成都英才学校九年级上册期中试卷检测题

合集下载

2020-2021成都英才学校初三数学上期中模拟试卷附答案

2020-2021成都英才学校初三数学上期中模拟试卷附答案

2020-2021成都英才学校初三数学上期中模拟试卷附答案一、选择题1.若关于x的一元二次方程4x2-4x+c=0有两个相等实数根,则c的值是()A.-1B.1C.-4D.42.若x1是方程ax2+2x+c=0(a≠0)的一个根,设M=(ax1+1)2,N=2﹣ac,则M与N的大小关系为( )A.M>N B.M=N C.M<N D.不能确定3.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.44.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上5.若α,β是一元二次方程x2﹣x﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为()A.2020B.2019C.2018D.20176.如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须()A.大于60°B.小于60°C.大于30°D.小于30°7.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y(间)与定价x(元/间)之间满足y=14x﹣42(x≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为()A.252元/间B.256元/间C.258元/间D.260元/间8.如图,是两条互相垂直的街道,且A到B,C的距离都是7km,现甲从B地走向A地,乙从A地走向C地,若两人同时出发且速度都是4km/h,则两人之间的距离为5km时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h9.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .810.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .11.有两个一元二次方程2:0M ax bx c ++=,2:0N cx bx a ++=,其中,0ac ≠,a c ≠,下列四个结论中错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数B .如果4是方程M 的一个根,那么14是方程N 的另一个根 C .如果方程M 有两根符号相同,那么方程N 的两符号也相同D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =12.如图,在⊙O 中,AB 是⊙O 的直径,AB =10,AC CD DB ==,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题13.已知:如图,CD 是O 的直径,AE 切O 于点B ,DC 的延长线交AB 于点A ,20A ∠=,则DBE ∠=________度.14.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.15.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且∠AOC=105°,则∠C= __.16.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多______步.17.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.18.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是____________.19.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=______cm.20.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为米.三、解答题21.如图,在等腰ABC ∆中,AB AC =,以AC 为直径作O 交BC 于点D ,过点D 作DE AB ⊥,垂足为E .(1)求证:DE 是O 的切线. (2)若3DE =,30C ∠=︒,求AD 的长.22.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x 个,白球有2x 个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x 为何值时,游戏对双方是公平的?23.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°.(1)求∠ABC 的度数;(2)求证:AE 是⊙O 的切线;(3)当BC =4时,求阴影部分的面积.24.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x=60时 ,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式. (3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?25.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程根的判别式可得:当△=0时,方程有两个相等的实数根;当△>0时,方程有两个不相等的实数根;当△<0时,方程没有实数根.【详解】解:根据题意可得:△=2(4) -4×4c=0,解得:c=1 故选:B .【点睛】本题考查一元二次方程根的判别式. 2.C解析:C【解析】【分析】把x 1代入方程ax 2+2x+c=0得ax 12+2x 1=-c ,作差法比较可得.【详解】∵x 1是方程ax 2+2x+c=0(a≠0)的一个根,∴ax 12+2x 1+c=0,即ax 12+2x 1=-c ,则M-N=(ax 1+1)2-(2-ac )=a 2x 12+2ax 1+1-2+ac=a (ax 12+2x 1)+ac-1=-ac+ac-1=-1,∵-1<0,∴M-N<0,∴M<N.故选C.【点睛】本题主要考查一元二次方程的解的概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.3.B解析:B【解析】【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷A B=4.8.【详解】如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选B.【点睛】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.4.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.B解析:B【解析】【分析】根据方程的解的定义及韦达定理得出α+β=1、α2-α=2018,据此代入原式=α2-α-2(α+β)+3计算可得.【详解】解:∵α,β是一元二次方程x2﹣x﹣2018=0的两个实数根,∴α+β=1、α2﹣α=2018,则原式=α2﹣α﹣2(α+β)+3=2018﹣2+3=2019,故选:B.【点睛】考查根与系数的关系,解题的关键是掌握韦达定理及方程的解的定义和整体代入思想的运用.6.D解析:D【解析】试题解析:连接OA,OB,AB,BC,如图:∵AB=OA=OB,即△AOB为等边三角形,∴∠AOB=60°,∵∠ACB与∠AOB所对的弧都为AB,∴∠ACB=12∠AOB=30°,又∠ACB为△SCB的外角,∴∠ACB>∠ASB,即∠ASB<30°.故选D7.B解析:B【解析】【分析】根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况.【详解】设每天的利润为W 元,根据题意,得:W=(x-28)(80-y )-5000()128804245000x x ⎛⎫=--- ⎪⎝⎡⎤-⎢⎥⎣⎦⎭ 2112984164x x =-+- ()2125882254x =--+, ∵当x=258时,12584222.54y =⨯-=,不是整数, ∴x=258舍去,∴当x=256或x=260时,函数取得最大值,最大值为8224元,又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元. 故选:B .【点睛】本题考查二次函数的实际应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.8.D解析:D【解析】【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案.【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D.【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.9.B解析:B【解析】【分析】根据旋转的性质和图形的特点解答.【详解】∵图案绕点O旋转120°后可以和自身重合,∠AOB为120°∴图形中阴影部分的面积是图形的面积的13,∵图形的面积是12cm2,∴图中阴影部分的面积之和为4cm2;故答案为B.【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.10.C解析:C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.D解析:D【解析】【分析】分别根据判别式的意义、方程根的意义、根与系数的关系进行分析判断即可.【详解】解:A、∵方程M有两个不相等的实数根,∴△=b2−4ac>0,∵方程N的△=b2−4ac>0,∴方程N也有两个不相等的实数根,故不符合题意;B、把x=4代入ax2+bx+c=0得:16a+4b+c=0,∴110 164c b a++=,∴即14是方程N的一个根,故不符合题意;C、∵方程M有两根符号相同,∴两根之积ca>0,∴ac>0,即方程N的两根之积>0,∴方程N的两根符号也相同,故本选项不符合题意;D、如果方程M和方程N有一个相同的根,那么这个根也可以是x=-1,故本选项符合题意;故选:D.【点睛】本题考查了根的判别式、根与系数的关系以及一元二次方程的解,逐一分析四个选项的正误是解题的关键.12.C解析:C【解析】【分析】【详解】解:∵弧AC=弧CD=弧DB,∴∠DOB=∠COD=∠BOE=60°,故①正确;∵AB为直径,且点E是点D关于AB的对称点∴∠E=∠ODE,AB⊥DE∴∠CED =30°=12∠DOB,故②正确;∵M和A重合时,∠MDE=60°,∴∠MDE+∠E=90°∴DM⊥CE故③不正确;根据轴对称的性质,可知D与E对称,连接CE,根据两点之间线段最短,可知这时的CM+DM最短,∵∠DOB=∠COD=∠BOE=60°∴CE为直径,即CE=10,故④正确.故选C.【点睛】本题考查了圆周角定理,圆中的有关计算问题和图形的轴对称的应用,关键是熟练地运用定理进行推理和计算,题型较好,综合性比较强,但难度不大.二、填空题13.55【解析】【分析】连接BC由CD是⊙O的直径知道∠CBD=90°由AE是⊙O的切线知道∠DBE=∠1∠2=∠D又∠1+∠D=90°即∠1+∠2=90°;而∠A+∠2=∠1由此即可求出∠1即求出∠D解析:55【解析】【分析】连接BC,由CD是⊙O的直径知道∠CBD=90°,由AE是⊙O的切线知道∠DBE=∠1,∠2=∠D,又∠1+∠D=90°,即∠1+∠2=90°;而∠A+∠2=∠1,由此即可求出∠1,即求出∠DBE.【详解】如图,连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°①,∠A+∠2=∠1②,-②得∠1=55°即∠DBE=55°.故答案为:∠DBE=55°.【点睛】本题考查的是弦切角的性质及圆周角定理,三角形内角与外角的关系,是一道较简单的题目.14.【解析】试题分析:解:连接OD∵CD是⊙O切线∴OD⊥CD∵四边形ABCD 是平行四边形∴AB∥CD∴AB⊥OD∴∠AOD=90°∵OA=OD∴∠A=∠ADO=45°∴∠C=∠A=45°故答案为45考解析:【解析】试题分析:解:连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.考点:1.切线的性质;2.平行四边形的性质.15.【解析】【分析】先根据∠AOC的度数和∠BOC的度数可得∠AOB的度数再根据△AOD中AO=DO可得∠A的度数进而得出△ABO中∠B的度数可得∠C 的度数【详解】解:∵∠AOC的度数为105°由旋转可解析:45【解析】【分析】先根据∠AOC的度数和∠BOC的度数,可得∠AOB的度数,再根据△AOD中,AO=DO,可得∠A的度数,进而得出△ABO中∠B的度数,可得∠C的度数.【详解】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=12(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.16.12【解析】【分析】设长为x步宽为(60-x)步根据长方形的面积公式列出方程进行求解即可得【详解】设长为x步宽为(60-x)步x(60-x)=864解得x1=36x2=24(舍去)∴当x=36时60解析:12【解析】【分析】设长为x步,宽为 (60-x) 步,根据长方形的面积公式列出方程进行求解即可得.【详解】设长为x步,宽为(60-x) 步,x(60-x)=864 ,解得,x1=36,x2=24(舍去),∴当x=36 时,60-x=24 ,∴长比宽多:36-24=12 (步),故答案为:12.【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 17.-1【解析】【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0求出m的取值即可【详解】解:由已知得△=0即4+4m=0解得m=-1故答案为-1【点睛】本题考查的是根的判别解析:-1【解析】【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.18.【解析】【分析】画出树状图得出所有情况让从左向右恰好成上中下的情况数除以总情况数即为所求的概率【详解】画树状图如图:共有6个等可能的结果从上到下的顺序恰好为上册中册下册的结果有1个∴从上到下的顺序恰解析:1 6【解析】【分析】画出树状图得出所有情况,让从左向右恰好成上、中、下的情况数除以总情况数即为所求的概率.【详解】画树状图如图:共有6个等可能的结果,从上到下的顺序恰好为“上册、中册、下册”的结果有1个,∴从上到下的顺序恰好为“上册、中册、下册”的概率为16,故答案为:16.【点睛】本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.【解析】试题解析∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE 的位置使点A恰好落在边DE上∴DC=AC∠D=∠CAB∴∠D=∠DAC∵∠ACB=∠DCE=90°∠B=30°∴∠D=∠CAB=6解析:23【解析】试题解析∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°3.【点睛】此题主要考查了旋转的性质以及直角三角形的性质,正确得出∠AFC的度数是解题关键.20.【解析】试题分析:设小道进出口的宽度为x 米依题意得(30-2x )(20-x )=532整理得x2-35x+34=0解得x1=1x2=34∵34>30(不合题意舍去)∴x=1答:小道进出口的宽度应为1米解析:【解析】试题分析:设小道进出口的宽度为x 米,依题意得(30-2x )(20-x )=532,整理,得x 2-35x+34=0.解得,x 1=1,x 2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.考点:一元二次方程的应用.三、解答题21.(1)见解析;(2)AD 23π=【解析】【分析】(1)连结OD ,根据等腰三角形性质和等量代换得1B ∠=∠,由垂直定义和三角形内角和定理得290B ∠+∠=︒,等量代换得2190∠+∠=︒,由平角定义得90DOE ∠=︒,从而可得证.(2)连结AD ,由圆周角定理得90ADC ∠=︒,根据等腰三角形性质和三角形外角性质可得60AOD ∠=︒,在Rt DEB ∆中,由直角三角形性质得23BD CD ==,在Rt ADC ∆中,由直角三角形性质得2OA OC ==,再由弧长公式计算即可求得答案.【详解】(1)证明:如图,连结OD .∵OC OD =,AB AC =,∴1C ∠=∠,C B ∠=∠,∴1B ∠=∠,∴DE AB ⊥,∴290B ∠+∠=︒,∴2190∠+∠=︒,∴90ODE ∠=︒,∴DE 为O 的切线.(2)解:连结AD ,∵AC 为O 的直径. ∴90ADC ∠=︒.∵AB AC =,∴30B C ∠=∠=︒,BD CD =,∴60AOD ∠=︒. ∵3DE =,∴23BD CD ==, ∴2OC =,∴60221803AD ππ=⨯= 【点睛】 本题考查切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.(1)当x=3时,B 同学获胜可能性大(2)当x=4时,游戏对双方是公平的【解析】【分析】(1)比较A 、B 两位同学的概率解答即可.(2)根据游戏的公平性,列出方程解答即可. 【详解】(1)A 同学获胜可能性为,B 同学获胜可能性为,因为<,当x =3时,B 同学获胜可能性大.(2)游戏对双方公平必须有:,解得x =4,所以当x =4时,游戏对双方是公平的.【点睛】本题主要考查随机事件的概率的概念.23.(1)60°;(2)见解析;(3)16433π-【解析】【分析】(1)根据∠ABC 与∠D 都是劣弧AC 所对的圆周角,利用圆周角定理可证出∠ABC =∠D =60°;(2)根据AB 是⊙O 的直径,利用直径所对的圆周角是直角得到∠ACB =90°,结合∠ABC =60°求得∠BAC =30°,从而推出∠BAE =90°,即OA ⊥AE ,可得AE 是⊙O 的切线; (3)连接OC ,作OF ⊥AC ,根据三角形中位线性质得出OF =2,根据圆周角定理得出∠AOC=120°,然后根据S阴影=S扇形﹣S△AOC即可求得.【详解】解:(1)∵∠ABC与∠D都是劣弧AC所对的圆周角,∠D=60°,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.可得∠BAC=90°﹣∠ABC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,得OA⊥AE,又∵OA是⊙O的半径,∴AE是⊙O的切线;(3)连接OC,作OF⊥AC,∴OF垂直平分AC,∵OA=OB,∴OF=12BC=2,∵∠D=60°,∴∠AOC=120°,∠ABC=60°,∴AC=3AB=43,∴S阴影=S扇形﹣S△AOC=2120411643243 36023ππ⨯-⨯⨯=-.【点睛】本题着重考查了切线的判定、圆周角定理以及扇形面积公式等知识,属于中档题.解题过程中,请注意注意辅助线的作法与数形结合思想的应用.24.(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】【分析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b ,根据题意得806010050k b k b =+⎧⎨=+⎩解得:k 2b 200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x -30)(-2x+200)-450=-2x 2+260x -6450=-2(x -65)2 +2000)(3)W =-2(x -65)2 +2000∵30≤x≤60∴x=60时,w 有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.25.(1)6;(2)40或400【解析】【分析】(1)设通道的宽x 米,由图中所示可得通道面积为2×28x+2(52-2x)x ,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a 元,则少租出10a 个车位,根据月租金收入为14400元列方程求出a 值即可.【详解】(1)设通道的宽x 米,根据题意得:2×28x+2(52-2x)x+640=52×28, 整理得:x 2-40x+204=0,解得:x 1=6,x 2=34(不符合题意,舍去).答:通道的宽是6米.(2)设每个车位的月租金上涨a 元,则少租出10a 个车位, 根据题意得:(200+a)(64-10a )=14400, 整理得:a 2-440a+16000=0,解得:a 1=40,a 2=400.答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.【点睛】本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.。

成都市2019-2020学年九年级上册期中综合能力检测(一)语文试题A卷

成都市2019-2020学年九年级上册期中综合能力检测(一)语文试题A卷

成都市2019-2020学年九年级上册期中综合能力检测(一)语文试题A卷姓名:________ 班级:________ 成绩:________一、选择题1 . 下列关于课文内容理解不正确的一项是()A.《回延安》用陕北民歌“信天游”的形式写成,使用了富有地方色彩的词语,展现出浓郁的陕北风情。

B.《安塞腰鼓》展现了西北黄土高原农民朴素而豪放的性格,张扬而悍勇威猛的个性。

C.《大自然的语言》一文告诉我们:由于高下的差异,植物的抽青、开花等物候现象在春夏两季越往高处越早。

白居易的诗《大林寺桃花》正说明了这一点。

D.《小石潭记》是唐朝柳宗元的作品,记叙了游玩的过程,描写了小石潭的景色,含蓄地抒发了作者被贬后无法排遣的忧伤凄苦之情。

2 . 选出下列加点字注音不正确的一项()A.寒噤(jìn)蛮横(hènɡ)B.矗立(chù)冗杂(rǒnɡ)C.凫水(fú)瞭望(liào)D.晦暗(huǐ)羁绊(jī)3 . 平时与人交流,王海同学特别喜欢引用学过的古诗文。

以下就是他曾经说过的话,其中引用的古诗文恰当得体的一项是()A.一次春游,看见满园盛开的梨花,王海情不自禁地说道:“真是‘忽如一夜春风来,千树万树梨花开’呢!”B.去年年底,陈欣同学随父母转学外地读书,王海送行时说:“‘与君离别意,同是宦游人。

’陈欣,多多珍重啊!”C.好朋友丁文学习上比较马虎,不求甚解,王海常提醒他说:“‘学而不思则罔’,你可不能总是浅尝辄止呀!”D.昨天上课,老师让说一句表现读书乐趣的名句,他随口说道:“这还不容易,‘谈笑有鸿儒,往来无白丁’!”4 . 下列各组词语中加点的字注音或书写有误的一项是()A.虬枝(qiú)浮躁浪敛波平(liăn) 尽如人意B.慰藉(jiè)匮乏叱咤风云(zhà)稍纵即逝C.猝然(cù)巉岩奄奄一息(yăn) 眼花缭乱D.褶皱(zhé)荒谬坦荡如砥(dĭ) 婷婷玉立5 . 依次填入下列文段画线处的短语,最恰当的一项是()倚立窗前,,观美景;夜眠围屋,,做美梦;端坐书房,,悟人生。

成都市九年级上学期期中物理试卷(II)卷

成都市九年级上学期期中物理试卷(II)卷

成都市九年级上学期期中物理试卷(II) 卷一、单项选择题 ( 共 12 题;共 26 分)1.(2分)以下图为我们常有的家用电器,它们正常工作时,经过的电流最靠近1A 的是()A.电电扇B.电冰箱C.电视机D.台灯2.(2分)下边对于电阻的说法正确的选项是()A .导体中的电流越小,导体的电阻就越大B .导体两头电压为0,电阻为0C .电阻的大小由导体自己的要素决定D .导体两头电流为0,电阻为03.(2分)以下图,L1 和 L2 是两只同样的小灯泡,a、 b 是电流表或电压表.闭合开关S 后,若两灯都能发光,则A . a 、 b 均是电流表B . a 、 b 均是电压表C . a为电流表,b为电压表D . a为电压表,b为电流表4.( 2 分)以下图为路口交通指示灯的表示图. 指示灯能够经过不一样颜色灯光的变化指挥车辆和行人的交通行为,据你对交通指示灯的认识能够推测()A .红灯、黄灯、绿灯是串连的B .红灯、黄灯、绿灯是并联的C .红灯与黄灯并联后再与绿灯串连D .绿灯与黄灯并联后再与红灯串连5.(2分)以下图的电路中,闭合开关后,发现灯L1、 L2 都不发光,电流表无示数。

为找出故障,现用电压表进行检测,发现a、 c 之间的电压为零,a、b 和 b、c 间的电压都为3V,则电路故障可能是()A.L1断路B.L2断路C .电流表断路D .开关断路6.(2分)在以下图的四个电路中,电源电压都同样且不变,电阻R 的阻值均相等。

闭合电键S 后,电流表示数最小的是()A .B .C .D .7.( 4 分)以下图,没给玻璃加热前灯泡________发光;而后用酒精灯加热玻璃心,当玻璃心发黄变红时,灯泡 ________( 填“能”或“不可以” ) 发光. 这个实验说明常温下的玻璃是________ ,高温下的玻璃变为了________.( 填“导体”或“绝缘体”).8. ( 2 分)如图是小刚丈量未知电阻RX的实验电路,电源两头电压不变且未知,此中R0 为阻值已知的定值电阻。

四川省成都 九年级(上)期中数学试卷-(含答案)

四川省成都  九年级(上)期中数学试卷-(含答案)

九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.-|-|的相反数是()A. B. C. 3 D.2.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A. B. C. D.3.下列标志既是轴对称图形又是中心对称图形的是()A. B. C. D.4.用科学记数法表示290亿应为()A. B. C. D.5.下列计算结果正确的是()A. B.C. D.6.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A. B.C. D.7.某地区5月3日至5月9日这7天的日气温最高值统计图如图所示.从统计图看,该地区这7天日气温最高值的众数与中位数分别是()A. 23,25B. 24,23C. 23,23D. 23,248.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A. 1:B. 1:2C. 2:3D. 4:99.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b-)x+c=0(a≠0)的两根之和()A. 大于0B. 等于0C. 小于0D. 不能确定10.如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是()A. B.C. D.二、填空题(本大题共9小题,共41.0分)11.分解因式:4ax2-ay2=______.12.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准克数记为正数,不足标准克数记为负数.现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的极差是______ .13.当m= ______ 时,关于x的分式方程=-1无解.14.正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.则四边形ABFE′的面积是______ .15.已知x1、x2为方程x2+3x+1=0的两实根,则x13+8x2+20= ______ .16.若关于t的不等式组,恰有三个整数解,则关于x的一次函数的图象与反比例函数的图象的公共点的个数为______.17.抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则ac= ______ .18.若[x]表示不超过x的最大整数(如,等),则=______.19.已知抛物线y=ax2+bx+c(a<0)经过点(-1,0)且满足4a+2b+c>0.以下结论①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac>5a2中,正确的是______ .三、计算题(本大题共2小题,共12.0分)20.(1)计算:-22+(3.14-π)0+(-)-2+-|2-|-2cos30°(2)解方程:-1=.21.先化简,再求值:,其中x为不等式组的整数解.四、解答题(本大题共7小题,共67.0分)22.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气候风暴,有极强的破坏力.沿海某城市A的正南方向240km的B处有一台风中心,其中心风力最大为十二级,每远离台风中心20千米,风力就减弱一级,该台风中心现在正以15km/h的速度沿北偏东30°的方向往C移动,且台风中心风力不变.若城市所受的风力达到或超过四级,则称为受台风的影响.(1)城市A是否受台风影响?请说明理由;(2)如果城市A受台风影响,则影响时间有多长?(3)该城市受到台风影响的最大风力为几级?23.某校社会实践小组对于如何看待“限号出行”这一举措进行社会民意调查,将调查结果绘成如下表格:(1)请补全频数分布表;(2)在不能确定的三个人中,有两名女性,一名男性,若要在三个人中,任选两个人进行电话回访,请用画树状图或列表格的方法求出刚好选到一男一女的概率.24.如图,反比例函数y=(k>0)与正比例函数y=ax相交于A(1,k),B(-k,-1)两点.(1)求反比例函数和正比例函数的解析式;(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数y=(k>0)的图象交于C(x1,y1),D(x2,y2),且|x1-x2|•|y1-y2|=5,求b的值.25.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)26. 东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价p (元/kg )与时间t (天)之间的函数关系式为p =为整数为整数 ,且其日销售量y (kg )与时间t (天)的关系()已知与之间的变化规律符合一次函数关系,试求在第天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg 水果就捐赠n 元利润(n <9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围.27. 如图,在矩形ABCD 中,E 为CD 的中点,F 为BE 上的一点,连结CF 并延长交AB 于点M ,MN ⊥CM 交射线AD 于点N . (1)当F 为BE 中点时,求证:AM =CE ;(2)若 ==2,求的值;(3)若 = =n ,当n 为何值时,MN ∥BE ?轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=-且经过A、C两点,与x轴的另一交点为点B.(1)①直接写出点B的坐标;②求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:-|-|=-,∴-的相反数为,故选A.先化简,再求相反数即可;此题是绝对值题目,主要考查了相反数的求法,解本题的关键是先化简原式.2.【答案】C【解析】解:从上面可看到第一横行左下角有一个正方形,第二横行有3个正方形,第三横行中间有一个正方形.故选C.根据俯视图是从上面看到的图形判定则可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.【答案】A【解析】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.根据中心对称图形与轴对称图形的概念判断即可.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.【答案】C【解析】解:290亿应为2.90×1010,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】C【解析】解:A、-2x2y3•2xy=-4x3y4,所以A选项错误;B、两个整式不是同类项,不能合并,所以B选项错误;C、28x4y2÷7x3y=4xy,所以C选项正确;D、(-3a-2)(3a-2)=-(3a+2)(3a-2)=-9a2+4,所以,D选项错误;故选C.利用整式的乘法公式以及同底数幂的乘方法则分别计算即可判断.本题考查了整式的混合运算:利用整式的乘法公式、同底数幂的乘方法则以及合并同类项进行计算,有括号先算括号内,再算乘方和乘除,最后算加减.6.【答案】B【解析】解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=x cm,则BC=(20-2x)cm,∴,解得5cm<x<10cm.故选:B.设AB=AC=x,则BC=20-2x,根据三角形的三边关系即可得出结论.本题考查的是等腰三角形的性质、解一元一次不等式组,熟知等腰三角形的两腰相等是解答此题的关键.7.【答案】C【解析】解:观察条形图可得,23出现的次数最多,故众数是23°C;气温从低到高的第4个数据为23°C,故中位数是23℃;故选:C.利用众数、中位数的定义结合图形求解即可.此题考查了条形统计图,考查读条形统计图的能力和利用统计图获取信息的能力.也考查了中位数和众数的概念.8.【答案】D【解析】解:∵四边形EFNM是正方形,∴EF=MN,∴=,∴EF=AC,∵=,∴CG=AC,∴==,易证:△DEF∽△HCG,∴S1:S2=4:9;故选:D.根据题意先求出EF=AC,再根据=,求出CG=AC,从而得出,再根据相似比即可得出S1:S2的比值.此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出的比值.9.【答案】A【解析】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴->0.设方程ax2+(b-)x+c=0(a≠0)的两根为m,n,则m+n=-=-+,∵a>0,∴>0,∴m+n>0.故选A.设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b-)x+c=0(a≠0)的两根为m,n再根据根与系数的关系即可得出结论.本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.10.【答案】C【解析】解:∵AE=BF=CG,且等边△ABC的边长为2,∴BE=CF=AG=2-x;∴△AEG≌△BEF≌△CFG.在△AEG中,AE=x,AG=2-x,∵S△AEG=AE×AG×sinA=x(2-x);2-x+1).∴y=S∴其图象为二次函数,且开口向上.故选C.根据题意可知△AEG≌△BEF≌△CFG三个三角形全等,且在△AEG中,AE=x,AG=2-x;可得△AEG的面积y与x的关系;进而可判断得则y关于x的函数的图象的大致形状.本题考查动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,另外要求能根据函数解析式判断函数图象的形状.11.【答案】a(2x+y)(2x-y)【解析】解:原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为:a(2x+y)(2x-y).首先提取公因式a,再利用平方差进行分解即可.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.【答案】5【解析】解:根据题意得:超出标准克数最大的是2,低于标准克数最小的是-3,所以极差=2-(-3)=2+3=5,故答案为:5.极差是最大数和最小数的差,据此解答.本题考查了极差的定义,解题的关键是了解极差是最大数与最小数的差,难度不大.13.【答案】-6【解析】【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0;本题考查了分式方程无解的条件,是需要识记的内容.并且在解方程去分母的过程中,一定要注意分数线起到括号的作用,并且要注意没有分母的项不要漏乘.【解答】解:方程去分母得:2x+m=-x+3,解得:,当分母x-3=0即x=3时原分式方程无解, 即=3时原分式方程无解,解之得:m=-6. 故答案为-6.14.【答案】【解析】解:如图,连接EB 、EE′,作EM ⊥AB 于M ,EE′交AD 于N .∵四边形ABCD 是正方形,∴AB=BC=CD=DA ,AC ⊥BD ,AO=OB=OD=OC , ∠DAC=∠CAB=∠DAE′=45°,根据对称性,△ADE ≌△ADE′≌△ABE , ∴DE=DE′,AE=AE′, ∴AD 垂直平分EE′, ∴EN=NE′,∵∠NAE=∠NEA=∠MAE=∠MEA=45°,AE=,∴AM=EM=EN=AN=1,∵ED 平分∠ADO ,EN ⊥DA ,EO ⊥DB , ∴EN=EO=1,AO=+1,∴AB=AO=2+,∴S△AEB =S △AED =S △ADE′=×1×(2+)=1+,S △BDE =S △ADB -2S △AEB =1+,∵DF=EF ,∴S △EFB =,∴S△DEE′=2S △ADE -S △AEE′=+1,S △DFE′=S △DEE′=,∴S 四边形AEFE′=2S △ADE -S △DFE′=,∴S 四边形ABFE′=S 四边形AEFE′+S △AEB +S △EFB =.故答案为.如图,连接EB 、EE′,作EM ⊥AB 于M ,EE′交AD 于N .易知△AEB ≌△AED ≌△ADE′,先求出正方形AMEN 的边长,再求出AB ,根据S 四边形ABFE′=S 四边形AEFE′+S △AEB +S △EFB 即可解决问题.本题考查正方形的性质、翻折变换、全等三角形的性质,角平分线的性质、等腰直角三角形的性质等知识,解题的关键是添加辅助线,学会利用分割法求四边形面积,属于中考填空题中的压轴题.15.【答案】-1【解析】解:∵x1、x2为方程x2+3x+1=0的两实根,∴x12=-3x1-1,x1+x2=-3;∴x13+8x2+20=(-3x1-1)x1+8x2+20=-3x12-x1+8x2+20=-3(-3x1-1)-x1+8x2+20=9x1-x1+8x2+23=8(x1+x2)+23=-24+23=-1.故x13+8x2+20=-1.由于x1、x2是方程的两根,根据根与系数的关系可得到两根之和的值,根据方程解的定义可得到x12、x1的关系,根据上面得到的条件,对所求的代数式进行有针对性的拆分和化简,然后再代值计算.此题是典型的代数求值问题,涉及到根与系数的关系以及方程解的定义.在解此类题时,如果所求代数式无法化简,应该从已知入手看能得到什么条件,然后根据得到的条件对所求代数式进行有针对性的化简和变形.16.【答案】1或0【解析】解:不等式组的解为:a≤t≤,∵不等式组恰有3个整数解,∴-2<a≤-1.联立方程组,得:x2-ax-3a-2=0,△=a2+3a+2=(a+)2-=(a+1)(a+2)这是一个二次函数,开口向上,与x轴交点为(-2,0)和(-1,0),对称轴为直线a=-,其图象如下图所示:由图象可见:当a=-1时,△=0,此时一元二次方程有两个相等的根,即一次函数与反比例函数有一个交点;当-2<a<-1时,△<0,此时一元二次方程无实数根,即一次函数与反比例函数没有交点.∴交点的个数为:1或0.故答案为:1或0.根据不等式组恰有三个整数解,可得出a的取值范围;联立一次函数及反比例函数解析式,利用二次函数的性质判断其判别式的值的情况,从而确定交点的个数.本题考查了二次函数、反比例函数、一次函数、解不等式、一元二次方程等知识点,有一定的难度.多个知识点的综合运用,是解决本题的关键.17.【答案】-1【解析】解:设A(x1,0),B(x2,0),由△ABC是直角三角形可知x1、x2必异号,则x1•x2=<0,由于函数图象与y轴相交于C点,所以C点坐标为(0,c),由射影定理知,|OC|2=|AO|•|BO|,即c2=|x1|•|x2|=||,故|ac|=1,ac=±1,由于<0,所以ac=-1.故答案为:-1.根据x轴上点的坐标特点可设出A、B两点的坐标为(x1,0),(x2,0),根据△ABC是直角三角形可知x1、x2必异号,再由抛物线与y轴的交点可求出C点的坐标,由射影定理即可求出ac的值.本题考查的是抛物线与x轴的交点问题,根据射影定理得到|OC|2=|AO|•|BO|是解答此题的关键.18.【答案】2000【解析】解:∵[x]表示不超过x的最大整数,∴=[]+[]+…+[],=[1+]+[1+]+…+[1+],=1+1+ (1)=2000.故答案为:2000.根据[x]表示不超过x的最大整数,[]=[]=[1+]=1,[]=[]=1,…[]=[]=1,从而得出答案.此题主要考查了取整函数的性质,得出[]=[]=[1+]=1等,是解决问题的关键.19.【答案】①②③④【解析】解:①因为抛物线y=ax2+bx+c(a<0)经过点(-1,0),所以原式可化为a-b+c=0----①,又因为4a+2b+c>0----②,所以②-①得:3a+3b>0,即a+b>0;故①正确;②,②+①×2得,6a+3c>0,即2a+c>0,∴a+c>-a,∵a<0,∴-a>0,故a+c>0;故②正确;③因为4a+2b+c>0,可以看作y=ax2+bx+c(a<0)当x=2时的值大于0,草图为:可见c>0,∵a-b+c=0,∴-a+b-c=0,两边同时加2c得-a+b-c+2c=2c,整理得-a+b+c=2c>0,即-a+b+c>0;故③正确;④∵过(-1,0),代入得a-b+c=0,∴b2-2ac-5a2=(a+c)2-2ac-5a2=c2-4a2=(c+2a)(c-2a)又∵4a+2b+c>04a+2(a+c)+c>0即2a+c>0①∵a<0,∴c>0则c-2a>0②由①②知(c+2a)(c-2a)>0,所以b2-2ac-5a2>0,即b2-2ac>5a2故④正确;综上可知正确的是①②③④.故填:4.①,因为抛物线y=ax2+bx+c(a<0)经过点(-1,0),把点(-1,0)代入解析式,结合4a+2b+c>0,即可整理出a+b>0;②,②+①×2得,6a+3c>0,结合a<0,故可求出a+c>0;③,画草图可知c>0,结合a-b+c=0,可整理得-a+b+c=2c>0,从而求得-a+b+c>0;④,把(-1,0)代入解析式得a-b+c=0,可得出2a+c>0,再由a<0,可知c>0则c-2a>0,故可得出(c+2a)(c-2a)>0,即b2-2ac-5a2>0,进而可得出结论.此题是一道结论开放性题目,考查了二次函数的性质、一元二次方程根的个数和图象的位置之间的关系,同时结合了不等式的运算,是一道难题.20.【答案】解:(1)原式=-4+1+4+4-2+-2×=3;(2)去分母得:x(x+2)-x2-x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.【解析】(1)原式利用零指数幂、负整数指数幂法则,乘方的意义,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.【答案】解:,解不等式①得,x<2,解不等式②得,x>-1,所以,不等式组的解集是-1<x<2,∵x是整数,∴x的值是0,1,÷(x-2-)-,=÷-,=•-,=-,=,=-,要使分式有意义,x(x+2)≠0,(x+4)(x-4)≠0,解得x≠0,x≠-2,x≠±4,所以,x=1,原式=-=-.【解析】先求出两个不等式的解集,再求其公共解,从而得到正整数x的值,再把被除式的分子分母分解因式,括号里面的通分并进行加法运算,然后把除法转化为乘法运算,约分,再求出使分式有意义的x的取值范围,然后代入进行计算即可得解.本题考查了分式的化简求值,解一元一次不等式组,要注意先算括号里面的,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,所取的数必须是使分式有意义.22.【答案】解:(1)该城市会受到这次台风的影响.理由是:如图,过A作AD⊥BC于D.在Rt△ABD中,∵∠ABD=30°,AB=240,∴AD=AB=120,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为20×(12-4)=160.∵120<160,∴该城市会受到这次台风的影响.(2)如图以A为圆心,160为半径作⊙A交BC于E、F,则AE=AF=160.∴台风影响该市持续的路程为:EF=2DE=2=80(千米).∴台风影响该市的持续时间t=80÷15=(小时).(3)∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12-(120÷20)=6(级).【解析】(1)求是否会受到台风的影响,其实就是求A到BC的距离是否大于台风影响范围的半径,如果大于,则不受影响,反之则受影响.如果过A作AD⊥BC于D,AD就是所求的线段.直角三角形ABD中,有∠ABD的度数,有AB的长,AD就不难求出了.(2)受台风影响时,台风中心移动的距离,应该是A为圆心,台风影响范围的半径为半径,所得圆截得的BC上的线段的长即EF得长,可通过在直角三角形AED和AFD中,根据勾股定理求得.有了路程,有了速度,时间就可以求出了.(3)风力最大时,台风中心应该位于D点,然后根据题目给出的条件判断出是几级风.本题考查了解直角三角形的应用-方向角问题,勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度中等.23.【答案】;;50【解析】解:(1)调查的总人数是3÷0.06=50(人),则表示赞同的人数是50-19-3=28(人),表示赞同的频率是=0.56,表示不赞同的频率是=0.38.故答案是:;;50;(2)利用树状图表示为:则P(选到一男一女)==.(1)首先根据不确定的有3人,频率是0.06求得调查的总人数,利用总人数减去不赞同和不确定的人数求得赞同的人数,然后利用频率的定义求得频率;(2)利用树状图法表示出所求可能,然后利用概率公式求解.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:(1)据题意得:点A(1,k)与点B(-k,-1)关于原点对称,∴k=1,∴A(1,1),B(-1,-1),∴反比例函数和正比例函数的解析式分别为y=,y=x;(2)∵一次函数y=x+b的图象过点(x1,y1)、(x2,y2),∴ ,②-①得,y2-y1=x2-x1,∵|x1-x2|•|y1-y2|=5,∴|x1-x2|=|y1-y2|=,由得x2+bx-1=0,解得,x1=,x2=,∴|x1-x2|=|-|=||=,解得b=±1.【解析】(1)首先根据点A与点B关于原点对称,可以求出k的值,将点A分别代入反比例函数与正比例函数的解析式,即可得解.(2)分别把点(x1,y1)、(x2,y2)代入一次函数y=x+b,再把两式相减,根据|x1-x2|•|y1-y2|=5得出|x1-x2|=|y1-y2|=,然后通过联立方程求得x1、x2的值,代入即可求得b的值.本题考查了反比例函数与正比例函数关于原点对称这一知识点,以及用待定系数法求函数解析式以及一次函数图象上点的坐标特点,利用对称性求出点的坐标是解题的关键.25.【答案】(1)证明:如图1,过点D作DF⊥BC,交AB于点F,则∠BDE+∠FDE=90°,∵DE⊥AD,∴∠FDE+∠ADF=90°,∴∠BDE=∠ADF,∵∠BAC=90°,∠ABC=45°,∴∠C=45°,∵MN∥AC,∴∠EBD=180°-∠C=135°,∵∠BFD=45°,DF⊥BC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=∠AFD,在△BDE和△FDA中,∴△BDE≌△FDA(ASA),∴AD=DE;(2)解:DE=AD,理由:如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°-∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴=,在Rt△BDG中,=tan30°=,∴DE=AD;(3)AD=DE•tanα;理由:如图2,∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠EBD=90°+α,∠AGD=90°+α,∴∠EBD=∠AGD,∴△EBD∽△AGD,∴=,在Rt△BDG中,=tanα,则=tanα,∴AD=DE•tanα.【解析】(1)首先过点D作DF⊥BC,交AB于点F,得出∠BDE=∠ADF,以及∠EBD=∠AFD,再得出△BDE≌△FDA(ASA),求出即可;(2)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE∽△GDA即可得出答案;(3)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE∽△GDA即可得出答案.此题主要考查了全等三角形的判定与性质以及相似三角形的判定与性质,得出△EBD∽△AGD是解题关键.26.【答案】解:(1)设y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,∴y=-2t+120.将t=30代入上式,得:y=-2×30+120=60.所以在第30天的日销售量是60kg.(2)设第x天的销售利润为w元.当1≤t≤24时,由题意w=(-2t+120)(t+30-20)=-(t-10)2+1250,∴t=10时w最大值为1250元.当25≤t≤48时,w=(-2t+120)(-t+48-20)=t2-116t+3360,∵对称轴t=58,a=1>0,∴在对称轴左侧w随x增大而减小,∴t=25时,w最大值=1085,综上所述第10天利润最大,最大利润为1250元.(3)设每天扣除捐赠后的日销售利润为m元.由题意m=(-2t+120)(t+30-20)-(-2t+120)n=-t2+(10+2n)t+1200-120n,∵在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,∴-≥24,∴n≥7.又∵n<9,∴n的取值范围为7≤n<9.【解析】(1)设y=kt+b,利用待定系数法即可解决问题.(2)日利润=日销售量×每公斤利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论.(3)列式表示前24天中每天扣除捐赠后的日销售利润,根据函数性质求n的取值范围.此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.27.【答案】解:(1)当F为BE中点时,如图1,则有BF=EF.∵四边形ABCD是矩形,∴AB=DC,AB∥DC,∴∠MBF=∠CEF,∠BMF=∠ECF.在△BMF和△ECF中,,∴△BMF≌△ECF,∴BM=EC.∵E为CD的中点,∴EC=DC,∴BM=EC=DC=AB,∴AM=BM=EC;(2)如图2,设MB=a,∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠A=∠ABC=∠BCD=90°,AB∥DC,∴△ECF∽△BMF,∴==2,∴EC=2a,∴AB=CD=2CE=4a,AM=AB-MB=3a.∵=2,∴BC=AD=2a.∵MN⊥MC,∴∠CMN=90°,∴∠AMN+∠BMC=90°.∵∠A=90°,∴∠ANM+∠AMN=90°,∴∠BMC=∠ANM,∴△AMN∽△BCM,∴=,∴=,∴AN=a,ND=AD-AN=2a-a=a,∴==3;(3)当==n时,如图3,设MB=a,同(2)可得BC=2a,CE=na.∵MN∥BE,MN⊥MC,∴∠EFC=∠HMC=90°,∴∠FCB+∠FBC=90°.∵∠MBC=90°,∴∠BMC+∠FCB=90°,∴∠BMC=∠FBC.∵∠MBC=∠BCE=90°,∴△MBC∽△BCE,∴=,∴=,∴n=4.【解析】(1)如图1,易证△BMF≌△ECF,则有BM=EC,然后根据E为CD的中点及AB=DC就可得到AM=EC;(2)如图2,设MB=a,易证△ECF∽△BMF,根据相似三角形的性质可得EC=2a,由此可得AB=4a,AM=3a,BC=AD=2a.易证△AMN∽△BCM,根据相似三角形的性质即可得到AN=a,从而可得ND=AD-AN=a,就可求出的值;(3)如图3,设MB=a,同(2)可得BC=2a,CE=na.由MN∥BE,MN⊥MC可得∠EFC=∠HMC=90°,从而可证到△MBC∽△BCE,然后根据相似三角形的性质即可求出n的值.本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、同角的余角相等、三角形外角的性质等知识,利用相似三角形的性质得到线段之间的关系是解决本题的关键.28.【答案】解:(1)①y=当x=0时,y=2,当y=0时,x=-4,∴C(0,2),A(-4,0),由抛物线的对称性可知:点A与点B关于x=-对称,∴点B的坐标为1,0).②∵抛物线y=ax2+bx+c过A(-4,0),B(1,0),∴可设抛物线解析式为y=a(x+4)(x-1),又∵抛物线过点C(0,2),∴2=-4a∴a=∴y=x2x+2.(2)设P(m,m2m+2).过点P作PQ⊥x轴交AC于点Q,∴Q(m,m+2),∴PQ=m2m+2-(m+2)=m2-2m,∵S△PAC=×PQ×4,=2PQ=-m2-4m=-(m+2)2+4,∴当m=-2时,△PAC的面积有最大值是4,此时P(-2,3).(3)方法一:在Rt△AOC中,tan∠CAO=在Rt△BOC中,tan∠BCO=,∴∠CAO=∠BCO,∵∠BCO+∠OBC=90°,∴∠CAO+∠OBC=90°,∴∠ACB=90°,∴△ABC∽△ACO∽△CBO,如下图:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(-3,2)时,△MAN∽△ABC;③当点M在第四象限时,设M(n,n2n+2),则N(n,0)∴MN=n2+n-2,AN=n+4当时,MN=AN,即n2+n-2=(n+4)整理得:n2+2n-8=0解得:n1=-4(舍),n2=2∴M(2,-3);当时,MN=2AN,即n2+n-2=2(n+4),整理得:n2-n-20=0解得:n1=-4(舍),n2=5,∴M(5,-18).综上所述:存在M1(0,2),M2(-3,2),M3(2,-3),M4(5,-18),使得以点A、M、N为顶点的三角形与△ABC相似.方法二:∵A(-4,0),B(1,0),C(0,2),∴K AC×K BC=-1,∴AC⊥BC,MN⊥x轴,若以点A、M、N为顶点的三角形与△ABC相似,则,,设M(2t,-2t2-3t+2),∴N(2t,0),①||=,∴||=,∴2t1=0,2t2=2,②||=,∴||=2,∴2t1=5,2t2=-3,综上所述:存在M1(0,2),M2(-3,2),M3(2,-3),M4(5,-18),使得以点A、M、N为顶点的三角形与△ABC相似.【解析】(1)①先求的直线y=x+2与x轴交点的坐标,然后利用抛物线的对称性可求得点B的坐标;②设抛物线的解析式为y=y=a(x+4)(x-1),然后将点C的坐标代入即可求得a的值;(2)设点P、Q的横坐标为m,分别求得点P、Q的纵坐标,从而可得到线段PQ=m2-2m,然后利用三角形的面积公式可求得S△PAC=×PQ×4,然后利用配方法可求得△PAC的面积的最大值以及此时m的值,从而可求得点P的坐标;(3)首先可证明△ABC∽△ACO∽△CBO,然后分以下几种情况分类讨论即可:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(-3,2)时,△MAN∽△ABC;④当点M在第四象限时,解题时,需要注意相似三角形的对应关系.本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.。

四川省成都市 九年级(上)期中物理试卷-(含答案)

四川省成都市 九年级(上)期中物理试卷-(含答案)

九年级(上)期中物理试卷题号一二三四五六总分得分一、单选题(本大题共18小题,共36.0分)1.如图所示,以下四件家用电器正常工作时电流最接近5A的是()A. 电风扇B. 笔记本电脑C. 台灯D. 电饭锅2.下列现象中属于扩散现象的是()A. 酒精擦在皮肤上能闻到酒精味B. 脏水中有很多细菌在运动C. 铁锅放久了会生锈D. 室内扫地是,在阳光照耀下看见灰尘在空中飞舞3.关于温度、热量、内能,下列说法正确的是()A. 物体的温度越高,放出的热量越多B. 温度低的物体可能比温度高的物体内能多C. 物体的内能增加,一定是外界对物体做了功D. 物体吸收了热量,它的温度一定升高4.下列关于比热容的说法中,正确的是()A. 物体的质量越小,比热容越大B. 物体升高的温度越低,比热容越大C. 物体吸收的热量越多,比热容越大D. 比热容是物质自身的性质,与质量、吸收的热量或升高的温度均无关5.如图所示是汽油机的四个冲程,其中属于做功冲程的是()A. B. C. D.6.用同种材料制成两段长度相等,横截面积不同的圆柱形导体,A比B的横截面积大,如图所示,将它们串联在电路中,通过的电流关系是()A. I A>I BB. I A<I BC. I A=I BD. 无法确定7.举重比赛有甲、乙、丙三个裁判,其中甲为主裁判,乙和丙为副裁判。

若裁判认定杠铃已被举起,就按一下自己面前的按钮。

要求主裁判和至少一个副裁判都按下自己面前的按钮时,指示杠铃被举起的灯泡L才亮。

以下符合这一要求的电路是()A. B.C. D.8.在如图所示的电路中,用滑动变阻器调节灯的亮度,若要求滑片P向右端滑动时灯逐渐变亮,应选择下列哪种接法()A. M接A,N接BB. M接C,N接DC. M接C,N接BD. M接A,N接D9.下列关于电荷,电流的说法中正确的是()A. 电路中有电源就一定有电流B. 摩擦起电的实质是创造了电荷C. 只要电荷移动就能形成电流D. 正电荷的定向移动方向为电流方向10.王明利用如图所示的电路装置来判断物体的导电性,在A、B两个金属夹之间分别接入下列物体时,闭合开关不能使小灯泡发光的是()A. 铅笔芯B. 塑料直尺C. 铜制钥匙D. 钢制小刀11.如图所示的电路中,闭合开关时,下列说法正确的是()A. 两灯泡串联B. 电流表测的是总电流C. 电流表测的是灯泡L2中的电流D. 开关只能控制灯泡L212.某反恐小组的拆弹专家在排除恐怖分子设置在飞机上的爆炸装置(如图所示),为使爆炸装置停止工作,可采取如下措施()A. 使a线短路B. 剪断a线C. 剪断b线D. 以上方式都可以13.如图所示,电路中开关S闭合时电压表测量的是()A. 电源电压B. L1两端的电压C. L2两端的电压D. L1两端的电压和电源电压之和14.如图所示把凉牛奶放在热水中加热,经过一段较长时间,它们的温度随时间变化的图象如图所示,下列说法中正确的是()A. 水和牛奶最后温度不相同B. 水的温度变化比牛奶大C. 牛奶温度变化比水慢D. 乙是牛奶温度变化图象15.在如图所示的电路中,当S闭合后,下列说法正确的是()A. L1和L2都能发光B. 去掉导线a,能使L1与L2串联C. 电路将发生断路D. 将导线M从B接线柱移至A,就能使L1和L2并联16.太阳能是人类优先开发和利用的新能源之一,关于太阳能的利用,下列说法正确的是()A. 图甲中,绿色植物通过光合作用将太阳能转化为化学能B. 图乙中,太阳能热水器通过做功方式将太阳能转化为水的内能C. 图丙中,太阳能交通信号灯将太阳能直接转化为信号灯的光能D. 图丁中,首架环球航行的太阳能飞机将太阳能直接转化为飞机的机械能17.小明按图甲所示的电路进行实验,当闭合开关用电器正常工作时,电压表V1和V2的指针位置完全一样,如图乙所示,则R1、R2两端的电压为分别为()A. 1.2V 6VB. 1.4V5.2VC. 4.8V 1.2VD. 1.4V3.8V18.如图所示,小明用电流表来测量a、b、c、d四处的电流,他把测量结果记录在草稿纸上,由于不小心丢失了其中两个数据,只剩下了0.2安、0.3安两个电流值,则另两个丢失的电流值不可能是下面的哪个数值()A. 0.1安B. 0.2安C. 0.3安D. 0.5安二、多选题(本大题共2小题,共4.0分)19.如图所示的电路中,下列说法正确的是()A. 只闭合开关S2时,电灯L1和L2串联,电流表测量L1的电流B. 只闭合开关S1和S3时,电灯L1和L2并联,电流表测L1、L2的电流之和C. 只闭合开关S1和S2时,电灯L1和L2串联,电流表测L2的电流D. 开关S2、S3都闭合时,电灯L1、L2被短路20.如图所示,在电路图的“○”里填上适当的电表符号后使之成为正确的电路,且闭合开关S,两灯均可发光,下列说法正确的是()A. ①③为电压表,②为电流表B. ①②为电压表,③电流表C. ①③为电流表,②为电压表D. ①②③均为电流表三、填空题(本大题共8小题,共34.0分)21.用盐水腌蛋,过一段时间后蛋会变咸,这是______现象,这种现象说明构成物质的大量分子在做无规则运动,相比较而言煮茶叶蛋时,蛋很快就会咸,这说明了该运动与______有关。

成都市九年级上学期期中物理试卷(I)卷

成都市九年级上学期期中物理试卷(I)卷

成都市九年级上学期期中物理试卷(I) 卷一、选择题 ( 共 10 题;共 20 分)1.(2 分)把洁净的玻璃板吊在弹簧测力计的下边,记下测力计的读数。

如图让玻璃板的下表面接触水面,然后稍稍使劲向上拉,发现弹簧测力计读数变大,其原由是玻璃板与水的接触面之间存在()A.摩擦力B .分子引力C .分子斥力D .大气压力2.(2分)对于温度、热量、内能,以下说法正确的选项是()A .温度高的物体,内能必定大B .对物体做功,物体的内能必定增大C .物体的温度越高,所含的热量越多D .晶体在融化过程中,持续吸热,温度不变,内能增大3.(2分)以下说法正确的选项是()A .物体的内能与温度相关,只需温度不变,物体的内能就必定不变B .物体温度越高,所含的热量越多C .在炒肉片过程中,肉片内能增添主要经过做功实现的D .玫瑰园花香阵阵,说明分子在不断地做无规则运动4.(2分)以下说法中正确的选项是()A .水分子运动越强烈,水拥有的内能就越多B .水分子运动越强烈,水拥有的热量就越多C .水分子运动越强烈,水的热值就越大D .水分子运动越强烈,水的比热容就越大5.(2分)以下对于热现象的说法中,正确的选项是()A .沿海地域日夜温差比内地地域小,是因为水的比热容小B .汽油机压缩冲程把内能转变为机械能C .火箭用氢作燃料主假如因为氢的热值高D .温度高的物体含有的热量多6.( 2 分)小刚打开了家庭电路中常用的白炽灯泡和灯头,如下图,则以下灯泡和灯头上的各零件中所有下于绝缘体的是()A .灯头后盖、螺旋B .玻璃泡、锡块C .螺旋、金属片D .灯头后盖、玻璃泡7.(2分)如图是小红设计的家庭电路的电路图,对于此电路图,以下剖析错误的选项是()A .保险盒接法错误,保险盒应当改装到火线上B .开关和灯泡接法正确,开关接在零线上更安全C .两孔插座接法错误,其左端导线应接在零线上D .三孔插座接法正确,使用冰箱时,插头应插在三孔插座上8.(2分)在如下图的电路中,接通电路后各部分电路都正常;假如将电流表与L2 交换地点,那么()A .电流表的示数将变小,电压表的示数将变小B .电流表的示数将变大,电压表的示数将不变C .电流表的示数将不变,电压表的示数将变小D .电流表的示数将不变,电压表的示数将不变9.(2 分)如下图的电路中,当开关S闭合时,灯 L1 和 L2 均不亮。

成都市九年级上学期期中物理试卷.docx

成都市九年级上学期期中物理试卷.docx

成都市九年级上学期期中物理试卷一、选择题 ( 共 10 题;共 22 分 )1.(2分)以下估测与实际情况相符的是()A .人体感觉舒适的环境温度约为40℃B .人正常步行的速度约为5m/sC .中学生脉搏跳动一次的时间约为3sD .一只普通鸡蛋的质量约为50g2.(2分)(2017?齐齐哈尔)根据生活经验,以下估测最接近实际的是()A .人感觉舒适的环境温度为37℃B .中学生的质量约为500kgC .人正常步行的速度约为 1.1m/sD .中学生的鞋长约为42cm3.(2分)下列说法中正确的是()A .所有的固体吸收热量,由固体变成液体时温度保持不变B .所有的物体放出热量时温度都要降低C .用手摸冰感到比用手摸水凉,是因为水的温度一定比冰的温度高D .蒸发在任何温度下都能发生4.(2分)下列说法中错误的是()A .用久了的电灯灯丝变细是升华现象B .秋天的早晨,大雾逐渐散去是液化现象C .被水蒸气烫伤比沸水烫伤更严重是因为水蒸气液化时要放出热量D .人出汗后,微风吹过感到凉爽,是因为汗液蒸发加快,带走更多的热量5.(2分)根据图表所提供的数据,在标准大气压下,以下判断正确的是()A . 80 ℃的酒精是液态B . -39℃的水银吸热,温度可能不变C .气温接近- 50℃时,应选用水银做温度计来测量液体D .铅的凝固点是- 328℃6.(2分)下列说法中正确的是()A .物体吸收了热量,温度一定升高B .物体温度升高了,一定吸收了热量C .超声波在真空中传播的速度是3×108m/sD .玻璃窗上的“冰花”是水蒸气凝华形成的7. ( 2 分)某物体用v1 的速度运行t 秒钟,接下来又用v2 的速度运动t 秒钟,那么该物体在这两段时间内的平均速度是()A.B.C.D.8.( 2 分)“扬汤止沸”是指将锅里沸腾的水舀起来再倒回去,以阻止锅中的水沸腾,“釜底抽薪”是指从锅下抽掉燃着的木柴.根据所学的物理知识可知,下列说法中错误的是()A .“扬汤止沸”只能暂时止沸B .“釜底抽薪”能彻底止沸C .“扬汤止沸”利用了汽化吸热D .“釜底抽薪”彻底止沸是由于锅中水不能继续吸热。

成都英才学校初三化学初三化学上册期中综合试题

成都英才学校初三化学初三化学上册期中综合试题

成都英才学校初三化学上册期中综合试题一、选择题(培优题较难)1.实验室用装有等质量的两份氯酸钾的试管a和b分别加热制取氧气过程中,某同学误把少量高锰酸钾当成二氧化锰加入b试管,下面是试管a、b中产生氧气的质量随时间变化的图象,其中正确的是()A.B.C.D.2.某工地发生多人食物中毒,经化验为误食工业用盐亚硝酸钠(NaNO2)所致。

NaNO2中氮元素的化合价是()A.+4B.+3C.+2D.+53.下列加热高锰酸钾制取氧气的部分操作示意图中,正确的是A.检查装置气密性B.加热立即收集C.收满后移出集气瓶 D.结束时停止加热4.对于下列几种化学符号,有关说法正确的是①H ②Fe2+③Cu ④P2O5⑤Fe3+⑥NaClA.能表示一个分子的是①④⑥B.表示物质组成的化学式是③④⑥C.②⑤的质子数相同,化学性质也相同D.④中的数字“5”表示五氧化二磷中有5个氧原子5.下列物质含有氢分子的是()A.H2B.H2O2C.H2CO3D.H2O6.用下图装置进行实验。

下列现象能证明空气中O2的含量的是()A.红磷燃烧,产生白烟B.瓶中液面先下降,后上升C.瓶中液面最终上升至1处D.水槽中液面下降7.下列关于CO2的实验室制法及性质实验的说法不正确的是()A、制CO2的药品B、发生装置C、收集装置D、比较CO2与空气的密度A.A B.B C.C D.D8.在下列四种含有氯元素的物质中,氯元素化合价最低的是()A.Cl2 B.NaCl C.HClO D.KClO39.最近,我国科学家成功合成新型催化剂,将CO2高效转化为甲醇(CH3OH)。

这不仅可以缓解碳排放引起的温室效应,还将成为理想的能源补充形式。

该化学反应的微观过程如下图所示。

下列说法正确的是A.该反应中四种物质均为化合物B.反应前后H元素的化合价不变C.参加反应的甲、乙分子个数比为1:3D.反应前后原子数目发生改变10.下列实验现象描述正确的是A.硫在氧气中燃烧发出淡蓝色火焰B.磷在空气中燃烧产生大量白烟C.木炭在空气中燃烧发出白光D.铁丝在氧气中燃烧,火星四射,生成四氧化三铁11.硒元素有防癌抗癌作用。

成都英才学校初三初三化学上册期中综合试题

成都英才学校初三初三化学上册期中综合试题

成都英才学校初三化学上册期中综合试题一、选择题(培优题较难)1.如图是五种粒子的结构示意图,下列说法错误的是()A.图中粒子共能表示四种元素B.图中表示阴离子的是c、eC.图中b粒子的化学符号为Mg2+D.图中d粒子在化学反应中易失去电子2.如图所示有关二氧化碳的实验中,只与二氧化碳物理性质有关的实验是()A. B. C. D.3.石墨烯是一种革命性材料,具有优异的光学、电学和力学特性。

图为金刚石、石墨和石墨烯的结构模型图,图中小球代表碳原子。

下列说法正确的是( )①石墨烯是一种新型化合物②三种物质分别在足量的氧气中完全燃烧的产物相同③金刚石和石墨烯是组成相同但结构不同的两种物质④石墨烯有超强的导电性和导热性,说明石墨烯的化学性质和金属相似A.①④B.②③C.①③D.②③④4.碳12是指含6个中子的碳原子。

下列对氧16和氧18两种氧原子的说法正确的是A.质子数相同B.质量相同C.电子数不相同D.16和18表示原子个数5.2017年10月27日央视财经报道:王者归“铼”,中国发现超级金属铼,制造出航空发动机核心部件。

如图是铼在元素周期表中的相关信息,下列有关说法不正确的是()A.铼原子的核内质子数为75 B.铼的相对原子质量为186.2gC.铼的元素符号是Re D.铼原子的核外电子数为756.某工地发生多人食物中毒,经化验为误食工业用盐亚硝酸钠(NaNO2)所致。

NaNO2中氮元素的化合价是()A.+4B.+3C.+2D.+57.“天宫二号”太空舱利用NiFe2O4作催化剂将航天员呼出的二氧化碳转化为氧气。

已知Fe元素的化合价为+3价,则Ni元素的化合价为()A.+1 B.+2 C.+3 D.+48.对于下列几种化学符号,有关说法正确的是①H ②Fe2+③Cu ④P2O5⑤Fe3+⑥NaClA.能表示一个分子的是①④⑥B.表示物质组成的化学式是③④⑥C.②⑤的质子数相同,化学性质也相同D.④中的数字“5”表示五氧化二磷中有5个氧原子9.如图所示,甲是溴(Br)的原子结构示意图,乙摘自元素周期表。

成都市九年级上学期期中物理试卷

成都市九年级上学期期中物理试卷

成都市九年级上学期期中物理试卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分) (2017九上·赵县期中) 扩散现象的发生是由于()A . 分子在永不停息地做无规则运动B . 分子之间有作用力C . 分子间的斥力大于引力D . 物质是由分子组成的2. (2分)夏日,荷花盛开,漫步在荷塘边,闻到淡淡的花香,这是因为()A . 分子间存在引力B . 分子间存在斥力C . 分子间有间隙D . 分子在永不停息地运动3. (2分) (2016九·嘉鱼月考) 关于温度、热量和内能的说法正确的是()A . 温度高的物体具有的热量多B . 物体吸收热量温度会升高,内能会增大C . 热量总是从温度高的物体传到温度低的物体D . 热量总是从比热容大的物体传到比热容小的物体4. (2分) (2016九下·沂源开学考) 关于物质的比热容,下列说法中正确的是()A . 质量大的物质比热容一定大B . 密度大的物质比热容一定大C . 温度高的物质比热容一定大D . 各种物质都有自己的比热容,比热容是物质的一种特性5. (2分) (2016九上·薛城期中) 初春育水稻秧苗时,为了不使秧苗受冻,正确的做法是()A . 早晨多灌水,傍晚多排水B . 早晨多排水,傍晚多灌水C . 早晨和傍晚都要多灌水D . 早晨和傍晚都不要灌水6. (2分) (2017九上·开县期中) 如图所示的电路,要使两个小灯泡L1 , L2并联,应()A . 断开开关S1 , S2 ,闭合开关S3B . 断开开关S1 , S3 ,闭合开关S2C . 断开开关S1 ,闭合开关S2 , S3D . 断开开关S2 ,闭合开关S1 , S37. (2分) (2017九上·曲靖期中) 下列说法正确的是()A . 金属中的电流是自由电子定向移动形成的,所以电流方向就是自由电子定向移动方向B . 两个灯泡通过的电流相同,它们一定是串联C . 通过导体的电流越小,导体的电阻越大D . 导体两端的电压为0时,通过导体的电流也为08. (2分)在图中,a、b是供测电流和电压的电表,下面关于a、b是电流表还是电压表的说法正确的是()A . a、b都是电流表B . a、b都是电压表C . a是电压表,b是电流表D . a是电流表,b是电压表9. (2分)(2016·利辛模拟) 夜里,小明卧室的电灯突然熄灭,经检查,保险丝完好,用试电笔检测A、B、C、D四点(电路如图所示),发现氖管均发光,发生这一现象的原因可能是()A . 火线断了B . 灯泡短路C . 灯丝烧断了D . 零线断了二、填空题 (共7题;共19分)10. (2分)(2012·百色) 小欣把两个铅柱的底面削平,然后紧压在一起,两个铅柱能紧密结合起来,说明分子间存在________力;走进花园,花香袭人,这是因为花分子发生了________现象.11. (4分)如图所示为生活中常用的热水瓶,其外壁采用镀银的双层玻璃,并将中间抽成真空,这是为________ .注入一定量的热水后,立即盖上软木塞,软木塞会跳起来.这一过程中瓶内气体的________ 能转化为软木塞的机械能.汽油机的________ 冲程也发生同样的能量转化.如果该汽油机飞轮转速是1800r/min,则该汽油机每秒钟内对外做功________次.12. (3分) (2019九上·南海期中) 在上图中○填上适当的电表符号,使之成为正确的电路图.从上到下依次是________、________、________.13. (2分) (2016九上·高台期中) 完全燃烧0.5kg木柴放出的热量是________ J;若要将2.5kg初温为20℃的水加热到80℃,至少需要燃烧________ m3 的液化气.[水的比热容是4.2×103J/(kg•℃),干柴的热值是1.5×107J/kg,液化气的热值是5.0×107J/m3].14. (3分) (2016九上·重庆期中) 如图为旋转式变阻器的结构图,a、b、c为变阻器的三个接线柱,d为旋钮触片.将该变阻器接入电路中调节灯泡的亮度,当逆时针旋转触片d时,灯泡变暗,则应连接接线柱________(选填“a、b”、“b、c”或“a、c”)和灯泡________联后接入电路中.这种变阻器是通过改变________来改变连入电路的电阻的.15. (3分) (2016九上·九台期中) 用同种材料制成两段长度相等,横截面积不同的圆柱形导体,A比B的横截面积大.将它们串联在电路中,则导体A的电阻________导体B的电阻,通过A的电流________通过B的电流,导体A两端电压________导体B两端电压.16. (2分) (2015九上·西山期末) 在家庭电路中,电冰箱、电饭煲、日光灯等家用电器的连接方式是________联.如图所示的两种使用测电笔的方法中,正确的是图________.三、作图与实验探究题 (共5题;共31分)17. (5分) (2016九上·思茅期中) 如图所示,请根据图甲实物图,在图乙的线框内画出对应的电路图.18. (5分) (2016九·重庆月考) 用笔画线表示导线,按照图(甲)所示的电路图,将图(乙)中各元件连接起来.(导线不允许交叉)19. (6分) (2018九上·丹徒期末) 小明利用如图所示的实验装置探究“导体产生的热量与电阻大小的关系”.甲、乙两瓶中装有质量与初温都相同的煤油,甲瓶中镍铬合金丝的电阻比乙瓶中镍铬合金丝的电阻小,a、b为温度计。

【初三数学】成都市九年级数学上期中考试单元检测试卷(含答案解析)

【初三数学】成都市九年级数学上期中考试单元检测试卷(含答案解析)

新九年级上册数学期中考试试题及答案一、选择题(每小题4分,共48分)1.(4分)﹣6的绝对值是()A.﹣6B.﹣C.D.62.(4分)如图所示的几何体,它的左视图是()A.B.C.D.3.(4分)为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体B.样本C.个体D.样本容量4.(4分)计算(x﹣1)÷(1﹣)•x的结果是()A.﹣x2B.﹣1C.x2D.15.(4分)下列命题是真命题的是()A.对角线相互垂直的四边形是平行四边形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相等且相互平分的四边形是矩形6.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,……,按此规律排列下去,则第⑤个图案中三角形的个数为()A.14个B.15个C.16个D.17个7.(4分)抛物线y=2(x﹣2)2﹣1关于x轴对称的抛物线的解析式为()A.y=2(x﹣2)2+1B.y=﹣2(x﹣2)2+1C.y=﹣2(x﹣2)2﹣1D.y=﹣(x﹣2)2﹣18.(4分)如图,在等腰△ABC中,AB=AC,tan C=2,BD⊥AC于点D,点G是底边BC 上一点,过点G向两腰作垂线段,垂足分别为E、F,若BD=4,GE=1.5,则BF的长度为()A.0.75B.0.8C.1.25D.1.359.(4分)如图,MN是垂直于水平面的一棵树,小马(身髙1.70米)从点A出发,先沿水平方向向左走10米到B点,再经过一段坡度i=4:3,坡长为5米的斜坡BC到达C点,然后再沿水平方向向左行走5米到达N点(A、B、C、N在同一平面内),小马在线段AB的黄金分割点P处()测得大树的顶端M的仰角为37°,则大树MN 的高度约为()米(参考数据:tan37°≈0.75,sin37°≈0.60,≈2.236,≈1.732).A.7.8米B.8.0米C.8.1米D.8.3米10.(4分)抛物线y=ax2+bx+c(a≠0)的图象如图所示,抛物线经过点(﹣1,0),则下列结论:①abc>0;②2a﹣b=0;③3a+c>0;④a+b>am2+bm(m为一切实数);⑤b2>4ac;正确的个数有()A.1个B.2个C.3个D.4个11.(4分)如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y 轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12B.﹣10C.﹣9D.﹣612.(4分)已知关于x的二次函数y=(k﹣1)x2+(2k﹣3)x+k+2的图象在x轴上方,关于m的分式方程有整数解,则同时满足两个条件的整数k值个数()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共24分)13.(4分)计算:﹣10+=.14.(4分)函数y=x2+图象上的点P(x,y)一定在第象限.15.(4分)在二次函数y=ax2+2ax+4(a<0)的图象上有两点(﹣2,y1)、(1,y2),则y1﹣y20(填“>”、“<”或“=”).16.(4分)如图,Rt△ABC中,∠A=90°,AB=4,AC=6,D、E分别是AB、AC边上的动点,且CE=3BD,则△BDE面积的最大值为.17.(4分)周末秋高气爽,阳光明媚,小赵带爷爷到滨江路去散步,祖孙俩在长度为600米的A、B路段上往返行走,他们从A地出发,小赵陪爷爷走了两圈一同回到A地后,就开始匀速跑步,爷爷继续匀速散步,如图反映了他们距离A地的路程s(米)与小赵跑步的时间t(分钟)的部分关系图(他们各自到达A地或B地后立即掉头,调头转身时间忽略不计),则小赵跑步过程中祖孙第四次与第五次相遇地点间距为米.18.(4分)重庆一中乘持“尊重自由、激发自觉”的教育理念,开展了丰富多彩的第二课堂及各种有趣有益的竟赛活动.其中“小棋王”争霸赛得到同学们的涵跃参与,经过初选、复试最后十位同学进入决赛这十位同学进行单循环比赛(每两人均赛一局),胜一局得2分、平局得1分、负一局得0分,最后按照每人的累计得分的多少进行排名,得分最高者就是第一名,以此类推.赛完后发现每人最后得分均不相同,第一名和第二名的同学均没负一局,他们两人的得分之和比第三名同学多20分,第四名同学的得分刚好是最后四名同学得分的总和,则第五名的同学得分为分.三、解答题(每小题8分,共16分)19.(8分)如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且ED平分∠CEB,AD⊥EF,若∠ADC=42°,∠A﹣∠B=8°,求∠BDE的度数.20.(8分)在大课间活动中,同学们积极参加体育锻炼,小段同学就本班同学“我最擅长的体育项目”进行了一次调查统计,下面是她通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;补全条形统计图;在扇形统计图中,“其他”部分所对应的圆心角度数为度;(2)学校将举办冬季运动会,该班已推选5位同学参加乒乓球活动,其中有2位男同学(A,B)和3位女同学(C,D,E),现从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.四、解答题(每小题10分,共50分)21.(10分)计算:(1)因式分解:(x﹣2y)2﹣(2x+5y)2;(2)解方程:(公式法)2x(x﹣3)=x2﹣1.22.(10分)在目前万物互联的时代,人工智能正掀起一场影响深刻的技术革命.谷歌、苹果,BAT,华为……巨头们纷纷布局人工智能,有人猜测,互联网+过后,我们可能会迎来机器人+,教育从幼儿抓起,近年来我国国内幼儿教育机器人发展趋势迅猛,市场上出现了满足各类要求的幼教机器人产品.“双十一“当天,某品牌幼教机器人专卖店抓住机遇,对最畅销的A款幼教机器人进行促销.一台A款幼教机器人的成本价为850元,标价为1300元.(1)一台A款幼教机器人的价格最多降价多少元,才能使利润率不低于30%;(2)该专卖店以前每周共售出A款幼教机器人100个,“双十一“狂购夜中每台A款幼教机器人在标价的基础上降价2m元,结果这天晚上卖出的A款幼教机器人的数量比原来一周卖出的A款幼教机器人的数量增加了m%,同时这天晚上的利润比原来一周的利润增加了m%,求m的值.23.(10分)在▱ABCD中,点E为CD边上一点,点F为BC中点,连接BE,DF交于点G,且GA=GD:(1)如图1,若AB=AE=BG=6,AE⊥CD,求AG2的值;(2)如图2,若EM平分∠BEC,且EM∥DF,过点G作GN⊥BE交AE于点N且GN =GE,求证:AE⊥CD.24.(10分)阅读材料:若关于x的一元二次方程ax2+bx+c=0(a≠0,a、b、c为常数)的根均为整数,称该方程为“快乐方程”,我们发现任何一个“快乐方程”的判别式△=b2﹣4ac一定为完全平方数规定F(a,b,c)=为该“快乐方程”的“快乐数”,若有另一个“快乐方程”px2+qx+r=0(p≠0,(p、q、r为常数)的“快乐数”为F(p,q,r)且满足|rF(a,b,c)﹣cF(p,q,r)|=0,则称F(a,b,c)与F(p,q,r)互为“乐呵数”例如“快乐方程”x2﹣2x﹣3=0的两根均为整数,其判别式△=(﹣2)2﹣4×1×(﹣3)=16=42其“快乐数”F(1,﹣2,﹣3)=(1)“快乐方程”x2﹣4x+3=0的“快乐数”为,若关于x的一元二次方程x2﹣(2m ﹣3)x+m2﹣4m﹣5=0(m为整数,且5<m<22)是“快乐方程”,求其“快乐数”(2)若关于x的一元二次方程x2﹣(m﹣1)x+m+1=0与x2﹣(n+2)x+2n=0(m,n 均为整数)都是“快乐方程”,且其“快乐数”互为“乐呵数”,求n的值.五、解答题(共12分)25.(12分)在平面直角坐标系中,二次函数y=ax2+bx﹣8的图象与x轴交于A、B两点,与y轴交于点C,直线y=kx+(k≠0)经过点A,与抛物线交于另一点R,已知OC =2OA,OB=3OA.(1)求抛物线与直线的解析式;(2)如图1,若点P是x轴下方抛物线上一点,过点P做PH⊥AR于点H,过点P做PQ∥x轴交抛物线于点Q,过点P做PH′⊥x轴于点H′,K为直线PH′上一点,且PK=2PQ,点I为第四象限内一点,且在直线PQ上方,连接IP、IQ、IK,记l=PQ,m=IP+IQ+IK,当l取得最大值时,求出点P的坐标,并求出此时m的最小值.(3)如图2,将点A沿直线AR方向平移13个长度单位到点M,过点M做MN⊥x轴,交抛物线于点N,动点D为x轴上一点,连接MD、DN,再将△MDN沿直线MD翻折为△MDN′(点M、N、D、N′在同一平面内),连接AN、AN′、NN′,当△ANN′为等腰三角形时,请直接写出点D的坐标.2018-2019学年重庆一中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.【解答】解:|﹣6|=6.故选:D.2.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:C.3.【解答】解:抽出的500名考生的数学成绩是样本,故选:B.4.【解答】解:原式=(x﹣1)÷•x=(x﹣1)••x=x2,故选:C.5.【解答】解:A、对角线相互垂直的四边形是平行四边形,不是真命题;B、对角线相等且相互垂直的四边形是菱形,也可能是正方形,所以,不是真命题;C、四条边相等的四边形是正方形,也可能是菱形,所以,不是真命题;D、对角线相等且相互平分的四边形是矩形,正确,是真命题,故选:D.6.【解答】解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个,则第⑤个图中三角形的个数是4×(5﹣1)=16个,故选:C.7.【解答】解:抛物线y=2(x﹣2)2﹣1的顶点坐标为(2,﹣1),而(2,﹣1)关于x轴对称的点的坐标为(2,1),所以所求抛物线的解析式为y=﹣2(x﹣2)2+1.故选:B .8.【解答】解:连接AG ,∵S △CGA +S △BGA =S △ABC , ∴+=×AC ×BD ,∵AC =AB ,∴GE +GF =BD , ∵BD =4,GE =1.5,∴GF =2.5,∵tan C =2=,BD =4,∴CD =2, 由勾股定理得:BC ==新九年级上册数学期中考试试题(答案)一、选择题(每小题3分,共30分)1.下列四个图形中是中心对称图形的为(A )2.方程2x 2=3x 的解为(D )A .x =0B .x =32C .x =-32D .x 1=0,x 2=323.(2018·岳阳)抛物线y =3(x -2)2+5的顶点坐标是(C )A .(-2,5)B .(-2,-5)C .(2,5)D .(2,-5)4.(2018·淮安)若关于x 的一元二次方程x 2-2x -k +1=0有两个相等的实数根,则k 的值是(B )A .-1B .0C .1D .25.(2018·成都)关于二次函数y =2x 2+4x -1,下列说法正确的是(D )A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-36.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB延长线上,连接AD.下列结论一定正确的是(C )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC,第6题图) ,第9题图),第10题图)7.(2018·贵港)已知α,β是一元二次方程x 2+x -2=0的两个实数根,则α+β-αβ的值是(B )A .3B .1C .-1D .-3 8.(2018·赤峰)2017~2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为(B )A .12x(x -1)=380B .x(x -1)=380C .12x(x +1)=380 D .x(x +1)=380 9.如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是(C )A . 3 cm 2B .32 3 cm 2C .92 3 cm 2D .2723 cm 210.(2018·贵阳)已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是(D )A .-254<m <3B .-254<m <2 C .-2<m <3 D .-6<m <-2二、填空题(每小题3分,共24分)11.已知x =1是关于x 的方程ax 2-2x +3=0的一个根,则a =-1.12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为16.13.用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形.设矩形的一边长为x cm ,则可列方程为x(20-x)=64.14.(2018·孝感)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是x 1=-2,x 2=1.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,在△ABC 中,AB =4,BC =7,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为3.16.(2018·内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为1. 17.(2018·沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =150m 时,矩形土地ABCD 的面积最大.18.如图是抛物线y 1=ax 2+bx +c(a ≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②方程ax 2+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2>y 1;⑤x(ax +b)≤a +b ,其中正确的结论是②⑤.(只填写序号)三、解答题(共66分)19.(6分)用适当的方法解下列方程.(1)(2x +3)2-16=0; (2)2x 2=3(2x +1).(1)x 1=12,x 2=-72 解:(2)x 1=3+152,x 2=3-15220.(6分)已知2-5是一元二次方程x 2-4x +c =0的一个根,求它的另一个根及c 的值.设方程的另一根为t ,则2-5+t =4,(2-5)t =c ,解得 t =2+ 5. c =-1.∴它的另一个根是2+5,c 的值是121.(6分)已知抛物线y =ax 2+bx +c ,当x =-1时,y =-22;当x =0时,y =-8;当x =2时,y =8.(1)求抛物线解析式;(2)判断点(-2,-40)是否在该抛物线上?说明理由.(1)将(-1,-22),(0,-8),(2,8)代入抛物线,得⎩⎨⎧-22=a -b +c ,-8=c ,8=4a +2b +c ,解得⎩⎨⎧a =-2,b =12,c =-8,所以,抛物线解析式:y =-2x 2+12x -8 (2)把x =-2代入抛物线解析式,则有y =-40,所以点(-2,-40)在抛物线上22.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.已知△ABC.(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1C 1;(只画出图形) (2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2(只画出图形),写出B 2和C 2的坐标.(1)△A 1B 1C 1如图所示 (2)△A 2B 2C 2如图所示,B 2(4,-1),C 2(1,-2)23.(8分)关于x 的一元二次方程x 2+2x +2m =0有两个不相等的实数根.(1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,且x 12+x 22=8,求m 的值. (1)∵一元二次方程x 2+2x +2m =0有两个不相等的实数根,∴Δ=22-4×1×2m =4-8m >0,解得m <12.∴m 的取值范围为m <12 (2)∵x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,∴x 1+x 2=-2,x 1·x 2=2m ,∴x 12+x 22=(x 1+x 2)2-2x 1·x 2=4-4m =8,解得m =-1.当m =-1时,Δ=4-8m =12>0.∴m 的值为-124.(10分)(2018·遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.新人教版数学九年级上册期中考试试题及答案一、细心选一选。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都英才学校九年级上册期中试卷检测题一、初三数学 一元二次方程易错题压轴题(难)1.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠. 【解析】 【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可; (2)分别求出两种方式的增长率,然后比较即可. 【详解】(1)设平均每次下调x%,则7000(1﹣x )2=5670,解得:x 1=10%,x 2=190%(不合题意,舍去); 答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x )2=(1﹣10%)2=81%. ∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.2.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0. (1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.【答案】(1)k >34;(2 【解析】 【分析】(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=5,,利用完全平方公式进行变形即可求得答案. 【详解】解:(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根, ∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0, ∴k >34;(2)当k =2时,原方程为x 2-5x +5=0, 设方程的两个根为m ,n , ∴m +n =5,mn =5,==.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.3.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售. 【解析】 【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折. 【详解】(1)设每千克茶叶应降价x 元.根据题意,得: (400﹣x ﹣240)(200+10x×40)=41600. 化简,得:x 2﹣10x +240=0. 解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售. 【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.4.如图,在平面直角坐标系中,O为原点,点A(0,8),点B(m,0),且m>0.把△AOB绕点A逆时针旋转90°,得△ACD,点O,B旋转后的对应点为C,D,(1)点C的坐标为;(2)①设△BCD的面积为S,用含m的式子表示S,并写出m的取值范围;②当S=6时,求点B的坐标(直接写出结果即可).【答案】(1)C(8,8);(2)①S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②点B的坐标为(7,0)或(2,0)或(6,0).【解析】【分析】(1)由旋转的性质得出AC=AO=8,∠OAC=90°,得出C(8,8)即可;(2)①由旋转的性质得出DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,得出∠ACE=90°,证出四边形OACE是矩形,得出DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,得出BE=OB−OE=m−8,由三角形的面积公式得出S =0.5m2−4m(m>8)即可;b、当点B在线段OE上(点B不与O,E重合)时,BE=OE−OB=8−m,由三角形的面积公式得出S=−0.5m2+4m(0<m<8)即可;c、当点B与E重合时,即m=8,△BCD不存在;②当S=6,m>8时,得出0.5m2−4m=6,解方程求出m即可;当S=6,0<m<8时,得出−0.5m2+4m=6,解方程求出m即可.【详解】(1)∵点A(0,8),∴AO=8,∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=8,∠OAC=90°,∴C(8,8),故答案为(8,8);(2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m,∵△AOB绕点A逆时针旋转90°得△ACD,∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°,∴四边形OACE是矩形,∴DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,如图1所示:则BE=OB﹣OE=m﹣8,∴S=0.5DC•BE=0.5m(m﹣8),即S=0.5m2﹣4m(m>8);b、当点B在线段OE上(点B不与O,E重合)时,如图2所示:则BE=OE﹣OB=8﹣m,∴S=0.5DC•BE=0.5m(8﹣m),即S=﹣0.5m2+4m(0<m<8);c、当点B与E重合时,即m=8,△BCD不存在;综上所述,S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②当S=6,m>8时,0.5m2﹣4m=6,解得:m=4±27(负值舍去),∴m=4+27;当S=6,0<m<8时,﹣0.5m2+4m=6,解得:m=2或m=6,∴点B的坐标为(4+27,0)或(2,0)或(6,0).【点睛】本题是三角形综合题目,考查了坐标与图形性质、旋转的性质、矩形的判定与性质、三角形面积公式、一元二次方程的解法等知识;本题综合性强,有一定难度.5.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)【答案】(1)⑤;(2)x1=2n,x2=﹣4n.【解析】【分析】(1)根据移项要变号,可判断;(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解.【详解】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n,x2=﹣4n.二、初三数学二次函数易错题压轴题(难)6.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=1 2 x﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.【答案】(1)y=12x2﹣32x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)Q的坐标为(53,﹣289)或(﹣113,929).【解析】【分析】(1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解;(2)由题意过点P作PH//y轴交BC于点H,并设点P(x,12x2﹣32x﹣2),进而根据S=S△PHB+S△PHC=12PH•(x B﹣x C),进行计算即可求解;(3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解.【详解】解:(1)对于直线y=12x﹣2,令x=0,则y=﹣2,令y=0,即12x﹣2=0,解得:x=4,故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=12,故抛物线的表达式为y=12x2﹣32x﹣2①;(2)如图2,过点P作PH//y轴交BC于点H,设点P (x,12x 2﹣32x ﹣2),则点H (x ,12x ﹣2), S =S △PHB +S △PHC =12PH•(x B ﹣x C )=12×4×(12x ﹣2﹣12x 2+32x+2)=﹣x 2+4x , ∵﹣1<0,故S 有最大值,当x =2时,S 的最大值为4; (3)①当点Q 在BC 下方时,如图2,延长BQ 交y 轴于点H ,过点Q 作QC ⊥BC 交x 轴于点R ,过点Q 作QK ⊥x 轴于点K , ∵∠ABQ =2∠ABC ,则BC 是∠ABH 的角平分线,则△RQB 为等腰三角形, 则点C 是RQ 的中点, 在△BOC 中,tan ∠OBC =OC OB =12=tan ∠ROC =RC BC, 则设RC =x =QB ,则BC =2x ,则RB 22(2)x x 5=BQ , 在△QRB 中,S △RQB =12×QR•BC =12BR•QK ,即122x•2x =125, 解得:KQ 5∴sin ∠RBQ =KQBQ55x=45,则tanRBH =43,在Rt △OBH 中,OH =OB•tan ∠RBH =4×43=163,则点H (0,﹣163), 由点B 、H 的坐标得,直线BH 的表达式为y =43(x ﹣4)②,联立①②并解得:x =4(舍去)或53, 当x =53时,y =﹣289,故点Q (53,﹣289); ②当点Q 在BC 上方时, 同理可得:点Q 的坐标为(﹣113,929); 综上,点Q 的坐标为(53,﹣289)或(﹣113,929). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、解直角三角形、面积的计算等,注意分类讨论思维的应用,避免遗漏.7.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣4≤b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时,函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =221a a ≤+4,(当a =2时取等号)∴0<﹣b∴﹣4≤b <0,即b 的取值范围是﹣4≤b <0.【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.8.在平面直角坐标系中,二次函数22y ax bx =+-的图象与x 轴交于点(4,0)A -,(1,0)B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)点P 是抛物线22y ax bx =+-上的任意一点,过点P 作x 轴的垂线PD ,直线PD交直线AC 于点D .①是否存在点P ,使得PAC ∆的面积是ABC ∆面积的45?若存在,求出点P 的坐标;若不存在,请说明理由.②点Q 是坐标平面内的任意一点,若以O ,C ,Q ,D 为顶点的四边形是菱形时,请直接写出点Q 的坐标. 【答案】(1)213222y x x =+- (2)①存在,点P 的坐标为(22,12)-+-,(222,12)--+,(2,3)--②1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525Q ⎝⎭,44525Q ⎛ ⎝⎭【解析】 【分析】(1)将(4,0)A -,(1,0)B 两点坐标代入解析式中求解即可; (2)①先求出△PAC 的面积为4,再求出直线AC 的解析式为122y x =--.设点P 的横坐标为(t ,213222t t +-),利用21442∆∆∆=-=⋅=+=PAC PDC PDA S S S OA PD t t 即可求解;②先设出D点坐标,然后再按对角线分成三种情况讨论即可求解.【详解】解:(1)由题意得,将(4,0)A-,(1,0)B两点坐标代入解析式中:1642020a ba b--=⎧⎨+-=⎩,解得:1232ab⎧=⎪⎪⎨⎪=⎪⎩.∴此抛物线的解析式为213222y x x=+-,故答案为213222y x x=+-.(2)①存在点P,使得PAC∆的面积是ABC∆面积的45.理由如下:作出如下所示示意图:∵点(4,0)A-,(1,0)B,∴4OA=,5AB=,令0x=,则2y=-,∴(0,2)C-,∴2OC=,∴1152522ABCS AB OC∆=⋅=⨯⨯=,∴445545PAC ABCS S∆∆==⨯=,设直线AC的解析式为y mx n=+,则有402m nn-+=⎧⎨=-⎩,解得:122mn⎧=-⎪⎨⎪=-⎩,∴直线AC 的解析式为122y x =--. 设点P 的横坐标为t ,则其纵坐标为213222t t +-, 即213,222P t t t ⎫⎛+- ⎪⎝⎭. ∵PD x ⊥轴,则点D 的坐标为1,22t t ⎫⎛--⎪⎝⎭. ∴2213112222222PD t t t t t ⎫⎛=+----=+ ⎪⎝⎭. ∵22111424222PAC PDC PDA S S S OA PD t t t t ∆∆∆=-=⋅=⨯⨯+=+. ∴244t t +=,即2440t t +-=或2440t t ++=, 解得:1222t =-+,2222t =--,32t =-.∴点P 的坐标为(222,12)-+-,(222,12)--+,(2,3)--, 故答案为:(222,12)-+-或(222,12)--+或(2,3)--. ②分类讨论:情况一:当OC 为菱形的对角线时,此时DO=DC ,即D 点在线段OC 的垂直平分线, ∴D 点坐标(-2,-1),将△OCD 沿y 轴翻折,此时四边形ODCQ 为菱形,故此时Q 点坐标为(2,-1),如下图一所示,情况二:当OQ 为对角线时,DO=DQ ,如下图二所示,DQ=OC=OD=2,设D 点坐标1,22⎛⎫-- ⎪⎝⎭x x ,则EO=-x ,DE=122x +,在Rt △EDO 中,由勾股定理可知:EO²+ED²=DO², 故221(2)42++=x x ,解得80(),5舍==-x x ,此时Q 点坐标为816,55⎛⎫-- ⎪⎝⎭,情况三:当OD 为对角线时,OC=OQ=2,如下图三所示:设D 点坐标1,22⎛⎫-- ⎪⎝⎭m m ,则EO=|m|,DE=122m +,QE=2-(122m +)=12m , 在Rt △QDO 中,由勾股定理可知:QE²+EO²=QO², 故221()()42+=m m ,解得124545,==-m m ,此时Q 点坐标为4525,⎛⎫- ⎪ ⎪⎝⎭或4525,55⎛⎫- ⎪ ⎪⎝⎭, 综上所述,Q 点的坐标为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,55Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.故答案为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.【点睛】本题考查了待定系数法求二次函数解析式,三角形的面积问题,菱形的存在性问题等,属于综合题,具有一定的难度,熟练掌握二次函数的图形及性质是解决本题的关键.9.如图,在平面直角坐标系中,二次函数y =﹣x 2+6x ﹣5的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其顶点为P ,连接PA 、AC 、CP ,过点C 作y 轴的垂线l . (1)P 的坐标 ,C 的坐标 ;(2)直线1上是否存在点Q ,使△PBQ 的面积等于△PAC 面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)(3,4),(0,﹣5);(2)存在,点Q 的坐标为:(92,﹣5)或(212,﹣5) 【解析】 【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C(0,-5);(2)直线PC的解析式为y=3x-5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,分两种情形分别求解即可解决问题.【详解】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得:x=1或x=5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有534 bk b=-⎧⎨+=⎩,解得:35 kb=⎧⎨=-⎩,∴直线PC的解析式为:y=3x﹣5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0),则直线PE的解析式为:y=﹣6x+22,∴Q(9 2,﹣5),直线PE′的解析式为y=﹣65x+385,∴Q′(212,﹣5),综上所述,满足条件的点Q的坐标为:(92,﹣5)或(212,﹣5);【点睛】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.10.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP最大面积s=1927322288⨯=; P(12,﹣34)(3)存在;25【解析】【分析】(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1,然后解方程组211y xy x⎧=⎨=+⎩﹣即可;(2)设P(x,x2﹣1).过点P作PF∥y轴,交直线AB于点F,则F(x,x+1),所以利用S△ABP=S△PFA+S△PFB,,用含x的代数式表示为S△ABP=﹣x2+x+2,配方或用公式确定顶点坐标即可.(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,用k分别表示点E的坐标,点F的坐标,以及点C的坐标,然后在Rt△EOF中,由勾股定理表示出EF的长,假设存在唯一一点Q,使得∠OQC=90°,则以OC为直径的圆与直线AB相切于点Q,设点N为OC中点,连接NQ,根据条件证明△EQN∽△EOF,然后根据性质对应边成比例,可得关于k的方程,解方程即可.【详解】解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A(﹣1,0),B(2,3).(2)设P(x,x2﹣1).如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).∴PF=y F﹣y P=(x+1)﹣(x2﹣1)=﹣x2+x+2.S△ABP=S△PFA+S△PFB=PF(xF﹣xA)+PF(xB﹣xF)=PF(xB﹣xA)=PF∴S△ABP=(﹣x2+x+2)=﹣(x﹣12)2+278当x=12时,yP=x2﹣1=﹣34.∴△ABP面积最大值为,此时点P坐标为(12,﹣34).(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,则E(﹣1k,0),F(0,1),OE=1k,OF=1.在Rt△EOF中,由勾股定理得:22 111=k k k+⎛⎫+⎪⎝⎭.令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.∴C(﹣k,0),OC=k.假设存在唯一一点Q,使得∠OQC=90°,如答图3所示,则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.设点N为OC中点,连接NQ,则NQ⊥EF,NQ=CN=ON=2k.∴EN=OE﹣ON=1k﹣2k.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴NQ ENOF EF=,即:1221kkkk-=,解得:25,∵k>0,∴25.∴存在唯一一点Q,使得∠OQC=90°,此时25.考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.三、初三数学旋转易错题压轴题(难)11.已知如图1,在ABC中,90ABC∠=︒,BC AB=,点D在AC上,DF AC⊥交BC于F ,点E是AF的中点.(1)写出线段ED与线段EB的关系并证明;(2)如图2,将CDF绕点C逆时针旋转()090aα︒<<︒,其它条件不变,线段ED与线段EB的关系是否变化,写出你的结论并证明;(3)将CDF绕点C逆时针旋转一周,如果6BC=,32CF=,直接写出线段CE的范围.【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值22= 最小值322=. 【解析】 【分析】(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值. 【详解】(1)∵DF ⊥AC ,点E 是AF 的中点 ∴DE=AE=EF ,∠EDF=∠DFE ∵∠ABC=90°,点E 是AF 的中点 ∴BE=AE=EF ,∠EFB=∠EBF ∴DE=EB ∵AB=BC , ∴∠DAB=45°∴在四边形ABFD 中,∠DFB=360°-90°-45°-90°=135°∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB) =360°-2×135°=90° ∴DE ⊥EB(2)如下图,延长BE 至点M 处,使得ME=EB ,连接MA 、ME 、MF 、MD 、FB 、DB ,延长MF 交CB 于点H∵ME=EB,点E是AF的中点∴四边形MFBA是平行四边形∴MF∥AB,MF=AB∴∠MHB=180°-∠ABC=90°∵∠DCA=∠FCB=a∴∠DCB=45°+a,∠CFH=90°-a∵∠DCF=45°,∠CDF=90°∴∠DFC=45°,△DCF是等腰直角三角形∴∠DFM=180°-∠DFC-∠CFH=45°+a∴∠DCB=∠DFM∵△ABC和△CDF都是等腰直角三角形∴DC=DF,BC=AB=MF∴△DCB≌△DFM(SAS)∴∠MDF=∠BDC,DB=DM∴∠MDF+∠FDB=∠BDC+∠FDB=90°∴△DMB是等腰直角三角形∵点E是MB的中点∴DE=EB,DE⊥EB(3)当点F在AC上时,CF有最大值,图形如下:∵BC=6,∴在等腰直角△ABC中,AC=62∵CF=32,∴AF=32∴CE=CF+FE=CF+12AF922=当点F在AC延长线上时,CE有最小值,图形如下:同理,CE=EF-CF322 =【点睛】本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM是等腰直角三角形.12.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(1);(2);(3)不变化,证明见解析.【解析】试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.∴DA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴,.∴.∴.又∵,∴.又∵,∴.∴.∴.∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为.(3)不变化,证明如下:如图,延长BA交DE轴于H点,则,,∴.又∵.∴.∴.又∵, ,∴.∴.∴.∴.∴在旋转正方形ABCD的过程中,值无变化.考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.13.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(262【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN 的面积最大,最大值为2.③解:如图3中,作EH ⊥BG 于H .设NG=m ,则BG=2m ,BN=EN=3m ,EB=6m .∴3(3m , ∵S △BEG =12•EG•BN=12•BG•EH , ∴EH=3?(13)m m +3+3m ,在Rt △EBH 中,sin ∠EBH=3+36226EHEB m+==. 【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,14.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。

相关文档
最新文档