茂名市第二十中学九年级第二次月考数学试题
广东省茂名市中考数学二模试卷
广东省茂名市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列各数中,是无理数的是()A . 0.11B .C .D .2. (2分)(2019·无锡模拟) 在下列运算中,计算正确的是()A . m2+m2=m4B . (m+1)2=m2+1C . (3mn2)2=6m2n4D . 2m2n÷(﹣mn)=﹣2m3. (2分)函数y=中的自变量x的取值范围是()A . x≥0B . x≠2C . x>0D . x≥0且x≠24. (2分)(2018·永州) 如图几何体的主视图是()A .B .C .D .5. (2分) (2017七下·姜堰期末) 不等式x-2≤0的解集在数轴上表示正确的是()A .B .C .D .6. (2分) (2018·云南) 2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个不符合题意的是()A . 抽取的学生人数为50人B . “非常了解”的人数占抽取的学生人数的12%C . a=72°D . 全校“不了解”的人数估计有428人7. (2分) (2019八下·长春期中) 如图,中,,则图中平行四边形有()A . 3个B . 4个C . 5个D . 6个8. (2分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF 沿点A到点B的方向平移,得到△A'E'F'.设 P、P'分别是 EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD 的面积为()A .B .C .D . ﹣8二、填空题 (共8题;共8分)9. (1分)(2017·姜堰模拟) 分解因式:2x2﹣18=________.10. (1分)将123000000用科学记数法表示为________.11. (1分) (2015九上·宁波月考) 如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,160°,则∠AOB的度数为________;∠A的度数为________.12. (1分) (2017·巴中) 分式方程 = 的解是x=________.13. (1分) (2018九上·天河期末) 袋中装有六个黑球和n个白球,经过若干次试验发现,若从中任摸一个球,恰好是白球的概率为,白球个数大约是________14. (1分)(2019·河南) 如图,在矩形ABCD中,,,点E在边BC上,且 .连接AE,将沿AE折叠,若点B的对应点落在矩形ABCD的边上,则a的值为________.15. (1分) (2017九上·柘城期末) 如图,在正方形ABCD中,E为AB边的中点,G,F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为________.16. (1分)已知⊙O的弦AB=8cm,圆心O到弦AB的距离为3cm,则⊙O的直径为________ cm.三、综合题 (共8题;共47分)17. (5分)(2017·巴中) 计算:2sin60°﹣(π﹣3.14)0+|1﹣ |+()﹣1 .18. (5分) (2019八下·官渡期中) 如图所示,矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,求矩形对角线的长和矩形的面积.19. (10分)(2019·陕西) 问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座草根塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的草根景区BCDE。
九年级上学期第二次月考数学试题 (含答案) (精选5套试题) (1)
北师大版九年级上学期第二次月考数学试卷注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟.请用铅笔或圆珠笔直接答在试卷上.2.答题前将密封线内的项目填写清楚.一、选择题(每小题3分,共18分)下面各小题均有四个答案,其中只有一个是正确的,将正确的代号字母填入题后的括号内.1.下列方程中,是关于x 的一元二次方程的是 ( ) A .03=+x B .y x x =-32C .52-=x D . 112=+x x2.的值为则的根是方程若c a a cx x a a +=++≠,0)0(2 ( )A .-1B .0C .1D .23.一架长2.5m 的梯子,斜立在一竖直的墙上,这时梯子底端距墙底端0.7m ,如果梯子的顶端沿墙下滑0.4m ,那么梯子底端将滑动 ( ) A .0.9m B .1.5m C .0.5m D .0.8m4. 如图,l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A 、一处B 、二处C 、三处D 、四处 5.给出下列命题,正确的有 ( )①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形;A .1个B .2个C .3个D .4个6.如果等腰三角形的底和腰是方程2680x x -+=的两个实数根,则这个三角形的周长为 ( ) A .8 B.10 C.8或10 D.不能确定二、填空题(每小题3分,共27分)7. 命题:“等腰三角形的两个底角相等”的逆命题为 . 8.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为 .9. 如下图,在ABC △中,点D 是BC 上一点,80BAD ∠=°,AB AD DC ==,则C ∠= __________度.10. 如下图,∠AOB 是一钢架,且∠AOB=10°,为了使钢架更牢固,需在其内部添加一些钢管EF 、FG 、GH ……添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根 .班级 姓名 考场 考号题号 一 二 三 总分 16 17 18 19 20 21 22 23 分数 得分 评卷人 得分 评卷人ACBD80第9题第10题第4题11.已知m 是方程0132=-+x x 的一个根,则代数式3622-+m m 的值为 . 12.在实数范围内定义一个新运算*,其规则为22*a b a b =-,根据这个规则,方程(2)*50x +=的解是 .13.小军同学家开了一个商店,今年1月份的利润是1000元,3月份的利润是1210元,请你帮助小军同学算一算,他家的这个商店这两个月的利润平均月增长率是___________.14. 如图,点P 是∠AOB 的角平分线上一点,过点P 作PC ∥OA 交OB 于点C 。
广东省九年级数学第二次月考试题(无答案) 新人教版
九年级第二次月考数学试卷一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1、用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -= B .2(2)2x += C .2(2)2x -=- D .2(2)6x -=2、已知点A (-2,1y ),B (-1,2y ),C (3,3y )都在反比例函数xy 6=的图象上,则( )A 、1y <2y <3y B 、3y <2y <1y C 、3y <1y <2y D 、2y <1y <3y3、已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4、图中所示几何体的俯视图是 ( )) A 、有两边相等的四边形是平行四边形. B 、两条对角线互相垂直且相等的四边形是菱形.C 、有两个角是直角的四边形是矩形. D 、有一个角是直角的菱形是正方形.6、三角形两边的长分别是8和6,第三边的长是一元二次方程x2-16x+60=0的一个实数根,则该三角形的面积是A .B .C .A.24B.24或 58C.48D.587、如图,某个反比例函数的图象经过点P,则它的解析式为( )A.y=1x (x>0); B.y=-1x (x>0) C.y=1x (x<0); D.y=-1x(x<0)8、函数y=kx+1与 (k ≠0)在同一坐标系中的大致图象为( )9、如图,一次函数y1=x-1与反比例函数y2=x2的图像交于点A (2,1),B (-1,-2),则使y1>y2的x的取值范围是( )A.x>2B.x>2 或-1<x<0C.-1<x<2D.x>2 或x<-110、如上图所示,在平行四边形ABCD 中,EF 过对角线的交点O ,若AD=6cm,x kyAB=5cm ,OE=2cm ,则梯形ABEF 的周长为( ) A.13㎝ B.14㎝ C.15㎝ D.16㎝二、耐心填一填(本大题共5小题,每小题3分,共15分.请你把答案填在横线的上方)11、在△ABC 中AB=AC ,BC=5cm ,作AB 的垂直平分交另一腰AC 于D ,连接BD 。
广东省茂名市中考数学二模考试试卷
广东省茂名市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·杭州模拟) |-2020|=()A . -2020B . 2020C .D . -2. (2分) (2020七上·长兴期末) 若实数a,b,c在数轴上对应点的位置如图所示,则|a+b|+|a+c|-|b-c|可化简为()A . 0B . 2a+2bC . 2b-2cD . 2a+23. (2分) (2016七下·会宁期中) 下列说法错误的是()A . 两直线平行,内错角相等B . 两直线平行,同旁内角相等C . 对顶角相等D . 平行于同一条直线的两直线平行4. (2分)九张同样的卡片分别写有数字-4,-3,-2,-1,0,1,2,3,4,任意抽取一张,所抽卡片上数字的绝对值小于2的概率是()A .B .C .D .5. (2分)(2020·辽阳模拟) 下列运算正确的是()A .B .C .D .6. (2分)抛物线y=x2-2x+1的对称轴是()A . 直线x=1B . 直线x=-1C . 直线x=2D . 直线x=-27. (2分)若3x﹣6=0,则5x2﹣6x+1的值为()A . 1B . 3C . 6D . 98. (2分)在Rt△ABC中,∠C=90°,BC=1,AB=2,则tanA等于()A .B .C .D .9. (2分)如图,在⊙O中,弦AD=弦DC ,则图中相等的圆周角的对数是()A . 5对B . 6对C . 7对D . 8对10. (2分) (2018九上·黄石期中) 如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A . PDB . PBC . PED . PC二、填空题 (共6题;共7分)11. (1分)(2019·北部湾模拟) 若式子有意义,那么x的取值范围是________ 。
九年级上学期第二次月考数学检测试卷
九年级上学期第二次月考数学检测试卷(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除22008-2009学年第一学期九年级期末考试数学模拟试卷(四)第 Ⅰ 卷一、选择题(每小题3分,共24分)1、方程x 2 = 5x 的根是A 、x 1 = 0,x 2 = 5B 、x 1 = 0 ,x 2 = - 5C 、x = 0D 、x = 5 2、化简 ABC、3、下列图案中是轴对称图形的是A. B. C. D. 4、一元二次方程( 1 – k )x 2 – 2 x – 1 = 0有两个不相等的实数根,则k 的取值范围是 A 、k > 2 B 、k < 2 C 、k < 2且k ≠1 D 、k > 2且k ≠1 5、如图,点A 、C 、B 在⊙O 上,已知∠AOB =∠ACB = a.2008年北京 2004年雅典 1988年汉城 1980年莫斯班 姓 考 号3则a 的值为.A. 135°B. 120°C. 110°D. 100°6、半径分别为5cm 和2cm 的两圆相切,则两圆的圆心距为A 、3cmB 、7cmC 、3cm 或7cmD 、以上答案均不正确7、如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 A .6cmB..8cmD.cm8、如图,在ΔABC 中,AB = 13,AC = 5,BC = 12,经过点C 且与边 AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是A 、125 B 、6013C 、5D 、无法确定 二、填空题(每小题3分,共18分) 9、若3x -有意义,则x 的取值范围是 ;10、配方:-=+-x x x (342 +2) 。
11、若用半径为r 的圆形桌布将边长为60 cm 的正方形餐桌盖住,则r 的 最小值为 .412、某型号的手机连续两次降价,每个售价由原来的1185元降到了580元, 设平均每次降价的百分率为x ,则可列方程为。
九年级第二次月考数学试卷
九年级第二次月考数学试卷九年级第二次月考数学试卷题号一二三四总分分数一. 仔细填填:(每小题3分,共30分)1. 分式,当_ __________时分式的值为零.2.若函数y=(m + 1)是反比例函数,则m的值等于.3. 用科学记数法表示:1纳米=米(1厘米=103纳米).4. ①约分: _________;②计算:(-2 y 3)-3= .5. 若点A(-2,y1).B(-1, y2).C(1, y3)在反比例函数y=的图象上,则.. 的大小关系:.6. 如果一个三角形的三边的比是,则这是三角形.7. 一项工程,甲单独做_小时完成,乙单独做y小时完成,则两人一起完成这项工程需要_______ ___小时.8. 某电路中,电压是定值,当R=3时I=2,用电阻R表示电流I的函数式.9. 如果梯子底端离建筑物9m,那么15m长的梯子可达到建筑物的高度是.10.已知个一命题的原命题是〝等边三角形是锐角三角形〞,它的逆命题是.二. 精心选选:(每小题3分,共30分)11.下列说法最正确的是( ).A.分式的分子要含有字母B.式子:是分式C.当A=0时,分式的值为0(A.B为整式) D.是分式方程12. 把分式中的.同时扩大2倍,那么分式的值().A.扩大2倍 B.缩小2倍C.改变为原来的D.不改变13.下列各式计算正确的是().A. B.C. D.(-3)-2 =914.若变量与成正比例,变量又与z成反比例,则与的关系是( ) .A.成反比例B.成正比例 C.y与成正比例D.与成反比例15.一次函数与反比例函数的图象交点的个数为( ).A.0个B.1个C.2个D.无数个16.如图(1),A.C分别是反比例函数y=图象上两点.若Rt△AOB与Rt△COD的面积分别为S1,S2,则S1与S2的大小关系是( ).A.S1_gt;S2 B.S1=S2=1; C.S1_lt;S2 D. S1=S2=217.下列解方程正确的是( ).A.去分母得:2(_+2)+3_=1B.去分母得:4(_+3)-_+2(_-3)=(_-3)(_+3)C.3(_+2)-2(_-3)=3_+4 去括号得: 3_+6-2_-6=3_+4D.去分母得:_(_-5)+2-(_2-25)=018.函数y=a(_-3)与在同一坐标系中的大致图象是( ).19.直角三角形的两直角边分别为6.8,则斜边上的高是( ).A.6B.8C.4.8D.4820.观察下列各组数:①3,4,5;②1,,2;③5,6,7;④7,8,13其中可以作为三角形的三边的有多少组( ).A.3B.2C. 1D. 0三. 用心算算:(每小题6分,共24分)21. a + 2-22.23.已知一位女士在一家商场购买东西后回家,她先向东走30米,再向北走40米,又向东走50米,最后向北走80米回到家,问她家离商场的直线距离是多少米?(画出草图,再解答)24.已知反比例函数的图像与一次函数y=k_+m的图像相交于点A(2,1).(1)分别求出这两个函数的解析式;(2)写出点P(-1,5)关于_轴的对称点B的坐标,并判断点B否在一次函数y=k_+m的图像上;四. 用心想想:(每题8分,共16分)25.如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=17m,BC=8m,求这块地的面积.26.某中学到离学校15千米的某地旅游,先遣队和大队同时出发,先遣队的行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作.求先遣队和大队的速度各是多少?。
广东省茂名市九年级上学期数学第二次月考试卷
广东省茂名市九年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2018·普宁模拟) 下列图案中,是轴对称图形但不是中心对称图形的是()A .B .C .D .2. (2分)(2018·濮阳模拟) 若关于x的方程有两个不相等的实数根,则满足条件的最小整数a的值是()A . -1B . 0C . 1D . 23. (2分)将抛物线y=x2平移得到抛物线y=x2+3,则下列平移过程正确的是()A . 向上平移3个单位B . 向下平移3个单位C . 向左平移3个单位D . 向右平移3个单位4. (2分)双曲线经过点A(m,3),则m的值为()A . 3B . -3C . 2D . -25. (2分) (2017九上·金华开学考) 如图,点A,B,C都在⊙O上,∠A=∠B=20°,则∠AOB等于()A . 40°B . 60°C . 80°D . 90°6. (2分)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于().A . 55°B . 45°C . 40°D . 35°7. (2分) (2017九下·无锡期中) 圆锥的主视图是边长为4 cm的等边三角形,则该圆锥俯视图的面积是()A . 4pcm2B . 8p cm2C . 12p cm2D . 16p cm28. (2分)(2018·新乡模拟) 如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l 与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S 与t函数关系的图象是()A .B .C .D .二、填空题 (共8题;共9分)9. (1分) (2019九上·通州期末) 已知反比例函数<,其图象在第二、四象限内,则k的取值范围是________..10. (1分) (2017九上·钦州月考) 某商场销售额3月份为16万元,5月份为25万元,则该商场这两个月销售额的平均增长率是________.11. (1分) (2019九上·宁波期中) 在半径为r的圆中,圆内接正六边形的边长为________.12. (1分) (2016九上·西青期中) 如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.13. (1分)(2017·青岛模拟) 如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点F旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了________cm.14. (2分)如图,等腰直角三角形ABC的顶点A , C在x轴上,∠BCA=90°,AC=BC= ,反比例函数y= (k>0)的图象过BC中点E ,交AB于点D ,连接DE ,当△BDE∽△BCA时,k的值为________.15. (1分)(2016·西安模拟) 已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,则m 的取值范围是________.16. (1分)若点(2,﹣1)在双曲线y= 上,则k的值为________.三、解答题 (共10题;共102分)17. (5分)解下列方程:(1) x2﹣2x﹣1=0 (用配方法);(2) x2﹣4x+1=0(用公式法);(3)(x+1)2=4x;(4)(x﹣1)2+2x(x﹣1)=0.18. (10分)把下列图形补成以直线a为对称轴的轴对称图形.19. (10分) (2019九上·路北期中) 已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.20. (10分)(2018·秀洲模拟) 某农户共摘收水蜜桃1920千克,为寻求合适的销售价格,进行了6天试销,试销情况如下:第1天第2天第3天第4天第5天第6天售价20181512109x(元/千克)销售量4550607590100y(千克)由表中数据可知,试销期间这批水蜜桃的每天销售量y(千克)与售价x(元/千克)之间满足我们曾经学过的某种函数关系.若在这批水蜜桃的后续销售中,每天的销售量y(千克)与售价x(元/千克)之间都满足这一函数关系.(1)你认为y与x之间满足什么函数关系?并求y关于x的函数表达式.(2)在试销6天后,该农户决定将这批水密桃的售价定为15元/千克.① 若每天都按15元/千克的售价销售,则余下的水蜜桃预计还要多少天可以全部售完?② 该农户按15元/千克的售价销售20天后,发现剩下的水蜜桃过于成熟,必须在不超过2天内全部售完,因此需要重新确定一个售价,使后面2天都按新的售价销售且能如期全部售完,则新的售价最高可以定为多少元/千克?21. (10分) (2018九上·富顺期中) 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.22. (15分)如图,已知点A、P在反比例函数y=(k<0)的图象上,点B、Q在直线y=x﹣3的图象上,点B的纵坐标为﹣1,AB⊥x轴,且S△OAB=4,若P、Q两点关于y轴对称,设点P的坐标为(m,n).(1)求点A的坐标和k的值;(2)求的值.23. (10分)(2019·宁波模拟) 如图1,在平面直角坐标系xOy中,半径为1的⊙O与x轴正半轴和y轴正半轴分别交于A,B两点,直线l:y=kx+2(k<0)与x轴和y轴分别交于P,M两点.(1)当直线与⊙O相切时,求出点M的坐标和点P的坐标;(2)如图2,当点P在线段OA上时,直线1与⊙O交于E,F两点(点E在点F的上方)过点F作FC∥x轴,与⊙O交于另一点C,连结EC交y轴于点D.①如图3,若点P与点A重合时,求OD的长并写出解答过程;②如图2,若点P与点A不重合时,OD的长是否发生变化,若不发生变化,请求出OD的长并写出解答过程;若发生变化,请说明理由.(3)如图4,在(2)的基础上,连结BF,将线段BF绕点B逆时针旋转90°到BQ,若点Q在CE的延长线时,请用等式直接表示线段FC,FQ之间的数量关系.24. (15分)(2018·青岛模拟) 随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?25. (15分)(2017·林州模拟) 在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1 ,旋转角为θ(0°<θ<90°),连接AC1、BD1 , AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1 与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k 的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和AC12+(kDD1)2的值.26. (2分)(2017·郑州模拟) 问题发现:如图1,在△ABC中,∠C=90°,分别以AC、BC为边向外侧作正方形ACDE和正方形BCFG.(1)△ABC与△DCF面积的关系是________;(请在横线上填写“相等”或“不相等”)(2)拓展探究:若∠C≠90°,(1)中的结论还成立吗?若成立,请结合图2给出证明;若不成立,请说明理由;(3)解决问题:如图3,在四边形ABCD中,AC⊥BD,且AC与BD的和为10,分别以四边形ABCD的四条边为边向外侧作正方形ABFE、正方形BCHG、正方形CDJI、正方形DALK,运用(2)的结论,图中阴影部分的面积和是否有最大值?如果有,请求出最大值,如果没有,请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8、答案:略二、填空题 (共8题;共9分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共102分)17-1、17-2、17-3、17-4、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
【九年级】九年级数学第二次月考试题(含答案)
【九年级】九年级数学第二次月考试题(含答案)山九年级数学第二次月考试卷一.选择题(本题有10个小题,每小题3分,共30分)1、的倒数就是()a、-3b、3c、d、2、以下排序恰当的就是()a、b、c、d、3、两圆半径分别为3和4,圆心距为8,这两圆的位置关系是()a、内乌b、平行c、外切d、外离4、下列四个图形中,既是轴对称图形,又是中心对称图形的是()5、李明为好友制作一个(例如图)正方体礼品盒,六面上各存有一字,连出来就是“祝愿中考顺利”,其中“进度表”的对面就是“中”,“成”的对面就是“功”,则它的平面进行图可能将就是()6、例如图pa、pb分别就是⊙o的切线,a、b为切点,ac就是⊙o的直径,未知∠bac=350则∠p的度数等于()a、700b、450c、600d、3507、下列判断正确的是a.“关上电视机,正在播出nba篮球赛”就是必然事件()b.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次必有1次反面朝上c.一组数据2,3,4,5,5,6的众数和中位数都就是5d.甲组数据的方差为0.24,乙组数据的为方差0.03,则乙组数据比甲组数据稳定8、抛物线的顶点座标就是()a、(3,1)b、(-3,1)c、(-9,1)d、(9,-1)9、例如图:小军必须测量河内小岛b至河岸l的距离,在a点测出∠bad=300,在c点测出∠bcd=600又测出ac=10米,则小岛b至河岸l的距离为()a、b、5c、d、5+10、例如图:反比例函数的图像经过点a(2,1),若y≤1则x的值域范围就是()a.x≥1b.x≥2c.x<0或0<x≤1d.x<0或x≥2二、题(本题存有7个小题,每小题3分后,共21分后)11、函数中,自变量的取值范围是。
12、2021年新版人民币中一角硬币的直径约为0.022,把0.022用科学计数法则表示为。
13、如果方程的两个根是rt△abc的两条直角边,则斜边为。
14、某青年排球队12名队员的年龄情况如下:年龄(单位:岁)1819202122人数14322则这个队队员年龄的中位数是15、例如图将半径为4c的圆形纸片卷曲后,圆弧恰好经过圆心o,则折痕ab的长度是16、一个圆锥的底面半径为3,母线短为5,这个圆锥的侧面积就是17、用火柴棒摆“金鱼”:如图所示,摆第n个“金鱼”需用火柴棒的根数是三、答疑题(共4题,每题6分后,共24分后)18、计算:19、解方程:20、如图abcd中,o是对角线ac的中点,ef⊥ac交cd于e,交ab于f,问四边形afce是菱形吗?请说明理由。
人教版九年级上册数学第二次月考试卷及答案解析
九年级(上)期中数学试卷二一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C. D.2.已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m+2的值等于()A.4 B.1 C.0 D.﹣13.已知点P关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是()A.(﹣3,﹣2)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)4.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位5.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④a:b:c=﹣1:2:3.其中正确的是()A.①②B.②③C.③④D.①④二、填空题(本大题共8小题,每小题3分,共24分)7.一元二次方程x2﹣3x=0的根是.8.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是.9.我们在教材中已经学习了:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是.10.二次函数y=ax2+bx+c和一次函数y=mx+n的图象如图所示,则ax2+bx+c≤mx+n时,x的取值范围是.11.方程x2﹣2x﹣k=0的一个实数根为3,则另一个根为.12.已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是.13.已知抛物线y=x2﹣2(k+1)x+16的顶点在x轴上,则k的值是.14.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为.三、(本大题共4小题,每小题6分,共24分)15.解方程:x(2x+3)=4x+6.16.如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是.17.如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC.(1)作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1,(只画出图形).(2)作出△ABC关于原点O成中心对称的△A2B2C2,(只画出图形),写出B2和C2的坐标.18.已知x1,x2是关于x的一元二次方程x2﹣6x+k=0的两个实数根,且x12x22﹣x1﹣x2=115.(1)求k的值;(2)求x12+x22+8的值.四、(本大题共4小题,每小题8分,共32分)19.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标.20.已知等腰△ABC的一边长a=3,另两边长b、c恰好是关于x的方程x2﹣(k+2)x+2k=0的两个根,求△ABC的周长.21.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.22.在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形.五、(本大题共10分)23.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系(如图1),y轴是抛物线的对称轴,顶点E 到坐标原点O的距离为6m.(1)求抛物线的解析式;(2)现有一辆货运卡车,高4.4m,宽2.4m,它能通过该隧道吗?(3)如果该隧道内设双向道(如图2),为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?六、(本大题共12分)24.如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).(1)求A、B的坐标;(2)求抛物线的解析式;(3)在抛物线的对称轴上求一点P,使得△PAB的周长最小,并求出最小值;(4)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选D.2.【解答】解:把x=m代入方程x2﹣x﹣2=0得:m2﹣m﹣2=0,m2﹣m=2,所以m2﹣m+2=2+2=4.故选A.3.【解答】解:∵点P关于x轴的对称点P1的坐标是(2,3),∴点P的坐标是(2,﹣3).∴点P关于原点的对称点P2的坐标是(﹣2,3).故选D.4.【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.5.【解答】解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,解得:k<2,且k≠1.故选:D.6.【解答】解:由二次函数图象与x轴有两个交点,∴b2﹣4ac>0,选项①正确;又对称轴为直线x=1,即﹣=1,可得2a+b=0(i),选项②错误;∵﹣2对应的函数值为负数,∴当x=﹣2时,y=4a﹣2b+c<0,选项③错误;∵﹣1对应的函数值为0,∴当x=﹣1时,y=a﹣b+c=0(ii),联立(i)(ii)可得:b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,选项④正确,则正确的选项有:①④.故选D二、填空题(本大题共8小题,每小题3分,共24分)7.【解答】解:x2﹣3x=0,x(x﹣3)=0,∴x1=0,x2=3.故答案为:x1=0,x2=3.8.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.9.【解答】解:①等边三角形,是轴对称图形,不是中心对称图形,故选项错误;②矩形,既是轴对称图形,又是中心对称图形,故选项正确;③平行四边形,不是轴对称图形,是中心对称图形,故选项错误;④等腰三角形,是轴对称图形,不是中心对称图形,故选项错误;⑤菱形,既是轴对称图形,又是中心对称图形,故选项正确;故答案为:②⑤.10.【解答】解:依题意得求关于x的不等式ax2+bx+c≤mx+n的解集,实质上就是根据图象找出函数y=ax2+bx+c的值小于或等于y=mx+n的值时x的取值范围,由两个函数图象的交点及图象的位置可以得到此时x的取值范围是﹣2≤x≤1.故填空答案:﹣2≤x≤1.11.【解答】解:∵方程x2﹣2x﹣k=0的一个实数根为3,∴把3代入方程得:9﹣6﹣k=0,∴k=3,∴把k=3代入原方程得:x2﹣2x﹣3=0,∴解得方程的两根分别为3和﹣1,故答案为:﹣1.12.【解答】解:∵二次函数的解析式的二次项系数是,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(1,4),∴该二次函数图象在[﹣∞1m]上是减函数,即y随x的增大而减小;即:当x≤1时,y随x的增大而减小,故答案为:x≤1.13.【解答】解:根据顶点纵坐标公式,抛物线y=x2﹣2(k+1)x+16的顶点纵坐标为,∵抛物线的顶点在x轴上时,∴顶点纵坐标为0,即=0,解得k=3或﹣5.故本题答案为3或﹣5.14.【解答】解:∵Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,∴4=4a,解得a=1,∴抛物线为y=x2,∵点A(﹣2,4),∴B(﹣2,0),∴OB=2,∵将Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴D点在y轴上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC∥x轴,∴P点的纵坐标为2,代入y=x2,得2=x2,解得x=±,∴P(,2).故答案为(,2).三、(本大题共4小题,每小题6分,共24分)15.【解答】解:x(2x+3)﹣2(2x+3)=0,∴(2x+3)(x﹣2)=0,∴2x+3=0或x﹣2=0,∴x1=﹣,x2=2.16.【解答】解:如图所示:旋转角度是90°.故答案为:90°.17.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示,B2(4,﹣1),C2(1,﹣2).18.【解答】解:(1)∵x1,x2是方程x2﹣6x+k=0的两个根,∴x1+x2=6,x1x2=k,∵x12x22﹣x1﹣x2=115,∴k2﹣6=115,解得k1=11,k2=﹣11,当k1=11时,△=36﹣4k=36﹣44<0,∴k1=11不合题意当k2=﹣11时,△=36﹣4k=36+44>0,∴k2=﹣11符合题意,∴k的值为﹣11;(2)∵x1+x2=6,x1x2=﹣11∴x12+x22+8=(x1+x2)2﹣2x1x2+8=36+2×11+8=66.四、(本大题共4小题,每小题8分,共32分)19.【解答】解:(1)把(0,0)代入得k+1=0,解得k=﹣1,所以二次函数解析式为y=x2﹣3x;(2)当y=0时,x2﹣3x=0,解得x1=0,x2=3,则A(3,0),抛物线的对称轴为直线x=,设B(x,x2﹣3x),因为△AOB的面积等于6,所以•3•|x2﹣3x|=6,当x2﹣3x=4时,解得x1=﹣1,x2=4,则B点坐标为(4,4);当x2﹣3x=﹣4时,方程无实数解.所以点B的坐标为(4,4).20.【解答】解:x2﹣(k+2)x+2k=0(x﹣2)(x﹣k)=0,则x1=2,x2=k,当b=c,k=2,则△ABC的周长=2+2+3=7,当b=2,c=3或c=2,b=3则k=3,则△ABC的周长=2+3+3=8.故△ABC的周长是7或8.21.【解答】解:(1)∵S△PBQ=PB•BQ,PB=AB﹣AP=18﹣2x,BQ=x,∴y=(18﹣2x)x,即y=﹣x2+9x(0<x≤4);(2)由(1)知:y=﹣x2+9x,∴y=﹣(x﹣)2+,∵当0<x≤时,y随x的增大而增大,而0<x≤4,∴当x=4时,y最大值=20,即△PBQ的最大面积是20cm2.【点评】本题考查了矩形的性质,二次函数的最值问题,根据题意表示出PB、BQ的长度是解题的关键.22.【解答】(1)解:四边形ABDF是菱形.理由如下:∵△ABD绕着边AD的中点旋转180°得到△DFA,∴AB=DF,BD=FA,∵AB=BD,∴AB=BD=DF=FA,∴四边形ABDF是菱形;(2)证明:∵四边形ABDF是菱形,∴AB∥DF,且AB=DF,∵△ABC绕着边AC的中点旋转180°得到△CEA,∴AB=CE,BC=EA,∴四边形ABCE为平行四边形,∴AB∥CE,且AB=CE,∴CE∥FD,CE=FD,∴四边形CDEF是平行四边形.五、(本大题共10分)23.【解答】解:(1)∵OE为线段BC的中垂线,∴OC=BC.∵四边形ABCD是矩形,∴AD=BC=8m,AB=CD=2m,∴OC=4.∴D(4,2,).E(0,6).设抛物线的解析式为y=ax2+c,由题意,得,解得:,∴y=﹣x2+6;(2)由题意,得当y=4.4时,4.4=﹣x2+6,解得:x=±,∴宽度为:>2.4,∴它能通过该隧道;(3)由题意,得(﹣0.4)=﹣0.2>2.4,∴该辆货运卡车还能通过隧道.六、(本大题共12分)24.【解答】解:(1)对于直线y=3x+3,令x=0,得到y=3;令y=0,得到x=﹣1,则A(﹣1,0),B(0,3);(2)由A(﹣1,0),C(3,0),设抛物线解析式为y=a(x+1)(x﹣3),把B(0,3)代入得:3=﹣3a,即a=﹣1,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(3)连接BC,与抛物线对称轴交于点P,连接AP,由对称性得AP=CP,如图1所示,此时△ABP周长最小,由抛物线解析式y=﹣x2+2x+3=﹣(x﹣1)2+4,得到对称轴为直线x=1,设直线BC解析式为y=mx+n,将B(0,3),C(3,0)代入得:,解得:m=﹣1,n=3,即直线BC解析式为y=﹣x+3,联立得:,解得:,即P(1,2),根据两点间的距离公式得:AB==,BC==3,则P(1,2),周长为AB+BP+AP=AB+BP+PC=AB+BC=3+;(4)在抛物线的对称轴上存在点Q,使△ABQ是等腰三角形,如图2所示,分四种情况考虑:当AB=AQ1==时,在Rt△AQ1Q3中,AQ3=2,AQ1=,根据勾股定理得:Q1Q3==,此时Q1(1,);由对称性可得Q2(1,);当AB=BQ3时,可得OQ3=OA=1,此时Q3(1,0);当AQ4=BQ4时,Q4为线段AB垂直平分线与对称轴的交点,∵A(﹣1,0),B(0,3),∴直线AB斜率为=3,中点坐标为(﹣,),∴线段AB垂直平分线方程为y﹣=﹣(x+),令x=1,得到y=1,此时Q4(1,1),综上,Q的坐标为(1,)或(1,﹣)或(1,0)或(1,1).。
茂名市九年级数学中考二模试卷
茂名市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)的倒数是()A .B . -C .D . 32. (2分)(2019·昌图模拟) 下列运算正确的是()A .B .C .D .3. (2分) (2019七上·方城期末) 用四舍五入法按要求对下列各数取近似值,其中描述错误的是()A . 0.67596(精确到0.01)≈0.68B . 近似数169.8精确到个位,结果可表示为170C . 近似数是精确到百分位D . 近似数0.05049精确到0.1,结果可表示为0.14. (2分) (2019九上·龙湾期中) 在一个不透明的箱子中有3张红卡和若干张绿卡,它们除了颜色外其他完全相同,通过多次抽卡试验后发现,抽到绿卡的概率稳定在附近,则箱中卡的总张数可能是A . 1张B . 4张C . 9张D . 12张5. (2分) (2019七下·嵊州期末) 在5×5方格纸中,将图1中的图形N平移至图2所示的位置,下列操作正确的是()A . 先向下平移1格,再向左平移1格B . 先向下平移1格,再向左平移2格C . 先向下平移2格,再向左平移1格D . 先向下平移2格,再向左平移2格6. (2分)(2019·泰安模拟) 以下是某初中九年级10名学生参加托球测试成绩成绩/个3540456070人数/人12421则这组数据的中位数、平均数分别是()A . 45,49B . 45,48.5C . 55,50D . 60,517. (2分)内径为120mm的圆柱形玻璃杯,和内径为300mm,内高为32mm的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为()A . 150mmB . 200mmC . 250mmD . 300mm8. (2分)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。
广东省茂名市高州市2023-2024学年九年级下学期月考数学试卷(3月份)(含解析)
2023-2024学年广东省茂名市高州市九年级(下)月考数学试卷(3月份)一、单选题(每小题3分共30分)1.(3分)若一个数的倒数是,则这个数是( )A.B.C.D.2.(3分)大于﹣2.5而小于3.5的整数共有( )A.6个B.5个C.4个D.3个3.(3分)2019年是新中国成立70周年,国产电影在国庆期间推出的“献礼片”﹣《我和我的祖国》,此片深受人们喜爱.截止到2019年10月19日,则数据2745000000科学记数法表示为( )A.0.2745×1010B.27.45×108C.2.745×1010D.2.745×1094.(3分)下列运算正确的是( )A.(a﹣b)(b﹣a)=a2﹣b2B.(﹣2a2b)2=﹣4a4b2C.﹣8a3b÷2ab=﹣4a2D.2xy2•x2y=2x2y25.(3分)下列对称图形中,是轴对称图形有( )个.A.1B.2C.3D.46.(3分)点P(m+1,2m﹣7)在第二、四象限角平分线上,则点P的坐标为( )A.(2,﹣2)B.(﹣2,﹣2)C.(3,﹣3)D.(﹣3,﹣3)7.(3分)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为( )A.B.C.D.8.(3分)若分式的值为0,则a的值为( )A.±1B.0C.﹣1D.19.(3分)对于反比例函数,下列说法中错误的是( )A.图象分布在一、三象限B.y随x的增大而减小C.图象与坐标轴无交点D.若点P(m,n)在它的图象上,则点Q(n,m)也在它的图象上10.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B,与y轴交于点C(﹣4,0),有下列结论:①abc>0②2a﹣b=0③4a+c<2b④点(x1,y1),(x2,y2)在抛物线上,当x1>x2>﹣1时,y1<y2其中,正确结论的个数是( )A.1B.2C.3D.4二、填空题(每小题3分共15分)11.(3分)已知sinα•sin45°=,则锐角α为 .12.(3分)当a+b=2,ab=﹣3时,则a2b+ab2= .13.(3分)若x=3是关于x的一元二次方程x2﹣mx﹣3=0的一个解,则m的值是 .14.(3分)如图,等腰直角三角形ABC中,∠A=90°,线段BC长的一半为半径作圆弧,交AB、BC、AC于点D、E、F .15.(3分)已知∠ABC=∠EAD=90°,D是线段AB上的动点且AC⊥ED于点G,AB=AE=4 .三、解答题(一)每题6分共18分。
茂名市九年级数学中考二模试卷
茂名市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·井研模拟) 下列说法正确的是()A . 了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B . 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C . 一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是D . “任意画一个三角形,其内角和是360°”这一事件是不可能事件2. (2分)(2019·江汉) 如图所示的正六棱柱的主视图是()A .B .C .D .3. (2分)(2020·洪洞模拟) 如图所示,,,,.则()A .B .C .D .4. (2分)(2020·谷城模拟) 下列说法正确的是()A . 若甲、乙两组数据的平均数相同,S甲2=0.1,S乙2=0.09,则乙组数据较稳定B . 天气预报说:某地明天降水的概率是50%,那就是说明天有半天都在降雨C . 要了解全国初中学生的节水意识应选用普查方式D . 早上的太阳从西方升起是随机事件5. (2分) (2019八下·东阳期末) 下表是某校合唱团成员的年龄分布表:年龄/岁12131415频数515x10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A . 平均数、中位数B . 众数、中位数C . 平均数、方差D . 中位数、方差6. (2分)(2014·防城港) 蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()A . 4个B . 6个C . 8个D . 10个7. (2分)(2018·海丰模拟) 下列运算正确的是()A . (a3)2=a5B . a2•a3=a5C . a6÷a2=a3D . 3a2﹣2a2=18. (2分) (2020八下·邯郸月考) 如图,正方体的棱长为4cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A . 9B .C .D . 129. (2分)在Rt△ABC中,∠C=90°,a=3,b=4,则tanB的值是()A .B .C .D .10. (2分)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A . 1B .C . -1D . +1二、填空题 (共8题;共8分)11. (1分) (2019七上·渝中期中) 2018年00:12:14,天猫双十一总成交额超36200000000元,已超过2013年双十一全天的成交额,其中36200000000用科学记数法表示为:________.12. (1分)用分数表示: ________.13. (1分) (2019九上·黔南期末) 都匀市体育局要组织一次篮球赛.赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?设应邀请x支球队参加比赛,则列方程为:________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级期中数学试题
亲爱的同学:你好!数学就是力量,自信决定成绩。
请你灵动智慧,缜密思考,细致作答,努力吧,祝你成功!
一、精心选一选(本大题共10小题,每小题3分,共30分.每小题
给出四个答案,其中只有一个是正确的).
1、如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ) A.BD=DC , AB=AC B.∠ADB=∠ADC ,BD=DC C.∠B=∠C ,∠BAD=∠CAD D. ∠B=∠C ,BD=DC
2、用反证法证明“三角形中必有一个内角不小于 60 o ”,应先假设这个三角形中……( ) A.有一个内角小于60 o B.每一个内角都小于60 o
C.有一个内角大于60 o
D.每一个内角都大于60 o
3、尺规作图作A O B ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交O A 、O B 于C 、D ,再分别以点C 、D 为圆心,以大于
12
C D
长
为半径画弧,两弧交于点P ,作射线O P ,由作法得O C P O D P △≌△的根据是………………………………………….( ) A. SAS B. ASA C. AAS D. SSS
4、1.方程252=x 的解是( )
A.5=x B.5-=x C.51=x ,52-=x D. 51
=x ,5
2
-=x
5、利用配方法解方程122=-x x ,配方后正确的是( )
A.2)1(2
=+x B.2
)1(2
=-x C.4
5)2
1(2
=
+
x D. 4
5)2
1(2
=
-
x 。
6、若方程0
1)1(2
=-+-x m x
m 是关于x 的一元二次方程,则m 的取值
范围是( )。
A 、m = 0
B 、m ≠ 1
C 、m ≥0且m ≠ 1
D 、m 为任意实数
第1题
第3题
图
O
7、下列命题中,真命题是 ( )
A .两条对角线垂直的四边形是菱形
B .对角线垂直且相等的四边形是正方形
C .两条对角线相等的四边形是矩形
D .两条对角线相等的平行四边形是矩形
8、菱形具有而矩形不一定具有的性质是 ( ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角互补
9、如图,已知梯形ABCD 中,AD ∥BC ,AB=CD=AD ,AC ,BD 相交于O 点,∠BCD=60°,则下列说法不正确的是( )
A .梯形ABCD 是轴对称图形
B .BC=2AD
C .梯形ABC
D 是中心对称图形 D .AC 平分
∠DCB
10、方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为………….( )
A. 12
B. 15
C. 12或15
D.不能确定 二、细心填一填(本大题共10小题,每小题3分,共30分.请你把答案填在横线的上方).
11、如果等腰三角形的一个底角是80°,那么顶角是 度.
12
C 1=∠2,BC=EF ,若要使△ABC ≌△DEF ,则还须补充一个条件 .
13、如图,在Rt △ABC 中,∠B=90°,∠A=35°,AC 的垂直平分线MN 与AB 交于D 点,则∠BCD 的度数为 .
14、一元二次方程5x 2-4x + 8 =0二次项系数是 ,一次项系数是 ,常数项是 15、关于x 的一元二次方程0122
=++x kx 有两个不相等的实数根,
则k 的取值范围是_______。
16、方程02092
=+-x x 的两个根是平行四边形的两边,则这个平行四
边形周长为 。
17、如图,两条笔直的公路1l 、2l 相交于点O ,村庄C 的
村民在公路的旁边建三个加工厂 A 、B 、D ,已知AB=BC=CD=DA=7公里,村庄C 到公路1l 的距离为6公里,则村庄C 到公路2l 的距离是 公里
18、如图5,在直角梯形ABCD 中, AB ∥CD ,AD ⊥CD ,AB=1cm ,
AD=6cm ,CD=9cm ,则BC= cm .
19、如图,将矩形A B C D 纸片沿对角线B D 折叠,使点C 落在C '处,B C '交A D 于E ,若22.5D B C
∠=°,则在不添
加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有 个。
20、如图6,在矩形ABCD 中,AB=3,AD=4,
P 是AD 上的动点,PE ⊥AC 于E ,PF ⊥BD 于F , 则PE+FF 的值是 .
2
l 1l
第17题
C '
(第19题)
F
O P E D
C
B
A
图6
三、用心做一做 (本大题共3小题,每小题6分,共18分). 21、解一元二次方程
(1) (x -5)(x +3) =0 (2) x 2+2x -3 = 0 (用公式法解) 22、如图,已知AC=DB ,AB=DC,∠A=50°. 求∠D 的度数。
23、如图,在平行四边形ABCD 中,点E 和点F 分别在DC 和AB 上且
DE 等于FB 。
试判断DF 与BE 是否相等?并说明理由。
四、沉着冷静,缜密思考(本大题共2小题,每小题7分,共14分). 24、已知关于x 的一元二次方程02422=-+++k k x x 的一个根为0,求k 的值和方程的另外一个根。
25、、如图9,点D 是△ABC 中 BC 边上的中点,DF ⊥AC ,DE ⊥AB ,垂足分别为E 、F ,且BE=CF 。
(1)求证:△ABC 是等腰三角形; (2)当∠A=90°时,试判断四边形AEDF 是怎样的四边形,证明你的结论。
A
B
C
D
E
F
五、满怀信心,再接再厉 (本大题共3小题,每小题6分,共18分)
26、商场某种商品平均每天可销售30件,每件盈利50元。
为了尽快减少库存,商场决定采取适当的降低措施。
经调查发现,每件商品降价1元,商场平均每天可多售出4件,商场要想这种商品日盈利1900元,每件商品应降价多少元?
27、如图10,正方形ABCD 边长为1,G 为CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边向正方形ABCD 外作正方形GCEF ,连接DE 交BG 的延长线于点H 。
(1)求证:①△BCG ≌△DCE ;②B H ⊥DE 。
(2)当点G 运动到什么位置时,BH 垂直平分DE ?请说明理由。
28、如图,矩形ABCD 中AB=32cm ,AD=12cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以6cm/s 的速度向点B 移动,一直到B 点为止,点Q 以4cm/s 的速度向D 点移动。
(1)P 、Q 两点从出发开始到几秒时,四边形PBCQ 的面积为132cn 2, (2) P 、Q 两点从出发开始到几秒时,点P 和点Q 的距离为20cm?
第28题图
P。