七年级数学下册第5章相交线与平行线5.3平行线的性质5.3.1第1课时平行线的性质练习课件(新版)新人教版
第五章相交线与平行线5.3.1平行线的性质
40
题目已知:AB∥CD
找出的截线只能是CF,由图可知:
∠ C和 ∠ 1
构成同位角。
∠C和∠AEC构成内错角。
∠C和∠BEC 构成同旁内角。
利用平行线的 性质,以上三种类 型的角,存在着什 么样的数量关系?
已知:如图所示,AG//CF,AB//CD, ∠A=40
复习回顾 平行线的判定方法:
1、同位角相等 2、内错角相等 3、同旁内角互补
两直线平行
反过来,如果两条直线平行,同位角、 内错角、同旁内角各有什么关系呢?
交流合作,探索发现 猜一猜∠1和∠2相等吗?
a
b
2 1
c
心动
不如行动
合作交流一
65°
c
1 2 65°
a
b
是不是任意一条直线去
截平行线a、b,所得的同位 角都相等呢?
水平镜面后被发射,此时∠1=∠2 , ∠3=∠4 。
(2 )发射光线BC与EF也平行吗?
已知:如图所示, ∠ADE=60 °, ∠B=60 °, ∠AED=40 ° (1)求证:DE∥BC;
(2)求∠C的度数。
已知:如图所示,直线a、b被 c、d 所截,且c⊥a,c⊥b. 求证:∠1=∠2.
已知:如图所示,∠1=∠2,CE∥BF 求证: AB∥CD. ∵ CE∥BF E ∴∠1=∠B A 1 ∵∠1=∠2 ∴∠2=∠B C ∴ AB∥CD
110
°
已知: AB∥CD ,∠1=110 ° 求:∠2,∠3, ∠4的度数
110 °
已知:如图所示,AG//CF,AB//CD, ∠A=40
求:∠C的度数。
人教版数学七年级下册5.3.1 第1课时 平行线的性质 -课件
4
b
2
∴ 2+ 4=180°
线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补.
应用格式:
∵a∥b(已知)
∴∠2+∠4=180 °
a
1
4
b
2
(两直线平行,内错角相等)
c
典例精析
例 如图,是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补. D
C
于是∠D=180 °-∠A=180°-
100°=80°
A
B
∠所C以=梯18形0的°另-∠外B两=1个80角°分-1别15是°8=06°5°、 65°.
四、平行线的判定与性质 讨论:平行线三个性质的条件是什么?结论是
什么?它与判定有什么区别?(分组讨论)
如图,已知a//b,那么2与3相等吗?为什么?
解 ∵ a∥b(已知),
∴∠1=∠2(两直线平行,同位角相等).
a
1
又∵ ∠1=∠3(对顶角相等),
3
b
2
∴ ∠2=∠3(等量代换).
c
总结归纳
性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
应用格式:
∵a∥b(已知)
解: ∠A =∠D.理由:
∵ AB∥DE( 已知 )
D
∴∠A=_∠__C_P_E__ ( 两直线平行,同位角相等)
A
∵AC∥DF( 已知 )
F C
P E
图1 B
∴∠D=_∠__C_P_E_ ( 两直线平行,同位角相等 )
克山县一中七年级数学下册第五章相交线与平行线5.3平行线的性质5.3.1平行线的性质导学案新版新人教
5.3 平行线的性质一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何叙述的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.(板书课题)2.学习目标:(1)能叙述平行线的三条性质.(2)能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习1.自学指导:(1)自学内容:课本P18的内容.(2)自学时间:8分钟.(3)自学要求:正确画图、测量、验证、归纳.(4)探究提纲:①画图:画两条平行线a∥b,再画一条截线c与直线a、b相交(如图1所示).②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:(1)师助生:①明了学情:了解学生围绕探究提纲进行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.(2)生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:(1)平行线的性质1及其几何表述.(2)经历平行线的性质1的探究过程,体会研究几何图形的一般方法.1.自学指导:(1)自学内容:课本P19的内容.(2)自学时间:8分钟.(3)自学要求:阅读教材,重要的部分做好圈点,疑点处做好记号.(4)自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.a.从∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.b.从∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.c.从∠1=110°,可以知道∠4是多少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对部分感到困难的学生进行点拨引导.(2)生助生:小组内相互交流、研讨、订正.4.强化:(1)平行线的性质1、2、3及其几何表述.(2)判定与性质的区别:从角的关系得到两直线平行,就是判定;从已知直线平行得到角相等或互补,就是性质.(3)练习:课本P20“练习”第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用规范性的几何语言.不足的是师生之间的互动配合和默契程度有待加强.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)如图,由AB∥CD可以得到(C)A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4第1题图第2题图2.(10分)如图,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=(C)A.180°B.270°C.360°D.540°3.(10分)如图,一条公路两次转弯后,和原来的方向相同,那么如果第一次拐的角是76°,那么第二次拐的角是76度,根据是两直线平行,内错角相等.4.(10分)如图,要在公路的两侧铺设平行管道,如果公路一侧铺设的管道与纵向联通管道的角度为120°,那么,为了使管道对接,另一侧应以60°角度铺设纵向联通管道,根据是两直线平行,同旁内角互补.第3题图第4题图第5题图5.(20分)如图,已知a∥b,c、d是截线,若∠1=80°,∠5=70°,求∠2、∠3、∠4各是多少度?为什么?解:∵a∥b,∴∠2=∠1=80°(两直线平行,内错角相等),∠3=180°-∠5=110°(两直线平行,同旁内角互补).∵∠4=∠3(两直线平行,同位角相等),∴∠4=110°.二、综合运用(20分)6.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=122°,求图中其他角的度数.解:由题意得:∠3=∠1=45°,∠1+∠7=180°,∴∠7=180°-∠1=135°.∴∠8=∠7=135°.又∠4=∠2=122°,∠2+∠5=180°,∴∠5=180°-∠2=58°.∴∠6=∠5=58°.三、拓展延伸(20分)7.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.(1)∠DAB等于多少度?为什么?(2)∠EAC等于多少度?为什么?(3)∠BAC等于多少度?(4)由(1)、(2)、(3)的结果,你能说明为什么三角形的内角和是180°吗?解:(1)∵DE∥BC,∴∠DAB=∠B=44°(两直线平行,内错角相等).(2)∵DE∥BC,∴∠EAC=∠C=57°(两直线平行,内错角相等).(3)∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC=180°-∠DAB-∠EAC=180°-44°-57°=79°.第3课时解含分母的一元一次方程【知识与技能】理解并掌握去分母解方程的方法,归纳解一元一次方程的一般步骤.【过程与方法】通过去分母解方程的过程,体会把“复杂”转化为“简单”,把“新知识”转化为“旧知识”的转化思想方法.【情感态度】结合本课教学特点,培养学生热爱数学,独立思考与合作交流的能力,激发学生学习兴趣.【教学重点】去分母解一元一次方程.【教学难点】解含有分母的一元一次方程.一、情境导入,初步认识前面我们已学习到了哪些一元一次方程的方法?【教学说明】学生很容易想到移项,去括号等方法,进一步巩固前面所学知识.二、思考探究,获取新知1.去分母解一元一次方程问题1 解方程:1/7(x+14)=1/4(x+20).【教学说明】学生通过思考、分析,确定先做什么,后做什么,尝试不同的解法.解法一:去括号,得1/7x+2=1/4x+5移项,合并同类项,得-3=3/28x.系数化为1,得-28=x.即x=-28.解法二:去分母,得4(x+14)=7(x+20).去括号,得4x+56=7x+140.移项,合并同类项,得-3x=84.系数化为1,得x=-28.问题 2 问题1中的两种解法哪一种简便些?从中你能得出解一元一次方程有哪些步骤?【教学说明】学生很容易得出第二种解法简便些,再通过观察、交流,归纳解一元一次方程的步骤.【归纳结论】解一元一次方程,一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.解含有分母的一元一次方程问题3 解方程1/5(x+15)=1/2x-1/3(x-7).【教学说明】学生按解一元一次方程的一般步骤来做,进一步掌握解一元一次方程的一般步骤.【归纳结论】当方程中含有分母时,方程两边同乘以所有分母的最小公倍数,即可去掉分母.注意:去分母时,方程两边的每一项都要乘以这个最小公倍数,不要漏乘分母为1的项;当分子是多项式,去分母时,分子要添加括号.3.一元一次方程的应用问题 4 为了参加2013年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.【教学说明】学生通过设未知数,根据题意找出相等关系,列出方程求解.进一步体会一元一次方程的应用,熟练掌握解一元一次方程的步骤和方法.三、运用新知,深化理解1.解方程2113424x x-+-=,去分母后得到的方程是( ).A.2(2x-1)-(1+3x)=-4B.2(2x-1)-(1+3x)=16C.2(2x-1)-1+3x=-16D.2(2x-1)-[1-(-3x)]=-42.方程311126x x+--=的解是().A.x=-1/8B.x=1/2C.x=1/4D.x=-3/83.当x=_______时,代数式1/3(1-2x)与代数式2/7(3x+1)的值相等.4.解下列方程.5.小华同学在解方程21236x x a-+=-去分母时,方程的右边-2没有乘6,因而求得方程的解为x=2,试求a 的值,并正确地解方程.6.某工厂购进了一批煤,原计划每天烧煤5吨,实际每天少烧2吨,这批煤多烧了20天.求这批煤有多少吨?【教学说明】学生自主完成,加深对新学知识的理解,检测对去分母解一元一次方程的掌握情况,对学生的疑惑,教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】 1.B2.C3.1/324.(1)x=1/5 (2)x=-16 (3)x=8 (4)x=7(5)x=-2/5(6)x=35.由题意可知:x=2是2(2x-1)=x+a-2的解,解得a=6. 则原方程为21236x x a -+=-, 解得x=-4/3.6.设这批煤有x 吨,由题意得:20.552x x+=- 解得:x=150. 所以这批煤有150吨. 四、师生互动,课堂小结1.师生共同回顾解一元一次方程的一般步骤.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材问题“5.5”中选取.2.完成练习册中本课时的相应作业.本节课从学生解含有分母的一元一次方程,到归纳解一元一次方程的一般步骤,培养学生动手,动脑习惯,加深对所学知识的认识,熟练运用所学知识解决实际问题,体验应用知识的成就感,激发学生学习的兴趣.有理数的除法教学目标一、知识与能力理解有理数除法法则,会进行有理数的除法运算,会求有理数的倒数;渗透化归思想,合学生初步会用已有知识解决新问题.二、过程与方法经历利用已有知识解决新问题的探索过程,通过观察、归纳、推断等方法获得数学猜想.三、情感、态度、价值观体验数学活动充满着探索性和创造性,认识到学习必须循序渐进.教学重难点一、重点:会进行有理数的除法运算;会求有理数有倒数.二、难点:理解商的符号及其绝对值与被除数和除数的关系.教学过程一、创设情景,谈话导入计算: (-6)÷2=根据除法的意义,这就是要求一个数“?”,使(?)×2=(-6)根据有理数的乘法运算,有2×(-3)=-6,所以,(-6)÷2=-3.另外,我们还知道:(-6)×12=-3.所以,(-6)÷2=(-6)×1 2.这表明除法可以转化为乘法来进行. 做一做填空:8÷(-2)=8×( );6÷(-3)=6×( );-6÷( )=-6×1 3;-6÷( )=-6×23.【答案】12-13- 3 32做完上述填空后,你有什么发现?怎样计算8÷(-4)呢?根据除法的意义,这就是求一个数,使它与-4相乘得8,因为 (-2)×(-4)=8,那么8÷(-4)等于多少呢? 8×⎪⎭⎫ ⎝⎛-41等于多少呢?二、精讲点拨质疑问难从上面的解题过程中,我们发现8÷(-4)=8×(-14)=-2引导学生思考:换其他数的除法是否发现类似上面有的等式?是否仍有除以a (a≠0)可能化为乘a 1?引导学生讨论,得:有理数除法法则:(1)除以一个不等于0的数,等于________a÷b=a×_____(b≠0)(2)两数相除,同号得 _____,异号得_____,并把绝对值相________,零除以任何一个不等于零的数,都得.【答案】(1)乘以这个数的倒数1b(2)正负除零三、课堂活动强化训练例1. 计算:(1)()186-÷;(2) 1255⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (3) 64255⎛⎫÷- ⎪⎝⎭.解:()()1861863-÷=-÷=-; 1215155522⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ; 6465325525410⎛⎫⎛⎫÷-=⨯-=- ⎪ ⎪⎝⎭⎝⎭.例2.把下列有理数写成整数之商:(1)-3;(2)-2.4.解:(1)-3===(-22)÷7;(2)-2.4===12÷(-5). 注意:本例题的答案并不是唯一的. 例3. 化简下列分数:(1) 123-(2) 2416--解:(1) ()()1212312343-=-÷=-÷=-(2) ()()241241624161162-=-÷-=÷=- 例4.计算:(1);(2) ÷×解:(1)===;(2) ÷×=××=.四、布置作业教材练习题。
人教版七年级数学下册第5章相交线与平行线(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的定义、性质和判定方法,以及它们在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
实践活动环节,分组的讨论和实验操作让同学们有了实际操作的机会,这有助于他们更好地消化吸收理论知识。但我观察到,有些小组在讨论时可能会偏离主题,需要在今后的教学中加强对讨论主题的引导。
至于学生小组讨论,我认为这是一个很好的互动和学习的机会。学生们能够在这个过程中相互启发,共同解决问题。不过,我也注意到,一些学生在讨论中较为沉默,可能需要我在以后的教学中更加关注这部分学生,鼓励他们积极参与。
-突破方法:通过动态几何软件或实物模型演示,让学生直观感受两条直线从不平行到平行的过程。
-判定方法的灵活运用:学生可能会在具体应用判定方法时感到困惑,尤其是在复杂的几何图形中。
平行线的性质 优秀课件ppt
素材:探索平行线的性质(播放状态下,点击画面操作)
探索平行线的性质.swf
当堂练习
1.如图,已知平行线AB、CD被直线AE所截
(1)从 ∠1=110o可以知道∠2 是多少度吗,为什么?
(2)从∠1=110o可以知道 ∠3是多少度吗,为什么?
(3)从 ∠1=110o可以知道∠4 是多少度吗,为什么?
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °, ∠ 2 = 70 °.
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.
65
度数
78
c
观察 ∠1~ ∠8中,哪些是同位角?它们的度数 之间有什么关系?说出你的猜想:
a
21
34
b
65
78
c
猜想 两条平行线被第三条直线所截,同位角_相_等_.
再任意画一条截线d,同样度量各个角的度 数,你的猜想还成立吗?
d
a
b
如果两直线不平行,上述结论还成立吗?
总结归纳
一般地,平行线具有如下性质:
当堂练习
1.填空:如图,
(1)∠1=∠2 时,AB∥CD. (2)∠3= ∠5或∠4时,AD∥BC.
A 1 B
D
5 2
3 C
4 F
E
2.直线a,b与直线c相交,给出下列条件:
①∠1= ∠2;
②∠3= ∠6;
③∠4+∠7=180o; ④∠3+ ∠5=180°, c
其中能判断a//b的是( B )
A. ①②③④ B .①③④
3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a
人教版数学初一下册第五章 相交线与平行线 5.3.2:命题、定理、证明(1)课件
如果两个角是同旁内角,那么这两个角互补;
(5)对顶角相等.如果两个角是对顶角,那么这两个角相等.
16
知识点一:命题
学以致用
2、改写成“如果……那么……”的形式。并指出下列各命题 的题设和结论,
①、内错角相等; ②、两条平行线被第三直线所截,同位角相等; ③、同角的余角相等; ④、同平行于一直线的两直线平行; ⑤、直角三角形的两个锐角互余; ⑥、等角的补角相等; ⑦、正数与负数的和为0。
①如果一个数能被4整除,那么它也能被2整除。 ②如果两个角互补,那么它们是邻补角。
③相等的角是对顶角.
1
2
1 2
20
知识点二:真命题和假命题
归纳总结
判断一个命题真假的方法:
利用已有的知识,通过观察、验证、推理、举 反例等方法。
判断一个命题是假命题的方法:
判断一个命题是假命题,只要举出一个例子, 说明该命题不成立就可以了,这种方法称为举反例。
,那么..."的形式,会区分命题的题设和结论。 2.知道真命题和假命题的概念,会通过举反例判 断一个命题是假命题.
重点难点 重点:命题的概念以及真命题和假命题的概念.
难点:区分命题的题设和结论.
3
知识点一:命题
新知探究
刚刚我们复习了平行线的性质与判定,这些语句都对某 一件事情作出判断,如:同位角相等,两条直线平行.
(2)题设是“两直线平行”,结论是“同位角相等”;
(3)题设是“两个角是邻补角”,结论是“这两个角互补”.
13
知识点一:命题
互动探究
先独立完成导学案互动探究2,再同桌相互交流, 最后小组交流;
七下数学第五章相交线与平行线知识点
七下数学第五章相交线与平行线知识点
七下数学第五章相交线与平行线包括以下几个知识点:
1. 平行线的判定:两条直线如果在同一个平面内,且没有交点,那么它们是平行线。
2. 平行线的性质:
a. 平行线上的任意两点与第三条线的交点分别都与平行线上的对应点连线相平行。
b. 平行线之间的距离是不变的,无论在任何位置上测量。
3. 线的相交情况:
a. 直线与直线相交,交点为一点。
b. 直线与平行线相交,交点为无穷远处的一点(虚交点)。
c. 平行线与平行线相交,交点不存在。
4. 相交线的判定:
a. 两条直线相交,交点只有一个。
b. 两条直线平行,交点不存在。
c. 两条直线重合,交点有无数个。
5. 用相交线运用到的一些概念:
a. 对偶关系:如果两条直线相交于一个点,那么这两条直线互为对偶关系。
b. 垂直线:两条互相垂直的直线相交于直角。
6. 平行线判定定理:
a. 若两条直线被一组平行线切割,那么这两条直线也是平行线。
b. 若两条直线分别与一组平行线平行,那么这两条直线也是平行线。
这些知识点是七下数学第五章相交线与平行线的重点,通过学习这些内容,能够更好地理解和运用在平行线和相交线的相关问题中。
[数学]-5.3 平行线的性质(原版)
(2)若∠F=∠G,求证:DG∥BF.
【变式3-4】(2022春•温江区校级期中)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠D+∠AED=180°,∠C=∠EFG.
(1)求证:AB∥CD;(2)若∠CED=75°,求∠FHD的度数.
D.第一次向左拐53°,第二次向左拐127°
【变式4-4】(2022春•东湖区校级月考)工人师傅对一个如图所示的零件进行加工,把材料弯成了一个40°的锐角,然后准备在A处第二次加工拐弯,要保证弯过来的部分与BC保持平行,弯的角度应是.
【变式4-5】(2022•小店区校级开学)如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为( )
A.120oB.80oC.60oD.75o
解题技巧提炼
平行线的判定和性质在解题中经常反复使用,见到角相等或互补就应该联想到能否判定两条直线平行,见到直线平行就应该联想到能否证明相关的角相等或互补.
【变式3-1】(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是( )
A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3
几何语言表示:
∵a∥b(已知),
∴∠2=∠4.(两直线平行,内错角相等).
性质定理3:两条平行线被地三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
简单说成:同旁内角互补,两直线平行.
几何语言表示:
∵a∥b(已知),
七年级数学下册第五章《相交线与平行线》简介
七年级下册第五章“相交线与平行线”简介(2012修订)七年级下册第5章是“相交线与平行线”,本章主要研究平面内不重合的两条直线的位置关系:相交与平行.对于相交,研究了两条直线相交所成的角的位置关系和数量关系;对于平行,借助于一条直线与另外两条直线相交所成的角,研究了平行线的判定和性质.在此基础上,学习了平移的有关知识.在本章,学生还要学习通过简单推理得出数学结论的方法,培养言之有据的思考习惯.本章共安排了四个小节以及两个个选学内容,教学时间约需14课时,具体分配如下(仅供参考):5.1 相交线3课时5.2 平行线及其判定3课时5.3 平行线的性质4课时5.4 平移2课时数学活动小结2课时一、教科书内容和本章学习目标1.本章知识结构本章知识结构如下图所示:2.教科书内容平面内两条直线的位置关系是“图形与几何”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究了两条直线相交的情形,探究了两直线相交所成的角的位置和大小关系,给对顶角对顶角对于推理能力的培养,在本章,不仅要求学生通过观察、思考、探究等活动归纳出图形的概念和性质,还要求“说理”和“简单推理”,并了解证明,把推理和证明作为探究得出结论的自然延续.本章这样的地方还是很多的,例如“对顶角相等”性质的得出,由判定两直线平行的方法1,得出方法2、3,由平行线的性质1,得出性质2、3,以及一些例、习题中,等等.对于推理,由于学生还比较陌生,不知道应由什么,根据什么,得出什么,对于推理所用的三段论的形式——由小前提得到结论,以大前提作为理由,一下子也很难适应.因此,逐步深入地让学生学会说理,是本章的一个难点.解决以上难点的关键是要按照教科书的安排,一步一步地,循序渐进地引入推理论证的内容.在本章,结合正文的相关内容,进行初步的说理训练;在本章最后,学习了命题及命题的构成后,学生也能对推理的理由,三段论的表达形式有进一步的认识,用这样前一步为后一步做准备,逐步提高,慢慢教会的办法克服难点.3.本章学习目标(1对顶角对顶角(5)通过具体实例,了解定义、命题、定理、的意义,会区分命题的条件和结论.知道证明的意义和证明的必要性,知道证明要合乎逻辑.了解反例的作用,知道利用反例可以判断一个命题是错误的.二、编写时考虑的几个问题1.内容呈现上充分体现认知过程,给学生提供探索与交流的时间和空间在内容处理上,教科书加强了实验几何的成分,将实验几何与论证几何有机结合.论证几何在培养人的逻辑思维能力方面起着重要作用,而实验几何则是发现几何命题和定理的有效工具,在培养人的直觉思维和创造性思维方面起着重要的作用.对于几何中的结论,教科书多数是先让学生通过画图、折纸、剪纸、度量或做试验等活动,探索发现几何结论,然后再对结论进行说明、解释或论证,为由实验几何到论证几何的过渡做好铺垫.对于本章中的一些概念、性质、公理和定理,教科书大多是通过设问、设置“思考”“探究”“归纳”以及“数学活动”等栏目,让学生通过探索活动来发现结论,经历知识的“再发现”过程,在探究活动的过程中发展创新思维能力,改变学生的学习方式.例如,对于“对顶角,教科书首先设置一个“讨论”栏目,让学生度量两条相交直线所成的角的大小,对顶角这样就将实验几何与论证几何相结合.通过这样的“数学活动”培养学生的探究能力和创新意识.2.注意加强直观性密切联系实际,体现知识的形成和应用过程,以实际问题为出发点和归宿是编写这套教科书特别关注的问题.几何图形是从实际中抽象出来的,所以几何图形的定义、性质都是比较抽象的,这一点对于学生来说有一定的困难.为了减少学生学习的困难,在编写这一章时,我们注意根据七年级学生的认知特点,加强了直观教学,使教学内容尽量贴近学生的生活.许多概念、性质、定理的引入都是从解决实际问题的需要来出发的(如从剪刀剪开布片的过程引入研究两条相交直线所成角的问题,从灌溉挖渠的问题引入垂线段最短的性质,等等);在教材编写时,也注意为利用实物、模型、计算机等多种教学手段提供材料,让学生在运动变化中寻找图形的不变的位置关系和数量关系,从而有利于发现图形的性质(如对顶角的性质,垂线、平行线的概念的引入等等).在研究有关数学概念、性质后,再注意把所学知识应用到实际生活中(例如画交通路口示意图、检验一些平行问题、绘制住房平面图等等).在教学时,也应注意从实际问题出发,引导学生自己多观察、多动手、勤思考,结合适合当地特点的一些问题,抽象出隐含在这些实际问题中的数学问题,引入本章要学习的相关内容,通过对数学问题的研究,学习有关的数学概念和方法,并利用所学知识解决更多的实际问题,体现具体——抽象——具体的过程,提高学生学习数学的兴趣,培养他们应用所学知识解决问题的能力.3.循序渐进地安排技能训练这一章的教学,除了要学习一些数学知识以外,还担负着一些技能和能力的培养和训练的任务.这既有几何语言、图形方面的,也有说理、推理方面的.这些内容,都是进一步学习空间与图形知识的基础.教科书在这方面也是作了精心安排,在教学时应当注意按照由简单到复杂,由模仿到独立操作的顺序,逐步提高要求.在这一章,要求学生进行说理和简单推理,为今后进行推理论证的进行准备.因此,也就要求学生能用较准确的语言表达学过的概念、性质,学会一些简单的、基本的推理语言(如“因为……所以……”“由……得……”等),要能区分命题的条件和结论等,能用文字语言表达说理过程,能用符号语言表达简单的推理过程,为今后进行推理论证打下一个良好的基础.对此,教科书也进行了周密的安排.例如,教科书在通过说理的方式得出了对顶角的性质的基础上,进一步的把这个说理过程写成“因为……所以……”的形式;把利用垂直的定义判断角的关系的推理过程写成“因为……所以……”的形式;后续说明“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”以及证明“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条”的过程中,采用严格的证明形式,等等.这样安排,目的就是让学生循序渐进的接触推理与证明,逐步养成言之有据的习惯,并逐渐学会用符号语言表达推理过程.承接“图形认识初步”,本章仍旧要重视文字语言、符号语言、图象语言等几种不同语言的相互转化,注意“几何模型→图形→文字→符号”这个抽象的过程,使抽象和直观结合起来,在图形的基础上发展其他语言.在教科书中也注意了由不同方向对图形、文字和符号间转化的设计安排,安排了这样一些练习、习题,教学时也要注意这方面的训练.本章也要求学生能用各种绘图工具画出垂线、平行线,平移一个简单的图形等,教科书还安排了“你有多少画平行线的方法”的数学活动,通过这些内容,让学生较快适应,把几何图形与语句表示、符号表示联系起来,使学生能从多角度表示图形、认识图形、把握图形.4.渗透研究几何问题的内容和方法“相交线与平行线”是“图形与几何”领域的基础内容,对这部分内容的研究也包含了研究几何图形的基本内容、套路和方法,教科书在这方面也注意加强渗透.例如,本章内容呈现时,注意让学生通过观察实物、模型和图形,通过观察、测量、实验、归纳、对比、类比等来寻找图形中的位置关系和数量关系,从而发现图形的性质.同时,注意通过“推理”获得数学结论的方法,培养学生言之有据的习惯和有条理地思考、表达的能力,完成由实验几何到论证几何的过渡.再如,图形的性质、图形的判定是研究几何图形的基本问题,本章重点研究的就是相交线的性质对顶角,垂直、平行的的判定和性质等.为了更好的让学生认识什么是“性质”,什么是“判定”,教科书在小结部分对此专门做了阐述,即“图形的判定”讨论的是确定某种图形需要什么条件(两条直线与第三条直线相交,具备“同位角相等”,就有“两直线平行”);“图形的性质”讨论的是这类图形有怎样的共同特性(两条直线只要平行,它们被第三条直线所截时,就一定有同位角相等).另外,在很多情况下,图形的判定与性质具有互逆的关系,对此,教科书在“平行线的性质”一节的开头,通过提问“利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,同位角、内错角、同旁内角又各有什么关系呢?这就是我们下面要学习的平行线的性质.”渗透了这种关系.还有,在“相交线”一节,教科书从“两条直线相交”到“三条直线相交(两条直线被第三条直线所截)”,都是研究它们所成的角的关系.通过“根据结构特征对这些角进行分类”,对顶角三条直线所截是三条直线相交的特殊情形,这些特殊情形不仅在后续的几何图形研究中起着重要的作用,而且在生活中也有广泛的应用,这也是我们研究这些“特例”的重要原因.这些思路和方法也都是几何图形研究的重要内容和方法,教科书也都进行了渗透.三、对教学的几个建议1.有意识地培养学生有条理的思考和表达对于推理能力的培养,本套教科书按照“说点儿理”“说理”“简单推理”“用符号表示推理”等不同层次分阶段逐步加深地安排.本章对于推理的要求还处在初步阶段,只是结合知识的学习,识图、画图、几何语言的训练从“说理”过渡到“简单推理”.例如,在推导“对顶角,在平行线的判定(由判定方法1得到判定方法2),平行线的性质(由性质1得出性质2)时,教科书展示了一个简单推理的过程.这些过程中,都没有采用“已知……,求证……,证明”的形式逻辑格式,而是用说理和简单推理的方式展示推理的过程,但强调让学生经历推理的过程,感受推理论证的作用,使说理、推理作为观察、实验、探究得出结论的自然延续.教学中要注意循序渐进逐步提高学生的推理能力,要鼓励学生用自己的语言说明理由,在书写格式上不作统一要求,可以用自然语言,可以结合图形进行说明,可以用箭头等形式表明自己的思路,也可以用数学符号语言表示说理、简单推理的过程,等等.总之,要注意逐步提高、不要急于要求学生用数学符号语言书写,不能操之过急.另外,说理、推理的内容是本章的教学难点,教科书中注意对学生循序渐进地进行训练.由于学生的认知能力有差别,基础也不同,所以教学中一方面要按要求有计划地组织好教学,另一方面要注意因材施教.对于学习有困难的学生,一定要一步一步地使每阶段的训练到位,不要急于求成;对接受能力强的学生,要及时调整教学要求,保护他们学习的积极性,满足他们的求知欲,对于教科书中的一些要求说明理由的习题,也可以要求他们把推理的过程用简单的符号化的语言表示出来.2.注意突出重点内容这一章的内容比较丰富,除了要研究平面内两条直线间的位置关系(重点是垂直和平行关系),还包括平移以及一些有关命题的内容,由于教学时间有限,为了使学生集中精力掌握最基础的知识,并形成一定的能力,教学时应注意突出重点.例如,研究两条直线的位置关对顶角对顶角念都是结合图形,分析其位置关系给出的;垂直、平行的概念则是承接了前面学段学过的概念.对于同位角、内错角、同旁内角的内容,教科书是在研究两条直线相交的基础上,进一步研究三条直线相交的角度引入的,主要是为接下来研究平行做准备.这里要求学生掌握基本概念即可,不要做过多的变式训练.再如,对于命题、定理、证明等概念,在本章,要求学生在学过一些命题(包括数与代数的以及图形与几何的)的基础上,了解命题的概念以及命题的构成(如果……那么……的形式),知道命题的真假,了解定理的概念等,知道什么是证明等,不要在这里过多要求.由于内容较多,每课教学时都要突出一两个重点,课堂活动也要围绕这一两个重点进行.例如,讲5.1.1 对顶角教对于教科书中的探究栏目,可以设计一个表格,由两条直线相交的图形,让学生寻找其中所成的角,对它们进行分类,根据位置关系对它们“命名”,然后寻找它们的大小关系,最后再进行说理.在课堂上识图、画图、语言训练、作练习都可以主要围绕找“对顶角”或应用“对顶角相等”进行.3.把握好对推理与证明的教学要求在“平行线的性质”一节的最后,在介绍了命题、定理等概念的基础上,教科书结合一个完整的证明过程介绍了什么是证明.同时,教科书也安排了一些在给出的推理过程中,填写一些关键步骤和推理的理由的练习和习题.教学中,要把握好对证明的教学要求,即要求学生知道什么是证明,能在给出的推理过程中,填出一些关键步骤和理由即可,不要求学生写出完整的证明过程.这样做,目的在于逐步培养学生言之有据的习惯,为完成由实验几何到论证几何的过渡打下基础.而不是几何证明的方法和技巧.4.处理好平移内容从课程标准看,图形的变化是“图形与几何”领域中一块重要的内容,图形的变化主要包括图形的平移、图形的轴对称、图形的旋转和图形的相似等.通过对图形的平移、旋转、折叠等活动,使图形动起来,有助于发现图形的几何性质,因此图形的变化是研究几何问题的有效的工具.平移是一种基本的图形变化.在“平移”一节中,教科书首先从观察几个由图形的平移得到的美丽图案入手,分析这些图案的共同特点,发现每一个图案都是由一个图形经过平行移动得到的.通过探索平移前后两个图形之间的关系,发现“两个图形大小形状完全相同”“新图形中的每一点都是由原图形中的某一点移动后得到的,这两个点是对应点”“各组对应点间的连线平行且相等”等平移的基本性质,并学习利用平移设计图案和分析解决实际生活中的问题.对于平移的内容,本章只是一个初步认识,本册书在“平面直角坐标系”中还安排了“用坐标表示平移”的内容,从数的角度用代数的方法研究平移,将平移从数和形两方面统一起来,使学生对平移有更深刻的了解,为今后使用平移发现几何结论,研究几何问题打下基础;另外,在八年级下册“四边形”一章,还结合平行四边形的判定和性质对平移过程中“对应点的连线平行且相等”的性质作了理论的推导;在九年级上册“旋转”中,还要求学生能综合应用平移、轴对称、旋转等变换进行图案设计,认识和欣赏它们在现实生活的应用.这样处理平移内容,能使学生从感性到理性、从静态到动态逐步加深对平移的理解,有助于他们逐步掌握平移的内容.在教学时要注意教科书的安排,完成好这部分内容的教学.5.重视信息技术的应用信息技术工具的使用能为学生的数学学习和发展提供丰富多彩的教育环境和有力的学习工具.利用信息技术工具,可以很方便地制作图形,可以很方便地让图形动起来.许多计算机软件还具有测量功能,这也有利于我们在图形的运动变化的过程中去发现其中的不变的位置关系和数量关系,有利于发现图形的性质,这可以使得许多传统的数学教学做不到或做不好的事情变得容易起来.在这一章,信息技术工具是大有用武之地的,教科书还专门安排了一个“信息技术应用”的选学栏目,对教科书中一些可以应用信息技术的地方进行了举例说明.例如,我们随意画两条相交直线,就得到了一个相交线的“模型”,这个模型比我们用木条做成的模型又进一步,它不仅可以随意转动,通过寻找转动过程中角的不变的位置关系得到邻补角对顶角还可以利用软件的测量功能,测出这些角的大小,再观察转动过程中角的大小的变化,去发对顶角术工具的优势所在.其他探索垂线的性质、探索平行线的性质和判定方法也是类似的.因此,有条件的学校,应尽可能多的使用计算机或图形计算器等信息技术工具,帮助学生的数学学习.。
七年级数学下册第五章相交线与平行线知识点总结
相交线与平行线5.1 相交线邻补角、对顶角对顶角相等直线a与直线b互相垂直,记作a b 。
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
在同一平面内,过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
同位角、内错角、同旁内角5。
2 平行线及其判定5。
2。
1 平行线在同一平面内,当直线a与直线b不相交时,我们就说直线a与直线b互相平行,记作//a b。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即如果b a,c a,那么b c。
5。
2.2 平行线的判定判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.同位角相等,两直线平行.判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.内错角相等,两直线平行。
判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
同旁内角互补,两直线平行。
5。
3 平行线的性质5.3。
1 平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。
两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。
两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补.两直线平行,同旁内角互补。
5。
3.2 命题、定理、证明判断一件事情的语句,叫做命题命题由题设和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
数学中的命题通常可以写成“如果……那么……”的形式,这时“如果”后的部分是题设,“那么”后接的部分是结论。
如果题设成立,那么结论一定成立,这样的命题叫做真命题.题设成立时,不能保证结论一定成立,这样的命题中做假命题.在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.5。
人教版七年级数学下册 第五章 相交线与平行线第五章 相交线与平行线 单元解读课件(课件)
1个公理
平行公理(推论)
2个模型
“相交线”模型,“三线八角”模型
3个应用
相交线的应用,平行线的应用,平移的应用
4种思想方法
数形结合思想,分类讨论思想,转化与化归思想,方程思想
单元整体规划
“相交线与平行线”是“图形与几何”领域的基础内容,对这部分内容的研究包含了研究几何图形 的基本内容、思路和方法.这一章的教学,除了要学习一些数学知识以外,还担负着一些技能和能力的培 养和训练的任务.这既有几何语言、图形方面的,也有说理、推理方面的.这些内容,都是进一步学习空间 与图形知识的基础.
本章教学建议
处理好教学中的几个问题
3.处理好平移内容
从《义务教育数学课程标准》看,图形的变换是“图形与几何”领域中一块重要 的内容,图形的变换主要包括图形的平移、图形的轴对称、图形的旋转和图形的相似 等.
对于平移的内容,本章只是一个初步的认识,本册书“第六章 平面直角坐标系” 中还安排了“用坐标表示平移”的内容,从数的角度用代数的方法研究平移变换,将 平移变换从数和形两方面统一起来.另外,在八年级下册“四边形”一章,九年级上册 “旋转”中,都有所涉及.这样处理平移的内容,能使学生从感性到理性、从静态到动 态逐步加深对平移的理解,有助于学生逐步掌握平移的有关内容.
5.4 平移
1. 通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所 得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.
2. 认识并欣赏平移在自然界和现实生活中的应用.运用图形的平移进行图 案设计.
本章重难点
01 教学重点
垂
1. 理解邻补角、对顶角的概念,探索并掌握领补角、对顶角的性质. 2. 理解垂线、垂线段等概念,掌握垂线的性质.能用三角尺或量角器过一
《5.3.1 平行线的性质》教案、导学案、同步练习
《5.3.1 平行线的性质》教案第1课时平行线的性质【教学目标】1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)【教学过程】一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.探究点二:平行线与角平分线的综合运用如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD 的度数.解析:先利用GF ∥CE ,易求∠CAG ,而∠PAG =12°,可求得∠PAC =48°.由AP 是∠BAC 的角平分线,可求得∠BAP =48°,从而可求得∠BAG =∠BAP +∠PAG =48°+12°=60°,即可求得∠ABD 的度数.解:∵FG ∥EC ,∴∠CAG =∠ACE =36°.∴∠PAC =∠CAG +∠PAG =36°+12°=48°.∵AP 平分∠BAC ,∴∠BAP =∠PAC =48°.∵DB ∥FG ,∴∠ABD =∠BAG =∠BAP +∠PAG =48°+12°=60°.方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.探究点三:平行线性质的探究应用如图,已知∠ABC .请你再画一个∠DEF ,使DE ∥AB ,EF ∥BC ,且DE 交BC 边与点P .探究:∠ABC 与∠DEF 有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC 与∠DEF 的数量关系是相等或互补.理由如下:如图①,因为DE ∥AB ,所以∠ABC =∠DPC .又因为EF ∥BC ,所以∠DEF =∠DPC ,所以∠ABC =∠DEF .如图②,因为DE ∥AB ,所以∠ABC +∠DPB =180°.又因为EF ∥BC ,所以∠DEF =∠DPB ,所以∠ABC +∠DEF =180°.故∠ABC 与∠DEF 的数量关系是相等或互补.方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.三、板书设计平行线的性质⎩⎨⎧⎭⎬⎫两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补求角的大小或说明角之间的数量关系【教学反思】平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学第2课时平行线的性质和判定及其综合运用【教学目标】1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.【教学过程】一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF ∥AB.(1)CE与DF平行吗?为什么?(2)若∠DCE=130°,求∠DEF的度数.解析:(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可证明CE∥DF;(2)由平行线的性质,可得∠CDF=50°.由DE平分∠CDF,可得∠CDE=1 2∠CDF=25°.最后根据“两直线平行,内错角相等”,可得到∠DEF的度数.解:(1)CE∥DF.理由如下:∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°-∠DCE=180°-130°=50°.∵DE平分∠CDF,∴∠CDE=12∠CDF=25°.∵EF∥AB,∴∠DEF=∠CDE=25°.方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?说明理由.解析:由图可知∠ABD和∠ACE是同位角,只要证得同位角相等,则CE∥BD.由平行线的性质结合已知条件,稍作转化即可得到∠ABD=∠C.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.探究点三:平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)∠AFD与∠AED之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE +∠CDE =32∠BAF +32∠CDF =32(∠BAF +∠CDF )=32∠AFD ,∴∠AED =32∠AFD .方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计⎭⎬⎫同位角相等内错角相等同旁内角互补判定性质两直线平行【教学反思】本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质《5.3.1 平行线的性质》导学案第1课时 平行线的性质【学习目标】:1.掌握两直线平行,同位角、内错角相等,同旁内角互补,并能熟练运用.2.通过独立思考,小组合作,运用猜想、推理的方法,提升自己利用图形分析问题的能力.3.激情投入,全力以赴,培养严谨细致的学习习惯.【重点】:平行线的性质.【难点】:根据平行线的性质进行推理.【自主学习】一、知识链接平行线的判定方法有哪几种?二、新知预习如图,直线a与直线b平行,直线c与它们相交.(1)量一量:用量角器量图中8个角的度数.(2)说一说:由测量的结果,你发现∠1与∠5、∠2与∠6、∠3与∠7、∠4与∠8、∠3与∠6、∠4与∠5、∠3与∠5、∠4与∠6的大小有什么关系?(3)想一想:(2)中的各对角分别是什么角?(4)议一议:两条平行直线被第三条直线所截,所得的同位角、内错角、同旁内角有什么关系?三、自学自测1.如图,直线a∥b,∠1=70°,那么∠2的度数是()A.50°B.60°C.70°D.80°2.下列说法中,(1)同位角相等,两直线平行;(2)两直线平行,同旁内角互补;(3)内错角相等,两直线平行;(4)同一平面内,垂直于同一直线的两条直线平行.其中是平行线的性质的是()A.(1)和(3)B.(2)C.(4)D.(2)和(4)【课堂探究】要点探究探究点:平行线的性质问题1:画两条平行线a//b,然后画一条截线c与a、b相交,标出如图所示的角. 度量所形成的8个角的度数,把结果填入下表:角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数观察:∠1~ ∠8中,哪些是同位角?它们的度数之间有什么关系?说出你的猜想.猜想:两条平行线被第三条直线所截,同位角 .思考:再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?问题2:如图,已知a//b,那么∠2与∠3相等吗?为什么?问题3:如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?例1.如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?例2:小明在纸上画了一个∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长DC、FE的话,你能帮他设计出多少种方法测出∠A的度数?【当堂检测】1.如图,已知平行线AB、CD被直线AE所截(1)从∠1=110°可以知道∠2 是多少度吗,为什么?(2)从∠1=110°可以知道∠3是多少度吗,为什么?(3)从∠1=110°可以知道∠4 是多少度吗,为什么?2.如图,一条公路两次拐弯的前后两条路互相平行.第一次拐弯时∠B是142°,第二次拐弯时∠C是多少度?为什么?3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a垂直于直线c吗?4.如果有两条直线被第三条直线所截,那么必定有()A.内错角相等B.同位角相等C.同旁内角互补D.以上都不对5.(1)如图1,若AB∥DE , AC∥DF,试说明∠A=∠D.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A=_______ ( )∵AC∥DF( )∴∠D=______ ( )∴∠A=∠D ( )(2)如图2,若AB∥DE , AC∥DF,试说明∠A+∠D=180o.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A= ______ ( )∵AC∥DF( )∴∠D+ _______=180° ( )∴∠A+∠D=180°()6.【拓展题】如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?5.3.1 平行线的性质第2课时平行线的性质和判定及其综合运用【学习目标】:1.进一步熟悉平行线的判定方法和性质.2.运用平行线的性质和判定进行简单的推理和计算.【重点】:平行线的判定方法和性质.【难点】:平行线的性质和判定的综合运用.【自主学习】一、知识链接1.平行线的判定方法有哪些?2.平行线的性质有哪些?二、新知预习1.两条直线被第三条直线所截,同位角、内错角相等,或者说同旁内角互补,这句话对吗?2.自主归纳:(1)两直线平行,同位角,内错角,同旁内角 .(2)不难发现,平行线的判定,反过来就是,注意它们之间的联系和区别.(3)运用平行线的性质时,不要忽略前提条件“”,不要一提同位角或内错角,就认为是相等的.【课堂探究】一、要点探究探究点:平行线的性质和判定及其综合应用例1.如图,三角形ABC中,D是AB上一点,E是AC上一点,∠ADE=60°,∠B = 60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?做一做:已知AB∥CD,∠1 = ∠2.试说明:BE∥CF.例2.如图,AB∥CD,猜想∠A、∠P 、∠PCD的数量关系,并说明理由.例3.如图,若AB//CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.【变式题1】如图,AB//CD ,探索∠B 、∠D 与∠DEB 的大小关系 .【变式题2】如图,AB ∥CD,则∠A ,∠C 与∠E 1,∠E 2,…,∠E n 有什么关系?【变式题3】如图,若AB ∥CD, 则∠A ,∠C 与各拐角之间有什么关系?EDC BA【当堂检测】1.填空:如图,(1)∠1= 时,AB∥CD.(2)∠3= 时,AD∥BC.2.直线a,b与直线c相交,给出下列条件:①∠1= ∠2;②∠3= ∠6;③∠4+∠7=180°;④∠3+ ∠5=180°,其中能判断a//b的是( )A. ①②③④ B .①③④ C. ①③ D. ④3. 有这样一道题:如图,AB//CD,∠A=100°, ∠C=110°,求∠AEC的度数. 请补全下列解答过程.解:过点E作EF//AB.∵AB//CD(已知),∴ // (平行于同一直线的两直线平行).∴∠A+∠ =180°,∠C+∠ =180°(两直线平行,同旁内角互补).又∵∠A=100°,∠C=110°(已知),∴∠ = °, ∠ = °.∴∠AEC=∠1+∠2= °+ ° = °.4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD的度数.第五章相交线与平行线5.3.1《平行线的性质》同步练习一、单选题(共15题;共30分)1、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( )A、30°B、25°C、20°D、15°2、如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A、60°B、33°C、30°D、23°3、两条平行直线被第三条直线所截,下列命题中正确的是()A、同位角相等,但内错角不相等B、同位角不相等,但同旁内角互补C、内错角相等,且同旁内角不互补D、同位角相等,且同旁内角互补4、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A、40°B、50°C、130°D、150°5、如图,下列说法正确的是()A、若AB//CD,则∠1=∠2B、若AD//BC,则∠B+∠BCD=180ºC、若∠1=∠2,则AD//BCD、若∠3=∠4,则AD//BC6、下列图形中,由AB//CD能得到∠1=∠2的是()A、 B、C、 D、7、下列语句:①两条不相交的直线叫做平行线;②过直线外一点有且只有一条直线与已知直线垂直;③若AB=BC,则点B是AC的中点;④若两角的两边互相平行,则这两个角一定相等;其中说法正确的个数是()A、1B、2C、3D、48、同一平面内,两条不重合的直线的位置关系是()A、平行或垂直B、平行或相交C、平行、相交或垂直D、相交9、下列生活实例中;①交通道口的斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车的平直铁轨线.其中属于平行线的有()A、1个B、2个C、3个D、4个10、如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为()A、19°B、29°C、63°D、73°11、如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=35°,∠2的度数为()A、95°B、65°C、85°D、35°12、如图,已知:AB∥CD,CE分别交AB、CD于点F、C,若∠E=20°,∠C=45°,则∠A的度数为()A、5°B、15°C、25°D、35°13、如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=()A、20°B、25°C、30°D、35°14、如图,若a∥b,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是()A、 B、C、 D、15、如图,如果AB∥CD,那么图中相等的内错角是()A、∠1与∠5,∠2与∠6B、∠3与∠7,∠4与∠8C、∠5与∠1,∠4与∠8D、∠2与∠6,∠7与∠3二、填空题(共5题;共10分)16、如图,已知:∠A=∠F,∠C=∠D,求证:BD∥EC,下面是不完整的说明过程,请将过程及其依据补充完整.证明:∵∠A=∠F(已知)∴AC∥________,________∴∠D=∠1________又∵∠C=∠D(已知)∴∠1=________________∴BD∥CE ________17、如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为________ 度(用关于α的代数式表示).18、如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为________ .19、如图,把含有60 º角的三角尺ABC的直角顶点C放在直线DE上,当AB∥DE。
第五章 相交线与平行线 全章教案
第五章相交线与平行线教材内容本章主要内容是两条直线的位置关系:相交线和平行线,以及平移变换的内容。
本章首先研究了相交的情形,探索了两条直线相交所成角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论;并着重研究了相交的特殊情形——垂直,探索了垂直的性质,给出了点到直线的距离的概念。
接着研究了平行的情形,教科书首先引入了一个基本事实(平行公理),以此为出发点探讨了两条直线平行的性质和判定,并给出了两条平行线间的距离的概念,还对命题以及命题的构成作了简单的介绍。
最后研究了平移的概念和性质,以及利用平移设计图案和分析解决实际生活中的问题。
本章知识是学习线和角的继续,也是学习几何知识的重要基础,以后几乎所有几何图形的学习都用到本章知识。
教学目标〔知识与技能〕1、了解两条直线的位置关系有相交与平行两种,理解相交线、平行线、平移的有关概念及性质,会运用这些概念和性质进行简单的推理和计算;2、会用三角板、量角器等工具熟练地画垂线、平行线及有关简单几何图形,逐步培养学生的识图和绘图能力;3、进一步熟悉和掌握几何语言,能够把学过的概念和性质,用图形或符号语言表示出来;4、逐步了解几何推理要步步有据,会准确地填写推理的根据,并会作简单的推理。
〔过程与方法〕1、通过探索、猜测,进一步体会学会推理的必要性,发展学生初步推理能力;2、通过揭示一些概念和性质之间的联系,对学生进行创新精神和实践能力的培养.〔情感、态度与价值观〕1、通过观察、实验、归纳、类比、推断,体验数学活动的趣味性,以感受推理过程的严谨性以及结论的确定性;2、开展探究性活动,充分体现学生的自主性和合作精神,激发学生乐于探索的热情。
重点难点垂线的概念与平行线的判定与性质及平移是重点;学会写推理过程和对直线平行的性质和判定的灵活运用是难点。
课时分配5.1相交线……………………………………… 2课时5.2平行线……………………………………… 3课时5.3平行线的性质……………………………… 3课时5.4平移………………………………………… 5课时本章小结………………………………………… 2课时5.1.1 相交线〔教学目标〕1、经历探究对顶角、邻补角的位置关系的过程;2、了解对顶角、邻补角的概念;3、知道“对顶角相等”并会运用它进行简单的说理。
人教版七年级数学下册相交线与平行线《平行线的性质(第1课时)》示范教学设计
平行线的性质(第1课时)教学目标1.理解平行线的性质.2.经历平行线性质的探究过程,从中体会研究几何图形的一般方法.教学重点掌握平行线的性质.教学难点平行线的性质的探究过程.教学过程新课导入利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,同位角、内错角、同旁内角又各有什么关系呢?这就是我们要学习的平行线的性质.类似于研究平行线的判定,我们先来研究两条直线平行时,它们被第三条直线截得的同位角的关系.【设计意图】复习上节课所学的平行线的三种判定方法,引入探究课题,有意识地让学生回顾上节课内容,为后面类比研究平行线判定的过程来构建平行线性质的研究过程作好铺垫.新知探究一、探究学习【问题】画两条平行线a∥b,然后,画一条截线c与这两条平行线相交,度量所形成的八个角的度数,把结果填入下表:【师生活动】学生独立画出图形,并对角度进行度量,完成表格.【答案】画出图形如下:完成表格:【问题】∠1,∠2,…,∠8中,哪些是同位角?它们的度数之间有什么关系?由此猜想两条平行线被第三条直线截得的同位角有什么关系.【师生活动】在学生探究过程中,教师关注学生对同位角的标记是否准确,能否正确对角度进行度量,并鼓励学生独立完成猜想.【答案】同位角有:∠1和∠5,∠2和∠6,∠4和∠8,∠3和∠7.每对同位角的度数都相等.猜想:两条平行线被第三条直线所截,同位角相等.【追问】再任意画一条截线d,同样度量并比较各对同位角的度数,你的猜想还成立吗?【师生活动】教师引导学生随意画出另一条截线,对前面的猜想进行验证.【答案】画出图形,并标记出各角:任意画一条截线d,得到各对同位角为:∠1′和∠5′,∠2′和∠6′,∠3′和∠7′,∠4′和∠8′.经度量,∠1′=∠5′=∠3′=∠7′=70°,∠2′=∠6′=∠4′=∠8′=110°.所以猜想成立.【新知】用文字语言和符号语言分别概括发现的结论:一般地,平行线具有如下性质.性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.符号语言:∵AB∥CD,∴∠1=∠2.【动图】仔细观察下面的动图,巩固对平行线的性质1的掌握.【设计意图】让学生充分经历动手操作,独立思考,合作交流,验证猜想的探究过程,并且在这一过程中,锻炼学生由图形语言转化为文字语言、文字语言转化为符号语言的归纳能力和表达能力,为后面学习平行线的其他性质打下基础.【问题】上一节,我们利用“同位角相等,两直线平行”推出了“内错角相等,两直线平行”.类似地,你能由性质1,根据下图,推出两条平行线被第三条直线截得的内错角之间的关系吗?【师生活动】教师引导学生结合平行线的判定,作出猜想:∠1=∠2.【追问】怎样验证猜想?【师生活动】教师给出要验证的问题:已知直线a∥b,c是截线.试说明∠1=∠2.引导学生写出推理过程,并分析是否正确.【答案】解:∵a∥b,∴∠3=∠2(两直线平行,同位角相等).又∵∠1=∠3(对顶角相等),∴∠1=∠2.【追问】类比性质1,能用文字语言和符号语言分别对得出的结论进行表述吗?【答案】性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.符号语言:∵AB∥CD,∴∠1=∠2.【动图】仔细观察下面的动图,巩固对平行线的性质2的掌握.【设计意图】在教师的引导下逐步构建研究思路,循序渐进地引导学生思考,从“说理”向“简单推理”过渡.【问题】由“两直线平行,同位角相等”,我们可以推出平行线关于同旁内角的什么性质?【师生活动】教师引导学生结合图形及前面学习的性质1进行探究,并鼓励学生独立得到猜想:∠2+∠4=180°,并让学生把要说明的问题转化为数学语言:如图,已知直线a ∥b,c是截线.试说明∠4+∠2=180°,然后完成解答.【答案】解:∵a∥b,∴∠3=∠2(两直线平行,同位角相等).∵∠3+∠4=180°,∴∠4+∠2=180°.【追问】类比性质1,2,能用文字语言和符号语言分别对得出的结论进行表述吗?【答案】性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.符号语言:∵AB∥CD,∴∠1+∠2=180°.【动图】仔细观察下面的动图,巩固对平行线的性质3的掌握.【总结】同位角相等、内错角相等、同旁内角互补都是平行线特有的性质,切不可忽略“两直线平行”这一前提条件.当两条直线不平行时,同位角、内错角就不相等,同旁内角也不互补.【设计意图】逐步培养学生的推理能力,使学生初步养成言之有据的习惯,从而能进行简单的推理.二、典例精讲【例1】如图,直线l与直线a,b相交,若a∥b,∠1=70°,则∠2的度数是多少?【师生活动】教师引导学生用前面学过的平行线的三个性质解答本题.【答案】解法一:∵∠1与∠3互为邻补角,∴∠3=180°-∠1=110°.又∵a∥b,∴∠2=∠3=110°(两直线平行,内错角相等).解法二:∵∠1与∠4互为邻补角,∴∠4=180°-∠1=110°.又∵a∥b,∴∠2=∠4=110°(两直线平行,同位角相等).解法三:∵∠1与∠5互为对顶角,∴∠5=∠1=70°.又∵a∥b,∴∠2=180°-∠5=110°(两直线平行,同旁内角互补).【归纳】当题目的已知条件中出现两直线平行时,要考虑到平行线的性质,从而将直线的位置关系转化为角的数量关系.应用平行线的性质解题时要辨析清楚“三线八角”,并将它们的关系记准确.【设计意图】帮助学生巩固平行线的性质、及文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.【例2】如图,已知∠1=108°,∠2=72°,∠3=60°,试求∠4的度数.【师生活动】学生独立解决,教师巡视纠错.【答案】解:∵∠1+∠2=108°+72°=180°,∴a∥b(同旁内角互补,两直线平行).∴∠4=∠3=60°(两直线平行,同位角相等).【归纳】几何中,图形之间的“位置关系”一般都与某些“数量关系”有着内在联系.由角的相等或互补关系,得到两条直线平行的结论是判定方法;而由两条直线平行,得到角相等或互补关系的结论是平行线性质的应用.【设计意图】考查学生是否掌握平行线的判定与性质之间的区别和联系,知道在涉及到相关角度或平行时如何入手解决.课堂小结板书设计一、平行线的性质1二、平行线的性质2三、平行线的性质3课后任务完成教材第20页练习第1题.。
七年级数学下第5章相交线与平行线
2. 完成下列推理,并在括号内注明理由. (1) 如图,因为 AB∥DE,BC∥DE(已知),所以 A, B,C 三点 在同一直线上 ;
( 经__过__直__线__外__一__点__,__有__且__只__有__一__条__直__线__与__这__条__直__线__平__行__)
·A ·B C·
D
相交线与 平行线
新知一览
相交线
两条直线相交
两条直线被第三 条直线所截
平行线 平移
平行线及其判定 平行线的性质 命题、定理、证明
相交线 垂线
第五章 相交线与平行线
5.2 平行线及其判定
5.2.1 平行线
人教版七年级(下)
思考 飞机尾迹会相交吗?两条铁轨呢?
两条看不到尽头的轨道,我们将它抽象成几何图形. 发现:不会相交.
E
(2) 如图,因为 AB∥CD,CD∥EF(已知), 所以__A__B__ ∥ __E__F__. (_如___果__两__条___直__线__都___和__第__三___条__直__线___平__行__,___那__么__这___两__条____ __直__线___也__互__相___平__行___________________________________)
A
B
C若 AB∥CD,经过点 E 可画 EF∥AB,则 EF 与 CD 的位置关系是___E_F_∥__C__D___,理由是 _如__果__两__条__直__线__都__与__第__三__条__直__线__平__行__,__那__么__这__两__条___ _直__线__也__互__相__平__行___________.
关系是
( A)
A. 相交或平行
B. 相交或垂直