端粒端粒酶授课内容

合集下载

端粒与端粒酶 ppt课件

端粒与端粒酶 ppt课件

端粒酶的结构
端粒酶
是端粒复制所必须的一种特殊的DNA 聚合酶
具有逆转录酶活性 能以hTR为模板,向染色体末端添加
TTAGGG序列
端粒酶作用模式
端粒酶作用模式
端粒酶延伸端粒的机制
端粒酶
在大多数的正常人的体细胞中没有活性 近年来的研究发现:
衰老者端粒缩短 大约在85%-95%的肿瘤细胞中检测到了端粒
端粒下区 subtelomeric region 与端粒DNA相邻,由一 些退化的端粒DNA片断 的重复组成
端粒DNA序列
人的端粒DNA序列
长约5~15kb 序列:(TTAGGG)n ,串联重复
不同生物端粒DNA长度
酵母 尖毛虫 小鼠 大鼠
200 — 400 bp 20 bp 5 — 80 kb 150 kb
如果细胞要维持其正常分裂,就必须激活端 粒酶,阻止端粒的进一步丢失
否则,细胞不能进行染色体的正常复制 只有重新获得端粒酶活性的细胞,才能继续
生存下去 无法激活端粒酶的细胞(即无法阻止端粒进
一步丢失),只能面临趋向衰老
端粒丢失与衰老关系
端粒丢失是衰老的原因?还是结果? 目前的研究结果还处在探索阶段,各
衰老端粒/端粒酶 癌症
衰老可能是由端粒的缩短所致, 激活端 粒酶似乎可以阻止衰老
可是,端粒酶一旦被重新激活,细胞又 将成为永生化细胞,继而衍变为癌细胞
如何能恰当、正确的发挥端粒/端粒酶在 解决衰老与癌症中的作用? 生命科学领域一个极具挑战性的课题
端粒抑制剂的研究
Colorado大学的Thomas Cech 和Robert Weinbrg博士:
已克隆出一种控制人类细胞端粒酶活性的基因
应用这种基因,很有可能得到一种新的蛋白 质——端粒酶控制剂

[课件]端粒酶及它的PPT

[课件]端粒酶及它的PPT

Your company slogan
端粒酶与衰老的关系
2010年11月28日发表于《自然》杂志的实 验
实验证明
使小鼠缺小鼠出现 乏端粒酶 早发性
.
衰老
恢复 端粒酶
小鼠 恢复 恢复健康
端粒酶
Your company slogan
Diagram
ThemeGallery is a Design Digital Content & Contents
Click to add title in here
Your company slogan
concepts
1 2 3 4 端粒简介 端粒酶及其作用机制 端粒酶与衰老 端粒酶与癌变You company slogan
1 端粒简介
1.1端粒概念
真核生物染色体的线型DNA复制时,最后一个冈 崎片段的引物被除去后,其末端的序列如何维持 ?真核细胞以另一类机制来保证染色体线型DNA 末端的完整性。 端粒结构位于真核生物染色体的末端,在维持基 因组完整性和功能稳定性方面具有重要的作用。
Your company slogan
端粒与衰老的关系
衰老机制 机制仍然不是很清楚:一种可能性就是端粒缩短引发细胞周期的滞留 以及细胞凋亡,从而减少细胞数目,引起组织异常;另一种可能就是 端粒的缩短会破坏干细胞对于组织的再生,从而引发器官障碍。 端粒长度,结构及功能依赖端粒酶活性的调节是细胞衰老的重要机制 。
经研究表明大多数正常细胞端粒较长,端粒酶阴 性,而大多数永生化细胞端粒较短,端粒酶阳性 ,因此端粒长度与端粒酶活性可能呈负相关,端 粒酶表达呈阴性的细胞的端粒缩短、细胞衰老, 而端粒酶表达呈阳性的细胞的端粒伸长,细胞永 生化。

端粒和端粒酶培训课件

端粒和端粒酶培训课件

端粒
重复的CCCCAA链 3‘
重复的GGGGTT链
5‘
5’-CCCCAAOHCCCAACCCCAACCCCAAOHCCCAA-----3’
3’-GGGGTTGGGGTTGGGGTTGGGGTTGGGGTT------5’
端粒末端回折结构
端粒和端粒酶
11
二、端粒酶的结构与功能
在端粒被发现以前,人们就推测生殖细胞之所 以能世代相传,其中可能存在一种维持端粒长度的 特殊机制,体细胞可能正是由于缺乏这种机制,它 的染色体末端才面临着致死性缺失(deletion)的危 险。因此在正常人体细胞间永生化细胞 (immortalized cells)及肿瘤细胞的转化过程中可 能也存在着与生殖细胞类似的机制。这些细胞怎样 保持细胞具有继续分裂或长期分裂的能力呢?科学 家们发现端粒确实随着每次分裂而缩短,但也会被 新合成的端粒片断再延长。科学家们怀疑,可能尚 有末被发现的酶,该酶具有标准的DNA多聚酶所不 具备的功能,能使已缩短的端粒延长,使科学家们 兴奋的是到1984年首先在四膜虫中证实了这种能使 端粒延长的酶—端粒酶的存在。
端粒和端粒酶
12
㈠ 端粒酶的结构
端粒酶在结构上为一核糖核蛋白复合体,由RNA 和 结合的蛋白质组成,是RNA依赖的DNA 聚合酶。它是一种 特殊的能合成端粒DNA的酶,通过明显的模板依赖方式每 次添加一个核苷酸。
端粒酶实质上是一种特殊的逆转录酶
端粒酶RNA(hTR)
端粒酶逆转录酶(TERT)
端粒酶结合蛋白(TEP)
缩短,这个缩短的端粒再传给子细胞后, 随细胞的再次分裂进一步缩短。随着每次 细胞分裂,染色体末端逐渐缩短,直至细 胞衰老。人类体细胞遵循这个规则从细胞 出生到衰老,单细胞生物遵循这个规则分 裂后定有其它机制保持单细胞生物传代存 活,生殖细胞亦如此。

端粒与端粒酶PPT2.

端粒与端粒酶PPT2.

克隆动物端粒长度的研究
体细胞核移植作为一种有效的无性生殖手段, 在基础研究、组织再生和挽救濒危动物方面有着 巨大的应用力,因此越来越多的受到人们的关注。 目前,在克隆动物端粒长度的研究中,研究 者们比较感兴趣的问题主要有:1、体细胞核移植 生产的克隆动物分娩常会出现各种缺陷,这是否 与端粒长度变化造成发育畸形、 衰老和疾病有关? 2、克隆动物的端粒在重构胚(胚胎早期)是否或如 何被修复; 3、端粒长度是否会恢复到正常。
五、端粒与端粒酶的研究现状

端粒检测
Telome Health公司 由端粒研究先驱卡尔 文· B· 哈利(Calvin B. Harley)与伊丽莎白· 布 莱克本 ( Elizabeth H. Blackburn)于2010年1月 共同创立。 Life Length公司 由西班牙国立研究中心端粒 与端粒酶研究的负责人玛利亚· A· 布拉斯科 (Maria A. Blasco)在2010年9月创立。
端粒的位置
一、端粒与端粒酶的发现
• 1978 年伊丽莎白通过体外 DNA 复制实验,推断出模 式生物四膜虫(Tetrahymena thermophila)的端粒中 含有许多重复的 5’- CCCCAA- 3’六碱基序列,首次 阐明了四膜虫的端粒结构。同时,杰克· 绍斯塔克正 试图在酵母中建构人工线性染色体,希望它能够像自 然染色体一样在细胞中复制。但他构建的人工染色体 转化入细胞后总是很快降解。 • 1980年,当伊丽莎白报道她关于端粒DNA的发现时, 引起了杰克的极大兴趣。于是二人合作将新发现的四 膜虫端粒序列和人工染色体连接到一起,而后导入酵 母细胞。奇迹出现了,人工染色体不再降解,可以在 细胞内正常复制。这一方面证实了端粒对染色体的保 护作用,也使 DNA的大片段克隆成为可能,为后来 的人类基因组测序奠定了基础。

端粒和端粒酶分析解析ppt课件

端粒和端粒酶分析解析ppt课件

端粒酶延长端粒的模式
端粒酶可结合到3’末端上,RNA模板5’端识别DNA 的3’端并相互配对,以RNA链为模板使DNA链延伸 合成一个重复单位后在跳跃到(也可以连续移动)另 一个单位;3’端单链又可回折作为引物合成相应的 互补链。
其活性只需dGTP和dTTP,组装时需要DNA聚合酶的 参与。
端粒的长度不取决于端粒酶,而是由其他结合于端粒 酶的蛋白决定。
小结
除端粒的功能外,端粒的发现过程也带给我们很多启 示,首先,科学工作者不能将自己的思路禁锢在自己相对 较窄的研究领域,与不同领域的人多加交流,换角度思考 问题都会使人的思想更为开阔。 其次,在进行高风险、高回报研究时要勇于设想、敢于 实践。 再则,对新鲜有趣的事物要积极探究真相,即便最初可 能看不到它的利用价值。因为人类了解世界的过程就像盲 人摸象,人们最先看到的往往是零散无序的事物,但在这 种零散的背后,却是环环相扣、密不可分的真实世界。
前言
端粒是染色体末端由重复DNA序列和相关 蛋白组成的一种特殊结构,具有稳定染色体结 构及完整性的功能,会随染色体复制与细胞分 裂而缩短。端粒酶是一种核糖核蛋白,能以自 身RNA模板合成端粒DNA,为细胞持续分裂提 供遗传基础。由于端粒和端粒酶与细胞衰老、 肿瘤发生等现象密切相关,所以它也成为了科 学家们当前的研究热点。
生命钟说
人体细胞中端粒酶合成和延长端粒的作用是在 胚系细胞中完成的,当胚胎发育完成以后,端 粒酶活性就被抑制。即在胚胎发育时期获得的 端粒,应已足够维系人体的整个生命过程中因 细胞分裂所致的端粒缩短。
所以, 当人体出生以后,染色体端粒就象是一 个伴随着细胞分裂繁殖的“生命之钟”,它历 数着细胞可分裂的次数同时也见证了细胞由旺 盛地生长繁殖到走向衰老死亡的整个生命历 程。”

第九讲 端粒酶

第九讲 端粒酶

James Watson指出了这个“末端隐缩问题”,
并猜想染色体也许可以通过在复制前联体
(染色体末端跟末端性状研究的 Barbara McClintock女士(玉米的转座子发现 者)注意到,在减数分裂后期偶然产生的染色
体断裂很容易重新融合起来形成“桥”。在紧
在测序胶的同位素曝光片上,端粒底物明显被从新加上 了DNA碱基,而且每六个碱基形成一条很深的带,与四 膜虫端粒重复基本单位为六个碱基正好吻合。 这种酶活性不依赖于DNA模板,只对四膜虫和酵母的端 粒DNA进行延伸,而对随机序列的DNA底物不延伸;并且 该活性不依赖于DNA聚合酶。 由于同源重组对序列没有特异性的要求并且依赖于 DNA聚合酶的活性,至此,她们澄清了这两种假说,证 明了有一种“酶”来延伸端粒DNA。这种酶后来被命名 为“端粒酶”(telomerase)。
端粒复制的两个假说以及端粒酶活性的发现
在1984年报道酵母端粒序列的同一篇文章中, Elizabeth Blackburn实验室发现了一个有趣的现象: 带着四膜虫端粒DNA的人工染色体导入到酵母后,被加 上了酵母的端粒而不是四膜虫的端粒序列。 由于端粒是由重复序列组成的,当时人们普遍猜想同源 重组是延伸端粒补偿染色体末端隐缩的机制。 但是同源重组只能复制出更多本身的序列,为什么在四 膜虫端粒上加的是酵母的端粒序列而不是四膜虫端粒本 身的序列呢? 这个现象同源重组是无力解释的。也许,可能,酵母中 存在专门的 “酶”来复制端粒DNA。
(四膜虫有两个细胞核。小核很稳定,含5 对染色体,用于生殖传代。而大核在接合细 胞的发育过程中,染色体断裂成200-300个 小染色体,rDNA从染色体上断裂后通过复制 更是形成高达~10000个小染色体, 四膜虫的小染色体众多,也就说端粒可能非 常丰富。这就为端粒研究提供了得天独厚的 材料)

端粒与端粒酶

端粒与端粒酶

无端粒酶
有端粒酶
• 端粒酶的作用是催化端粒延伸,保证染色体复制完整
端粒酶催化端粒延伸
人的端粒酶由两部分组成,即人类 染色体端粒酶RNA(human telom— erase mRNA component, hTERC)和人类端粒酶逆转录酶 (human telomerase reverse transcriptase,hTERT)。hTERC 由451个核苷酸构成,含有模板序 列5’-CUAACCCUAAC-3’;hTERT 是端粒酶的催化亚基,其氨基酸链 的c端含有逆转录酶基序,具有逆 转录酶活性,能以hrrERC为模板催 化端粒延伸。
端粒&端粒酶
一、什么是端粒、端粒酶 二、端粒与端粒酶研究发展历史 三、端粒的生理学功能
端 粒
Telomeres
端粒是指真核染色体两臂末端由特定的DNA重复序列构成的结构,使正常染色体 端部间不发生融合,保证每条染色体的完整性。 端粒不仅能维持染色体末端的稳定性 端粒还能阻止细胞对染色体末端的DNA 损伤反应
端粒酶
Telomerase
端粒酶是一种逆转录酶,由RNA和蛋白质组成。端粒好像一架细胞的“生命时钟 ”,让细胞准时凋亡;而端粒酶像一群勤劳的修复工,只要它们出现在细胞中, 就会及时将磨损的端粒修好,让它恢复到原来的长度,这样端粒就能永不磨损, 而细胞也可以“长生不老”.听起来,这真是件美妙的事儿.可当细胞不会死亡 ,危险就出现了——这群细胞就成了恶性肿瘤.若给端粒酶贴个标签,可以写成 “一半是魔鬼,一半是天使”。
二、端粒与DNA损伤应答
• 真核线性染色体端粒的化学构成和染色体内的损伤、断裂DNA十分 相似,然而DNA修复机器却能够将两者区分,其中与端粒结合的Sh elterin蛋白复合物起了关键的作用.Shelterin是由6个蛋白质—— —TRF1、TRF2、TIN2、RAP1、TPP1和POT1,组成的复合物,可使 端粒DNA不被DNA损伤应答(DNAdamageresponse,DDR)所识 别.其中,蛋白TRF2和POT1分别抑制由ATM和ATR介导的DDR途径, 从而避免应答的发生.随着细胞的分裂,端粒逐渐变短,当缩短 到一定程度时,将会激活ATM和ATR介导的DDR途径,细胞死亡或 进入衰老[19].然而,许多研究表明,与DNA损伤应答相关的蛋白 质出现在端粒上,并直接或间接参与端粒的维护.DNA双链断裂修 复蛋白的缺陷,如ATM、Ku、DNA-PKcs、RAD51D、MRN复合物的 缺陷,会导致端粒的错误代谢[20].因此,功能性端粒需要和DDR 修复蛋白相互作用.总体来说,现在观察到的端粒和DNA损伤修复 途径存在着两极关系.一方面,正常端粒需要避免DNA损伤应答的 激活.另一方面,端粒复制和保护又需要DDR相关蛋白的参与

端粒酶专业篇ppt课件

端粒酶专业篇ppt课件
熟的端粒酶。
端粒酶的降解主要通过泛素-蛋 白酶体途径进行,涉及多种E3 泛素连接酶的作用。
泛素化后的端粒酶被蛋白酶体 识别并降解,从而维持细胞内 端粒酶的稳定水平。
04
端粒酶与疾病的关系
端粒酶与肿瘤
肿瘤细胞中端粒酶的异常表达
端粒酶在正常细胞中处于沉默状态,但在肿瘤细胞中异常激活,维持肿瘤细胞的端粒长度 ,促进肿瘤的发生和发展。
神经退行性疾病
端粒酶与神经细胞的衰老和凋亡有关,研究端粒酶在神经退行性疾病中的作用有 望为相关疾病的治疗提供新思路。Βιβλιοθήκη 端粒酶研究面临的挑战与展望
跨学科合作
端粒酶研究涉及生物学、医学、药学等多个领域,需要加强 跨学科合作,共同推进研究进展。
临床转化
端粒酶研究成果向临床应用的转化仍面临诸多挑战,需要加 强基础研究与临床应用的衔接。
端粒酶与肿瘤细胞增殖
端粒酶通过维持端粒长度,使肿瘤细胞获得无限增殖的能力,是肿瘤细胞永生化的关键机 制之一。
端粒酶与肿瘤细胞侵袭和转移
端粒酶的表达水平与肿瘤细胞的侵袭和转移能力密切相关,高表达端粒酶的肿瘤细胞具有 更强的转移能力和更高的恶性程度。
端粒酶与心血管疾病
端粒酶与动脉粥样硬化
端粒酶活性异常增加与动脉粥 样硬化的发生和发展密切相关 ,可能通过影响血管内皮细胞 功能和促进平滑肌细胞增殖等 机制发挥作用。
随着细胞分裂次数的增加,端粒长度逐渐缩短,影响细胞分裂的效率和稳定性。
端粒酶活性与细胞分裂周期密切相关,对细胞生长和增殖具有重要调控作用。
端粒酶与基因表达
端粒酶通过影响端粒的结构和 长度,影响基因的表达和调控。
端粒酶活性与转录因子和染色 质重塑复合物相互作用,调控 基因表达和细胞分化。

端粒与端粒酶PPT课件

端粒与端粒酶PPT课件

端粒酶激活剂与抑制剂的研究前景
01
02
03
端粒酶激活剂
研究寻找能够激活端粒酶 的药物或化合物,为肿瘤 治疗提供新策略。
端粒酶抑制剂
开发高效、特异的端粒酶 抑制剂,用于抑制肿瘤细 胞增殖和诱导细胞凋亡。
联合治疗
研究端粒酶激活剂和抑制 剂的联合应用,以实现更 有效的肿瘤治疗。
端粒长度作为疾病预测指标的前景
疾病风险预测
通过检测个体端粒长度, 预测患某些疾病的风险, 如心血管疾病、癌症等。
个体化医疗
根据个体端粒长度情况, 制定针对性的预防和干预 措施,实现个体化医疗。
临床应用价值
进一步验证端粒长度作为 疾病预测指标的临床应用 价值,提高预测准确率。
THANKS
感谢观看
04
端粒与端粒酶的未来展望
端粒与端粒酶在医学领域的应用前景
抗衰老药物研发
利用端粒和端粒酶活性调节机制, 开发抗衰老药物,延长人类寿命。
肿瘤治疗
通过抑制或激活端粒酶活性,实现 肿瘤细胞的增殖控制或诱导肿瘤细 胞凋亡,为肿瘤治疗提供新途径。
遗传性疾病治疗
针对一些与端粒和端粒酶相关的遗 传性疾病,如骨髓衰竭综合征等, 通过基因治疗或干细胞移植等方法 进行治疗。
端粒与端粒酶ppt课件
• 端粒与端粒酶简介 • 端粒与端粒酶的生物学意义 • 端粒与端粒酶的研究进展 • 端粒与端粒酶的未来展望
01
端粒与端粒酶简介
端粒的结构与功能
端粒的结构
端粒是染色体末端的特殊结构,由DNA序列和蛋白质组成,具有保护染色体和 维持基因稳定性的作用。
端粒的功能
端粒的主要功能是防止染色体融合和降解,保护染色体结构的完整性和稳定性, 同时参与细胞分裂和复制过程中的DNA损伤修复。

端粒和端粒酶

端粒和端粒酶

端粒长度和细 胞分化程度呈 反比
Estl突变体酵母活 性下降,出现明显 衰老
四膜虫端粒酶改 变时端粒缩短、 细胞死亡
正常细胞:
细胞年轻化
细胞分裂
细胞分裂
衰 老 死 亡
抗 衰 老
端粒酶 重新引入
端粒-端粒酶对细胞死亡和细胞永生化的影响
GryfeR等于1997年提出了关于细胞衰老和永生学说, 认为人的正常体细胞分裂次数达到界限时,染色体端粒长 度缩短到一定程度,有丝分裂便不可逆地被阻断在细胞周 期的G1期和G2/M期之间的某个时期,这时的细胞便进入 了老化期,随后死亡. 如果细胞被病毒感染,或p53、RB、p16INK4、ATM、 APC等肿瘤抑制基因发生突变,或K ras等原癌基因被激活, 或DNA错配修复基因(如hMSH2等)发生突变,或某些基因 DNA序列发生了高度甲基化,或仅发生了低度甲基化,从 而(在未发生核甘酸突变的情况下)改变了该基因的表达, 此时细胞便能越过阻断点继续进行有丝分裂。随着有丝分 裂进行,端粒长度不断缩短,缩短到一定程度时,染色体 发生结构畸变,大部分细胞便死亡,少部分细胞激活了端 粒酶活性,不断合成端粒DNA补充端粒的长度,端粒不再 缩短,细胞便获得无限分裂增生能力而成为永生化细胞。 这说是端粒-端粒酶假说。
端粒结合蛋白
端粒帽 染色体DNA 端粒帽
5 n(CCCCAA) ’
3 (TTGGGG)n ’
n(GGGGTT)
(AACCCC)n
保护端粒不受核酸酶或化学修饰的作用 一般是紧密的非共价键结合
端粒酶是在染色体末端不断合成端粒序列的 酶,它可以维持端粒的长度。 它的活性不依赖于DNA聚合酶,对RNA酶、蛋白 酶和高温均敏感。
• hTR的结构改变或成分的丢失均会影响端粒酶 的活性。 • hTERT为端粒酶的催化亚基,是一个包含1 132个氨基酸残基的多态链。具有逆转录酶的 共同结构--7个蛋白质域以及端粒酶催化亚基独 特的T框架保守区域。其编码基因位于染色体5 p上。hTERT是端粒酶起作用的关键结构和 主要调控亚单位,它可以通过逆转录hTR模板 序列,合成端粒DNA重复序列并添加到染色体 末端,从而延长端粒长度。

神奇的端粒和端粒酶

神奇的端粒和端粒酶

导 致 罹 患 糖 尿 病 、冠 心 病 、 5-Dj尔 兹 端 粒 酶 转 基 因 鼠表 现 出 明 显 的 抗 氧 下 ,生 命 个 体 生 活 压 抑 会 加 大 罹 患
海默症等 疾病的风 险增加 ,而这些 化 应 激 能 力 ,其 干 细 胞 的 增 殖 分 化 疾病 的风险 ,而生命体细胞端 粒长
尔 生 理 学 或 医 学 奖 授 予 给 了 美 国 加 有 23对 染 色 体 , 染 色 体 携 有 遗 传 程 度 ,会 使 细 胞 停 止 分 裂 ,导 致 衰
利 福 尼 亚 旧金 山 大 学 的 伊 丽 莎 白 - 信 息 ,对 人 类 生 命 具 有 重 要 意 义 , 老 与 死 亡 。也 就 是说 端 粒 的 长 度 决
翰 ·霍 普 金 医 学 院 的 卡 罗尔 ·格 雷 体 末 端 的 ‘保 护 帽 ’ ,它 能 够 保 持 缠 身 ;端 粒 消 失 ,人 的 寿 命 也 到
德 (CarolGreider)、 美 国 啥 佛 医 学 染 色 体 的 稳 定 性 ,就 像 一 个 忠 诚 的 了 尽 头 。
端 粒 是 在 细 胞 染 色 体 末 端 部 分 变 短 ,细 胞 就 老 化 。 端 粒 DNA可 细 胞 来 说 ,这 一 特 性 非 常 重 要 。
像 帽 子 一 样 的 特 殊 结 构 ,像 一 根 鞋 决 定 细 胞 的 寿 命 ,细 胞 每 分 裂 一
二 、端 粒 与 疾 病
的 发 现 解 基 因 被 破 坏 ,从 而 防 止 了 了 随 着 细 胞 分 裂 而 进 行 性 缩 短 的 端
题 , 即染 色 体 在 细 胞 分 裂 过 程 中 是 遗 传 信 息 的 丢 失 ,维 护 了 染 色 体 结 粒 ,以 使 端 粒 延 长 从 而 延 长 细 胞 寿

《癌生物学》第十章(2)端粒和端粒酶

《癌生物学》第十章(2)端粒和端粒酶

《癌生物学》第十章(2)端粒和端粒酶前言:上一期我们已经介绍了肿瘤细胞无限增殖面临的两个障碍。

今天我们主要是学习“端粒”和“端粒酶”的相关内容。

相信通过本期的学习,我们对端粒和端粒酶的理解会更上一层楼~端粒的结构在哺乳动物细胞(以及许多其他后生动物细胞)中,端粒由重复的六核苷酸序列组成,其中一条链(富含G)上为5'-TTAGGG-3', 互补链上(富含C)为5'-CCCTAA-3'。

在正常人体细胞中,端粒DNA由数千个重复的六核苷酸序列组成,在染色体末端形成5-10kb 长的序列重复片段。

端粒DNA通常为5-10kb长。

在功能性端粒DNA(中间)与非端粒染色体DNA(最左侧)之间还存在着亚端粒DNA区域。

亚端粒DNA 区域里含有TTAGGG类似片段,但并没有染色体末端保护功能。

然而,由于亚端粒DNA含有端粒类似序列,它通常也是端粒限制性片段(TRF)的组成部分。

但是只有单纯的端粒重复片段能够保护染色体DNA末端:当单纯串联重复片段的重复次数减少到12次以下时就会丧失末端保护功能。

因此,即使仍然有数kb长度的TRF存在,但端粒已经丧失了阻止染色体DNA末端融合的能力。

图1:端粒DNA的结构特殊的是,富G链多出一百至数百个核苷酸,导致该链3'单链端外悬。

这种凸出的链会形成一种最不寻常的分子构型——t环。

当时通过电子显微镜分析端粒DNA时发现了一种环形结构,实质上是套索结构。

这种构型的形成依赖于三链DNA复合体的形成。

有可能所有端粒DNA的末端均含有 t 环,但是由于在电子显微镜下保存和观察此结构的技术上的限制,只有一部分端粒在电子显微镜下可以观察到t 环。

t 环有助于保护线性DNA分子未端,因为单链末端的外悬区被巧妙地塞进双链区域,以保护其免受损伤。

下图为t 环的示意图,显示了3'端凸出的富G链(粉色)与富C链(蓝色)的小段区域退火形成詈换(D环)(粉色链)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
端粒端粒酶授课内容
端粒的作用
• 把端粒当作一件绒线衫袖
口脱落的线段,绒线衫像
图片
是结构严密的DNA。排在
中红
线上的DNA决定人体性状。
色部
即决定人头发的直与曲,
位为
眼睛的蓝与黑,人的高与
端粒
矮等等,甚至性格的暴躁
所在
和温和。
位置
• 使正常染色体端部间不发 生融合,保证每条染色体 的完整性。
• 稳定染色体末端结构,防止染色体间末 端连接,并可补偿滞后链5'末端在消除 RNA引物后造成的空缺。
近年有关端粒酶与肿瘤关系的研 究进展表明,在肿瘤细胞中端粒酶 还参与了肿瘤细胞基因组的调控过 程。
与端粒酶的多重生物学活性相对 应,肿瘤细胞中也存在复杂的端粒 酶调控网络。
端粒酶的作用示意图
端粒酶-端粒和端粒酶的相互关系
• 端粒作为线性染色体末 端的一个“保护帽”,起
端 粒
到维持染色体的相对稳固、
• 组织培养的细胞证明,端粒在决定动植 物细胞的寿命中起着重要作用,经过多 代培养的老化细胞端粒变短,染色体也 变得不稳定。
• 细胞分裂次数越多,其端粒磨损越多, 寿命越短。 通常情况下,运动加速细胞
的分裂,运动量越大,细胞分裂次数越 多,因此寿命越短。所以体育运动一定 要适可而止。
端粒酶的作用
端粒酶在细胞中的主要生物学功 能是通过其逆转录酶活性复制和延 长端粒DNA来稳定染色体端粒DNA 的长度。

防止DNA互相融合及重组

的功能。而端粒酶则是帮

助端粒合成,使得端粒的 长度等结构得以稳定。端
用 模 式
粒酶在端粒受损时能恢复

其长度。
• 攻克癌症 • 长生不老 • 治疗早衰症
右边为早衰 症儿童照片 左男六岁、 右女八岁
研究前景
此外我们衷心希望能够早日破解端粒端 粒酶这一机制造福人类!
相关文档
最新文档