第八讲 端粒和端粒酶

合集下载

端粒与端粒酶 ppt课件

端粒与端粒酶 ppt课件

端粒酶的结构
端粒酶
是端粒复制所必须的一种特殊的DNA 聚合酶
具有逆转录酶活性 能以hTR为模板,向染色体末端添加
TTAGGG序列
端粒酶作用模式
端粒酶作用模式
端粒酶延伸端粒的机制
端粒酶
在大多数的正常人的体细胞中没有活性 近年来的研究发现:
衰老者端粒缩短 大约在85%-95%的肿瘤细胞中检测到了端粒
端粒下区 subtelomeric region 与端粒DNA相邻,由一 些退化的端粒DNA片断 的重复组成
端粒DNA序列
人的端粒DNA序列
长约5~15kb 序列:(TTAGGG)n ,串联重复
不同生物端粒DNA长度
酵母 尖毛虫 小鼠 大鼠
200 — 400 bp 20 bp 5 — 80 kb 150 kb
如果细胞要维持其正常分裂,就必须激活端 粒酶,阻止端粒的进一步丢失
否则,细胞不能进行染色体的正常复制 只有重新获得端粒酶活性的细胞,才能继续
生存下去 无法激活端粒酶的细胞(即无法阻止端粒进
一步丢失),只能面临趋向衰老
端粒丢失与衰老关系
端粒丢失是衰老的原因?还是结果? 目前的研究结果还处在探索阶段,各
衰老端粒/端粒酶 癌症
衰老可能是由端粒的缩短所致, 激活端 粒酶似乎可以阻止衰老
可是,端粒酶一旦被重新激活,细胞又 将成为永生化细胞,继而衍变为癌细胞
如何能恰当、正确的发挥端粒/端粒酶在 解决衰老与癌症中的作用? 生命科学领域一个极具挑战性的课题
端粒抑制剂的研究
Colorado大学的Thomas Cech 和Robert Weinbrg博士:
已克隆出一种控制人类细胞端粒酶活性的基因
应用这种基因,很有可能得到一种新的蛋白 质——端粒酶控制剂

端粒与端粒酶

端粒与端粒酶

端粒与端粒酶端粒酶-简介细胞中有种酵素负责端粒的延长,其名为端粒酶。

端粒酶的存在,算是把 DNA 克隆机制的缺陷填补起来,藉由把端粒修复延长,可以让端粒不会因细胞分裂而有所损耗,使得细胞分裂克隆的次数增加。

端粒酶让人类看到长生不老的曙光。

端粒酶-定义端粒酶(Telomerase),是基本的核蛋白逆转录酶,可将端粒DNA加至真核细胞染色体末端。

端粒在不同物种细胞中对于保持染色体稳定性和细胞活性有重要作用,端粒酶能延长缩短的端粒(缩短的端粒其细胞复制能力受限),从而增强体外细胞的增殖能力。

端粒酶在正常人体组织中的活性被抑制,在肿瘤中被重新激活,端粒酶可能参与恶性转化。

端粒酶在保持端粒稳定、基因组完整、细胞长期的活性和潜在的继续增殖能力等方面有重要作用。

细胞中有种酵素负责端粒的延长,其名为端粒酶。

端粒酶的存在,算是把 DNA 克隆机制的缺陷填补起来,藉由把端粒修复延长,可以让端粒不会因细胞分裂而有所损耗,使得细胞分裂克隆的次数增加。

但是,在正常人体细胞中,端粒酶的活性受到相当严密的调控,只有在造血细胞、干细胞和生殖细胞,这些必须不断分裂克隆的细胞之中,才可以侦测到具有活性的端粒酶。

当细胞分化成熟后,必须负责身体中各种不同组织的需求,各司其职,于是,端粒酶的活性就会渐渐的消失。

对细胞来说,本身是否能持续分裂克隆下去并不重要,而是分化成熟的细胞将背负更重大的使命,就是让组织器官运作,使生命延续,但不是永续,这种世代交替的轮回即是造物者对于生命设计的巧思。

端粒酶-应用一般认为,端粒酶活性的再活化,可以维持端粒的长度,而延缓细胞进入克隆性的老化,是细胞朝向不老的关键步骤。

在表皮纤维母细胞中恢复端粒酶的活性确实可以延长细胞分裂的寿命,使细胞年轻的周期延长。

此外,在医疗方面的运用,以血管的内皮细胞为例,血管的内皮细胞在血流不断冲刷流动下,损伤极快,个体年轻时周围组织可以不断提供新的细胞来修补血管管壁的损伤,一旦个体年老以后,损伤周围无法提供新的细胞来修补,动脉也就逐渐走向硬化的病征。

端粒与端粒酶

端粒与端粒酶

端粒结合蛋白
端粒帽 染色体DNA 端粒帽
5 n(CCCCAA) ’
3 (TTGGGG)n ’
n(GGGGTT)
(AACCCC)n
保护端粒不受核酸酶或化学修饰的作用 一般是紧密的非共价键结合
端粒

端粒的功能: 端粒结构的高度保守性表明端粒具有非 常重要的功能。目前认为主要有如下功 能: ①保护染色体末端; ②保证遗传信息的完整复制; ③决定细胞的“寿命”。
端粒重复序列延伸方法

端粒重复序列延伸方法由Morin等于1989 年在端粒酶以自身RNA为模板复制端 粒重复序列DNA的基础上建立起来的 方法,是传统的端粒检测方法。
端粒重复序列延伸方法

原理: 利用端粒酶在体外可以以其自身RNA 的 模板区为模板,在适宜的寡核苷酸链的 末端添加6 个碱基的重复序列的特性, 由于端粒合成时每合成6个核苷酸就会 暂时停顿,用特异的探针标记,以聚丙 烯酰胺凝胶电泳后放射自显影,阳性标 本可见梯形条带。
端粒酶
端粒酶的结构: 一般认为端粒酶主要由3个部分组成,即 人端粒酶RNA(hTR)、端粒酶相 关蛋白1(TP1)和人端粒酶逆转录 酶(hTERT)
端粒酶的结构
1987年,Blackburn
Protein RNA组分
柱层析
RNP结构
四膜虫端粒酶RNP 含有RNA组分和蛋白质组分,两者均为酶活性所必需。对 RNA酶极为敏感。
端粒、端粒酶与肿瘤

如果此时细胞已被病毒转染,癌基因激 活或抑癌基因失活,细胞便可越过M1期, 继续分裂20-30次,端粒继续短缩,最 终进入第二致死期M2期。
端粒、端粒酶与肿瘤

多数细胞由于端粒太短而失去功能并死

第八讲 端粒和端粒酶

第八讲 端粒和端粒酶
⑶ 芽殖酵母蛋白Est1p 和Est3p 这两个蛋白与体内端 粒酶的功能有关。Est1p 足以使端粒延长。但是,在无 Est1p存在的情况下Est2p-Cdc13pDBD融合也足以维持端 粒长度。
2008年美国科学家利用X射线结晶学方法,揭示 了端粒酶(Telomerase)关键部位的三维结构图
端粒酶结构示意图。蛋白质(绿色) 与RNA(浅褐色)及DNA(紫色) 联合在一起。
第八讲 端粒与端粒酶
沈晗
一、端粒概念的提出
线性DNA复制过程中会出现一个问题,复制结束时,随从链的5’ 末端的RNA引物会被细胞中的RNA酶所降解,因为缺乏3’-OH, 缺口不能被补上,所以每复制一轮,RNA引物降解后新生成的5’ 末端都将缩短一个RNA引物的长度 ,尽管这个引物不长,但是细 胞千千万万代地不断复制,如果不进行补偿,染色体不断缩短, 最终就会消失 !
真核细胞染色体末端会随着细胞分裂而缩短,这个缩 短的端粒再传给子细胞后,随细胞的再次分裂进一步 缩短。随着每次细胞分裂,染色体末端逐渐缩短,直 至细胞衰老。人类体细胞遵循这个规则从细胞出生到 衰老,单细胞生物遵循这个规则分裂后定有其它机制 保持单细胞生物传代存活,生殖细胞亦如此。
荧光原位杂交显示端粒和端粒 DNA序列
电镜下的端粒T环结构
大多数有机体的端粒DNA由非常短而且数目精确的串 联重复DNA排列而成,富含鸟嘌呤,人类及其它脊椎 动物染色体端粒的结构是5′TTAGGG3′的重复序列, 长 约15kb。体细胞的端粒有限长度大多数明显短于生殖 细胞,青年人的TRFs又显著长于年长者,提示TRFs随 着细胞分裂或衰老,在不断变短,主要是由于DNA聚 合酶不能完成复制成线性DNA末端所致。
1984年,布莱克本的实验室发现酵母的端粒序列是由 不太规则的TG1-3/C1-3A重复序列组成的。

端粒和端粒酶分析解析ppt课件

端粒和端粒酶分析解析ppt课件

端粒酶延长端粒的模式
端粒酶可结合到3’末端上,RNA模板5’端识别DNA 的3’端并相互配对,以RNA链为模板使DNA链延伸 合成一个重复单位后在跳跃到(也可以连续移动)另 一个单位;3’端单链又可回折作为引物合成相应的 互补链。
其活性只需dGTP和dTTP,组装时需要DNA聚合酶的 参与。
端粒的长度不取决于端粒酶,而是由其他结合于端粒 酶的蛋白决定。
小结
除端粒的功能外,端粒的发现过程也带给我们很多启 示,首先,科学工作者不能将自己的思路禁锢在自己相对 较窄的研究领域,与不同领域的人多加交流,换角度思考 问题都会使人的思想更为开阔。 其次,在进行高风险、高回报研究时要勇于设想、敢于 实践。 再则,对新鲜有趣的事物要积极探究真相,即便最初可 能看不到它的利用价值。因为人类了解世界的过程就像盲 人摸象,人们最先看到的往往是零散无序的事物,但在这 种零散的背后,却是环环相扣、密不可分的真实世界。
前言
端粒是染色体末端由重复DNA序列和相关 蛋白组成的一种特殊结构,具有稳定染色体结 构及完整性的功能,会随染色体复制与细胞分 裂而缩短。端粒酶是一种核糖核蛋白,能以自 身RNA模板合成端粒DNA,为细胞持续分裂提 供遗传基础。由于端粒和端粒酶与细胞衰老、 肿瘤发生等现象密切相关,所以它也成为了科 学家们当前的研究热点。
生命钟说
人体细胞中端粒酶合成和延长端粒的作用是在 胚系细胞中完成的,当胚胎发育完成以后,端 粒酶活性就被抑制。即在胚胎发育时期获得的 端粒,应已足够维系人体的整个生命过程中因 细胞分裂所致的端粒缩短。
所以, 当人体出生以后,染色体端粒就象是一 个伴随着细胞分裂繁殖的“生命之钟”,它历 数着细胞可分裂的次数同时也见证了细胞由旺 盛地生长繁殖到走向衰老死亡的整个生命历 程。”

端粒及端粒酶

端粒及端粒酶

端粒及端粒酶:它们的作用机制和它们的功能转变效应摘要:端粒及端粒酶的分子特性在大多数真核生物中是保守的。

那么,端粒和端粒酶是怎样作用的,它们怎样相互作用来提高软色体稳定性,我们将在此讨论。

关键字:端粒、端粒酶1,简介端粒,真核生物软色体末端的DNA—蛋白质复合物,保护着基因组免受不稳定因子的侵扰。

这些因子包括软色体终端区域的降解,端粒的溶解,要么随着其它端粒,或者一段断裂的DNA末端,或者不恰当的重组。

这些过程都是潜在的灾难;例如,端粒溶解能导致爽双着丝粒染色体形成,这是不稳定遗传的,并且导致分裂细胞子代遗传容量的不稳定或者遗传信息的丢失。

端粒DNA由串联重复序列,简单的,经常富含—G—,该序列特异性的被活化的端粒酶识别。

这些串联重复形成了一个包含许多端粒蛋白结合位点分子“脚手架”,这就使高度次序结合的复合物依次成核,尽管还难以定义,这些保护性的端粒蛋白包括端粒DNA序列特异性结合蛋白。

端粒处生成的DNA—蛋白复合物是有活力的;在分裂间期,端粒结合蛋白间歇性的,以大约数分钟一个的速率相互交换,取决于哪一个蛋白组件被检查。

2,端粒酶:聚合酶和保护器端粒DNA的完全复制需要端粒酶,一种专门的胞内核糖核蛋白RNP反转录酶(RT)。

它的核心酶包含TERT蛋白,这种蛋白不但含有一个RT同源域,还有其它必要的保守域和一段RNA组件TER。

通过复制一小段内部RNA模板序列,端粒酶从5’—3’向软色体末端合成端粒DNA链,从而得到延长。

被调节的软色体DNA终端延长弥补着由于核酸酶作用和不完全的终端DNA复制造成的缩短。

一套多组分的“端粒内稳态”系统,一方面阻止着端粒的过分延长。

联合的端粒蛋白间的相互作用对这种稳态作用非常重要,这也在顺式端粒中起作用。

相反的,这种端粒稳态系统起着在端粒缩短时端粒的延长作用,从而在含有端粒酶的细胞中保持端粒重复序列处在在一个合适的范围内。

端粒酶还作为一种胞内RT来合成端粒中短的,重复的DNA序列。

端粒与端粒酶

端粒与端粒酶

无端粒酶
有端粒酶
• 端粒酶的作用是催化端粒延伸,保证染色体复制完整
端粒酶催化端粒延伸
人的端粒酶由两部分组成,即人类 染色体端粒酶RNA(human telom— erase mRNA component, hTERC)和人类端粒酶逆转录酶 (human telomerase reverse transcriptase,hTERT)。hTERC 由451个核苷酸构成,含有模板序 列5’-CUAACCCUAAC-3’;hTERT 是端粒酶的催化亚基,其氨基酸链 的c端含有逆转录酶基序,具有逆 转录酶活性,能以hrrERC为模板催 化端粒延伸。
端粒&端粒酶
一、什么是端粒、端粒酶 二、端粒与端粒酶研究发展历史 三、端粒的生理学功能
端 粒
Telomeres
端粒是指真核染色体两臂末端由特定的DNA重复序列构成的结构,使正常染色体 端部间不发生融合,保证每条染色体的完整性。 端粒不仅能维持染色体末端的稳定性 端粒还能阻止细胞对染色体末端的DNA 损伤反应
端粒酶
Telomerase
端粒酶是一种逆转录酶,由RNA和蛋白质组成。端粒好像一架细胞的“生命时钟 ”,让细胞准时凋亡;而端粒酶像一群勤劳的修复工,只要它们出现在细胞中, 就会及时将磨损的端粒修好,让它恢复到原来的长度,这样端粒就能永不磨损, 而细胞也可以“长生不老”.听起来,这真是件美妙的事儿.可当细胞不会死亡 ,危险就出现了——这群细胞就成了恶性肿瘤.若给端粒酶贴个标签,可以写成 “一半是魔鬼,一半是天使”。
二、端粒与DNA损伤应答
• 真核线性染色体端粒的化学构成和染色体内的损伤、断裂DNA十分 相似,然而DNA修复机器却能够将两者区分,其中与端粒结合的Sh elterin蛋白复合物起了关键的作用.Shelterin是由6个蛋白质—— —TRF1、TRF2、TIN2、RAP1、TPP1和POT1,组成的复合物,可使 端粒DNA不被DNA损伤应答(DNAdamageresponse,DDR)所识 别.其中,蛋白TRF2和POT1分别抑制由ATM和ATR介导的DDR途径, 从而避免应答的发生.随着细胞的分裂,端粒逐渐变短,当缩短 到一定程度时,将会激活ATM和ATR介导的DDR途径,细胞死亡或 进入衰老[19].然而,许多研究表明,与DNA损伤应答相关的蛋白 质出现在端粒上,并直接或间接参与端粒的维护.DNA双链断裂修 复蛋白的缺陷,如ATM、Ku、DNA-PKcs、RAD51D、MRN复合物的 缺陷,会导致端粒的错误代谢[20].因此,功能性端粒需要和DDR 修复蛋白相互作用.总体来说,现在观察到的端粒和DNA损伤修复 途径存在着两极关系.一方面,正常端粒需要避免DNA损伤应答的 激活.另一方面,端粒复制和保护又需要DDR相关蛋白的参与

端粒和端粒酶保护染色体的机理

端粒和端粒酶保护染色体的机理

端粒和端粒酶保护染色体的机理1. 概述染色体是细胞中的重要结构,其中包含了细胞的遗传信息。

端粒是染色体末端的重要结构,在维持染色体稳定性和避免染色体融合方面起着重要作用。

端粒酶是一种保护端粒的酶类,其功能是在染色体复制时延长端粒,从而减缓染色体末端的缩短。

在本文中,将探讨端粒和端粒酶的作用机理,以及其对保护染色体的重要性。

2. 端粒的结构和功能端粒是染色体末端的高度特异性序列,它主要由一种重复序列构成,人类的端粒序列重复单位是TTAGGG。

端粒的主要功能是保护染色体末端,防止染色体末端的缩短和融合。

在正常细胞分裂中,染色体末端会随着每次细胞分裂而逐渐缩短,导致染色体稳定性的丧失。

端粒的存在可以延缓染色体末端的缩短,维持染色体的完整性。

3. 端粒酶的结构和功能端粒酶是一种特殊的酶类,在维持端粒长度方面有着重要作用。

端粒酶是由蛋白质和RNA组成的复合物,它能够在染色体复制过程中延长端粒序列,从而保持端粒的长度稳定。

端粒酶通过在DNA末端合成新的端粒序列,来对抗染色体末端的缩短,从而保护染色体的完整性。

4. 端粒和端粒酶在维持染色体稳定性中的作用端粒和端粒酶在维持染色体稳定性中起着重要作用。

在染色体末端缩短的过程中,端粒的存在能够延缓染色体末端的缩短速度,保护染色体不受损伤。

而端粒酶则通过在染色体复制时延长端粒序列,进一步保护染色体末端,延缓染色体末端的缩短速度。

端粒和端粒酶在维持染色体的完整性和稳定性方面具有不可替代的作用。

5. 端粒和端粒酶在衰老和疾病中的作用端粒和端粒酶的功能异常与许多疾病和衰老过程相关。

端粒缩短与衰老的加速和疾病的发生有关;而端粒酶的活性异常也与许多疾病的发生有关,比如癌症和染色体不稳定性疾病。

端粒和端粒酶的功能异常可能会导致染色体不稳定性,从而引发多种疾病的发生和加速衰老。

6. 结语端粒和端粒酶在保护染色体稳定性方面起着重要作用,它们是维持染色体完整性的重要保护机制。

了解端粒和端粒酶的作用机理,对于揭示染色体稳定性的调控机制,以及预防和治疗与染色体稳定性相关的疾病有着重要意义。

最新review:端粒与端粒酶讲学课件

最新review:端粒与端粒酶讲学课件
端粒结合蛋白(那些端粒结合或参与端粒调控的蛋白成分)包括两种: A、保卫蛋白复合体(Sheherin),由端粒重复序列结合因子(TERF1、TERF2), 端粒保卫蛋白1(POT1),TERF1相互作用 核蛋白(TIN2),TIN2相互作用蛋白1 (TINT1)及阻抑和活化蛋白1(Rap1)组成,各分布在染色体端粒上。 B、非保卫蛋白有DNA修复蛋白RADSO,NBSI,Ku86和DNAKsc等,各分布在不局 限的端粒上。
处于合适的长度,从而维持机体正常的发育过程.
——引自高等教育出版社《细胞生物学》P463
端粒酶篇
综述:端粒酶( Telomerase)是一种由RNA 和蛋白质组成的特异核糖核酸蛋白复合体,具有逆 转录的酶活性, 能以自身的RNA 为模板5 ’-CUAACCCUAAC--3’通过逆转录合成端粒重复序列 并连接到染色体末端以补偿细胞分裂时端粒的缩 短,使细胞获得无限增殖能力
补充
(1) 端粒即染色体线状DNA 末端与一些端粒 DNA 结合蛋白构成的结构;
(2) 末端复制问题是调控生物寿命的正常机
制,端粒DNA 的长度是细胞寿命的“计数 器”;
(3) 端粒酶可通过“加尾”的方式补充复制 时丢失的端粒DNA ,延长细胞的寿命;
(4) 一些端粒相关蛋白参与端粒酶或端粒的 调控;
端粒DNA的结构
人们对端粒结构的认识是不断发展的。到目前为止,科学家们一共对其提示 出了两种解释:四联体结构和d-loop-t-loop假说
The classic view
端粒DNA有两条长短不同的DNA链组成。一条富含G,一条富含C。富含G的 那条链5‘→3’指向染色体末端,此链比富含C的链在其3‘末端尾处可多出12~16 个核苷酸长度,即3’悬挂链(3‘overhang strand),一定条件下能形成一个大 的具有规律性很高的鸟嘌呤四联体结构,此结构是通过单链之间或单链内对应的残 基之间形成Hoogsteen碱基配对,从而使四段富含G的链旋聚段的四连体DNA。也 有人认为,端粒G链序列可以形成稳定的发卡结构,它和四联体结构都被认为与 DNA保护功能有关。

端粒和端粒酶

端粒和端粒酶

端粒长度和细 胞分化程度呈 反比
Estl突变体酵母活 性下降,出现明显 衰老
四膜虫端粒酶改 变时端粒缩短、 细胞死亡
正常细胞:
细胞年轻化
细胞分裂
细胞分裂
衰 老 死 亡
抗 衰 老
端粒酶 重新引入
端粒-端粒酶对细胞死亡和细胞永生化的影响
GryfeR等于1997年提出了关于细胞衰老和永生学说, 认为人的正常体细胞分裂次数达到界限时,染色体端粒长 度缩短到一定程度,有丝分裂便不可逆地被阻断在细胞周 期的G1期和G2/M期之间的某个时期,这时的细胞便进入 了老化期,随后死亡. 如果细胞被病毒感染,或p53、RB、p16INK4、ATM、 APC等肿瘤抑制基因发生突变,或K ras等原癌基因被激活, 或DNA错配修复基因(如hMSH2等)发生突变,或某些基因 DNA序列发生了高度甲基化,或仅发生了低度甲基化,从 而(在未发生核甘酸突变的情况下)改变了该基因的表达, 此时细胞便能越过阻断点继续进行有丝分裂。随着有丝分 裂进行,端粒长度不断缩短,缩短到一定程度时,染色体 发生结构畸变,大部分细胞便死亡,少部分细胞激活了端 粒酶活性,不断合成端粒DNA补充端粒的长度,端粒不再 缩短,细胞便获得无限分裂增生能力而成为永生化细胞。 这说是端粒-端粒酶假说。
端粒结合蛋白
端粒帽 染色体DNA 端粒帽
5 n(CCCCAA) ’
3 (TTGGGG)n ’
n(GGGGTT)
(AACCCC)n
保护端粒不受核酸酶或化学修饰的作用 一般是紧密的非共价键结合
端粒酶是在染色体末端不断合成端粒序列的 酶,它可以维持端粒的长度。 它的活性不依赖于DNA聚合酶,对RNA酶、蛋白 酶和高温均敏感。
• hTR的结构改变或成分的丢失均会影响端粒酶 的活性。 • hTERT为端粒酶的催化亚基,是一个包含1 132个氨基酸残基的多态链。具有逆转录酶的 共同结构--7个蛋白质域以及端粒酶催化亚基独 特的T框架保守区域。其编码基因位于染色体5 p上。hTERT是端粒酶起作用的关键结构和 主要调控亚单位,它可以通过逆转录hTR模板 序列,合成端粒DNA重复序列并添加到染色体 末端,从而延长端粒长度。

端粒与端粒酶

端粒与端粒酶
端粒&端粒酶
染色体是真核生物遗传物质的载体, 染色体是真核生物遗传物质的载体,维持其稳定性对于 高等生物至关重要.然而,作为生命蓝图的承载者, 高等生物至关重要.然而,作为生命蓝图的承载者,染 色体却处在一个危机四伏的环境中, 色体却处在一个危机四伏的环境中,经常遭到细胞内多 种不利因素的干扰和破坏.可以想象, 种不利因素的干扰和破坏.可以想象,如果得不到有效 保护, 稳定性难以维持, 保护,DNA稳定性难以维持,后果将不堪设想.染色体 稳定性难以维持 后果将不堪设想.
探索一步步深入
1984年,Carol与Liz精心讨论设计实验,用四膜虫的核抽提液与体外的 1984 端粒DNA进行温育,试图在体外检测到这个"酶"活性,看到端粒的延伸 。经过不断优化条件,尤其是把底物换成体外合成的高浓度的端粒DNA 后,同年的圣诞节终于清楚地看到了"酶"活性。在测序胶的同位素曝光 片上,端粒底物明显被从新加上了DNA碱基,而且每六个碱基形成一条 很深的带,与四膜虫端粒重复基本单位为六个碱基正好吻合。这种酶活 性不依赖于DNA模板,只对四膜虫和酵母的端粒DNA进行延伸,而对随机 序列的DNA底物不延伸;并且该活性不依赖于DNA聚合酶。由于同源重组 对序列没有特异性的要求并且依赖于DNA聚合酶的活性,至此,她们澄 清了这两种假说,证明了有一种"酶"来延伸端粒DNA。这种酶后来被命 名为"端粒酶"(telomerase)。
探索一步步深入
20世纪五六十年代 20世纪五六十年代,当科学家们尝试解析真核生物如何实现染色体DNA的精 世纪五六十年代 确复制时,又一个端粒相关的难题产生了。DNA聚合酶进行每一轮线性DNA的 复制都会导致少量末端核苷酸的丢失,其结果是,真核生物线性染色体,作 为基因的载体,会在细胞分裂过程中逐渐缩短。1972年,James Watson提出 了"末端复制问题",他同时推测,真核生物需要一种特殊机制来确保线性染 色体末端的完整复制。同时,Alexey Olovnikov也推测,染色体末端的逐渐 缩短将导致细胞的衰老。 20世纪七十年代 20世纪七十年代,Hayflick首次提出将体外培养的正常人成纤维细胞的“ 世纪七十年代 有限复制力”作为细胞衰老的表征。在此过程中,细胞群中的大部分细胞 经历了一定次数的分裂后便停止了,但它们并没有死亡,仍保持着代谢活 性,只是在基因表达方式上有一定的改变。于是Hayflick猜测细胞内有一 个限制细胞分裂次数的“钟”,后来通过细胞核移植实验发现,这种“钟 ”在细胞核的染色体末端——端粒。

【精品文档】端粒和端粒酶

【精品文档】端粒和端粒酶

Assumptions
染色体的自然末端不同于非正常的 DNA断裂末 端,它有一个特殊的结构来避免染色体之间的 相互融合 .
科学家Hermann Muller 将这种特殊结构命名为 端粒(Telomere, 在希腊语中 ,telos表示末 端,meros 表示片段 ).
Experiments
Jack Szostak
人工染色体
1980年,Elizabeth Blackburn在会议上对这一重 大发现的报告,引起了Jack Szostak的极大兴趣。 他那时候正试图在酿酒酵母 中构建人工线性染色体,让 它能够在细胞中像自然染色 体一样复制。但当环状质粒 线性化并转入细胞后,很快 就被降解掉。
人工染色体
端粒序列的发现使Jack Szostak有机会把 线性质粒末端连接到四膜虫的端粒DNA , 然后再倒入酵母细胞中。奇迹发生了:线 性质粒不再被降解,而是在细胞内稳定存 在并复制。 这是人工染色体的最早雏形,它使得DNA 的大片段克隆成为可能,后来为人类基因 组测序工作立下了汗马功劳。
Elizabeth Blackburn 和 Carol Greider 的实验
四膜虫在接合细胞的大核发育过程中,大核产生 了非常丰富的小染色体,每一个小染色体都在末 端加上了端粒,可以推测:如果“酶”的假说成立, 此时细胞内的酶活性应该是非常高的.
Elizabeth Blackburn 和 Carol Greider 的实验
用四膜虫的核抽提液与体外的端粒 DNA进行温 育,试图在体外检测到这个酶的活性 ,看到端粒 的延伸 .
Elizabeth Blackburn 和 Carol Greider 的实验
经过不断优化条件,尤其是把底物换成体外合成的高浓 度的端粒DNA后,Carol通过曝光x光片,清楚地看到了 “酶”的活性:在测序胶的同位素曝光片上,端粒底物明 显被重新加上了DNA碱基,而且每六个碱基形成一条很 深的带,与四膜虫端粒重复基本单位为六个碱基正好吻 合.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1984年,布莱克本的实验室发现酵母的端粒序列是由 不太规则的TG1-3/C1-3A重复序列组成的。
形象地说,线性DNA就像一条鞋带,端粒就像两头的 塑胶套,没有塑胶套的保护,鞋带很容易劈叉,磨损, 直至散架
1984年,格雷德作为博士生加盟了布莱克本的实验室。 在捣碎无数的四膜虫之后,他们终于成功的分离了端 粒酶 。
1972年,James Watson首先提出了染色体复制的末端隐缩问题
1939年,Barbara McClintock(因为发现玉米的 转座子获得诺贝尔奖)发现玉米细胞的染色体 断裂末端容易融合,而正常染色体的自然末端, 为什么不容易相互融合呢?合理的推测是,染 色体的自然末端不同于非正常的DNA断裂末端, 它应该有一个特殊的结构来避免染色体之间的 相互融合。
3、端粒酶相关蛋白(TEP)
⑴ 端粒酶相关蛋白-1(TEP1)是一多功能的RNA 结合蛋白, 对端粒酶活性起调节作用
⑵ 生存动力神经细胞基因(SMN) 产物
热休克蛋白(hsp)90 、其他涉及到TERT转录后修饰的 蛋白包括磷酸酶-A、Akt 、cAbl 、p53 和PARP。
PinX1 与人TERT体外共表达时抑制人端粒酶活性。
端粒酶在人体细胞永生性转化中
端粒酶被抑制 正常人体细胞
端粒丢失
M1期阻滞 细胞分裂停止
↓ M1—M2期间隔 双着丝粒形成
↓ M2期退化 染色体失稳
SV40T抗原 Rb、P53与病毒蛋白结合、突变
永生化
端粒酶被激活
细胞凋亡
端粒变化与肿瘤发生
尽管有研究认为端粒长度维持还可以借助于非端 粒酶依赖模式,即端粒替代延长(altematire Lengthening of telomere ALT)机制,但其存在上并 不能否认永生化细胞中端粒酶的重要作用。
布莱克本发现端粒序列所用到的简单模式生物四 膜虫
四膜虫的小染色体众多,也就说端粒可能非常丰富。 这就为端粒研究提供了得天独厚的材料。
1978年,布莱克本通过体外合成参入dNTP的实验,利 用四膜虫的染色体发现端粒的秘密。推断四膜虫的端 粒是由许多重复的5‘-CCCCAA-3’六个碱基序列组成的 。
端粒DNA (Telomer) TTGGGG(T2G4)序列高度重复的末端
5’ TTGGGGTTGGGGTTGGGGTTGGGG 3’ (富含 G 链)
3’ AACCCC AACCCC AACCCC 5’
(富含 C 链)
(二) 端粒酶的结构
端粒酶在结构上为一核糖核蛋白复合体,由RNA 和结合的蛋白质组成,是RNA依赖的DNA 聚合酶。它是 一种特殊的能合成端粒DNA的酶,通过明显的模板依赖 方式每次添加一个核苷酸。
这是百年来诺贝尔奖第一次同时颁发给两位女性科学 家,他们3人将分享1000万瑞典克朗(约合966.7万元 人民币)奖金。
三位获奖科学家
3位获奖者中,布莱克本最具名望,2007年曾入选《时 代》百大最具影响力人物。其余两位得主都是自她的 研究得到启发,并与她合作取得成果。除了科研了得, 她的敢言作风亦为人称道,她曾获美国前总统小布什 委任入生物伦理委员会,但她在布什禁止干细胞研究 后,公开批评他以意识形态干预科学研究,2004年被 辞退。
在逐渐明晰了染色体末端特殊结构的概念之后, 人们给了它一个专有名称-端粒(telomere)。
二、端粒的基本性质
三、端粒的基本功能
四、端粒的研究历史
2009年10月5日,伊丽莎白・布莱克本、卡萝尔・格雷 德和杰克・绍斯塔克三位美国科学家一起获得了今年 的诺贝尔生理学或医学奖。关于他们获奖的原因,颁 奖词中这样描述:“他们解决了生物学的一个重大问 题:在细胞分裂时,染色体如何完整地自我复制以及 染色体如何受到保护以免于退化。这三位诺贝尔奖获 得者已经向我们展示,解决办法存在于染色体末端 ――端粒,以及形成端粒的酶――端粒酶。”
端粒和端粒酶发现大事记
1939年,Barbara McClintock发现玉米细胞的染色体断 裂末端容易融合 1972年,James Watson提出染色体复制的末端隐缩问题 1978年,报道四膜虫的端粒序列 1982年,端粒的发现导致人工染色体的发明 1984年,报道酵母的端粒序列 1985年,报道四膜虫的端粒酶活性 1989年,报道四膜虫端粒酶的RNA亚基 1994年,报道酵母端粒酶的RNA亚基 1995年,报道酵母端粒酶活性 1996年,纯化了四膜虫端粒酶的催化亚基,遗传筛选到 酵母端粒酶的催化亚基 1997年,证明了四膜虫和酵母端粒酶的催化亚基
这个端粒酶的名字有点与众不同。我们一般在给酶命 名时,都以它的作用对象命名。比如,分解淀粉的叫 做淀粉酶,分解蛋白质的叫做蛋白酶。而端粒酶刚好 相反,它是以产物命名。更有意思的是,它合成端粒 的DNA片断是自带的。也就是说,端粒酶相当于一个 小作坊,自己为合成端粒DNA提供复制所需的原材料, 完成添加端粒所需的重任。
肿瘤部位/类型
与肿瘤邻近正常组织/ 肿瘤组织(%) 良性病变
肺 乳腺 前列腺 结肠
肝 卵巢
肾 神经母细胞瘤 血液(淋巴瘤,CLL ALL)
脑 其它(头顶部,Wilms瘤)
合计
3/68(4.4%) 2/28(7.1%) 1/18(5.6%)
0/45(0) ——
0/8(0) 0/55(0) 0/17(0)
1980年,在一次科学会议上,布莱克本为这个看似无 趣的秘密找到了用武之地。这要感谢听她报告的绍斯 塔克。当时绍斯塔克正打算给酵母细胞人工合成一条 DNA。但是,光秃秃DNA的容易给酵母细胞中的核酸 酶吃掉。布莱克本和绍斯塔克一拍即合,决定给DNA 片段末端加上这些CCCCAA碱基序列结果让人大吃一 惊——人工DNA能够稳定的存在于酵母细胞内。
五、端粒及端粒酶的结构特点
(一)端粒的结构及组成
端粒:是真核细胞线性染色体末端特殊结构。 由端粒DNA和端粒相关蛋白组成。
端粒DNA:为不含功能基因的简单、高度重 复序列, 在生物进化过程中具有高度保守性。 不同物种的端粒DNA 序列存在差异。
端粒DNA由两条互相配对的DNA 单链组成, 其 双链部分通过与端粒结合蛋白质TRF1和TRF2 结合 共同组成t环(t loops)。这种t 环特殊结构可维持染色 体末端的稳定,保持染色体及其内部基因的完整性,从 而使遗传物质得以完整复制。
四膜虫端粒酶对端粒DNA的复制模式图
端粒酶的爬行模型(动画演示)
端粒酶的功能
端粒酶是在染色体末端不断合成端粒序列的酶, 它可以维持端粒的长度,维持细胞增殖潜能。端粒 酶以自身RNA为模板合成端粒酶重复序列,具有逆 Байду номын сангаас录酶活性,它的活性不依赖于DNA聚合酶,对 RNA酶、蛋白酶和高温均敏感。端粒酶活性表达能 稳定端粒的长度,抑制细胞的衰老,在生殖细胞和 干细胞中可检测到高水平的端粒酶活性。
端粒酶的RNA亚基是合成端粒DNA的模板,对于 端粒酶的结构和催化活性都十分重要.人端粒酶RNA有 455个核苷酸.端粒酶RNA重要序列缺乏保守性,但都 有保守的二级结构,端粒酶的RNA决定了端粒DNA的 序列。
1、端粒酶RNA 哺乳动物端粒酶RNAs在许多组织的不同发育阶段 ,甚至那些没有端粒酶活性的组织中广泛表达。 体内端粒酶RNA 的存在对端粒酶功能至关重要, 影响到端粒酶RNA 的稳定性与突变,也可改变体内端 粒长度,并可通过改变端粒完整性或端粒结合因子的 末端结合位点致细胞核分裂后期细胞死亡 。
端粒酶实质上是一种特殊的逆转录酶
端粒酶RNA(hTR) 端粒酶逆转录酶(TERT) 端粒酶结合蛋白(TEP)
端粒酶示意图
端粒酶活性取决于它的RNA和蛋白质亚基.端粒酶至少 包含两个活性位点.端粒酶除了具有反转录活性外,还 具有核酸内切酶的活性。另外一个重要的功能就是合 成串联重复的TTAGGG序列,为TRF2提供结合位点, 防止染色体的末端融合。
第八讲 端粒与端粒酶
沈晗
一、端粒概念的提出
线性DNA复制过程中会出现一个问题,复制结束时,随从链的5’ 末端的RNA引物会被细胞中的RNA酶所降解,因为缺乏3’-OH, 缺口不能被补上,所以每复制一轮,RNA引物降解后新生成的5’ 末端都将缩短一个RNA引物的长度 ,尽管这个引物不长,但是细 胞千千万万代地不断复制,如果不进行补偿,染色体不断缩短, 最终就会消失 !
在体内还不清楚每一次细胞分裂有多少端粒DNA 合成。体内端粒酶的延长功能是一复杂的动态过程: 受双链端粒结合蛋白包括RAP1 (芽殖酵母) 、存在 于t环的TRF1 (依赖于端粒酶)和TRF2(不依赖于端 粒酶)的负调控。
六、端粒-端粒酶对与肿瘤的发生
“端粒-端粒酶假说”认为端粒酶的激活与细胞永 生化和恶性肿瘤的发生、发展密切相关。染色体末端的 端粒DNA进行性的缩短是限制人细胞寿命的先决条件。 相对地,端粒酶的激活,合成端粒的DNA被认为是细胞永 生化和癌症发展必需的一步。目前的资料证实,端粒酶 对长期成活的组织和长期进行有丝分裂的细胞是必需的。
自从1994年Kim等创立TRAP法检测端粒酶活性以来, 越来越多的文献证明端粒酶活性在大多数人类原发性 肿瘤标本及肿瘤衍生细胞系中可被检测到。
美国学者在400多例来源于12 种不同组织的原发 肿瘤病例中,肿瘤组织的端粒酶阳性率高达84.8%, 而肿瘤周围组织或良性病变中阳性率仅为4.4%。
附表 人体组织中端粒酶活性
布莱克本出生于澳大利亚,来自一个医生世家,家人 期望她从医,但她却决意要走科研之路。1971年,她 在英国剑桥大学攻读博士学位,师从诺贝尔得主桑格 (Fred Sanger)。
1975年获得博士学位后,她转到耶鲁大学,开始研究 端粒。1978年在加利福尼亚大学伯克利分校建立实验 室,经过不懈努力,终取得重大发现 。
端粒和端粒酶的一系列发现完美地解释了这两个问题:
染色体末端的DNA由简单重复的端粒序列构成,端粒 (保护着染色体末端,使之区别于一般的断裂染色体 末端,而不被各种酶降解,相互之间不会融合。
相关文档
最新文档