虹等报道将抗肝癌单链双功能抗体融合GFP真核表达载体并导人小鼠成纤维细胞NIH3T3表达并获得成功。
因融合抗体具有与抗原结合及发射荧光两种特性,故这一人工分子可用做免疫染色的检测试剂,直接应用于流式细胞仪和免疫荧光的标记及肿瘤的检测等等。
但近来也有报道在动物细胞细胞质中成功表达出具有抗原结合活性的单链抗体。
若能成功解决融合抗体的表达问题,则在免疫染色及肿瘤检测这一领域融合抗体将扮演极为重要的角色。
4.生物传感器蛋白质工程技术已经开始采用将一具有信号传导功能分子识别位点的分子结合到另一分子上来设计生物感受器。
绿色荧光蛋白由于其独特的光信号传导机制,以及在表达后易被周围化学环境和蛋白之间的相互作用所影响的特性,因而极适于用做活细胞体内的光学感受器。
将受体蛋白插入到GFP表面的技术已经成为构建分子感受器的有力工具,这种GFP感受器能被用来检测多种分子,如蛋白质、核酸、激素、药物、金属及其他的一些小分子化合物等,其潜在应用前景极为广阔。
5.Protein taggingGFP蛋白首先被应用在观察活体细胞中蛋白的位置及动态的变化.使用GFP进行此类研究的好处是细胞在实验之前不需要进行固定或破坏,如此便能在几乎不影响细胞的正常生理作用下进行即时的观察及分析.主要可以应用在Biological screen及Drug screen上.GFP蛋白除了能在细胞中标定特定fusion protein的位置及存在,另外也能利用生物分子之间的特殊作用力标定特定DNA序列的位置.例如有研究就利用bacte rial lac repressor protein(lac I)跟其DNA目标之间的特殊强结合力来标定lacI 的目标基因.GFP的barrel-like structure能确保GFP在fusion protein中的结构及其发光的性质,使其适宜接在不同fusion protein中表现.但利用GFP有期限制性,因为要将GFP折叠成具有活性(会发光)的形状可能会花较长的时间,这使得应用GFP在短生命周期的蛋白研究中相形困难.6.Monitoring of gene expression将GFP当作报告子基因在生医研究上有很多的应用,主要分成下列两种:1、测知transcriptase或reverse transcriptase的存在2、Promoter强度之研究7.信号转导新近研究发现, 某些突变的GFP 能够发生荧光共振能量转移(fluorescence resonance energy transfer, FRET) 。
FRET 是一种从荧光分子的激发状态到临近基态接受分子之间量子力学能量转移的现象。
FRET 发生的前提条件是, 荧光接受分子必须在荧光提供分子释放态所具有的波长范围内接受能量。
如果供应分子和接受分子相互定位在几个纳米之内, 则非常利于FRET 的产生。
因为FRET 对于两个荧光分子相互间的定位和距离高度敏感( 在纳米范围内)。
两个分子间微小的线性或空间定位关系的破坏可以强烈地改变能量转移的效率。
我们可以通过偶联GFP 到适当的转录因子、跨膜受体、细胞间信号转导指示分子, 来动态观测活细胞的生理功能。
8.改进GFP 的应用前景野生型GFP 合成后需经一定的折叠过程形成正确构象后才有功能, 而且在4 70 nm 处的荧光强度相对较低。
为了改善GFP 荧光特性( 如摩尔吸收值及释放波谱) , 对GFP 进行了突变和重组实验。
研究人员合成了高GC 含量的特殊GFP , 并且发现这种GFP 有更强的荧光强度。
此外, 用人蛋白质中偏爱的密码子替代相应的野生型GFP 中密码子可提高GFP 在哺乳动物中的表达效率。
许多GFP 突变蛋白, 不仅改变了激发和释放波谱, 而且提高生色团形成的效率、溶解度、蛋白质表达等。
检测特定类型的细胞、细胞器或特定的细胞内区域中的pH 值。
这样开创了检测以前所不能到达部位pH 值的可能性。
到目前为止, 荧光蛋白已有非常广泛的应用, GFP 可应用于转染细胞的确定, 体内基因表达的测定, 蛋白质分子的定位和细胞间分子交流的动态监测, 免疫分析、核酸碱基探针分析, 以及分子间第二信使钙离子和cAMP 水平的指示, 细胞间隙pH 变化的检测。
另外,GFP 也可以和其他蛋白质形成融合蛋白, 作为基因治疗检测指标。
但是,GFP 在应用中还发现有许多问题亟待解决: (1) 荧光信号强度的非线性性质使得定量非常困难, (2) 多数生物具有微弱的自发荧光现象, 并有着类似的激发和发射波长, 这个荧光背景会影响某些GFP 的检测, (3) 实验中发现很难建成GFP 稳定细胞株, 可能与GFP 参与细胞凋亡过程有关。
9.光伏发电瑞典研究人员不再盯着植物作为样板,转而将目光投向拥有高超光伏转化能力的水母,开发出提升收获太阳能的技术。
利用水母身上提取的绿色荧光蛋白(GF P),该小组制作的装置可用这些“黏黏绿”将紫外光转化为自由电子。
该小组制造的电池由在二氧化硅基底上被一个小缝隔开的两个简单的铝电极组成,GFP置于两电极中间并起连接作用。
当把紫外光放进来的时候,GFP不断将光子抓走,并产生电子进入电路产生电流。
同时,GFP非常廉价,不需要昂贵的添加剂或昂贵的加工,此外,它还能被封装成独立的不需要外光源的燃料电池。
科学家相信,此能源装置缩小后可用来驱动微小的纳米设备。
绿色荧光蛋白- GFP的实际应用1.绿色荧光蛋白来源于水母Aequorea victoria的绿色荧光蛋白(green fluorescent protein, GFP)现已成为在生物化学和细胞生物学中研究和开发应用得最广泛的蛋白质之一. 其内源荧光基团在受到紫外光或蓝光激发时(λmax=395 nm, 小峰在479 nm)可高效发射清晰可见的绿光. GFP的高分辨率晶体结构为了解和研究蛋白质结构和光谱学功能关系提供了一个极好的机会. GFP已成为一个监测在完整细胞和组织内基因表达和蛋白质定位的理想标记. 通过突变和蛋白质工程构建的GFP 嵌合蛋白在生理指示剂、生物传感器、光化学领域以及生产发光纤维等方面展示了广阔前景.2.应用GFP基因转染技术示踪组织工程技术构建角膜基质目的应用基因转染技术将绿色荧光蛋白(GFP)标记角膜基质细胞,以此为种子细胞构建角膜基质并对构建过程进行示踪.方法构建携带EGFP基因的重组逆转录病毒载体PLNCX2-EGFP,转染兔角膜基质细胞,然后将该细胞接种于PGA,形成细胞-生物材料复合物,移植于母兔角膜基质板层内.术后8周,组织学切片,HE染色,荧光显微镜下对绿色荧光蛋白(GFP)进行示踪观察.结果8周后,组织工程化角膜组织形成,组织学切片显示PGA完全降解,新生组织形成,组织排列规整,荧光显微镜下见新生组织呈绿色,提示EGFP表达.结论组织工程角膜基质的组织学结构与角膜基质相类似.新生组织表达GFP,证实组织工程角膜基质组织的构成源于供体细胞.3.绿色荧光蛋白标记检测枯草芽孢杆菌在水体中的存活动态基于生物-化学协同控制植物病害的原理,构建了一种由枯草芽孢杆菌和烯酰吗啉组成的对辣椒等作物疫病具有较好的防治效果的菌药合剂(DMBS).按照农药降解研究基本规则,采用绿色荧光蛋白(green fluorescent protein,GFP)标记技术和细菌学研究方法研究了DMBS在去离子水、地下水、自来水、河水和雨水中的降解动态.结果表明,GFP标记可以用于枯草芽孢杆菌在5种水环境中的存活检测.在(25±1)℃条件下,枯草芽孢杆菌菌剂和DMBS中的枯草芽孢杆菌数量主要表现为前12 d迅速下降,此后则随时间的延长在一定的范围内呈变动的上升或下降趋势.在(50±1)℃灭菌和不灭菌的条件下,均表现为前12 d迅速下降,12 d后趋于稳定或缓慢下降.枯草芽孢杆菌在5种水中的降解速度较慢,在(25±1)℃和(50±1)℃条件下存放86 d后,其含量均在104 cfu/mL以上.培养温度和灭菌条件对枯草芽孢杆菌在不同水体中存活动态有一定的影响,菌药合剂中的烯酰吗啉对该菌的存活则没有显著影响.4.一种基于绿色荧光蛋白的蛋白酶体抑制剂细胞筛选模型为建立基于绿色荧光蛋白(GFP)的药物筛选模型,并用此模型从包括中药提取物在内的化合物中筛选新型蛋白酶体抑制剂,本研究构建了pGC-E1-ZU1-GFP融合蛋白慢病毒表达载体并感染A549细胞,筛选稳定表达细胞株,用已知蛋白酶体抑制剂PS-341处理细胞,荧光显微镜检测处理前后细胞GFP水平变化.结果获得了稳定表达pGC-E1-ZU1-GFP的A549细胞,这些细胞用PS-341处理24 h后用荧光显微镜检测.发现细胞绿色荧光强度相对于对照组明显增强.利用这一模型对一些化合物进行筛查,发现了一些新的蛋白酶体抑制剂.5.绿色荧光蛋白标记的D-氨基酸氧化酶基因在人宫颈癌细胞中的表达研究为了探讨绿色荧光蛋白标记的红色酵母D-氨基酸氧化酶(DAAO)基因在人宫颈癌细胞(HeLa细胞)中的表达及其功能,采用基因重组技术构建了含有CMV启动子和EGFP、DAAO基因开放阅读框(ORF)的真核表达载体pIRES-DAAO.脂质体法转染HeLa细胞,荧光显微镜下观察转染细胞中绿色荧光蛋白的表达,流式细胞术分析转染效率并筛选荧光阳性细胞,命名为HeLa-D.以不同浓度的前药D-Ala处理HeLa-D细胞,MTT法检测细胞存活率.结果显示,荧光显微镜下可见绿色荧光蛋白在HeLa-D细胞中表达,流式细胞术成功筛选出HeLa-D细胞.前药D-Ala能明显杀伤HeLa-D细胞.结果表明,EGFP可作为报告基因快速筛选DAAO表达载体转染的细胞,DAAO/D-Ala自杀基因系统可进一步用于肿瘤的基因治疗研究.6.利用绿色荧光蛋白进行microRNAs靶点分析的研究目的利用绿色荧光蛋白作为报告基因,研究微RNAs(microRNAs)与靶点相互作用.方法在pEGFP-C1下游非编码区插入含miR-122a作用靶序列HCV 5′UTR,构建pEGFP-UTR载体,将miR-122a与pEGFP-UTR共转染HEK293细胞,观察增强绿色荧光蛋白EGFP表达强度变化,并与双荧光素酶报告系统比对.结果miR-122a能明显抑制含UTR靶序列的EGFP蛋白表达,与双荧光素酶报告系统相比,绿色荧光蛋白在检测灵敏度上与双荧光素酶相接近.结论利用绿色荧光蛋白作为报告基因,能够清楚直观反映miRNAs与靶点作用情况.7.绿色荧光蛋白标记成人骨髓间充质干细胞的超微结构特征背景:研究表明,绿色荧光蛋白标记的骨髓间充质干细胞免疫学表型、细胞周期、分化潜能等均未发生明显改变.目的:进一步观察绿色荧光蛋白标记对骨髓间充质干细胞超微结构的影响.方法:分离培养成人骨髓间充质干细胞,抗CD34、抗CD105免疫细胞化学染色鉴定,选第3代细胞进行绿色荧光蛋白标记,超薄切片后用透射电镜观察细胞超微结构,以未经绿色荧光蛋白标记骨髓间充质干细胞为对照.结果与结论:骨髓间充质干细胞表达CD105,不表达CD34.绿色荧光蛋白标记后,骨髓间充质干细胞细胞质发出绿色荧光,绿色荧光主要集中于细胞核周围的胞浆内,远离细胞核的胞浆内荧光强度逐渐减弱.相对于未标记的骨髓间充质细胞,经绿色荧光蛋白标记后细胞粗面内质网、高尔基体等细胞器较多,而线粒体相对较少;另外,脂滴和"空泡"样结构也多一些.结果证实绿色荧光蛋白对骨髓间充质干细胞性状的影响较为局限,是一种较为理想的细胞标记示踪剂.8.慢病毒介导绿色荧光蛋白基因转染豚鼠巩膜成纤维细胞的实验研究目的观察慢病毒载体转染豚鼠巩膜成纤维细胞的有效性及对细胞活性的影响.方法转染组用慢病毒携带绿色荧光蛋白(lentiviral mediated green fluorescent protein,Lenti-GFP)转染豚鼠巩膜成纤维细胞,对照组加入空白培养液,转染组按最佳感染复数(multiplicity of infection,MOI)为50、100、200、400加入Lenti-GFP,转染2d、3d、4d、5d、6d和7d后,在倒置显微镜下观察绿色荧光蛋白表达情况,流式细胞仪检测转染效率,MTT法检测病毒对细胞增殖的影响.结果Lenti-GFP 转染细胞后48 h可以看见绿色荧光;在同一MOI值下,随时间延长转染效率增高,第5天达到高峰;在MOI为400,转染5d时转染效率达82.86%;转染5d行MTT检测显示:MOI为50 ~400时,同一转染时间各组IOD值与对照组比较,差异均无统计学意义(均为P>0.05).结论慢病毒载体可以在体外稳定而有效地转染豚鼠巩膜成纤维细胞,且不影响细胞活性,是巩膜成纤维细胞理想的基因转染载体.9.3个不同品系小鼠ES细胞的绿色荧光蛋白标记用电穿孔法将线性化的质粒pEGFP-N3分别导入来自129/ter、C57BL/6J和BALB/c 3个品系的小鼠胚胎干细胞MESPU-13、MESPU-35和MESPU-62中,经G418筛选、荧光显微镜镜检、阳性克隆扩增、流式细胞仪分选、再扩增以及核型分析等过程,分别得到核型大于85%的被EGFP稳定标记的细胞株5个(129/ter 2个、C57BL/6J 1个、BALB/c 2个),分别命名为MESPU-13/G1和MESPU-13/G2、MESPU-35/G1、MESPU-62/G1和MESPU-62/G2.从不同品系中各选一个增殖生长快、形态典型的标记细胞株,进行碱性磷酸酶染色、oct4基因产物的表达检测、类胚形成和体内分化鉴定,结果表明所得到的核型正常的、稳定标记的ES细胞系具有原ES细胞的典型特征.10.共表达O型FMDV衣壳蛋白和绿色荧光蛋白重组腺病毒的构建为构建表达O型口蹄疫病毒(FMDV)的P12A3C基因及GFP基因的重组腺病毒rAdV-P12aEGFP2a3C,本研究以FMDV的2A基因序列为Linker,将报告基因EGFP插入FMDV的P12A与3C之间.重组腺病毒感染HEK-293细胞后可以观察到绿色荧光,表明EGFP蛋白获得表达.应用FMDV的VP2单克隆抗体4B2对重组病毒感染细胞进行western blot检测,反应条带与FMDV衣壳蛋白VP0和VP3的分子量大小相符,表明FMDV的完整衣壳蛋白和3C蛋白酶也均获得表达,而且EGFP的插入并未影响P1蛋白的表达和3C蛋白酶对P1的正确切割.重组腺病毒的生长特性分析表明,EGFP的插入也未影响该重组腺病毒的增殖特性.上述研究结果显示,表达FMDV衣壳蛋白P12A3C的重组腺病毒可以作为载体,以2A蛋白作为Linker表达一个小分子蛋白,为改进以腺病毒为载体的口蹄疫基因工程疫苗提供了新思路.11.肿瘤细胞中表达的GFP蛋白的荧光漂白特性的研究GFP作为生物源性荧光探针具有其他荧光标记物所无法比拟的优势, 目前已广泛应用于生物学研究的各个领域. 利用常规转染方法将带有EGFP基因的质粒载体导入人肺腺癌肿瘤细胞(ASTC-a-1), 并得到GFP稳定表达的细胞株. 研究中发现, 肿瘤细胞中表达的GFP长时间暴露于强激发光中会发生非常强列的荧光漂白作用, 并且这种漂白作用是不可恢复的. 对不同强度的激发光(饱和光源、阻断片ND4/ND8/ND16)对GFP的漂白作用进行了研究, 并对冷冻保存样品的光漂白作用进行了初步的探讨.12.利用绿色荧光蛋白标记革兰氏阴性细菌的研究构建了具有不同抗性且能够组成型表达绿色荧光蛋白的一系列转座子质粒pTnMod-OCm-G、pTnMod-OTc-G、pTnMod-OKm3-G和pTnMod-OGm-G,并通过三亲本杂交的方法,成功地将荧光蛋白基因分别插入到多环芳烃降解菌株Sphingomonas sp.12A和Pseudomonas sp.12B的基因组内,获得了具有降解多环芳烃特性,同时在没有抗生素选择压力下连续传代多次仍能够稳定组成型表达荧光的转化子.结果表明,该系列转座子不仅适合其它革兰氏阴性菌的遗传标记,也为进一步研究降解菌在污染环境中的存活能力和生态安全奠定了基础.。