高考数学一轮复习周周测训练第8章数列

合集下载

全国通用版2019版高考数学一轮复习第八单元数列学案(文科)

全国通用版2019版高考数学一轮复习第八单元数列学案(文科)

第八单元 数 列教材复习课“数列”相关基础知识一课过 数列的有关概念1.数列的有关概念概念 含义数列 按照一定顺序排列的一列数 数列的项数列中的每一个数数列的通项 数列{a n }的第n 项a n 通项公式 如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式 前n 项和数列{a n }中,S n =a 1+a 2+…+a n 叫做数列的前n 项和2.a n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[小题速通]1.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21的值为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝ ⎛⎭⎪⎫-32+10×2=72. 2.数列{a n }满足a 1=3,a n +1=a n -1a n(n ∈N *),则a 2 018=( ) A.12 B .3 C .-12D.23解析:选D 由a 1=3,a n +1=a n -1a n ,得a 2=a 1-1a 1=23,a 3=a 2-1a 2=-12,a 4=a 3-1a 3=3,……, 由上可得,数列{a n }是以3为周期的周期数列, 故a 2 018=a 672×3+2=a 2=23.3.已知数列{a n }满足a n =32n -11(n ∈N *),前n 项的和为S n ,则关于a n ,S n 的叙述正确的是( )A .a n ,S n 都有最小值B .a n ,S n 都没有最小值C .a n ,S n 都有最大值D .a n ,S n 都没有最大值解析:选A ①∵a n =32n -11,∴当n ≤5时,a n <0且单调递减;当n ≥6时,a n >0,且单调递减.故当n =5时,a 5=-3为a n 的最小值;②由①的分析可知:当n ≤5时,a n <0;当n ≥6时,a n >0.故可得S 5为S n 的最小值. 综上可知,a n ,S n 都有最小值.4.已知数列{a n }中,a 1=1,a n +1=a n +2n +1(n ∈N *),则a 5=________.解析:依题意得a n +1-a n =2n +1,a 5=a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+(a 5-a 4)=1+3+5+7+9=25. 答案:25[清易错]1.易混项与项数,它们是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.1.已知数列的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }中的项 B .3只是数列{a n }中的第2项 C .3只是数列{a n }中的第6项 D .3是数列{a n }中的第2项或第6项解析:选D 令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项. 2.已知数列{a n }的前n 项和为S n =3+2n,则数列{a n }的通项公式为________. 解析:当n =1时,a 1=S 1=3+2=5;当n ≥2时,a n =S n -S n -1=3+2n-(3+2n -1)=2n -2n -1=2n -1.因为当n =1时,不符合a n =2n -1,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2等差数列[过双基]1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -2d =n a 1+a n 2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. [小题速通]1.在等差数列{a n }中,已知a 2与a 4是方程x 2-6x +8=0的两个根,若a 4>a 2,则a 2 018=( ) A .2 018 B .2 017 C .2 016D .2 015解析:选A 因为a 2与a 4是方程x 2-6x +8=0的两个根,且a 4>a 2,所以a 2=2,a 4=4,则公差d =1,所以a 1=1,则a 2 018=2 018.2.在等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和,则S 5=( ) A .3 B .4 C .5D .6解析:选C ∵等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和, ∴a 2+a 3+a 4=3a 3=3, 解得a 3=1,∴S 5=52(a 1+a 5)=5a 3=5.3.正项等差数列{a n }的前n 项和为S n ,已知a 4+a 10-a 27+15=0,则S 13=( ) A .-39 B .5 C .39D .65解析:选D ∵正项等差数列{a n }的前n 项和为S n ,a 4+a 10-a 27+15=0,∴a 27-2a 7-15=0,解得a 7=5或a 7=-3(舍去), ∴S 13=132(a 1+a 7)=13a 7=13×5=65.4.已知等差数列{a n }的前n 项和为S n ,且3a 3=a 6+4.若S 5<10,则a 2的取值范围是( ) A .(-∞,2) B .(-∞,0) C .(1,+∞)D .(0,2)解析:选A 设等差数列{a n }的公差为d ,∵3a 3=a 6+4, ∴3(a 2+d )=a 2+4d +4,可得d =2a 2-4. ∵S 5<10,∴a 1+a 52=a 2+a 42=a 2+2d2=5(3a 2-4)<10,解得a 2<2.∴a 2的取值范围是(-∞,2).5.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎪⎫-1,-78 [清易错]1.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件. 2.注意区分等差数列定义中同一个常数与常数的区别.1.(2018·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 的值为( )A .18B .19C .20D .21解析:选C 由a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.2.在数列{a n }中,若a 1=-2,且对任意的n ∈N *,有2a n +1=1+2a n ,则数列{a n }前10项的和为( ) A .2 B .10 C.52D.54解析:选C 由2a n +1=1+2a n ,可得a n +1-a n =12,即数列{a n }是以-2为首项,12为公差的等差数列,则a n =n -52,所以数列{a n }的前10项的和S 10=10×⎝⎛⎭⎪⎫-2+522=52.1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)都是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k.[小题速通]1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1-271-2=381,解得a 1=3.2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( ) A .2B.73C.310D .1或2解析:选B 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73.3.设数列{a n }是等比数列,公比q =2,前n 项和为S n ,则S 4a 3的值为( ) A.154B.152C.74D.72解析:选A 根据等比数列的公式,得S 4a 3=a 1-q 41-qa 1q 2=1-q4-q q2=1-24-2=154. 4.已知等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16,则数列{a n }的前2 018项的和为( ) A .8 064 B .4 C .-4D .0解析:选D ∵等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16, ∴a 3a 5=a 2a 6=16,∴a 3,a 5是方程x 2-8x +16=0的两个根, 解得a 3=a 5=4, ∴4q 2=4,∵q ≠1,∴q =-1,∴a 1=a 3q2=4, ∴数列{a n }的前2 018项的和为 S 2 018=4[1-- 2 018]1--=0.5.(2018·信阳调研)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( ) A.12 B.22C. 2D .2解析:选B 因为{a n }是等比数列,所以a 5a 7=a 26=4a 24,所以a 6=2a 4,q 2=a 6a 4=2,又q >0, 所以q =2,a 1=a 2q =22. [清易错]1.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.1.设数列{a n }为等比数列,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 解析:当q ≠1时,由题意,a 1-q 31-q=3a 1q 2,即1-q 3=3q 2-3q 3,整理得2q 3-3q 2+1=0,解得q =-12.当q =1时,S 3=3a 3,显然成立. 故q =-12或1.答案:-12或1一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4D .8解析:选C 设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3da 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.2.(2018·江西六校联考)在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( ) A .3 B.17 C .9D .13解析:选A 由a 3a 5a 7=-33,得a 35=-33,即a 5=-3,故a 2a 8=a 25=3.3.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 018=( ) A .8 B .6 C .4D .2解析:选D 由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 018=a 335×6+8=a 8=2.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2,n ∈N *),则a 7=( ) A .53 B .54 C .55D .109解析:选C a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44B .45C.13×(46-1) D.14×(45-1) 解析:选B 由a n +1=3S n ,得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n +1=4a n ,n ≥2,则数列{a n }从第二项起构成等比数列,所以S 6=a 73=3×453=45.6.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有S n T n =n n +1,则a 5b 5等于( )A.34 B.56 C.910D.1011解析:选C ∵S 9=a 1+a 92=9a 5,T 9=b 1+b 92=9b 5,∴a 5b 5=S 9T 9=910. 7.已知数列{a n }是首项为1的等比数列,S n 是其前n 项和,若5S 2=S 4,则log 4a 3的值为( ) A .1 B .2 C .0或1D .0或2解析:选C 由题意得,等比数列{a n }中,5S 2=S 4,a 1=1, 所以5(a 1+a 2)=a 1+a 2+a 3+a 4, 即5(1+q )=1+q +q 2+q 3,q 3+q 2-4q -4=0,即(q +1)(q 2-4)=0,解得q =-1或±2,当q =-1时,a 3=1,log 4a 3=0. 当q =±2时,a 3=4,log 4a 3=1.综上所述,log 4a 3的值为0或1.8.设数列{a n }是公差为d (d >0)的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( ) A .75 B .90 C .105D .120解析:选C 由a 1+a 2+a 3=15得3a 2=15,解得a 2=5,由a 1a 2a 3=80,得(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(d =-3舍去),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105.二、填空题9.若数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,则数列{a n }的通项公式为________.解析:当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13满足a n =13n ,所以a n =13n .答案:a n =13n10.数列{a n }的前n 项和为S n ,若S n =2a n -1,则a n =________. 解析:∵S n =2a n -1,① ∴S n -1=2a n -1-1(n ≥2),② ①-②得a n =2a n -2a n -1, 即a n =2a n -1.∵S 1=a 1=2a 1-1,即a 1=1,∴数列{a n }为首项是1,公比是2的等比数列, 故a n =2n -1.答案:2n -111.已知数列{a n }中,a 2n =a 2n -1+(-1)n,a 2n +1=a 2n +n ,a 1=1,则a 20=________. 解析:由a 2n =a 2n -1+(-1)n,得a 2n -a 2n -1=(-1)n, 由a 2n +1=a 2n +n ,得a 2n +1-a 2n =n ,故a 2-a 1=-1,a 4-a 3=1,a 6-a 5=-1,…,a 20-a 19=1.a 3-a 2=1,a 5-a 4=2,a 7-a 6=3,…,a 19-a 18=9.又a 1=1,累加得:a 20=46.答案:4612.数列{a n }为正项等比数列,若a 3=3,且a n +1=2a n +3a n -1(n ≥2,n ∈N *),则此数列的前5项和S 5=________.解析:设公比为q (q >0),由a n +1=2a n +3a n -1,可得q 2=2q +3,所以q =3,又a 3=3,则a 1=13,所以此数列的前5项和S 5=13-351-3=1213. 答案:1213三、解答题13.已知在等差数列{a n }中,a 3=5,a 1+a 19=-18. (1)求公差d 及通项a n ;(2)求数列{a n }的前n 项和S n 及使得S n 取得最大值时n 的值. 解:(1)∵a 3=5,a 1+a 19=-18,∴⎩⎪⎨⎪⎧a 1+2d =5,2a 1+18d =-18,∴⎩⎪⎨⎪⎧a 1=9,d =-2,∴a n =11-2n .(2)由(1)知,S n =n a 1+a n2=n+11-2n 2=-n 2+10n =-(n -5)2+25,∴n =5时,S n 取得最大值.14.已知数列{a n }满足a 12+a 222+a 323+…+a n2n =n 2+n .(1)求数列{a n }的通项公式; (2)若b n =-na n2,求数列{b n }的前n 项和S n .解:(1)∵a 12+a 222+a 323+…+a n2n =n 2+n ,∴当n ≥2时,a 12+a 222+a 323+…+a n -12n -1=(n -1)2+n -1,两式相减得a n2n =2n (n ≥2),∴a n =n ·2n +1(n ≥2).又∵当n =1时,a 12=1+1,∴a 1=4,满足a n =n ·2n +1.∴a n =n ·2n +1.(2)∵b n =-na n2=n (-2)n,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n ×(-2)n.-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n -1)×(-2)n +n (-2)n +1,∴两式相减得3S n =(-2)+(-2)2+(-2)3+(-2)4+…+(-2)n -n (-2)n +1=-2[1--n]1---n (-2)n +1=--n +1-23-n (-2)n +1=-n +-n +1+23,∴S n =-n +-n +1+29.高考研究课(一) 等差数列的3考点——求项、求和及判定 [全国卷5年命题分析]等差数列基本量的运算[典例] (1)设S n n 1n +2n =36,则n =( ) A .5 B .5 C .7D .8(2)(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.①求b 1,b 11,b 101;②求数列{b n }的前1 000项和.[解析] (1)法一:由等差数列前n 项和公式可得S n +2-S n =(n +2)a 1+n +n +2d -⎣⎢⎡⎦⎥⎤na 1+n n -2d =2a 1+(2n +1)d =2+4n +2=36,解得n =8.法二:由S n +2-S n =a n +2+a n +1=a 1+a 2n +2=36,因此a 2n +2=a 1+(2n +1)d =35,解得n =8. 答案:D(2)①设数列{a n }的公差为d , 由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.②因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.[方法技巧]等差数列运算的解题思路由等差数列的前n 项和公式及通项公式可知,若已知a 1,d ,n ,a n ,S n 中三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.[即时演练]1.已知数列{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 6=4S 3,则a 10=( ) A.172 B.192C.910D.89解析:选B ∵S 6=4S 3,公差d =1. ∴6a 1+6×52×1=4×⎝ ⎛⎭⎪⎫3a 1+3×22×1, 解得a 1=12.∴a 10=12+9×1=192.2.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 4-S 2S 5-S 3的值为( )A .-2B .-3C .2D .3解析:选D 设{a n }的公差为d ,因为a 1,a 3,a 4成等比数列, 所以(a 1+2d )2=a 1(a 1+3d ),可得a 1=-4d , 所以S 4-S 2S 5-S 3=a 3+a 4a 4+a 5=-3d-d=3. 3.(2018·大连联考)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36. (1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4.即所求m 的值为5,k 的值为4.[典例] 已知{a n }11n 2n 417. (1)求证:数列{b n }是以-2为公差的等差数列; (2)设数列{b n }的前n 项和为S n ,求S n 的最大值.[思路点拨] (1)利用等比数列以及对数的运算法则,转化证明数列{b n }是以-2为公差的等差数列; (2)求出数列的和,利用二次函数的性质求解最大值即可. [解] (1)证明:设等比数列{a n }的公比为q , 则b n +1-b n =log 2a n +1-log 2a n =log 2a n +1a n=log 2q , 因此数列{b n }是等差数列. 又b 11=log 2a 11=3,b 4=17, 所以等差数列{b n }的公差d =b 11-b 47=-2,故数列{b n }是以-2为公差的等差数列. (2)由(1)知,b n =25-2n , 则S n =n b 1+b n2=n+25-2n 2=n (24-n )=-(n -12)2+144,于是当n =12时,S n 取得最大值,最大值为144. [方法技巧]等差数列判定与证明的方法方法 解读适合题型定义法对于n ≥2的任意自然数,a n -a n -1为同一常数⇔{a n }是等差数列解答题中证明问题等差中项法2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题中的判定问题前n 项和公式法验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n都成立⇔{a n }是等差数列[1.(2016·浙江高考)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列 C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n+1|为定值,所以{S n }是等差数列.故选A.2.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q . 由题设可得⎩⎪⎨⎪⎧a 1+q =2,a 1+q +q2=-6.解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =---n]1--=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+-n2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.等差数列的性质[典例] (1)已知等差数列{n 361013,若a m =8,则m 的值为( ) A .8 B .12 C .6D .4(2)已知数列{a n },{b n }为等差数列,前n 项和分别为S n ,T n ,若S n T n =3n +22n ,则a 7b 7=( )A.4126 B.2314 C.117D.116(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. [解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,即a 8=8,m =8. (2)因为{a n },{b n }为等差数列,且S n T n =3n +22n,所以a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132b 1+b 132=S 13T 13=3×13+22×13=4126.(3)∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. [答案] (1)A (2)A (3)60 [方法技巧]等差数列的性质(1)项的性质在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n . [即时演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2018·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12 B.5+12 C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3+q 2a 4+q 2=1q =25+1=5-12.3.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 10b 9+b 12+a 11b 8+b 13=________.解析:∵数列{a n }和{b n }都是等差数列, ∴a 10b 9+b 12+a 11b 8+b 13=a 10+a 11b 9+b 12=a 10+a 11b 10+b 11=S 20T 20=7×2020+3=14023. 答案:14023等差数列前n 项和的最值等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用函数法或通项变号法解决等差数列前n 项和S n 的最值问题.n n 1311n [解析] 法一:用“函数法”解题由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,因为a 1>0,所以-a 113<0.故当n =7时,S n 最大. 法二:用“通项变号法”解题 由法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. [答案] 7 [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解. (2)通项变号法①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时演练]1.(2018·潍坊模拟)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15 B .S 16 C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n n -12×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( ) A .8 B .9 C .10D .11解析:选B 设数列{a n }的公差为d , ∵a 1=-26,a 8+a 13=5,∴-26+7d -26+12d =5,解得d =3, ∴S n =-26n +n n -2×3=32n 2-552n =32⎝ ⎛⎭⎪⎫n -5562-3 02524,∴{a n }的前n 项和S n 取最小值时,n =9.3.已知{a n }是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,则数列{a n }的前n 项和取最大值时,n =________.解析:由S 10=a 1+a 102=5(a 5+a 6)=0,可得a 5+a 6=0,∴a 5>0,a 6<0,即数列{a n }的前5项和为最大值,∴n =5. 答案:51.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98. 法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.3.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.4.(2013·全国卷Ⅱ)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d .由题意,a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ), 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .一、选择题1.(2018·厦门一中测试)已知数列{a n }中,a 2=32,a 5=98,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 7=( ) A.109 B.1110 C.1211D.1312解析:选D 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d ,则1a 5-1=1a 2-1+3d ,即198-1=132-1+3d ,解得d =2,所以1a 7-1=1a 2-1+5d =12,解得a 7=1312. 2.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列, 设首项a 1=4,则a 5=2.由等差数列的性质得a 2+a 4=a 1+a 5=6, 所以第二尺与第四尺的重量之和为6斤.3.(2018·银川一中月考)在等差数列{a n }中,首项a 1>0,公差d ≠0,前n 项和为S n (n ∈N *),有下列命题: ①若S 3=S 11,则必有S 14=0;②若S 3=S 11,则必有S 7是S n 中的最大项; ③若S 7>S 8,则必有S 8>S 9; ④若S 7>S 8,则必有S 6>S 9. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选D 对于①,若S 11-S 3=4(a 1+a 14)=0,即a 1+a 14=0,则S 14=a 1+a 142=0,所以①正确;对于②,当S 3=S 11时,易知a 7+a 8=0,又a 1>0,d ≠0,所以a 7>0>a 8,故S 7是S n 中的最大项,所以②正确; 对于③,若S 7>S 8,则a 8<0,那么d <0,可知a 9<0,此时S 9-S 8<0,即S 8>S 9,所以③正确; 对于④,若S 7>S 8,则a 8<0,S 9-S 6=a 7+a 8+a 9=3a 8<0,即S 6>S 9,所以④正确.故选D.4.(2018·大同模拟)在等差数列{}a n 中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600解析:选B 由a 1+a 2+a 3=3a 2=3,得a 2=1. 由a 18+a 19+a 20=3a 19=87,得a 19=29, 所以S 20=a 1+a 202=10(a 2+a 19)=300.5.设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n =336,则n 的值为( ) A .18 B .19 C .20D .21解析:选D 因为{a n }是等差数列,所以S 9=9a 5=18,a 5=2,S n =n a 1+a n2=n a 5+a n -42=n2×32=16n =336,解得n =21.6.设{a n }是等差数列,d 是其公差,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5D .当n =6或n =7时S n 取得最大值解析:选C 由S 5<S 6,得a 1+a 2+a 3+a 4+a 5<a 1+a 2+a 3+a 4+a 5+a 6,即a 6>0.同理由S 7>S 8,得a 8<0.又S 6=S 7,∴a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7,∴a 7=0,∴B 正确;∵d =a 7-a 6<0,∴A 正确;而C 选项,S 9>S 5,即a 6+a 7+a 8+a 9>0,可得2(a 7+a 8)>0,由结论a 7=0,a 8<0,知C 选项错误;∵S 5<S 6,S 6=S 7>S 8,∴结合等差数列前n 项和的函数特性可知D 正确.故选C.7.等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( ) A .|a 7|>|a 8| B .|a 7|<|a 8| C .|a 7|=|a 8|D .|a 7|=0解析:选B 因为(S 8-S 5)(S 9-S 5)<0, 所以(a 6+a 7+a 8)(a 6+a 7+a 8+a 9)<0, 因为{a n }为等差数列, 所以a 6+a 7+a 8=3a 7,a 6+a 7+a 8+a 9=2(a 7+a 8),所以a 7(a 7+a 8)<0, 所以a 7与(a 7+a 8)异号. 又公差d >0,所以a 7<0,a 8>0,且|a 7|<|a 8|,故选B. 二、填空题8.在数列{a n }中,a n +1=a n1+3a n ,a 1=2,则a 20=________.解析:由a n +1=a n1+3a n ,a 1=2,可得1a n +1-1a n=3,所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列.所以1a n =12+3(n -1),即a n =26n -5,所以a 20=2115.答案:21159.数列{a n }满足:a 1=1,a n +1=2a n +2n,则数列{a n }的通项公式为________. 解析:∵a 1=1,a n +1=2a n +2n, ∴a n +12n +1=a n 2n +12, ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 12=12,公差d =12的等差数列,故a n 2n =12+(n -1)×12=12n , 即a n =n ·2n -1.答案:a n =n ·2n -110.设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,S 12=λS 8,则λ=________. 解析:当S 4≠0,且S 8=3S 4,S 12=λS 8时,由等差数列的性质得:S 4,S 8-S 4,S 12-S 8成等差数列, ∴2(S 8-S 4)=S 4+(S 12-S 8), ∴2(3S 4-S 4)=S 4+(λ·3S 4-3S 4), 解得λ=2. 答案:2 三、解答题11.已知数列{a n }是等差数列,且a 1,a 2,a 5成等比数列,a 3+a 4=12.(1)求a 1+a 2+a 3+a 4+a 5;(2)设b n =10-a n ,数列{b n }的前n 项和为S n ,若b 1≠b 2,则n 为何值时,S n 最大?S n 最大值是多少? 解:(1)设{a n }的公差为d , ∵a 1,a 2,a 5成等比数列, ∴(a 1+d )2=a 1(a 1+4d ), 解得d =0或d =2a 1.当d =0时,∵a 3+a 4=12,∴a n =6, ∴a 1+a 2+a 3+a 4+a 5=30;当d ≠0时,∵a 3+a 4=12,∴a 1=1,d =2, ∴a 1+a 2+a 3+a 4+a 5=25.(2)∵b 1≠b 2,b n =10-a n ,∴a 1≠a 2,∴d ≠0, 由(1)知a n =2n -1,∴b n =10-a n =10-(2n -1)=11-2n ,S n =10n -n 2=-(n -5)2+25. ∴当n =5时,S n 取得最大值,最大值为25.12.(2018·沈阳质检)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5. (1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式. 解:(1)设等差数列{a n }的公差为d , 由题意知⎩⎪⎨⎪⎧2a 1+7d =4,5a 1+5×42d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2,故a n =2n -7(n ∈N *).(2)由a n =2n -7<0,得n <72,即n ≤3,所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0. 由(1)知S n =n 2-6n ,所以当n ≤3时,T n =-S n =6n -n 2; 当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T 5=13,T n =⎩⎪⎨⎪⎧6n -n 2,n ≤3,n 2-6n +18,n ≥4.13.已知数列{a n }中,a 1=4,a n =a n -1+2n -1+3(n ≥2,n ∈N *).(1)证明数列{a n -2n}是等差数列,并求{a n }的通项公式; (2)设b n =a n2n ,求b n 的前n 项和S n . 解:(1)证明:当n ≥2时,a n =a n -1+2n -1+3=a n -1+2n -2n -1+3,∴a n -2n -(a n -1-2n -1)=3.又a 1=4,∴a 1-2=2,故数列{a n -2n}是以2为首项,3为公差的等差数列, ∴a n -2n=2+(n -1)×3=3n -1, ∴a n =2n +3n -1. (2)b n =a n 2n =2n +3n -12n =1+3n -12n ,∴S n =⎝ ⎛⎭⎪⎫1+22+⎝ ⎛⎭⎪⎫1+522+…+⎝⎛⎭⎪⎫1+3n -12n=n +⎝ ⎛⎭⎪⎫22+522+…+3n -12n ,令T n =22+522+…+3n -12n ,①则12T n =222+523+…+3n -12n +1,② ①-②得,12T n =1+322+323+…+32n -3n -12n +1,=1+3×14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-3n -12n +1=52-3n +52n +1,∴S n =n +5-3n +52.已知数列{a n }的前n 项和为S n ,a 1=3,a n +1=2a n +2n +1-1(n ∈N *).(1)求a 2,a 3;(2)求实数λ使⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列,并由此求出a n 与S n ;(3)求n 的所有取值,使S n a n∈N *,说明你的理由. 解:(1)∵a 1=3,a n +1=2a n +2n +1-1,∴a 2=2×3+22-1=9,a 3=2×9+23-1=25. (2)∵a 1=3,a n +1=2a n +2n +1-1,∴a n +1-1=2(a n -1)+2n +1,∴a n +1-12n +1-a n -12n=1,故λ=-1时,数列⎩⎨⎧⎭⎬⎫a n +λ2n 成等差数列,且首项为a 1-12=1,公差d =1.∴a n -12n=n ,即a n =n ·2n+1.∴S n =(1×2+2×22+3×23+…+n ×2n)+n , 设T n =1×2+2×22+3×23+…+n ×2n,① 则2T n =1×22+2×23+3×24+…+n ×2n +1,②①-②得,-T n =2+22+23+ (2)-n ×2n +1=(1-n )·2n +1-2,∴T n =(n -1)·2n +1+2,∴S n =T n +n =(n -1)·2n +1+2+n .(3)S n a n =n -n +1+n +2n ·2+1=2+n -2n +1n ·2+1, 结合y =2x 及y =12x 的图象可知2n >n 2恒成立,∴2n +1>n ,即n -2n +1<0,∵n ·2n+1>0,∴S na n<2.当n =1时,S n a n =S 1a 1=1∈N *;当n ≥2时,∵a n >0且{a n }为递增数列, ∴S n >0且S n >a n ,∴S n a n >1,即1<S n a n <2,∴当n ≥2时,S n a n∉N *. 综上可得n =1. 高考研究课(二)等比数列的3考点——基本运算、判定和应用 [全国卷5年命题分析]考点考查频度 考查角度等比数列的基本运算 5年7考 由项与和的关系求首项、求前n 项和、求项数等 等比数列的判定 5年3考 证明等比数列等比数列的综合应用5年4考求和后放缩法证明不等式,等比数列求项之积的最值等比数列基本量的运算[典例] (1)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=2,a 2+a 4=4,则S na n =( )A .4n -1B .4n-1 C .2n -1D .2n-1(2)(2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.①若a 3+b 3=5,求{b n }的通项公式;②若T 3=21,求S 3.[解析] (1)设{a n }的公比为q , ∵⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52, ⅰa 1q +a 1q 3=54, ⅱ由(ⅰ)(ⅱ)可得1+q 2q +q 3=2,∴q =12,代入(ⅰ)得a 1=2,∴a n =2×⎝ ⎛⎭⎪⎫12n -1=42n ,∴S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝ ⎛⎭⎪⎫1-12n ,∴S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n =2n -1. 答案:D(2)设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =qn -1.由a 2+b 2=2得d +q =3.(ⅰ) ①由a 3+b 3=5得2d +q 2=6.(ⅱ)联立(ⅰ)(ⅱ)解得⎩⎪⎨⎪⎧d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.②由b 1=1,T 3=21,得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由(ⅰ)得d =8,则S 3=21. 当q =4时,由(ⅰ)得d =-1,则S 3=-6. [方法技巧]解决等比数列有关问题的常用思想方法(1)方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1-q n1-q=a 1-a n q1-q. [即时演练]1.已知数列{a n }是首项a 1=14的等比数列,其前n 项和为S n ,S 3=316,若a m =-1512,则m 的值为( )A .8B .10C .9D .7解析:选A 设数列{a n }的公比为q , 若q =1,则S 3=34≠316,不符合题意,∴q ≠1.由⎩⎪⎨⎪⎧a 1=14,S 3=a 1-q31-q=316,得⎩⎪⎨⎪⎧a 1=14q =-12,∴a n =14·⎝ ⎛⎭⎪⎫-12n -1=⎝ ⎛⎭⎪⎫-12n +1.由a m =⎝ ⎛⎭⎪⎫-12m +1=-1512,得m =8.2.(2017·北京高考)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1. 解:(1)设等差数列{a n }的公差为d .因为⎩⎪⎨⎪⎧a 1=1,a 2+a 4=10,所以2a 1+4d =10, 解得d =2,所以a n =2n -1. (2)设等比数列{b n }的公比为q .因为b 1=1,b 2b 4=a 5,所以b 1q ·b 1q 3=9. 解得q 2=3. 所以b 2n -1=b 1q2n -2=3n -1.从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n-12.等比数列的判定与证明[典例] (1)已知数列{n 12n +2n +1n {a n }有下列命题: ①数列{a n }是等差数列; ②数列{a n +1-a n }是等比数列;。

2021版高考数学一轮复习第八章数列8.4数列的求和练习理北师大版

2021版高考数学一轮复习第八章数列8.4数列的求和练习理北师大版

8.4 数列的乞降中心考点·精确研析考点一分化法或并法乞降1.数列 {a n} 的通公式是 a n=(-1)n(2n-1),数列的前100 之和 ()A.-200B.-100C.200D.1002.数列 {1+2 n-1} 的前 n 和()n n-1n nA.2B.2 +1C.n-1+2D.n+2+23. 已知函数f(n)=且a n=f(n)+f(n+1),a1+a2+a3+⋯+a100等于()A.0B.100C.-100D.10 2004. 已知数列 {a n} 的通公式是a n=n2sin,a1+a2+a3+⋯ +a2 021等于() A.- B.C. D.-5. 已知正数列{a n} 足-6=a n+1a n. 若 a1=2, 数列 {a n} 的前 n 和 S n=________.【分析】 1. D. 由意知S100=(-1+3)+(-5+7)+⋯+(-197+199)=2× 50=100.n-1所以 S n=n+=n+2n-1.3. B. 由意 , 得 a1+a2+a3+⋯ +a100222222222222=1 -2-2 +3 +3 -4 -4+5 +⋯+99 -100-100 +101=-(1+2)+(3+2)-(4+3)+⋯-(99+100)+(101+100)=-(1+2+ ⋯ +99+100)+(2+3+ ⋯+100+101)=-50 × 101+50× 103=100.4. A.a n=n2sin,所以 a1+a2+a3+⋯+a2 021=-12+22-3 2+42- ⋯ -2 019 2+2 020 2-2 021 2=(22-1 2)+(4 2-3 2)+ ⋯ +(2 020 2-2 019 2)-2 021 22=(1+2+3+4+ ⋯ +2 019+2 020)-2 021=-2 021 2=.5. 因-6=a n+1a n,所以 (a n+1-3a n)(a n+1+2a n)=0.又因 a n>0, 所以 a n+1=3a n.又 a1=2, 所以 {a n} 是首2, 公比 3 的等比数列 .所以 S n==3n-1.答案 :3 n-1将 T3: 在数列 {a n} 中 a1=2,a 2=2,a n+2-a n=1+(-1) n,n ∈ N* ,S60的() A.990 B.1 000 C.1 100 D.99【分析】 A.n 奇数 ,a n+2-a n=0,a n=2;n 偶数 ,a n+2-a n=2,a n=n. 故 S60=2×30+(2+4+⋯ +60)=990.1.分法乞降的常型(1) 若 a n=b n±c n, 且 {b n},{c n}等差或等比数列, 可采纳分法求{a n} 的前 n 和 .(2) 通公式a n=的数列,此中数列{b n},{c n}是等比或等差数列, 可采纳分法乞降.2.并乞降法一个数列的前n 和中 , 可两两合求解, 称之并乞降. 形如 a n =(-1) n f(n) 型 , 可采纳两归并求解 .比如222222S =100 -99 +98 -97 +⋯ +2 -1n=(100+99)+(98+97)+⋯ +(2+1)=5 050.【秒招】清除法解T2, 把 n=1 代入清除D, 把 n=2 代入清除A、B.考点二位相减法【典例】已知数列{a n} 的前 n 和 S n=3n2+8n,{b n} 是等差数列 , 且 a n =b n+b n+1.(1)求数列 {b n} 的通公式 .(2) 令 c=, 求数列 {c} 的前 n 和 T .n n n【解思】序号目拆解n n2n n(1)①{a } 的前 n 和 S =3n +8n知 S 求 a②{b} 是等差数列 , 且 a =b +b求数列 {b } 的通公式n n n n+1nn n n n n的表达式①c=把 a ,b代入 c =中 , 得 c(2)求得 c n=3(n+1) ·2n+1, 依据 T n的特色利用乘公比位相n n②求数列 {c } 的前 n 和 T减法乞降【分析】 (1)由意知 , 当 n≥2 ,a nn n-111n n =S -S=6n+5, 当 n=1 ,a=S =11,足上式 , 所以 a =6n+5.数列 {b }的公差d, 由即可解得所以 b n=3n+1.(2) 由 (1) 知 c n==3(n+1) · 2n+1.又 T n=c1+c 2+⋯ +c n,得 T n=3× [2 × 22+3× 23+⋯+(n+1) ×2n+1], 2T n=3× [2 ×23 +3× 24+⋯ +(n+1) × 2n+2],n× [2234-(n+1) ×]两式作差 , 得 -T =3×2 +2+2 +⋯+=3×=-3n · 2n+2, 所以 T n=3n· 2n+2.【答模板微】本例 (2) 的模板化程 :建模板 :“由 (1) 知 c n==3(n+1) · 2n+1. ”⋯⋯⋯⋯写通23×2n+1“故 T =3×[2 ×2+3×2+⋯+(n+1)], ” ⋯⋯⋯⋯写前 n 和n“ 2T n=3×[2 ×23+3×24+⋯+(n+1) ×2n+2], ” ⋯⋯⋯⋯乘公比“两式作差 , 得 -T n=3×[2 ×22+23+24+⋯+2n+1- (n+1) ×2n+2]=3×=-3n · 2n+2, ” ⋯⋯⋯⋯ 位相减“所以 T n=3n· 2n+2. ”⋯⋯⋯⋯整理出果套模板 :已知 a n=2n-1 ,b n=2n+1,c n=a n· b n, 求数列 {c n} 的前 n 和 T n.【分析】由知 c =a ·b =(2n+1)2n-1⋯⋯⋯⋯写通,nnn故 T n=3× 20+5×21+7× 22+⋯+(2n+1) ×2n-1 ,⋯⋯⋯⋯写前 n 和n123n⋯⋯⋯⋯乘公比2T =3× 2 +5× 2 +7× 2 +⋯ +(2n+1) × 2 ,上述两式相减得,-T n=3+22+23+⋯ +2n-(2n+1) ×⋯⋯⋯⋯位相减=3+-(2n+1) × 2n=(1-2n) × 2n-1,得 T n=(2n-1) × 2n+1. ⋯⋯⋯⋯整理出果所以数列 {c } 的前 n 和 (2n-1) × 2n+1.利用位相减法的一般型及思路(1) 合用的数列型:{a n b n}, 此中数列 {a n} 是公差 d 的等差数列 ,{b n} 是公比q≠ 1 的等比数列 .(2) 思路 :S n=a1b1+a2b2+⋯ +a n b n(*),qS n=a1b2+a2b3+⋯ +a n-1 b n+a n b n+1(**),(*)-(**) 得:(1-q)Sn =a b +d(b+b +⋯ +b )-a bn+1, 就化成了依据公式可求的和 .1 123nn【易提示】在用位相减法乞降, 若等比数列的公比参数, 分公比等于 1 和不等于 1 两种状况求解 . 同要注意等比数列的数是多少.已知等比数列{a n} 中 ,a 1+a2=8,a 2+a3=24,S n数列 {a n} 的前 n 和 .(1)求数列 {a n} 的通公式 .(2)若 b n=a n· log 3(S n+1), 求数列 {b n} 的前 n 和 T n.【分析】 (1) 等比数列 {a n} 的公比q,q===3.故 a1+a2=a1+3a1=8, 解得 a1=2.所以 a n=a1q n-1 =2× 3n-1 .(2) 由 (1) 知 S n=3n-1,所以 b n=a n· log 3(S n+1)=2 ×3n-1×log 33n=2n× 3n-1 ,所以 T n=b1+b2+b3+⋯+b n=2× 30+4×31+6× 32+⋯+2(n-1) ×3n-2 +2n× 3n-1 , ①3T n=2× 31+4× 32+6× 33+⋯ +2(n-1) × 3n-1 +2n× 3n, ②0123n-1nn① - ②得 -2T n=2× 3 +2× 3 +2× 3 +2× 3 +⋯ +2× 3-2n×3 =3 (1-2n)-1.所以 T n=.考点三裂相消法乞降命 1. 考什么 : (1) 裂相消求通公式、裂相消求前n 和 .(2)考数学运算、推理的中心素养精 2. 怎么考 : 裂相消法常以解答的形式出 , 考等差数列、等比数列、结构数列以及数学运算解等.读 3. 新趋向 : 裂项相消法乞降作为考察等差、等比数列知识的综合题型, 因其考察数学知识、数学方法、数学修养等许多成为高考命题的热门.1.裂项相消法乞降的本质和解题重点学裂项相消法乞降的本质是将数列中的通项分解 , 而后从头组合 , 使之能消去一些项 , 最后达到乞降霸的目的 , 其解题的重点就是正确裂项和消项 .好(1) 裂项原则 : 一般是前边裂几项 , 后边就裂几项 , 直到发现被消去项的规律为止 .方(2) 消项规律 : 消项后前边剩几项 , 后边就剩几项 , 前边剩第几项 , 后边就剩倒数第几项 .法2. 交汇问题数列与方程交汇求项数、与不等式交汇证明恒建立问题裂项相消直接乞降【典例】 (2017 ·全国卷Ⅱ ) 等差数列{a n} 的前 n 项和为 S n,a 3 =3,S 4=10, 则=__________.【分析】设等差数列的首项为a1, 公差为 d, 所以解得所以 a n=n,S n=,那么==2,那么=2=2=.答案 :通项公式a n拥有如何的特色可用裂项相消法求其前n 项和 ?提示 : 假如一个数列的通分式, 若分式的分母两个因式的, 且两个因式的差定, 可利用裂相消法乞降.与裂相消乞降相关的合【典例】已知函数y=log a(x-1)+3(a>0,a≠1)的像所定点的横、坐分是等差数列{a n} 的第二与第三 , 若 b n=, 数列 {b n} 的前 n 和 T n,T10=()A. B. C.1 D.【分析】 B. 数函数y=log a x 的像定点(1,0),所以函数y=log a(x-1)+3的像定点(2,3),a2=2,a 3=3, 故 a n=n,所以 b n=== -,所以 T10=1- + - +⋯+ -=1-=.使用裂法乞降, 要特注意哪些?提示 : 利用裂相消法乞降的注意事(1)使用裂法乞降 , 要注意正相消消去了哪些, 保存了哪些 , 切不行漏写未被消去的 , 未被消去的有前后称的特色 , 上造成正相消是此法的本源与目的.(2)将通裂后 , 有需要整前方的系数 , 使裂开的两之差和系数之与原通相等. 如 : 若 {a n} 是等差数列,=,=.等差数列 {a n} 的前 n 和 S n, 已知 a1=9,a 2整数 , 且 S n≤ S5, 数列的前9和________.【分析】由S n≤ S5得即得 - ≤ d≤ - , 又 a2整数 ,所以 d=-2,a n=a1+(n-1)d=11-2n,=, 所以数列的前n和T n ==,所以 T9=-×=-.答案 :-1. 若数列 {a n} 的通公式a n=22n+1, 令 b n=(-1) n-1, 数列 {b n } 的前 n 和T n =________.【分析】由log 2a n=2n+1 知 ,b n =(-1) n-1=(-1) n-1,所以 b =(-1)n-1,n当 n 偶数T n=-+⋯+-= -,当 n 奇数 ,T n =-+⋯ -+= +,所以 T n= -(-1)n.答案 : -(-1)n2. 已知各均正数的数列{a n} 的前 n 和 S n, 且 S n足 n(n+1)+(n 2+n-1)S n-1=0(n ∈ N* ),S1+S2+⋯ +S2 021 =________.【分析】因n(n+1)+(n 2+n-1)S n-1=0(n ∈N* ), 所以 (S n+1)[n(n+1)S n-1]=0.所以 n(n+1)S n-1=0, 所以 S n== -.所以 S1+S2+⋯ +S2 021 =++⋯+=1-=.答案 :。

(全国通用版)高考数学一轮复习第八单元数列学案文

(全国通用版)高考数学一轮复习第八单元数列学案文

第八单元 数 列教材复习课“数列”相关基础知识一课过1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[小题速通]1.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21的值为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝ ⎛⎭⎪⎫-32+10×2=72. 2.数列{a n }满足a 1=3,a n +1=a n -1a n(n ∈N *),则a 2 018=( ) A.12B .3C .-12D.23解析:选D 由a 1=3,a n +1=a n -1a n ,得a 2=a 1-1a 1=23,a 3=a 2-1a 2=-12,a 4=a 3-1a 3=3,……, 由上可得,数列{a n }是以3为周期的周期数列, 故a 2 018=a 672×3+2=a 2=23.3.已知数列{a n }满足a n =32n -11(n ∈N *),前n 项的和为S n ,则关于a n ,S n 的叙述正确的是( )A .a n ,S n 都有最小值B .a n ,S n 都没有最小值C .a n ,S n 都有最大值D .a n ,S n 都没有最大值解析:选A ①∵a n =32n -11,∴当n ≤5时,a n <0且单调递减;当n ≥6时,a n >0,且单调递减.故当n =5时,a 5=-3为a n 的最小值;②由①的分析可知:当n ≤5时,a n <0;当n ≥6时,a n >0.故可得S 5为S n 的最小值. 综上可知,a n ,S n 都有最小值.4.已知数列{a n }中,a 1=1,a n +1=a n +2n +1(n ∈N *),则a 5=________.解析:依题意得a n +1-a n =2n +1,a 5=a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+(a 5-a 4)=1+3+5+7+9=25.答案:25[清易错]1.易混项与项数,它们是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.1.已知数列的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }中的项 B .3只是数列{a n }中的第2项 C .3只是数列{a n }中的第6项 D .3是数列{a n }中的第2项或第6项解析:选D 令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.2.已知数列{a n }的前n 项和为S n =3+2n,则数列{a n }的通项公式为________.解析:当n =1时,a 1=S 1=3+2=5;当n ≥2时,a n =S n -S n -1=3+2n -(3+2n -1)=2n-2n -1=2n -1.因为当n =1时,不符合a n =2n -1,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥21.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -2d =n a 1+a n2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题速通]1.在等差数列{a n }中,已知a 2与a 4是方程x 2-6x +8=0的两个根,若a 4>a 2,则a 2 018=( )A .2 018B .2 017C .2 016D .2 015解析:选A 因为a 2与a 4是方程x 2-6x +8=0的两个根,且a 4>a 2,所以a 2=2,a 4=4,则公差d =1,所以a 1=1,则a 2 018=2 018.2.在等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和,则S 5=( )A .3B .4C .5D .6解析:选C ∵等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和, ∴a 2+a 3+a 4=3a 3=3, 解得a 3=1,∴S 5=52(a 1+a 5)=5a 3=5.3.正项等差数列{a n }的前n 项和为S n ,已知a 4+a 10-a 27+15=0,则S 13=( ) A .-39 B .5 C .39D .65解析:选D ∵正项等差数列{a n }的前n 项和为S n ,a 4+a 10-a 27+15=0,∴a 27-2a 7-15=0,解得a 7=5或a 7=-3(舍去), ∴S 13=132(a 1+a 7)=13a 7=13×5=65.4.已知等差数列{a n }的前n 项和为S n ,且3a 3=a 6+4.若S 5<10,则a 2的取值范围是( ) A .(-∞,2) B .(-∞,0) C .(1,+∞)D .(0,2)解析:选A 设等差数列{a n }的公差为d ,∵3a 3=a 6+4, ∴3(a 2+d )=a 2+4d +4,可得d =2a 2-4. ∵S 5<10,∴a 1+a 52=a 2+a 42=a 2+2d2=5(3a 2-4)<10,解得a 2<2.∴a 2的取值范围是(-∞,2).5.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎪⎫-1,-78 [清易错]1.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件. 2.注意区分等差数列定义中同一个常数与常数的区别.1.(2018·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 的值为( )A .18B .19C .20D .21解析:选C 由a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.2.在数列{a n }中,若a 1=-2,且对任意的n ∈N *,有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52D.54解析:选C 由2a n +1=1+2a n ,可得a n +1-a n =12,即数列{a n }是以-2为首项,12为公差的等差数列,则a n =n -52,所以数列{a n }的前10项的和S 10=10×⎝⎛⎭⎪⎫-2+522=52.1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)都是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k,…为等比数列,公比为q k. [小题速通]1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1-271-2=381,解得a 1=3.2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( ) A .2 B.73 C.310D .1或2解析:选B 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73.3.设数列{a n }是等比数列,公比q =2,前n 项和为S n ,则S 4a 3的值为( ) A.154 B.152 C.74D.72解析:选A 根据等比数列的公式,得S 4a 3=a 1-q41-qa 1q 2=1-q4-q q2=1-24-2=154. 4.已知等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16,则数列{a n }的前2 018项的和为( )A .8 064B .4C .-4D .0解析:选D ∵等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16,∴a 3a 5=a 2a 6=16,∴a 3,a 5是方程x 2-8x +16=0的两个根, 解得a 3=a 5=4, ∴4q 2=4,∵q ≠1,∴q =-1,∴a 1=a 3q2=4, ∴数列{a n }的前2 018项的和为 S 2 018=4[1-- 2 018]1--=0.5.(2018·信阳调研)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( ) A.12 B.22C. 2D .2解析:选B 因为{a n }是等比数列,所以a 5a 7=a 26=4a 24,所以a 6=2a 4,q 2=a 6a 4=2,又q >0, 所以q =2,a 1=a 2q =22. [清易错]1.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.1.设数列{a n }为等比数列,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 解析:当q ≠1时,由题意,a 1-q 31-q=3a 1q 2,即1-q 3=3q 2-3q 3,整理得2q 3-3q 2+1=0,解得q =-12.当q =1时,S 3=3a 3,显然成立. 故q =-12或1.答案:-12或1一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3da 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.2.(2018·江西六校联考)在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( ) A .3 B.17 C .9D .13解析:选A 由a 3a 5a 7=-33,得a 35=-33,即a 5=-3,故a 2a 8=a 25=3.3.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 018=( ) A .8 B .6 C .4D .2解析:选D 由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 018=a 335×6+8=a 8=2.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2,n ∈N *),则a 7=( ) A .53 B .54 C .55D .109解析:选C a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( )A .44B .45C.13×(46-1) D.14×(45-1) 解析:选B 由a n +1=3S n ,得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n +1=4a n ,n ≥2,则数列{a n }从第二项起构成等比数列,所以S 6=a 73=3×453=45.6.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有S n T n =n n +1,则a 5b 5等于( )A.34 B.56 C.910D.1011解析:选C ∵S 9=a 1+a 92=9a 5,T 9=b 1+b 92=9b 5,∴a 5b 5=S 9T 9=910.7.已知数列{a n }是首项为1的等比数列,S n 是其前n 项和,若5S 2=S 4,则log 4a 3的值为( )A .1B .2C .0或1D .0或2解析:选C 由题意得,等比数列{a n }中,5S 2=S 4,a 1=1, 所以5(a 1+a 2)=a 1+a 2+a 3+a 4, 即5(1+q )=1+q +q 2+q 3,q 3+q 2-4q -4=0,即(q +1)(q 2-4)=0,解得q =-1或±2,当q =-1时,a 3=1,log 4a 3=0. 当q =±2时,a 3=4,log 4a 3=1. 综上所述,log 4a 3的值为0或1.8.设数列{a n }是公差为d (d >0)的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .75B .90C .105D .120解析:选C 由a 1+a 2+a 3=15得3a 2=15,解得a 2=5,由a 1a 2a 3=80,得(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(d =-3舍去),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105.二、填空题9.若数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,则数列{a n }的通项公式为________.解析:当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13满足a n =13n ,所以a n =13n .答案:a n =13n10.数列{a n }的前n 项和为S n ,若S n =2a n -1,则a n =________. 解析:∵S n =2a n -1,① ∴S n -1=2a n -1-1(n ≥2),② ①-②得a n =2a n -2a n -1, 即a n =2a n -1.∵S 1=a 1=2a 1-1,即a 1=1,∴数列{a n }为首项是1,公比是2的等比数列, 故a n =2n -1.答案:2n -111.已知数列{a n }中,a 2n =a 2n -1+(-1)n,a 2n +1=a 2n +n ,a 1=1,则a 20=________. 解析:由a 2n =a 2n -1+(-1)n,得a 2n -a 2n -1=(-1)n, 由a 2n +1=a 2n +n ,得a 2n +1-a 2n =n ,故a 2-a 1=-1,a 4-a 3=1,a 6-a 5=-1,…,a 20-a 19=1.a 3-a 2=1,a 5-a 4=2,a 7-a 6=3,…,a 19-a 18=9.又a 1=1,累加得:a 20=46. 答案:4612.数列{a n }为正项等比数列,若a 3=3,且a n +1=2a n +3a n -1(n ≥2,n ∈N *),则此数列的前5项和S 5=________.解析:设公比为q (q >0),由a n +1=2a n +3a n -1,可得q 2=2q +3,所以q =3,又a 3=3,则a 1=13,所以此数列的前5项和S 5=13-351-3=1213. 答案:1213三、解答题13.已知在等差数列{a n }中,a 3=5,a 1+a 19=-18. (1)求公差d 及通项a n ;(2)求数列{a n }的前n 项和S n 及使得S n 取得最大值时n 的值. 解:(1)∵a 3=5,a 1+a 19=-18,∴⎩⎪⎨⎪⎧a 1+2d =5,2a 1+18d =-18,∴⎩⎪⎨⎪⎧a 1=9,d =-2,∴a n =11-2n .(2)由(1)知,S n =n a 1+a n2=n+11-2n 2=-n 2+10n =-(n -5)2+25,∴n =5时,S n 取得最大值.14.已知数列{a n }满足a 12+a 222+a 323+…+a n2n =n 2+n .(1)求数列{a n }的通项公式; (2)若b n =-na n2,求数列{b n }的前n 项和S n .解:(1)∵a 12+a 222+a 323+…+a n2n =n 2+n ,∴当n ≥2时,a 12+a 222+a 323+…+a n -12n -1=(n -1)2+n -1,两式相减得a n2n =2n (n ≥2),∴a n =n ·2n +1(n ≥2).又∵当n =1时,a 12=1+1,∴a 1=4,满足a n =n ·2n +1.∴a n =n ·2n +1.(2)∵b n =-na n2=n (-2)n,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n ×(-2)n.-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n -1)×(-2)n +n (-2)n +1,∴两式相减得3S n =(-2)+(-2)2+(-2)3+(-2)4+…+(-2)n-n (-2)n +1=-2[1--n]1---n (-2)n +1=--n +1-23-n (-2)n +1=-n +-n +1+23,∴S n =-n +-n +1+29.高考研究课(一) 等差数列的3考点——求项、求和及判定 [全国卷5年命题分析][典例] (1)设n n 1S n +2-S n =36,则n =( )A .5B .5C .7D .8(2)(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.①求b 1,b 11,b 101;②求数列{b n }的前1 000项和.[解析] (1)法一:由等差数列前n 项和公式可得S n +2-S n =(n +2)a 1+n +n +2d -⎣⎢⎡⎦⎥⎤na 1+n n -2d =2a 1+(2n +1)d =2+4n+2=36,解得n =8.法二:由S n +2-S n =a n +2+a n +1=a 1+a 2n +2=36,因此a 2n +2=a 1+(2n +1)d =35,解得n =8.答案:D(2)①设数列{a n }的公差为d , 由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.②因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. [方法技巧]等差数列运算的解题思路由等差数列的前n 项和公式及通项公式可知,若已知a 1,d ,n ,a n ,S n 中三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.[即时演练]1.已知数列{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 6=4S 3,则a 10=( ) A.172 B.192 C.910D.89解析:选B ∵S 6=4S 3,公差d =1. ∴6a 1+6×52×1=4×⎝ ⎛⎭⎪⎫3a 1+3×22×1, 解得a 1=12.∴a 10=12+9×1=192.2.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 4-S 2S 5-S 3的值为( ) A .-2 B .-3 C .2D .3解析:选D 设{a n }的公差为d ,因为a 1,a 3,a 4成等比数列, 所以(a 1+2d )2=a 1(a 1+3d ),可得a 1=-4d , 所以S 4-S 2S 5-S 3=a 3+a 4a 4+a 5=-3d-d=3. 3.(2018·大连联考)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4.即所求m 的值为5,k 的值为4.[典例] 已知{n 11n 2n ,且b 4=17. (1)求证:数列{b n }是以-2为公差的等差数列; (2)设数列{b n }的前n 项和为S n ,求S n 的最大值.[思路点拨] (1)利用等比数列以及对数的运算法则,转化证明数列{b n }是以-2为公差的等差数列;(2)求出数列的和,利用二次函数的性质求解最大值即可. [解] (1)证明:设等比数列{a n }的公比为q , 则b n +1-b n =log 2a n +1-log 2a n =log 2a n +1a n=log 2q , 因此数列{b n }是等差数列. 又b 11=log 2a 11=3,b 4=17, 所以等差数列{b n }的公差d =b 11-b 47=-2,故数列{b n }是以-2为公差的等差数列. (2)由(1)知,b n =25-2n , 则S n =n b 1+b n2=n+25-2n 2=n (24-n )=-(n -12)2+144,于是当n =12时,S n 取得最大值,最大值为144. [方法技巧]等差数列判定与证明的方法1.(2016·浙江高考)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n+2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列 C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1+q =2,a 1+q +q2=-6.解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =---n]1--=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+-n2n +13=2S n,故S n +1,S n ,S n +2成等差数列.[典例] (1)n 3610a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(2)已知数列{a n },{b n }为等差数列,前n 项和分别为S n ,T n ,若S n T n =3n +22n ,则a 7b 7=( )A.4126B.2314C.117D.116(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.[解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,即a 8=8,m =8.(2)因为{a n },{b n }为等差数列,且S n T n =3n +22n,所以a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132b 1+b 132=S 13T 13=3×13+22×13=4126.(3)∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. [答案] (1)A (2)A (3)60 [方法技巧]等差数列的性质(1)项的性质在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n . [即时演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( )A .95B .100C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2018·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( ) A.5-12 B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q2a 4+a 4q 2=a 3+q 2a 4+q 2=1q =25+1=5-12. 3.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 10b 9+b 12+a 11b 8+b 13=________.解析:∵数列{a n }和{b n }都是等差数列, ∴a 10b 9+b 12+a 11b 8+b 13=a 10+a 11b 9+b 12=a 10+a 11b 10+b 11=S 20T 20=7×2020+3=14023. 答案:14023n n 1311n 的值为________.[解析] 法一:用“函数法”解题由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0.故当n =7时,S n 最大. 法二:用“通项变号法”解题由法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. [答案] 7 [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时演练]1.(2018·潍坊模拟)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n n -12×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( )A .8B .9C .10D .11解析:选B 设数列{a n }的公差为d , ∵a 1=-26,a 8+a 13=5,∴-26+7d -26+12d =5,解得d =3, ∴S n =-26n +n n -2×3=32n 2-552n =32⎝ ⎛⎭⎪⎫n -5562-3 02524,∴{a n }的前n 项和S n 取最小值时,n =9.3.已知{a n }是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,则数列{a n }的前n 项和取最大值时,n =________.解析:由S 10=a 1+a 102=5(a 5+a 6)=0,可得a 5+a 6=0,∴a 5>0,a 6<0,即数列{a n }的前5项和为最大值,∴n =5. 答案:51.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.3.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.4.(2013·全国卷Ⅱ)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d .由题意,a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ), 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .一、选择题1.(2018·厦门一中测试)已知数列{a n }中,a 2=32,a 5=98,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 7=( )A.109 B.1110 C.1211D.1312解析:选D 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d ,则1a 5-1=1a 2-1+3d ,即198-1=132-1+3d ,解得d =2,所以1a 7-1=1a 2-1+5d =12,解得a 7=1312. 2.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列, 设首项a 1=4,则a 5=2.由等差数列的性质得a 2+a 4=a 1+a 5=6, 所以第二尺与第四尺的重量之和为6斤.3.(2018·银川一中月考)在等差数列{a n }中,首项a 1>0,公差d ≠0,前n 项和为S n (n ∈N *),有下列命题:①若S 3=S 11,则必有S 14=0;②若S 3=S 11,则必有S 7是S n 中的最大项; ③若S 7>S 8,则必有S 8>S 9; ④若S 7>S 8,则必有S 6>S 9. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选D 对于①,若S 11-S 3=4(a 1+a 14)=0,即a 1+a 14=0,则S 14=a 1+a 142=0,所以①正确;对于②,当S 3=S 11时,易知a 7+a 8=0,又a 1>0,d ≠0,所以a 7>0>a 8,故S 7是S n 中的最大项,所以②正确;对于③,若S 7>S 8,则a 8<0,那么d <0,可知a 9<0,此时S 9-S 8<0,即S 8>S 9,所以③正确; 对于④,若S 7>S 8,则a 8<0,S 9-S 6=a 7+a 8+a 9=3a 8<0,即S 6>S 9,所以④正确.故选D. 4.(2018·大同模拟)在等差数列{}a n 中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600解析:选B 由a 1+a 2+a 3=3a 2=3,得a 2=1. 由a 18+a 19+a 20=3a 19=87,得a 19=29, 所以S 20=a 1+a 202=10(a 2+a 19)=300.5.设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n =336,则n 的值为( )A .18B .19C .20D .21解析:选 D 因为{a n }是等差数列,所以S 9=9a 5=18,a 5=2,S n =n a 1+a n2=n a 5+a n -42=n2×32=16n =336,解得n =21.6.设{a n }是等差数列,d 是其公差,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .当n =6或n =7时S n 取得最大值解析:选C 由S 5<S 6,得a 1+a 2+a 3+a 4+a 5<a 1+a 2+a 3+a 4+a 5+a 6,即a 6>0.同理由S 7>S 8,得a 8<0.又S 6=S 7,∴a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7,∴a 7=0,∴B 正确;∵d =a 7-a 6<0,∴A 正确;而C 选项,S 9>S 5,即a 6+a 7+a 8+a 9>0,可得2(a 7+a 8)>0,由结论a 7=0,a 8<0,知C 选项错误;∵S 5<S 6,S 6=S 7>S 8,∴结合等差数列前n 项和的函数特性可知D 正确.故选C.7.等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( ) A .|a 7|>|a 8| B .|a 7|<|a 8| C .|a 7|=|a 8|D .|a 7|=0解析:选B 因为(S 8-S 5)(S 9-S 5)<0,所以(a 6+a 7+a 8)(a 6+a 7+a 8+a 9)<0, 因为{a n }为等差数列, 所以a 6+a 7+a 8=3a 7,a 6+a 7+a 8+a 9=2(a 7+a 8),所以a 7(a 7+a 8)<0, 所以a 7与(a 7+a 8)异号. 又公差d >0,所以a 7<0,a 8>0,且|a 7|<|a 8|,故选B. 二、填空题8.在数列{a n }中,a n +1=a n1+3a n ,a 1=2,则a 20=________.解析:由a n +1=a n1+3a n,a 1=2, 可得1a n +1-1a n=3,所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列.所以1a n =12+3(n -1),即a n =26n -5,所以a 20=2115.答案:21159.数列{a n }满足:a 1=1,a n +1=2a n +2n,则数列{a n }的通项公式为________. 解析:∵a 1=1,a n +1=2a n +2n, ∴a n +12n +1=a n 2n +12, ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 12=12,公差d =12的等差数列,故a n 2n =12+(n -1)×12=12n , 即a n =n ·2n -1.答案:a n =n ·2n -110.设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,S 12=λS 8,则λ=________. 解析:当S 4≠0,且S 8=3S 4,S 12=λS 8时,由等差数列的性质得:S 4,S 8-S 4,S 12-S 8成等差数列, ∴2(S 8-S 4)=S 4+(S 12-S 8),∴2(3S 4-S 4)=S 4+(λ·3S 4-3S 4), 解得λ=2. 答案:2 三、解答题11.已知数列{a n }是等差数列,且a 1,a 2,a 5成等比数列,a 3+a 4=12. (1)求a 1+a 2+a 3+a 4+a 5;(2)设b n =10-a n ,数列{b n }的前n 项和为S n ,若b 1≠b 2,则n 为何值时,S n 最大?S n 最大值是多少?解:(1)设{a n }的公差为d , ∵a 1,a 2,a 5成等比数列, ∴(a 1+d )2=a 1(a 1+4d ), 解得d =0或d =2a 1.当d =0时,∵a 3+a 4=12,∴a n =6, ∴a 1+a 2+a 3+a 4+a 5=30;当d ≠0时,∵a 3+a 4=12,∴a 1=1,d =2, ∴a 1+a 2+a 3+a 4+a 5=25.(2)∵b 1≠b 2,b n =10-a n ,∴a 1≠a 2,∴d ≠0, 由(1)知a n =2n -1,∴b n =10-a n =10-(2n -1)=11-2n ,S n =10n -n 2=-(n -5)2+25. ∴当n =5时,S n 取得最大值,最大值为25.12.(2018·沈阳质检)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5. (1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式. 解:(1)设等差数列{a n }的公差为d , 由题意知⎩⎪⎨⎪⎧2a 1+7d =4,5a 1+5×42d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2,故a n =2n -7(n ∈N *).(2)由a n =2n -7<0,得n <72,即n ≤3,所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0. 由(1)知S n =n 2-6n ,所以当n ≤3时,T n =-S n =6n -n 2; 当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T 5=13,T n =⎩⎪⎨⎪⎧6n -n 2,n ≤3,n 2-6n +18,n ≥4.13.已知数列{a n }中,a 1=4,a n =a n -1+2n -1+3(n ≥2,n ∈N *).(1)证明数列{a n -2n}是等差数列,并求{a n }的通项公式; (2)设b n =a n2n ,求b n 的前n 项和S n . 解:(1)证明:当n ≥2时,a n =a n -1+2n -1+3=a n -1+2n -2n -1+3,∴a n -2n-(a n -1-2n -1)=3.又a 1=4,∴a 1-2=2,故数列{a n -2n}是以2为首项,3为公差的等差数列, ∴a n -2n=2+(n -1)×3=3n -1, ∴a n =2n +3n -1. (2)b n =a n 2n =2n +3n -12n =1+3n -12n ,∴S n =⎝ ⎛⎭⎪⎫1+22+⎝ ⎛⎭⎪⎫1+522+…+⎝⎛⎭⎪⎫1+3n -12n=n +⎝ ⎛⎭⎪⎫22+522+…+3n -12n ,令T n =22+522+…+3n -12n ,①则12T n =222+523+…+3n -12n +1,② ①-②得,12T n =1+322+323+…+32n -3n -12n +1,=1+3×14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-3n -12n +1=52-3n +52n +1,∴S n =n +5-3n +52n.已知数列{a n }的前n 项和为S n ,a 1=3,a n +1=2a n +2n +1-1(n ∈N *).(1)求a 2,a 3; (2)求实数λ使⎩⎨⎧⎭⎬⎫a n +λ2n为等差数列,并由此求出a n 与S n ;(3)求n 的所有取值,使S n a n∈N *,说明你的理由. 解:(1)∵a 1=3,a n +1=2a n +2n +1-1,∴a 2=2×3+22-1=9,a 3=2×9+23-1=25. (2)∵a 1=3,a n +1=2a n +2n +1-1,∴a n +1-1=2(a n -1)+2n +1,∴a n +1-12n +1-a n -12n=1,故λ=-1时,数列⎩⎨⎧⎭⎬⎫a n +λ2n成等差数列,且首项为a 1-12=1,公差d =1. ∴a n -12n=n ,即a n =n ·2n+1.∴S n =(1×2+2×22+3×23+…+n ×2n)+n , 设T n =1×2+2×22+3×23+…+n ×2n,① 则2T n =1×22+2×23+3×24+…+n ×2n +1,②①-②得,-T n =2+22+23+ (2)-n ×2n +1=(1-n )·2n +1-2,∴T n =(n -1)·2n +1+2,∴S n =T n +n =(n -1)·2n +1+2+n .(3)S n a n =n -n +1+n +2n ·2n +1=2+n -2n +1n ·2n +1, 结合y =2x 及y =12x 的图象可知2n >n 2恒成立,∴2n +1>n ,即n -2n +1<0,∵n ·2n+1>0,∴S na n<2.当n =1时,S n a n =S 1a 1=1∈N *;当n ≥2时,∵a n >0且{a n }为递增数列, ∴S n >0且S n >a n ,∴S n a n >1,即1<S n a n <2,∴当n ≥2时,S n a n∉N *. 综上可得n =1. 高考研究课(二)等比数列的3考点——基本运算、判定和应用 [全国卷5年命题分析][典例] (1)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=2,a 2+a 4=54,则S na n =( )A .4n -1B .4n-1 C .2n -1D .2n-1(2)(2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.①若a 3+b 3=5,求{b n }的通项公式; ②若T 3=21,求S3.[解析] (1)设{a n }的公比为q , ∵⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52, ⅰa 1q +a 1q 3=54, ⅱ由(ⅰ)(ⅱ)可得1+q 2q +q 3=2,∴q =12,代入(ⅰ)得a 1=2,∴a n =2×⎝ ⎛⎭⎪⎫12n -1=42n ,∴S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝ ⎛⎭⎪⎫1-12n ,∴S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n =2n -1. 答案:D(2)设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =qn -1.由a 2+b 2=2得d +q =3.(ⅰ) ①由a 3+b 3=5得2d +q 2=6.(ⅱ)联立(ⅰ)(ⅱ)解得⎩⎪⎨⎪⎧d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.②由b 1=1,T 3=21,得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由(ⅰ)得d =8,则S 3=21. 当q =4时,由(ⅰ)得d =-1,则S 3=-6. [方法技巧]解决等比数列有关问题的常用思想方法(1)方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q n 1-q =a 1-a n q1-q.[即时演练]1.已知数列{a n }是首项a 1=14的等比数列,其前n 项和为S n ,S 3=316,若a m =-1512,则m 的值为( )A .8B .10C .9D .7解析:选A 设数列{a n }的公比为q , 若q =1,则S 3=34≠316,不符合题意,∴q ≠1.由⎩⎪⎨⎪⎧a 1=14,S 3=a 1-q31-q=316,得⎩⎪⎨⎪⎧a 1=14q =-12,∴a n =14·⎝ ⎛⎭⎪⎫-12n -1=⎝ ⎛⎭⎪⎫-12n +1.由a m =⎝ ⎛⎭⎪⎫-12m +1=-1512,得m =8.2.(2017·北京高考)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1. 解:(1)设等差数列{a n }的公差为d . 因为⎩⎪⎨⎪⎧a 1=1,a 2+a 4=10,所以2a 1+4d =10, 解得d =2,所以a n =2n -1. (2)设等比数列{b n }的公比为q .因为b 1=1,b 2b 4=a 5,所以b 1q ·b 1q 3=9. 解得q 2=3. 所以b 2n -1=b 1q2n -2=3n -1.从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n-12.[典例] (1)n 12n +2n +1n N *,对数列{a n }有下列命题:①数列{a n }是等差数列; ②数列{a n +1-a n }是等比数列; ③当n ≥2时,a n 都是质数; ④1a 1+1a 2+…+1a n<2,n ∈N *,则其中正确的命题有( ) A .② B .①② C .③④D .②④(2)设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *). ①求a 2,a 3的值;②求证:数列{S n +2}是等比数列. [解析] (1)∵a n +2=3a n +1-2a n , ∴a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=2为首项、2为公比的等比数列, ∴a n -a n -1=2n -1,a n -1-a n -2=2n -2,…。

2019版高考数学一轮复习周周测训练第8章数列

2019版高考数学一轮复习周周测训练第8章数列

周周测8 数列的综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·山西太原五中调考)把1,3,6,10,15,…这些数叫做三角形数,这是因为这些数目的圆点可以排成一个正三角形(如图所示).则第7个三角形数是( ) A .27 B .28 C .29 D .30 答案:B 解析:观察三角形数的增长规律,可以发现每一项比它的前一项多的点数正好是该项的序号,即a n =a n -1+n (n ≥2).所以根据这个规律计算可知,第7个三角形数是a 7=a 6+7=a 5+6+7=15+6+7=28.故选B.2.(2018·山东潍坊期中)在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n =( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n 答案:A解析:解法一 由已知得a n +1-a n =ln ⎝⎛⎭⎪⎫1+1n =ln n +1n,而a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1,n ≥2,所以a n =ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝ ⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=ln n +2,n ≥2.当n =1时,a 1=2=ln1+2.故选A.解法二 由a n =a n -1+ln ⎝ ⎛⎭⎪⎫1+1n -1=a n -1+ln n n -1=a n -1+ln n -ln(n -1)(n ≥2),可知a n -ln n =a n -1-ln(n -1)(n ≥2).令b n =a n -ln n ,则数列{b n }是以b 1=a 1-ln1=2为首项的常数列,故b n =2,所以2=a n -ln n ,所以a n =2+ln n .故选A.3.已知数列{a n }的通项公式为a n =2n 2+tn +1,若{a n }是单调递增数列,则实数t 的取值范围是( )A .(-6,+∞) B.(-∞,-6) C .(-∞,-3) D .(-3,+∞) 答案:A解析:解法一 因为{a n }是单调递增数列,所以对于任意的n ∈N *,都有a n +1>a n ,即2(n +1)2+t (n +1)+1>2n 2+tn +1,化简得t >-4n -2,所以t >-4n -2对于任意的n ∈N *都成立,因为-4n -2≤-6,所以t >-6.选A.解法二 设f (n )=2n 2+tn +1,其图象的对称轴为n =-t4,要使{a n }是递增数列,则-t 4<1+22,即t >-6.选A. 4.(2017·新课标全国卷Ⅲ,9)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 答案:A解析:本题主要考查等差数列的通项公式及前n 项和公式.设等差数列{a n }的公差为d ,依题意得a 23=a 2·a 6,即(1+2d )2=(1+d )(1+5d ),解得d =-2或d =0(舍去),又a 1=1,∴S 6=6×1+6×52×(-2)=-24.故选A. 5.(2018·大理一诊)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=45,则a 5=( ) A .4 B .5 C .6 D .9 答案:D解析:由等差数列的性质知a 3+a 4+a 5+a 6+a 7=5a 5=45,所以a 5=9.故选D.6.(2018·安徽合肥二模)已知⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134 答案:A解析:由题意,得1a 1=1,1a 4=14,所以等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d =1a 4-1a 13=-14,由此可得1a n =1+(n -1)×⎝ ⎛⎭⎪⎫-14=-n 4+54,因此1a 10=-54,所以a 10=-45.故选A. 7.已知等比数列{a n }共有10项,其中奇数项之积为2,偶数项之积为64,则其公比q 为( )A.32B. 2 C .2 D .2 2 答案:C 解析:由奇数项之积为2,偶数项之积为64,得a 1·a 3·a 5·a 7·a 9=2,a 2·a 4·a 6·a 8·a 10=64,则q 5=a 2·a 4·a 6·a 8·a 10a 1·a 3·a 5·a 7·a 9=32,则q =2,故选C.8.(2018·辽宁盘锦高中月考)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5 B.3116或5 C.3116 D.158 答案:C解析:若q =1,则由9S 3=S 6,得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1.由9S 3=S 6,得9×a 11-q 31-q =a 11-q 61-q ,解得q =2.故a n =a 1q n -1=2n -1,1a n =⎝ ⎛⎭⎪⎫12n -1.所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,以12为公比的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为T 5=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=3116.故选C.9.(2018·潍坊二模)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则此人第4天和第5天共走的路程为( )A .60里B .48里C .36里D .24里 答案:C解析:由题意知,此人每天走的路程构成公比为12的等比数列.设等比数列的首项为a 1,则有a 1⎝ ⎛⎭⎪⎫1-1261-12=378,解得a 1=192,a 4=192×18=24,a 5=24×12=12,a 4+a 5=24+12=36,所以此人第4天和第5天共走了36里路,故选C.10.(2018·河北冀州中学质检)已知数列{a n }满足a 1=0,a n +1=a n +2n ,那么a 2 017的值是( )A .2 0172B .2 015×2 017C .2 016×2 018 D.2 016×2 017 答案:D解析:因为a n +1=a n +2n ,a 1=0所以⎩⎪⎨⎪⎧a n =a n -1+2n -1,a n -1=a n -2+2n -2,a n -2=a n -3+2n -3,……a 3=a 2+2×2,a 2=a 1+2×1,将这n -1个式子累加得a n =a 1+2×1+2×2+…+2(n -2)+2(n -1)=0+2×[1+n -1]n -12=n (n -1).所以a 2 017=2 016×2017,故选D.11.(2018·大理一模)若数列{a n }的首项a 1=2,且a n +1=3a n +2(n ∈N *),令b n =log 3(a n+1),则b 1+b 2+b 3+…+b 100=( )A .4 900B .4 950C .5 000D .5 050 答案:D解析:由a n +1=3a n +2(n ∈N *)可得a n +1+1=3(a n +1),故a n +1+1a n +1=3,所以数列{a n +1}是以3为首项,3为公比的等比数列,所以a n +1=3n,所以b n =log 3(a n +1)=n ,因此b 1+b 2+b 3+…+b 100=100×1+1002=5 050,选D.12.已知数列{a n }的通项公式为a n =3n -1,令c n =log 3a 2n ,b n =1c n ·c n +2,记数列{b n }的前n 项和为T n ,若对任意的n ∈N *,λ<T n 恒成立,则实数λ的取值范围为( )A.⎝ ⎛⎭⎪⎫-∞,16B.⎝ ⎛⎭⎪⎫-∞,13C.⎝ ⎛⎭⎪⎫-∞,14D.⎝⎛⎭⎪⎫-∞,15 答案:D解析:∵a n =3n -1,c n =log 3a 2n ,∴c n =2n -1,∴c n +2=2n +3,b n =12n -12n +3=14⎝ ⎛⎭⎪⎫12n -1-12n +3,∴T n =14⎝ ⎛11-15+13-17+15-19+…+⎭⎪⎫12n -3-12n +1+12n -1-12n +3= 14⎝ ⎛⎭⎪⎫1+13-12n +1-12n +3= 13-14⎝ ⎛⎭⎪⎫12n +1+12n +3,由于T n 随着n 的增大而增大,∴T n 的最小值为T 1=15,∴λ的取值范围为λ<15,选D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.(2018·兰州一模)在数列1,2,7,10,13,…中,219是这个数列的第________项.答案:26解析:数列1,2,7,10,13,…,即数列1,3×1+1,3×2+1,3×3+1,3×4+1,…,∴该数列的通项公式为a n =3n -1+1=3n -2,∴3n -2=219=76,∴n =26,故219是这个数列的第26项.14.已知S n 为数列{a n }的前n 项和,a 12+a 23+a 34+…+a n -1n=a n -2(n ≥2),且a 1=2,则{a n }的通项公式为________.答案:a n =n +1解析:∵a 12+a 23+a 34+…+a n -1n =a n -2(n ≥2),∴当n =2时,a 12=a 2-2,解得a 2=3.a 12+a 23+a 34+…+a n -12+a nn +1=a n +1-2,a n n +1=a n +1-2-(a n -2)(n ≥2),得a n +1n +2=a nn +1(n ≥2),∴a n +1n +2=a n n +1=…=a 23=1,∴a n =n +1(n ≥2),当n =1时也满足,故a n =n +1. 15.已知等比数列{a n }满足a 1=12,a 2a 8=2a 5+3,则a 9=________.答案:18解析:解法一 先由已知条件得出基本量a 1,q ,再由等比数列的通项公式求得a 9.设公比为q ,由a 2a 8=2a 5+3,得a 21q 8=2a 1q 4+3,又a 1=12,所以q 8-4q 4-12=0,解得q 4=6或q 4=-2(舍去),所以a 9=a 1q 8=12×62=18.解法二 由等比数列的性质可得a 2a 8=a 25,可得a 5=3,由a 1a 9=a 25即可求出a 9.根据等比数列的性质,可得a 2a 8=a 25,又a 2a 8=2a 5+3,所以a 25-2a 5-3=0, 解得a 5=3或a 5=-1,因为a 1>0,所以a 5=a 1q 4>0,所以a 5=3,因为a 1a 9=a 25,所以a 9=a 25a 1=18.16.已知等差数列{a n }的前n 项和为S n ,满足S 8=S 12,且a 1>0,则S n 中最大的是________. 答案:S 10解析:通解 设等差数列{a n }的公差为d ,根据S 8=S 12可得8a 1+8×72d =12a 1+12×112d ,即2a 1+19d =0,得到d =-219a 1,从而S n =na 1+n n -12×⎝ ⎛⎭⎪⎫-219a 1=-a 119(n -10)2+10019a 1,由a 1>0可知-a 119<0.故当n =10时,S n 最大.优解 根据S 8=S 12可得a 9+a 10+a 11+a 12=0,再根据等差数列的性质可得a 10+a 11=0,由a 1>0可知a 10>0,a 11<0.从而可知所有正数相加时,S n 可取得最大值,即前10项和最大.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1.(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式.解析:(1)证明:(a n +1-1)(a n -1)=3[(a n -1)-(a n +1-1)],∴1a n +1-1-1a n -1=13,即b n +1-b n =13,∴{b n }是等差数列. (2)∵b 1=1,∴b n =13n +23,a n -1=3n +2,∴a n =n +5n +2.18.(本小题满分12分)(2018·内蒙古呼和浩特二中月考)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解析:(1)因为a 2n -(2a n +1-1)a n -2a n +1=0,所以当n =1时,a 21-(2a 2-1)a 1-2a 2=0.因为a 1=1,所以a 2=12.同理,当n =2时,a 22-(2a 3-1)a 2-2a 3=0,所以a 3=14.(2)因为a 2n -(2a n +1-1)a n -2a n +1=0, 所以2a n +1(a n +1)=a n (a n +1).因为{a n }的各项均为正数,所以2a n +1=a n ,即a n +1=12a n ,而a 1=1,所以{a n }是以1为首项,12为公比的等比数列,所以a n =12n -1.19.(本小题满分12分)(2018·新疆模拟)已知数列{a n }的前n 项和为S n ,满足S n =2a n -2n (n ∈N *). (1)证明:{a n +2}是等比数列,并求{a n }的通项公式;(2)数列{b n }满足b n =log 2(a n +2),T n 为数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和,若T n <a 对任意正整数n 都成立,求a 的取值范围.解析:(1)证明:因为S n =2a n -2n (n ∈N *)①,所以a 1=S 1=2a 1-2,得a 1=2.当n ≥2时,S n -1=2a n -1-2(n -1)②.由①②两式相减得a n =2a n -1+2,变形得a n +2=2(a n -1+2).又因为a 1+2=4,所以{a n +2}是以4为首项,2为公比的等比数列,所以a n +2=4×2n-1,所以a n =4×2n -1-2=2n +1-2(n ≥2).又a 1=2也符合上述表达式,所以a n =2n +1-2(n ∈N *).(2)因为b n =log 2(a n +2)=log 22n +1=n +1,1b n b n +1=1n +1n +2=1n +1-1n +2,所以T n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2<12,依题意得a ≥12,即a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 20.(本小题满分12分)(2018·北京四中月考)等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行 9 8 18(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)nln a n ,求数列{b n }的前n 项和S n . 解析:(1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18,所以{a n }的公比q =3.所以a n =2·3n -1(n ∈N *).(2)由(1)得b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n[ln2+(n -1)ln3]=2·3n -1+(-1)n ·(ln2-ln3)+(-1)nn ln3,所以S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln2-ln3)+[-1+2-3+…+(-1)nn ]ln3.①当n 为偶数时,S n =2×1-3n1-3+n 2ln3=3n+n 2ln3-1;②当n 为奇数时,S n =2×1-3n1-3-(ln2-ln3)+⎝ ⎛⎭⎪⎫n -12-n ln3=3n -n -12ln3-ln2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln3-1,n 为偶数,3n-n -12ln3-ln2-1,n 为奇数.21.(本小题满分12分)设数列{a n }的前n 项和为S n ,已知a 1=2,a 2=8,S n +1+4S n -1=5S n (n ≥2),T n 是数列{log 2a n }的前n 项和.(1)求数列{a n }的通项公式;(2)求满足⎝ ⎛⎭⎪⎫1-1T 2⎝ ⎛⎭⎪⎫1-1T 3·…·⎝ ⎛⎭⎪⎫1-1T n ≥1 0112 018的最大正整数n 的值.解析:(1)∵当n ≥2时,S n +1+4S n -1=5S n , ∴S n +1-S n =4(S n -S n -1), ∴a n +1=4a n .∵a 1=2,a 2=8, ∴a 2=4a 1,∴数列{a n }是以2为首项,4为公比的等比数列,∴a n =2×4n -1=22n -1.(2)由(1)得log 2a n =log 222n -1=2n -1, ∴T n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1) =n 1+2n -12=n 2.∴⎝⎛⎭⎪⎫1-1T 2⎝⎛⎭⎪⎫1-1T 3·…·⎝ ⎛⎭⎪⎫1-1T n = ⎝ ⎛⎭⎪⎫1-122⎝ ⎛⎭⎪⎫1-132·…·⎝ ⎛⎭⎪⎫1-1n 2= 22-122×32-132×42-142×…×n 2-1n 2= 1×3×2×4×3×5×…×n -1n +122×32×42×…×n 2=n +12n, 令n +12n ≥1 0112 018,解得n ≤1 0092,∴正整数n 的最大值为504. 22.(本小题满分12分)(2017·天津卷,18)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解析:本小题主要考查等差数列、等比数列及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由已知b 2+b 3=12,得b 1(q +q 2)=12,而b 1=2,所以q 2+q -6=0.解得q =2或q =-3,又因为q >0,解得q =2,所以b n =2n. 由b 3=a 4-2a 1,可得3d -a 1=8①. 由S 11=11b 4,可得a 1+5d =16②. 联立①②,解得a 1=1,d =3, 由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n ,①4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,② ①-②,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=12×1-4n1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8,得T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.。

精编2019年高考数学(理科)一轮复习通用版:第八单元 数 列

精编2019年高考数学(理科)一轮复习通用版:第八单元  数 列

第八单元 数 列教材复习课“数列”相关基础知识一课过1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[小题速通]1.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21的值为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 2.数列{a n }满足a 1=3,a n +1=a n -1a n(n ∈N *),则a 2 018=( )A.12 B .3 C .-12D.23解析:选D由a1=3,a n+1=a n-1a n,得a2=a1-1a1=23,a3=a2-1a2=-12,a4=a3-1a3=3,……,由上可得,数列{a n}是以3为周期的周期数列,故a2 018=a672×3+2=a2=23.3.已知数列{a n}满足a n=32n-11(n∈N*),前n项的和为S n,则关于a n,S n的叙述正确的是()A.a n,S n都有最小值B.a n,S n都没有最小值C.a n,S n都有最大值D.a n,S n都没有最大值解析:选A①∵a n=32n-11,∴当n≤5时,a n<0且单调递减;当n≥6时,a n>0,且单调递减.故当n=5时,a5=-3为a n的最小值;②由①的分析可知:当n≤5时,a n<0;当n≥6时,a n>0.故可得S5为S n的最小值.综上可知,a n,S n都有最小值.4.已知数列{a n}中,a1=1,a n+1=a n+2n+1(n∈N*),则a5=________.解析:依题意得a n+1-a n=2n+1,a5=a1+(a2-a1)+(a3-a2)+(a4-a3)+(a5-a4)=1+3+5+7+9=25.答案:25[清易错]1.易混项与项数,它们是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.在利用数列的前n项和求通项时,往往容易忽略先求出a1,而是直接把数列的通项公式写成a n=S n-S n-1的形式,但它只适用于n≥2的情形.1.已知数列的通项公式为a n=n2-8n+15,则()A.3不是数列{a n}中的项B.3只是数列{a n}中的第2项C.3只是数列{a n}中的第6项D.3是数列{a n}中的第2项或第6项解析:选D令a n=3,即n2-8n+15=3,解得n=2或6,故3是数列{a n}中的第2项或第6项.2.已知数列{a n }的前n 项和为S n =3+2n ,则数列{a n }的通项公式为________. 解析:当n =1时,a 1=S 1=3+2=5;当n ≥2时,a n =S n -S n -1=3+2n -(3+2n -1)=2n-2n -1=2n -1.因为当n =1时,不符合a n =2n -1,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥21.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题速通]1.在等差数列{a n }中,已知a 2与a 4是方程x 2-6x +8=0的两个根,若a 4>a 2,则a 2 018=( )A .2 018B .2 017C .2 016D .2 015解析:选A 因为a 2与a 4是方程x 2-6x +8=0的两个根,且a 4>a 2,所以a 2=2,a 4=4,则公差d =1,所以a 1=1,则a 2 018=2 018.2.在等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和,则S 5=( ) A .3 B .4 C .5D .6解析:选C ∵等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和, ∴a 2+a 3+a 4=3a 3=3, 解得a 3=1,∴S 5=52(a 1+a 5)=5a 3=5.3.正项等差数列{a n }的前n 项和为S n ,已知a 4+a 10-a 27+15=0,则S 13=( )A .-39B .5C .39D .65解析:选D ∵正项等差数列{a n }的前n 项和为S n , a 4+a 10-a 27+15=0, ∴a 27-2a 7-15=0,解得a 7=5或a 7=-3(舍去), ∴S 13=132(a 1+a 7)=13a 7=13×5=65.4.已知等差数列{a n }的前n 项和为S n ,且3a 3=a 6+4.若S 5<10,则a 2的取值范围是( ) A .(-∞,2) B .(-∞,0) C .(1,+∞)D .(0,2)解析:选A 设等差数列{a n }的公差为d ,∵3a 3=a 6+4, ∴3(a 2+d )=a 2+4d +4,可得d =2a 2-4.∵S 5<10,∴5(a 1+a 5)2=5(a 2+a 4)2=5(2a 2+2d )2=5(3a 2-4)<10,解得a 2<2.∴a 2的取值范围是(-∞,2).5.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 [清易错]1.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件. 2.注意区分等差数列定义中同一个常数与常数的区别.1.(2018·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 的值为( )A .18B .19C .20D .21解析:选C 由a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.2.在数列{a n }中,若a 1=-2,且对任意的n ∈N *,有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52D.54解析:选C由2a n +1=1+2a n ,可得a n +1-a n =12,即数列{a n }是以-2为首项,12为公差的等差数列,则a n =n -52,所以数列{a n }的前10项的和S 10=10×⎝⎛⎭⎫-2+522=52.等比数列1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)都是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . [小题速通]1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3.2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:选B 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73.3.设数列{a n }是等比数列,公比q =2,前n 项和为S n ,则S 4a 3的值为( )A.154B.152C.74D.72解析:选A 根据等比数列的公式,得S 4a 3=a 1(1-q 4)1-q a 1q 2=1-q 4(1-q )q 2=1-24(1-2)×22=154. 4.已知等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16,则数列{a n }的前2 018项的和为( )A .8 064B .4C .-4D .0解析:选D ∵等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16, ∴a 3a 5=a 2a 6=16,∴a 3,a 5是方程x 2-8x +16=0的两个根, 解得a 3=a 5=4, ∴4q 2=4,∵q ≠1,∴q =-1,∴a 1=a 3q 2=4,∴数列{a n }的前2 018项的和为 S 2 018=4[1-(-1)2 018]1-(-1)=0.5.(2018·信阳调研)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( ) A.12 B.22C. 2D .2解析:选B 因为{a n }是等比数列,所以a 5a 7=a 26=4a 24,所以a 6=2a 4,q 2=a 6a 4=2,又q >0, 所以q =2,a 1=a 2q =22.[清易错]1.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n-S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.1.设数列{a n }为等比数列,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 解析:当q ≠1时,由题意,a 1(1-q 3)1-q =3a 1q 2,即1-q 3=3q 2-3q 3,整理得2q 3-3q 2+1=0,解得q =-12.当q =1时,S 3=3a 3,显然成立. 故q =-12或1.答案:-12或1一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3da 1+4d =24,6a 1+6×52d =48, 即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 2.(2018·江西六校联考)在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( )A .3 B.17 C .9D .13解析:选A 由a 3a 5a 7=-33,得a 35=-33,即a 5=-3,故a 2a 8=a 25=3.3.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 018=( ) A .8 B .6 C .4D .2解析:选D 由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 018=a 335×6+8=a 8=2.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2,n ∈N *),则a 7=( ) A .53 B .54 C .55D .109解析:选C a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44 B .45 C.13×(46-1) D.14×(45-1) 解析:选B 由a n +1=3S n ,得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n +1=4a n ,n ≥2,则数列{a n }从第二项起构成等比数列,所以S 6=a 73=3×453=45.6.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有S n T n=n n +1,则a 5b 5等于( )A.34 B.56 C.910D.1011解析:选C ∵S 9=9(a 1+a 9)2=9a 5,T 9=9(b 1+b 9)2=9b 5,∴a 5b 5=S 9T 9=910. 7.已知数列{a n }是首项为1的等比数列,S n 是其前n 项和,若5S 2=S 4,则log 4a 3的值为( )A .1B .2C .0或1D .0或2解析:选C 由题意得,等比数列{a n }中,5S 2=S 4,a 1=1, 所以5(a 1+a 2)=a 1+a 2+a 3+a 4, 即5(1+q )=1+q +q 2+q 3,q 3+q 2-4q -4=0,即(q +1)(q 2-4)=0, 解得q =-1或±2,当q =-1时,a 3=1,log 4a 3=0. 当q =±2时,a 3=4,log 4a 3=1. 综上所述,log 4a 3的值为0或1.8.设数列{a n }是公差为d (d >0)的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .75B .90C .105D .120解析:选C 由a 1+a 2+a 3=15得3a 2=15,解得a 2=5,由a 1a 2a 3=80,得(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(d =-3舍去),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105.二、填空题9.若数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,则数列{a n }的通项公式为________.解析:当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13, 两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13满足a n =13n ,所以a n =13n .答案:a n =13n10.数列{a n }的前n 项和为S n ,若S n =2a n -1,则a n =________. 解析:∵S n =2a n -1,① ∴S n -1=2a n -1-1(n ≥2),② ①-②得a n =2a n -2a n -1, 即a n =2a n -1.∵S 1=a 1=2a 1-1,即a 1=1,∴数列{a n }为首项是1,公比是2的等比数列, 故a n =2n -1. 答案:2n -111.已知数列{a n }中,a 2n =a 2n -1+(-1)n ,a 2n +1=a 2n +n ,a 1=1,则a 20=________. 解析:由a 2n =a 2n -1+(-1)n ,得a 2n -a 2n -1=(-1)n , 由a 2n +1=a 2n +n ,得a 2n +1-a 2n =n ,故a 2-a 1=-1,a 4-a 3=1,a 6-a 5=-1,…,a 20-a 19=1. a 3-a 2=1,a 5-a 4=2,a 7-a 6=3,…,a 19-a 18=9. 又a 1=1,累加得:a 20=46. 答案:4612.数列{a n }为正项等比数列,若a 3=3,且a n +1=2a n +3a n -1(n ≥2,n ∈N *),则此数列的前5项和S 5=________.解析:设公比为q (q >0),由a n +1=2a n +3a n -1,可得q 2=2q +3,所以q =3,又a 3=3,则a 1=13,所以此数列的前5项和S 5=13×(1-35)1-3=1213.答案:1213三、解答题13.已知在等差数列{a n }中,a 3=5,a 1+a 19=-18. (1)求公差d 及通项a n ;(2)求数列{a n }的前n 项和S n 及使得S n 取得最大值时n 的值. 解:(1)∵a 3=5,a 1+a 19=-18,∴⎩⎪⎨⎪⎧ a 1+2d =5,2a 1+18d =-18,∴⎩⎪⎨⎪⎧a 1=9,d =-2,∴a n =11-2n . (2)由(1)知,S n =n (a 1+a n )2=n (9+11-2n )2=-n 2+10n =-(n -5)2+25,∴n =5时,S n 取得最大值.14.已知数列{a n }满足a 12+a 222+a 323+…+a n2n =n 2+n .(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n2,求数列{b n }的前n 项和S n .解:(1)∵a 12+a 222+a 323+…+a n2n =n 2+n ,∴当n ≥2时,a 12+a 222+a 323+…+a n -12n -1=(n -1)2+n -1,两式相减得a n2n =2n (n ≥2),∴a n =n ·2n +1(n ≥2).又∵当n =1时,a 12=1+1,∴a 1=4,满足a n =n ·2n +1.∴a n =n ·2n +1.(2)∵b n =(-1)n a n 2=n (-2)n ,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n ×(-2)n .-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n -1)×(-2)n +n (-2)n +1,∴两式相减得3S n =(-2)+(-2)2+(-2)3+(-2)4+…+(-2)n -n (-2)n +1=-2[1-(-2)n ]1-(-2)-n (-2)n +1=-(-2)n +1-23-n (-2)n +1=-(3n +1)(-2)n +1+23,∴S n =-(3n +1)(-2)n +1+29.高考研究课(一) 等差数列的3考点——求项、求和及判定 [全国卷5年命题分析][典例] (1)设S n n 1S n +2-S n =36,则n =( )A .5B .5C .7D .8(2)(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.①求b 1,b 11,b 101;②求数列{b n }的前1 000项和.[解析] (1)法一:由等差数列前n 项和公式可得S n +2-S n =(n +2)a 1+(n +2)(n +1)2d -⎣⎢⎡⎦⎥⎤na 1+n (n -1)2d =2a 1+(2n +1)d =2+4n +2=36,解得n =8.法二:由S n +2-S n =a n +2+a n +1=a 1+a 2n +2=36,因此a 2n +2=a 1+(2n +1)d =35,解得n =8.答案:D(2)①设数列{a n }的公差为d , 由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.②因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. [方法技巧]等差数列运算的解题思路由等差数列的前n 项和公式及通项公式可知,若已知a 1,d ,n ,a n ,S n 中三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.[即时演练]1.已知数列{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 6=4S 3,则a 10=( ) A.172 B.192 C.910D.89解析:选B ∵S 6=4S 3,公差d =1. ∴6a 1+6×52×1=4×⎝⎛⎭⎫3a 1+3×22×1, 解得a 1=12.∴a 10=12+9×1=192.2.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 4-S 2S 5-S 3的值为( )A .-2B .-3C .2D .3 解析:选D 设{a n }的公差为d ,因为a 1,a 3,a 4成等比数列, 所以(a 1+2d )2=a 1(a 1+3d ),可得a 1=-4d , 所以S 4-S 2S 5-S 3=a 3+a 4a 4+a 5=-3d -d=3.3.(2018·大连联考)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65.由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4.即所求m 的值为5,k 的值为4.[典例] n n -k +a n -k +1+…+a n -1+a n +1+…+a n +k -1+a n +k =2ka n ,对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列. [思路点拨] (1)利用等差数列的性质“a n -k +a n +k =2a n ”,构造出{a n }是“P (3)数列”需要满足的条件即可证明;(2)根据等差数列定义、通项公式、中项公式即可证明{a n }为等差数列.[证明] (1)因为{a n }是等差数列,设其公差为d , 则a n =a 1+(n -1)d ,从而,当n ≥4时,a n -k +a n +k =a 1+(n -k -1)d +a 1+(n +k -1)d =2a 1+2(n -1)d =2a n ,k =1,2,3,所以a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n , 因此等差数列{a n }是“P (3)数列”.(2)数列{a n }既是“P (2)数列”,又是“P (3)数列”,因此, 当n ≥3时,a n -2+a n -1+a n +1+a n +2=4a n ,①当n ≥4时,a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n .② 由①知,a n -3+a n -2=4a n -1-(a n +a n +1),③ a n +2+a n +3=4a n +1-(a n -1+a n ).④将③④代入②,得a n -1+a n +1=2a n ,其中n ≥4, 所以a 3,a 4,a 5,…是等差数列,设其公差为d ′. 在①中,取n =4,则a 2+a 3+a 5+a 6=4a 4, 所以a 2=a 3-d ′,在①中,取n =3,则a 1+a 2+a 4+a 5=4a 3, 所以a 1=a 3-2d ′, 所以数列{a n }是等差数列. [方法技巧]等差数列判定与证明的方法1.(2016·浙江高考)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n+2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6.解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =(-2)×[1-(-2)n ]1-(-2)=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n 2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.[典例] (1)n 3610a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(2)已知数列{a n },{b n }为等差数列,前n 项和分别为S n ,T n ,若S n T n =3n +22n ,则a 7b 7=( )A.4126 B.2314 C.117D.116(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.[解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,即a 8=8,m =8.(2)因为{a n },{b n }为等差数列,且S n T n=3n +22n ,所以a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=13(a 1+a 13)213(b 1+b 13)2=S 13T 13=3×13+22×13=4126.(3)∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. [答案] (1)A (2)A (3)60 [方法技巧]等差数列的性质(1)项的性质在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n . [即时演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2018·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3(1+q 2)a 4(1+q 2)=1q =25+1=5-12.3.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 10b 9+b 12+a 11b 8+b 13=________.解析:∵数列{a n }和{b n }都是等差数列,∴a 10b 9+b 12+a 11b 8+b 13=a 10+a 11b 9+b 12=a 10+a 11b 10+b 11=S 20T 20=7×2020+3=14023. 答案:14023n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,当S n 取得最大值时,n 的值为________.[解析] 法一:用“函数法”解题由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0.故当n =7时,S n 最大. 法二:用“通项变号法”解题 由法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. [答案] 7 [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时演练]1.(2018·潍坊模拟)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( )A .8B .9C .10D .11解析:选B 设数列{a n }的公差为d ,∵a 1=-26,a 8+a 13=5,∴-26+7d -26+12d =5,解得d =3,∴S n =-26n +n (n -1)2×3=32n 2-552n =32⎝⎛⎭⎫n -5562-3 02524, ∴{a n }的前n 项和S n 取最小值时,n =9.3.已知{a n }是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,则数列{a n }的前n 项和取最大值时,n =________.解析:由S 10=10(a 1+a 10)2=5(a 5+a 6)=0,可得a 5+a 6=0,∴a 5>0,a 6<0,即数列{a n }的前5项和为最大值,∴n =5. 答案:51.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98. 法二:∵{a n }是等差数列, ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.3.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.4.(2013·全国卷Ⅱ)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d .由题意,a 211=a 1a 13,即(a 1+10d )2=a 1(a 1+12d ), 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .一、选择题1.(2018·厦门一中测试)已知数列{a n }中,a 2=32,a 5=98,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 7=( )A.109 B.1110 C.1211D.1312解析:选D 设等差数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -1的公差为d ,则1a 5-1=1a 2-1+3d ,即198-1=132-1+3d ,解得d =2,所以1a 7-1=1a 2-1+5d =12,解得a 7=1312.2.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列, 设首项a 1=4,则a 5=2.由等差数列的性质得a 2+a 4=a 1+a 5=6, 所以第二尺与第四尺的重量之和为6斤.3.(2018·银川一中月考)在等差数列{a n }中,首项a 1>0,公差d ≠0,前n 项和为S n (n ∈N *),有下列命题:①若S 3=S 11,则必有S 14=0;②若S 3=S 11,则必有S 7是S n 中的最大项; ③若S 7>S 8,则必有S 8>S 9; ④若S 7>S 8,则必有S 6>S 9. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选D 对于①,若S 11-S 3=4(a 1+a 14)=0,即a 1+a 14=0,则S 14=14(a 1+a 14)2=0,所以①正确;对于②,当S 3=S 11时,易知a 7+a 8=0,又a 1>0,d ≠0,所以a 7>0>a 8,故S 7是S n 中的最大项,所以②正确;对于③,若S 7>S 8,则a 8<0,那么d <0,可知a 9<0,此时S 9-S 8<0,即S 8>S 9,所以③正确;对于④,若S 7>S 8,则a 8<0,S 9-S 6=a 7+a 8+a 9=3a 8<0,即S 6>S 9,所以④正确.故选D.4.(2018·大同模拟)在等差数列{}a n 中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600解析:选B 由a 1+a 2+a 3=3a 2=3,得a 2=1. 由a 18+a 19+a 20=3a 19=87,得a 19=29, 所以S 20=20(a 1+a 20)2=10(a 2+a 19)=300.5.设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n =336,则n 的值为( )A .18B .19C .20D .21解析:选D 因为{a n }是等差数列,所以S 9=9a 5=18,a 5=2,S n =n (a 1+a n )2=n (a 5+a n -4)2=n2×32=16n=336,解得n=21.6.设{a n}是等差数列,d是其公差,S n是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0B.a7=0C.S9>S5D.当n=6或n=7时S n取得最大值解析:选C由S5<S6,得a1+a2+a3+a4+a5<a1+a2+a3+a4+a5+a6,即a6>0.同理由S7>S8,得a8<0.又S6=S7,∴a1+a2+…+a6=a1+a2+…+a6+a7,∴a7=0,∴B正确;∵d=a7-a6<0,∴A正确;而C选项,S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0,由结论a7=0,a8<0,知C选项错误;∵S5<S6,S6=S7>S8,∴结合等差数列前n项和的函数特性可知D正确.故选C.7.等差数列{a n}的前n项和为S n,若公差d>0,(S8-S5)(S9-S5)<0,则()A.|a7|>|a8| B.|a7|<|a8|C.|a7|=|a8| D.|a7|=0解析:选B因为(S8-S5)(S9-S5)<0,所以(a6+a7+a8)(a6+a7+a8+a9)<0,因为{a n}为等差数列,所以a6+a7+a8=3a7,a6+a7+a8+a9=2(a7+a8),所以a7(a7+a8)<0,所以a7与(a7+a8)异号.又公差d>0,所以a7<0,a8>0,且|a7|<|a8|,故选B.二、填空题8.在数列{a n}中,a n+1=a n1+3a n,a1=2,则a20=________.解析:由a n+1=a n1+3a n,a1=2,可得1a n +1-1a n=3,所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列.所以1a n =12+3(n -1),即a n =26n -5,所以a 20=2115.答案:21159.数列{a n }满足:a 1=1,a n +1=2a n +2n ,则数列{a n }的通项公式为________. 解析:∵a 1=1,a n +1=2a n +2n , ∴a n +12n +1=a n 2n +12, ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 12=12,公差d =12的等差数列,故a n 2n =12+(n -1)×12=12n , 即a n =n ·2n -1. 答案:a n =n ·2n -110.设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,S 12=λS 8,则λ=________. 解析:当S 4≠0,且S 8=3S 4,S 12=λS 8时,由等差数列的性质得:S 4,S 8-S 4,S 12-S 8成等差数列, ∴2(S 8-S 4)=S 4+(S 12-S 8), ∴2(3S 4-S 4)=S 4+(λ·3S 4-3S 4), 解得λ=2. 答案:2 三、解答题11.已知数列{a n }是等差数列,且a 1,a 2,a 5成等比数列,a 3+a 4=12. (1)求a 1+a 2+a 3+a 4+a 5;(2)设b n =10-a n ,数列{b n }的前n 项和为S n ,若b 1≠b 2,则n 为何值时,S n 最大?S n最大值是多少?解:(1)设{a n }的公差为d ,∵a 1,a 2,a 5成等比数列, ∴(a 1+d )2=a 1(a 1+4d ), 解得d =0或d =2a 1.当d =0时,∵a 3+a 4=12,∴a n =6, ∴a 1+a 2+a 3+a 4+a 5=30;当d ≠0时,∵a 3+a 4=12,∴a 1=1,d =2, ∴a 1+a 2+a 3+a 4+a 5=25.(2)∵b 1≠b 2,b n =10-a n ,∴a 1≠a 2,∴d ≠0, 由(1)知a n =2n -1,∴b n =10-a n =10-(2n -1)=11-2n ,S n =10n -n 2=-(n -5)2+25. ∴当n =5时,S n 取得最大值,最大值为25.12.(2018·沈阳质检)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5. (1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式. 解:(1)设等差数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧2a 1+7d =4,5a 1+5×42d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2,故a n =2n -7(n ∈N *).(2)由a n =2n -7<0,得n <72,即n ≤3,所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0. 由(1)知S n =n 2-6n ,所以当n ≤3时,T n =-S n =6n -n 2; 当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T 5=13,T n =⎩⎪⎨⎪⎧6n -n 2,n ≤3,n 2-6n +18,n ≥4.13.已知数列{a n }中,a 1=4,a n =a n -1+2n -1+3(n ≥2,n ∈N *).(1)证明数列{a n -2n }是等差数列,并求{a n }的通项公式; (2)设b n =a n2n ,求b n 的前n 项和S n .解:(1)证明:当n ≥2时,a n =a n -1+2n -1+3=a n -1+2n -2n -1+3, ∴a n -2n -(a n -1-2n -1)=3. 又a 1=4,∴a 1-2=2,故数列{a n -2n }是以2为首项,3为公差的等差数列, ∴a n -2n =2+(n -1)×3=3n -1, ∴a n =2n +3n -1.(2)b n =a n 2n =2n+3n -12n =1+3n -12n ,∴S n =⎝⎛⎭⎫1+22+⎝⎛⎭⎫1+522+…+⎝⎛⎭⎪⎫1+3n -12n =n +⎝ ⎛⎭⎪⎫22+522+…+3n -12n ,令T n =22+522+…+3n -12n ,①则12T n =222+523+…+3n -12n +1,② ①-②得,12T n =1+322+323+…+32n -3n -12n +1,=1+3×14⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-3n -12n +1=52-3n +52n +1,∴S n =n +5-3n +52n .已知数列{a n }的前n 项和为S n ,a 1=3,a n +1=2a n +2n +1-1(n ∈N *).(1)求a 2,a 3;(2)求实数λ使⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列,并由此求出a n 与S n ;(3)求n 的所有取值,使S na n ∈N *,说明你的理由.解:(1)∵a 1=3,a n +1=2a n +2n +1-1, ∴a 2=2×3+22-1=9,a 3=2×9+23-1=25. (2)∵a 1=3,a n +1=2a n +2n +1-1, ∴a n +1-1=2(a n -1)+2n +1, ∴a n +1-12n +1-a n -12n =1,故λ=-1时,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +λ2n 成等差数列,且首项为a 1-12=1,公差d =1. ∴a n -12n =n ,即a n =n ·2n +1. ∴S n =(1×2+2×22+3×23+…+n ×2n )+n , 设T n =1×2+2×22+3×23+…+n ×2n ,① 则2T n =1×22+2×23+3×24+…+n ×2n +1,②①-②得,-T n =2+22+23+…+2n -n ×2n +1=(1-n )·2n +1-2, ∴T n =(n -1)·2n +1+2,∴S n =T n +n =(n -1)·2n +1+2+n . (3)S n a n =(n -1)·2n +1+n +2n ·2n +1=2+n -2n +1n ·2n +1, 结合y =2x 及y =12x 的图象可知2n >n 2恒成立,∴2n +1>n ,即n -2n +1<0,∵n ·2n +1>0,∴S na n<2.当n =1时,S n a n=S 1a 1=1∈N *;当n ≥2时,∵a n >0且{a n }为递增数列, ∴S n >0且S n >a n ,∴S n a n >1,即1<S n a n <2,∴当n ≥2时,S na n ∉N *. 综上可得n =1.高考研究课(二)等比数列的3考点——基本运算、判定和应用 [全国卷5年命题分析][典例] (1)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n =( )A .4n -1B .4n -1C .2n -1D .2n -1(2)(2018·石家庄模拟)设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *). ①求数列{a n }的通项公式;②若数列{b n }满足b n =1a n,求数列{b n }前n 项和T n .[解析] (1)设{a n }的公比为q ,∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52, (ⅰ)a 1q +a 1q 3=54, (ⅱ)由(ⅰ)(ⅱ)可得1+q 2q +q 3=2,∴q =12,代入(ⅰ)得a 1=2, ∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n ,∴S n a n=4⎝⎛⎭⎫1-12n 42n =2n -1.答案:D(2)①当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1), 即6a n =9(a n -a n -1),∴a n =3a n -1.∴数列{a n }是首项为13,公比为3的等比数列,其通项公式为a n =13×3n -1=3n -2.②∵b n =1a n=⎝⎛⎭⎫13n -2,∴{b n }是首项为3,公比为13的等比数列,∴T n =b 1+b 2+…+b n =3⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=92⎣⎡⎦⎤1-⎝⎛⎭⎫13n .[方法技巧]解决等比数列有关问题的常用思想方法(1)方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.[即时演练]1.已知数列{a n }是首项a 1=14的等比数列,其前n 项和为S n ,S 3=316,若a m =-1512,则m 的值为( )A .8B .10C .9D .7解析:选A 设数列{a n }的公比为q , 若q =1,则S 3=34≠316,不符合题意,∴q ≠1.由⎩⎪⎨⎪⎧ a 1=14,S 3=a 1(1-q 3)1-q =316,得⎩⎨⎧a 1=14q =-12,∴a n =14·⎝⎛⎭⎫-12n -1=⎝⎛⎭⎫-12n +1. 由a m =⎝⎛⎭⎫-12m +1=-1512, 得m =8.2.(2018·汕头模拟)设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列.(1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列, ∴S n =2n -1,又当n ≥2时,a n =S n -S n -1=2n -1-2n -2=2n -2. 当n =1时,a 1=1,不适合上式.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+…+a 2n +1=1+2(4n -1)3=22n +1+13.[典例] (1)n 12n +2n +1n N *,对数列{a n }有下列命题:①数列{a n }是等差数列; ②数列{a n +1-a n }是等比数列; ③当n ≥2时,a n 都是质数; ④1a 1+1a 2+…+1a n<2,n ∈N *,则其中正确的命题有( ) A .② B .①② C .③④D .②④(2)已知数列{a n }满足a 1=12,a n =a n -12-a n -1(n ≥2).①求证:⎩⎨⎧⎭⎬⎫1a n-1为等比数列,并求出{a n }的通项公式;②若b n =2n -1a n ,求{b n }的前n 项和S n .[解析] (1)∵a n +2=3a n +1-2a n , ∴a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=2为首项、2为公比的等比数列, ∴a n -a n -1=2n -1, a n -1-a n -2=2n -2, …a 2-a 1=21,累加得:a n -a 1=21+22+…+2n -1=2(1-2n -1)1-2=2n-2,∴a n =2n -2+a 1=2n -1. 显然①②③中,只有②正确, 又∵1a n =12n -1<12n -1(n ≥2),∴1a 1+1a 2+…+1a n <1+12+122+…+12n -1=1-12n1-12<2,故④正确; 综上所述,①③错误,②④正确. 答案:D(2)①证明:∵数列{a n }满足a 1=12,a n =a n -12-a n -1(n ≥2),∴1a n =2-a n -1a n -1=2a n -1-1,n ≥2,。

2021版高考数学一轮复习第八章数列8.3等比数列练习理北师大版

2021版高考数学一轮复习第八章数列8.3等比数列练习理北师大版

8.3 等比数列中心考点·精确研析考点一 等比数列基本量的运算1. 已知各项均为正数的等比数列 {a n } 的前 n 项和为 S n , 且 S 3=14,a 3=8, 则 a 6 等于 ()A.16B.32C.64D.1282.(2020 ·赣州模拟 )S 是等比数列 {a } 的前 n 项和 , 若 S ,S ,S 成等差数列 , 则nn435{a } 的公比 q 的值为()nA. B.-2C.1D.-2 或 13. 已知等比数列 {a n } 知足 a 1=3,a 1+a 3+a 5=21, 则 a 3+a 5 +a 7= ( )A.21B.42C.63D.844.(2019 ·全国卷Ⅲ ) 已知各项均为正数的等比数列 {a n } 的前 4 项的和为 15, 且 a 5=3a 3+4a 1, 则 a 3= ()A.16B.8C.4D.25. 已知 S n 是等比数列 {a n } 的前 n 项和 , 若存在 m ∈ N * , 知足=9,= , 则数列 {a n } 的公比为()A.-2B.2C.-3D.3【分析】 1. 选 C. 由于 S =14,a 3=8, 所以 q ≠ 1,3所以 , 解得 a 1=2,q=2 或 a 1=18,q=- ( 舍 ),所以 a 6=a 1q 5=2×32=64.2. 选 B. 由 S 4,S 3,S 5 成等差数列知等比数列 {a n } 的公比 q ≠1, 所以得 2S 3=S 5+S 4, 即=+ ,3化简整理得 q (q+2)(q-1)=0,所以 q=0( 舍去 ),q=1( 舍去 ) 或 q=-2. 故 q=-2.3. 选 B. 设数列 {a n} 的公比为q, 则 a1(1+q 2+q4)=21, 又 a1=3, 所以 q4+q2-6=0, 所以 q2=2(q 2=-3 舍去 ), 所以a3 =6,a 5=12,a 7=24, 所以 a3+a5 +a7=42.4. 选 C. 设该等比数列的首项为a1, 公比为 q,由已知得 ,a42q =3a q +4a ,111由于 a1>0 且 q>0, 则可解得q=2,又由于 a1(1+q+q 2+q3)=15,即可解得a1=1, 则 a3=a1q2=4.5. 选 B. 设公比为q, 若 q=1, 则=2, 与题中条件矛盾, 故 q≠ 1. 由于==q m+1=9, 所以 q m=8.所以==q m=8=,所以 m=3,所以 q3=8, 所以 q=2.把 T1 条件“ S3=14,a 3=8”改为“ a3 =9,S 3=27”其余条件不变, 则公比 q 的值为() A.1 B.-C.1 或-D.-1 或 -【分析】选 C. 当公比 q=1 时,a1 =a2=a3=9, 所以 S3=3× 9=27. 切合题意 .当 q≠ 1 时 ,S 3=,所以 27=, 所以 a1=27-18q,22由于 a =a q , 所以 (27-18q) · q =9,31所以 (q-1) 2(2q+1)=0, 所以 q=-.综上 q=1 或 q=-.解决等比数列相关问题的常用思想方法(1)方程的思想 : 等比数列中有五个量 a1,n,q,a n,S n, 一般能够“知三求二” , 经过列方程 ( 组 ) 求出重点量 a1和 q, 问题即可水到渠成.(2) 分类议论的思想: 等比数列的前n 项和公式波及对公比q 的分类议论 , 将 q 分为 q=1 和 q≠1 两种状况进行议论 .【秒杀绝招】1. 应用转变法解T2选 B. 由 S4,S 3,S 5成等差数列 , 得 2S3=S5+S4 , 即 2(a 1+a2+a3 )=2(a 1+a2+a3+a4)+a 5, 整理得 a5=-2a 4, 所以=-2, 即q=-2. 应选 B.2.应用等比数列性质解 T3:选 B. 设数列 {a n} 的公比为 q, 则 a1(1+q 2+q4)=21, 又 a1=3, 所以 q4+q2-6=0, 所以 q2=2(q 2=-3 舍去 ), 所以 a3+a5+a7=q2(a 1+a3+a5)=2 ×21=42, 所以 a3+a5+a7=42.考点二等比数列的判断与证明【典例】 1. 已知数列 {a n} 中 ,a 1=1, 若 a n=2a n-1 +1(n ≥ 2), 则 a5的值是 ________.【解题导思】序号联想解题(1)由a =2a+1(n ≥2) 及 a =1, 联想到数列的递推公式求a5nn-11(2)由 a n=2a n-1 +1(n ≥2) 联想到转变法求通项公式【分析】由于 a =2a+1, 所以 a +1=2(an-1+1), 所以=2, 又 a =1, 所以 {a+1} 是以 2 为首项 ,2为公比的nn-1n1n等比数列 , 即 a n+1=2× 2n-1 =2n , 所以 a5+1=25, 即 a5=31.答案 :31【一题多解】由a n=2a n-1 +1(n ≥ 2) 及 a1=1, 联想到数列的递推公式求a5, 当 n=2 得 a2=3, 同理得a3 =7,a 4=15,a 5=31.答案 :312. 已知数列 {a n} 的前 n 项和为 S n,a 1=1,S n+1=4a n+2(n ∈ N* ), 若 b n=a n+1-2a n, 求证 :{b n} 是等比数列 .【解题导思】序号题目拆解把 n 换为 n+1*(1) ①S n+1=4a n +2(n ∈ N )左式和已知式子相减 an+2=4a-4a ,②出现 S n+2=4a n+1+2(n ∈ N* )n+1n-2a 把 n 换为 n+1 得出 b n+1n n+1n(2) ①b=a②证明 {b n} 是等比数列转变为证明为常数【证明】由于a n+2=S n+2-S n+1=4a n+1+2-4a n-2=4a n+1-4a n,所以====2.由于 S2=a1+a2=4a1+2, 所以 a2=5.所以 b1=a2-2a 1=3.所以数列 {b n} 是首项为3, 公比为 2 的等比数列 .若本例 2 中的条件不变 , 试求 {a n} 的通项公式 .【分析】由题知b n=a n+1-2a n=3· 2n-1 ,所以-= ,故是首项为, 公差为的等差数列.所以 = +(n-1)· =,所以 a n=(3n-1)· 2n-2 .【持续研究】若将本例中“S n+1=4a n+2”改为“ S n+1=2S n+(n+1) ” , 其余不变 , 求数列 {a n} 的通项公式 .【分析】由已知得n≥ 2 时 ,S n=2S n-1 +n.所以 S -S =2S -2Sn-1+1, 所以 a =2a +1,n+1n n n+1n所以 a n+1+1=2(a n+1),n ≥ 2,(*)又 a1=1,S 2=a1+a2=2a1+2, 即 a2+1=2(a 1+1),所以当 n=1 时 (*) 式也成立 ,故 {a n+1} 是以 2 为首项 , 以 2 为公比的等比数列,n-1n n所以 a n+1=2· 2 =2 , 所以 a n=2 -1.1.等比数列的四种常用判断方法(1) 定义法 : 若=q(q 为非零常数 ,n ∈ N* ) 或=q(q 为非零常数且n≥2, n∈ N* ), 则 {a n} 是等比数列 .(2)等比中项法 : 若数列 {a n} 中 ,a n≠ 0 且*是等比数列 . =a n· a n+2(n ∈ N ), 则 {a n}(3)通项公式法 : 若数列 {a n} 的通项公式可写成a n=c· q n-1 (c,q 均是不为0 的常数 ,n ∈ N* ), 则{a n} 是等比数列 .(4)n则 {a } 是等比数列 .前 n 项和公式法 : 若数列 {a } 的前 n 项和 S =k· q -k(k 为常数且 k≠ 0,q ≠ 0,1),n n n2.证明某数列不是等比数列若证明某数列不是等比数列, 则只需证明存在连续三项不可等比数列即可.(2018 ·全国卷Ⅰ改编) 已知数列 {a n} 知足 a1=1,na n+1=2(n+1)a n, 设 b n=.(1)求 b1,b 2,b 3.(2)判断数列 {b n} 能否为等比数列 , 并说明原因 .(3)求 {b n} 的前 10 项和 S10.【分析】 (1) 由条件可得a n+1=a n. 将 n=1 代入得 a2=4a1, 而 a1=1, 所以 a2=4. 将 n=2 代入得 a3=3a2, 所以a3 =12. 进而 b1=1,b 2=2,b 3=4.(2){b n} 是首项为1, 公比为 2 的等比数列 .原因 : 由条件可得=, 即 b n+1=2b n, 又 b1=1, 所以 {b n} 是首项为 1, 公比为 2 的等比数列 .(3) 由 (2) 可得 S n==2n-1, 所以 S10=210-1=1 023.命1. 考什么 : 等比数列通公式、前n 和公式、性和最2. 怎么考 : 等比数列性、等比数列前n 和的性作考等比数列运算知的最正确体,精常以、填空的形式出, 有也会出在解答中解3.新 : 以数列体与函数、不等式知合等. 解程中经常浸透数学运算中心修养.学 1.与等比数列性相关的运算解思路霸在等比数列中凡是波及两的乘, 第一考其数和能否相等, 若相等利用等比数列的性好行运算方2. 交法以数列体与函数性、不等式等知合考, 注意分思想的用等比数列的性用【典例】已知等比数列 {a} 中 ,a+a =-2, a (a +2a+a ) 的 ()n4862610A.4B.6C.8D.-9【分析】 A.a 6(a 2+2a6+a10)=a 6a2+2+a6a10=+2a4 a8+=(a 4+a8) 2, 因 a4+a8=-2, 所以 a6(a 2+2a6+a10)=4.1. 等比数列性的用能够分哪些形?提示 : 通公式的形、等比中的形、前n 和公式的形.2. 在解决等比数列的性的相关, 怎样快速发掘含条件利用性解?提示 : 在等比数列中凡是波及两的乘, 第一考其数和能否相等, 若数和相等, 利用等比数列的性行运算.提示 : 依据目条件 , 真剖析 , 详细的化特点即可找出解决的打破口.等比数列中的最与范【典例】等比数列{a n} 足 a1+a3=10,a 2+a4=5,a1a2⋯ a n的最大 ________.【思路研究】利用等比数列通公式求出首 a1与公比 q, 再将 a1a2⋯ a n的最利用指数的运算法化二次函数最 .【分析】等比数列{a n} 的公比q, 由 a1+a3=10,a 2+a4 =q(a 1+a3)=5, 知 q= . 又 a1+a1q2=10, 所以 a1=8.故 a1a2⋯ a n==23n·==.t=-2 + =- (n -7n),合 n∈ N*可知 n=3 或 4 ,t有最大 6.又 y=2t 1 2n的最大6增函数 , 进而 a a⋯ a 2 =64.答案 :64求等比数列中的最与范有哪些方法?提示 : 求解此的常用思路是依据目所条件成立对于量n 的函数关系行求解. 有也用基本不等式 .1. 已知等比数列{a n} 足 a1= ,a 3a5=4(a 4-1),a2= ()A.2B.1C.D.【分析】 C. 公比q, 因 a3a5=,a 3a5=4(a 4-1),所以=4(a 4-1),所以-4a 4+4=0, 所以 a4=2. 又因q3= = =8, 所以 q=2, 所以 a2=a1q= ×2= .2. 已知正数成的等比数列{a n}, 若 a1· a20=100, 那么 a7+a14的最小() A.20 B.25 C.50 D.不存在【分析】 A.(a 7+a14) 2=++2a7· a14≥ 4a7a14=4a1a20=400( 当且当a7=a14取等号 ). 所以 a7+a14≥ 20.1. 已知数列 {a n} 足 log 2a n+1=1+log 2a n(n ∈N* ), 且 a1+a2+a3+⋯+a10=1,log 2(a 101+a102+⋯+a110)=________.【分析】因 log 2a n+1=1+log 2a n, 可得 log 2a n+1=log 22a n, 所以 a n+1=2a n, 所以数列 {a n} 是以 a1首 ,2 公比的等比数列 , 又 a1+a2+⋯ +a10 =1, 所以 a101+a102+⋯ +a110=100100(a 1+a2+⋯ +a10) ×2 =2,所以 log 2(a 101+a102+⋯ +a110)=log 22100=100.答案 :1002. 等比数列 {a n} 的公比 q, 前 n 和 S n>0(n=1,2,3,⋯),求q的取范.【分析】因数列{a n} 等比数列 ,S n>0,所以 a1=S1>0,q ≠ 0. 当 q=1,S n=na1>0;当 q≠ 0 且 q≠ 1 ,S n=>0, 即>0,所以或所以-1<q<0或0<q<1或q>1.上 ,q 的取范 (-1,0)∪ (0,+∞).。

2021版高考数学一轮复习第八章数列8.5.3数列建模问题练习理北师大版

2021版高考数学一轮复习第八章数列8.5.3数列建模问题练习理北师大版

数列建模问题中心考点·精确研析考点一等差、等比数列的用1. 有一种菌和一种病毒, 每个菌在每秒死一个病毒的同将自己分裂 2 个 , 在有一个的菌和 100 个的病毒 , 菌将病毒所有死起码需要()A.6 秒B.7 秒C.8 秒D.9 秒2.我国古代数学著作《九章算》中有以下 : “今有金箠 , 五尺 , 本一尺 , 重四斤 . 末一尺 , 重二斤 .次一尺各重几何?”意思是 : “ 有一根 5 尺的金杖 , 一粗 , 一 . 在粗的一端截下 1 尺 , 重 4 斤 ; 在的一端截下 1 尺 , 重 2 斤 . 挨次每一尺各重多少斤?”依据上边的已知条件, 若金杖由粗到是平均化的, 中 3 尺的重量()A.6 斤B.9 斤C.9.5 斤D.12 斤3. 一个凸多形的内角成等差数列, 此中最小的内角, 公差, 个多形的数________.4. 了看2022 年的冬奥会 , 小明打算从2018 年起 , 每年的 1 月 1 日到行存入 a 元的一年期按期蓄,若年利率p, 且保持不 , 并定每年到期存款本息均自新一年的按期.2019 年 1 月 1 日小明去行存款 a 元后 , 他的中一共有________元 ; 到 2022 年的 1 月 1 日不再存而是将所有的存款和利息所有取出 , 可取回 ________元 .【分析】 1. B. 需要 n 秒 ,1+21+22+⋯ +2n-1≥ 100, 所以≥ 100,所以n≥7.2. B. 依意 , 金杖由粗到各尺的重量组成一个等差数列,{a n},a1=4,a 5=2,由等差数列的性得 a +a =a +a =2a3=6, 所以 a =3, 所以中3 尺的重量 a +a +a =3a =9( 斤 ).241532343 3.因为凸 n 形的内角和 (n-2) π ,故n+×=(n-2) π .化得 n2-25n+144=0. 解得 n=9 或 n=16( 舍去 ).答案 :94. 依意 ,2019 年 1 月 1 日存款 a 元后 , 中一共有a(1+p)+a=(ap+2a)(元).2022 年 1 月 1 日可取出钱的总数为a(1+p) 4+a(1+p) 3+a(1+p) 2+a(1+p)=a·= [(1+p) 5-(1+p)]=[(1+p) 5-1-p].答案 :(ap+2a)5 [(1+p) -1-p]1.解答数列应用题的步骤(1)审题——认真阅读资料 , 认真谛解题意 .(2)建模——将已知条件翻译成数学( 数列 ) 语言 , 将实质问题转变成数学识题 , 弄清该数列的结构和特色 .(3)求解——求出该问题的数学解 .(4)复原——将所求结果复原到原实质问题中.2.详细解题步骤用框图表示以下考点二数列的实质应用【典例】某商铺投入81 万元经销某种纪念品, 经销时间共60 天 , 市场调研表示 , 该商铺在经销这一产品期间第 n 天的收益a n=( 单位 : 万元 ,n ∈ N* ). 为了获取更多的收益, 商铺将每日获取的收益投入到次日的经营中, 记第 n 天的收益率b n=. 比如 ,b 3=. (1)求b1 ,b 2的值 .(2)求第 n 天的收益率 b n.【解题导思】序号题目拆解(1) ①a=a以分段函数给出 , 注意变量范围②b n=,合例子b3=, 求 b1,b 2求 b1 ,b 2的合 a n=,(2) 求第 n 天的利率b nb n=求解,注意b n分段函数形式【分析】 (1) 当 n=1 ,b 1=;当 n=2 ,b 2=.(2) 当 1≤ n≤ 20 ,a 1=a2=a3=⋯ =a n-1 =a n=1,所以 b n==.当 21≤ n≤60 , b n ====.所以第 n 天的利率b n =1.若典例中条件不 , 求商铺在此念品期 , 哪一天的利率最大 ?并求日的利率 .【分析】当1≤ n≤ 20 ,b n=减,此b n的最大b1=;当 21≤ n≤60 ,b n==≤=当且当n=, 即 n=40 , “ =”成立 .又因< , 所以当 n=40 ,(b n) max=.所以商铺在此念品期, 第 40 天的利率最大, 且日的利率.2.若典例中条件不 ,60 天的利和是多少 ?【分析】当1≤ n≤ 20 ,a 1=a2=a3=⋯ =a n-1 =a n=1, 当 21≤ n≤ 60 ,a n= , 所以 {a n } 的前 20 是常数列 , 后 40是以首 , 以公差的等差数列, 所以 S60=20+40×+×=182( 万元 ).所以 60 天的利和是182 万元 .解答数列用的步(1)确立模型型 : 理解意 , 看是哪数列模型 , 一般有等差数列模型、等比数列模型、推数列模型 .基本特色如表:数列模型基本特色等差数列平均增添或许减少等比数列指数增或减少, 常的是增率、存款复利推指数增的同又平均减少. 如年收入增率20%,每年年末要取出a( 常数 ) 作下年数列度的开 , 即数列 {a n} 足 a n+1=1.2a n-a(2)正确解决模型 : 解模就是依据数列的知 , 求数列的通、数列的和、解方程 ( ) 或许不等式 ( ) 等 , 在解模要注意运算正确 .(3) 给出问题的回答: 实质应用问题最后要把求解的数学结果化为对实质问题的答案, 在解题中不要忽略了这点 .为了增强新旧动能转变, 某市计划用若干时间改换一万辆燃油型公交车, 每改换一辆新车, 则裁减一辆旧车,替代车为电力型和混淆动力型车. 今年年初投入了电力型公交车128 辆 , 混淆动力型公交车400 辆 ; 计划以后电力型车每年的投入量比上一年增添50%,混淆动力型车每年比上一年多投入 a 辆 .(1) 求经过 n 年 , 该市被改换的公交车总数S(n).(2)若该市计划 7 年内达成所有改换 , 求 a 的最小值 .【分析】 (1) 设 a n,b n分别为第n 年投入的电力型公交车、混淆动力型公交车的数目.依题意 , 得 {a n} 是首项为 128, 公比为 1+50%= 的等比数列 ,{b n} 是首项为 400, 公差为 a 的等差数列 . 所以 {a n }的前 n 项和S n ==256,{b n} 的前 n 项和 T n=400n+ a.所以经过n 年 , 该市被改换的公交车总数为S(n)=S +T =256+400n+ a.nn(2) 若计划 7 年内达成所有改换, 则 S(7) ≥ 10 000,所以 256+400× 7+a≥ 10 000,即 21a≥ 3 082, 所以 a≥ 146.又 a∈ N* , 所以 a 的最小值为 147.考点三数学文化与数列命题 1.考什么 : 考察数列的递推关系, 等差、等比数列的通项公式或前n 项和精解 2.怎么考 : 以古今数学文化为载体的数列问题读 3. 新趋向 : 从中国古代数学名著, 如《九章算术》《算法统宗》《律学新说》等世界数学名著中发掘素材,也可从古代诗歌、传说中进行提炼学霸解决数列应用问题, 要明确问题属于哪一种种类, 即明确是等差数列问题仍是等比数列问题, 是求 a n仍是 S n,好方特别是要弄清项数.法等差数列模型【典例】《九章算术》是我国古代的数学名著, 书中《均输章》有以下问题: “今有五人分五钱, 令上二人所得与下三人等, 问各得几何 . ”其意思为 : 已知甲、乙、丙、丁、戊五人分 5 钱 , 甲、乙两人所得与丙、丁、戊三人所得同样, 且甲、乙、丙、丁、戊每人所得挨次成等差数列, 问五人各得多少钱?( “钱”是古代的一种重量单位 ) 在这个问题中, 丙所得为()A.钱B.钱C.钱D.1钱【分析】选 D. 因甲、乙、丙、丁、戊每人所得挨次成等差数列, 设每人所得挨次为a-2d,a-d,a,a+d,a+2d,则 a-2d+a-d+a+a+d+a+2d=5, 解得 a=1, 即丙所得为 1 钱 .等比数列模型【典例】我国古代数学名著《算法统宗》中有以下问题: “眺望巍巍塔七层, 红光点点倍加增, 共灯三百八十一 , 请问尖头几盏灯?”意思是 : 一座 7 层塔共挂了381 盏灯 , 且相邻两层中的下一层灯数是上一层灯数的2 倍 , 则塔的顶层共有灯()A.1 盏B.3 盏C.5 盏D.9 盏【分析】选 B. 设塔的顶层共有灯x 盏, 则各层的灯数组成一个首项为x, 公比为 2 的等比数列 , 联合等比数列的乞降公式有=381, 解得 x=3, 即塔的顶层共有灯 3 盏 .【名师点睛】用数列知识解有关的实质问题, 重点是列出有关信息, 合理成立数学模型——数列模型, 判断是等差数列仍是等比数列模型; 求解时要明确目标, 即搞清是乞降、求通项、仍是解递推关系问题, 所求结论对应的是解方程问题、解不等式问题仍是最值问题, 而后将经过数学推理与计算得出的结果放回到实质问题中 , 进行查验 , 最后得出结论 .怎样成立该题的数学模型?提示 : 成立等比数列模型, 灯数x 数列首 , 数列的公比q=2,7 塔的灯数等比数列的前7和 .推关系模型【典例】意大利有名数学家斐波那契在研究兔子生殖, 有的数列:1,1,2,3,5,8,⋯,数列的特色是 : 从第 3 个数起 , 每一个数都等于它前方两个数的和, 人把的一列数所成的数列{a n} 称“斐波那契数列”,是斐波那契数列中的第________ .【分析】(方法一:剖析分子和式的通, 乞降化 )依意得a1=a2=1,a n+2=a n+1+a n,a n+1· a n+2=+a n· a n+1,所以=an+1· a-a · a ,n+2nn+1=a a-a2 018a2 019,2 019 2 020=a2 018 a2 019 -a 2 017 a2 018 ,=a2 017 a2 018 -a 2 016 a2 017 , ⋯⋯=a2a3-a 1a2, 又=a1a2,所以+++⋯++=a2 020 a2 019 ,即=a2 020 ,故是斐波那契数列中的第 2 020. ( 方法二 : 法 )==2=a,==3=a4,==5=a5, 猜想=a n+1. 由此可知 ,=a2 020 .答案 :2 0201.《莱因德纸草书》是世界上最古老的数学著作之一, 书中有一道这样的题目 : 把 100 个面包分给 5 个人 ,使每一个人所得成等差数列, 且使较大的三份之和的是较小的两份之和, 问最小的一份为()A. B. C. D.【分析】选 A. 由 100 个面包分给 5 个人 , 每一个人所得成等差数列 , 可知中间一人得20 块面包 , 设较大的两份为 20+d,20+2d, 较小的两份为20-d,20-2d,由已知条件可得(20+20+d+20+2d)=20-d+20-2d,解得d=, 所以最小的一份为20-2d=20- 2×= .2.中国古代数学名著《算法统宗》中有以下问题 : “三百七十八里关 , 初行健步不犯难 , 次日脚痛减一半 , 六朝才获取其关 , 要见次日行里数 , 请公认真算相还 . ”其意思为 : 有一个人走 378 里路 , 第一天健步行走 , 从第二天起脚痛每日走的行程为前一天的一半, 走了 6 天后抵达目的地, 请问次日走了()A.192 里B.96 里C.48 里D.24 里【思路剖析】读懂题意 , 将古代实质问题转变为现代数学识题, 此题相当于 : 已知等比数列 {a n} 中 , 公比 q= ,前 6 项和 S6=378, 求 a2 .【分析】选 B. 依题意 , 每日走的行程组成等比数列{a n}, 且 n=6, 公比 q= ,S 6=378, 设等比数列 {a n} 的首项为a , 依题意有=378, 解得 a =192.所以 a =192×=96. 即次日走了96 里.112宋元期优异的数学家朱世杰在其数学巨著《四元玉》卷中“茭草形段”第一个“今有茭草六百八十束 , 欲令′落一形′埵 ( 同 ) 之 . 底子 ( 每三角形茭草束数 , 等价于数 ) 几何 ?”中探了“ ”中的落一形 (“落一形”即是指上 1 束, 下一 3 束 , 再下一 6 束, ⋯ , 成三角的堆 , 故也称三角 ,如 , 表示第二开始的每茭草束数), 本中三角底茭草束数________.【思路剖析】理解, 将其化数列. 本是一个数列乞降, 此要剖析通的特色, 依据通特色乞降方法.【分析】自上而下每一茭草束数结构的数列{a n},a1 =1,a 2=1+2,a 3=1+2+3, ⋯ ,所以 a n=1+2+⋯ +n== (n 2+n),所以 S n=1+3+6+⋯ + (n 2+n)= [(1 2+22+⋯ +n2)+(1+2+ ⋯ +n)]= [ n(n+1)(2n+1)+n(n+1)]=n(n+1)(n+2).由条件n(n+1)(n+2)=680,即有 n(n+1)(n+2)=15× 16×17=680×6,所以 n=15, 所以 a15==120.即三角底茭草束数120.答案 :120【数学典介】1.《九章算》 : 《九章算》大成于公元1 世 , 是中国古代第一部数学著作 . 《九章算》共收有246 个与生践有系的用, 包含、答和三部分, 并配有插 , 分方田、粟米、衰分、少广、商功、均、盈不足、方程和勾股九章. 《九章算》是世界上最早系表达了分数运算的著作, 此中盈不足的算法更是一令人诧异的造, “方程”章在世界数学史上初次述了数及其加减运算法.2. 《算法统宗》 : 《算法统宗》是由明朝数学家程大位( 公元 1533—公元 1606 年 ) 经过数十年的努力 ,于公元 1592 年 60 岁时写成的数学巨著 . 《算法统宗》是一部应用数学书, 以珠算为主要的计算工具,共 17卷,有 595 个应用题 .3. 《四元玉鉴》 : 《四元玉鉴》成书于 1303年由我国元朝数学家朱世杰所著. 全书共 3 卷,24门,288 问 , 主要阐述高次方程组的解法、高阶等差级数乞降以及高次内插法等内容. 注 : 中华文明积厚流光, 发展进度波澜壮阔 , 中国古代为世界数学做出了优异的贡献. 为了弘扬中华优异传统文化, 特在 [ 数学经典简介 ] 这一栏目中 , 简单介绍一些数学名著或数学家 .。

2022版高考数学一轮复习第八章数列8.5.2数列与函数不等式的综合问题练习理北师大版

2022版高考数学一轮复习第八章数列8.5.2数列与函数不等式的综合问题练习理北师大版

8.5.2 数列与函数、不等式的综合问题核心考点·精准研析考点一数列与函数的综合1.设{a n}是等比数列,函数y=x2-x-2 021的两个零点是a2,a3,则a1a4等于 ( )A.2 021B.1C.-1D.-2 0212.在各项都为正数的数列{a n}中,首项a1=2,且点(,)在直线x-9y=0上,则数列{a n}的前n项和S n 等于( )A.3n-1B.C. D.3.已知f(x)=2sin x,集合M={x||f(x)|=2,x>0},把M中的元素从小到大依次排成一列,得到数列{a n},n∈N*.数列{a n}的通项公式为________________.4.已知函数f(x)=log2x,若数列{a n}的各项使得2,f(a1),f(a2),…,f(a n),2n+4成等差数列,则数列{a n}的前n项和S n=________.【解析】1.选D.由题意a2,a3是x2-x-2 021=0的两根.由根与系数的关系得a2a3=-2 021.又a1a4=a2a3,所以a1a4=-2 021.2.选A.由点(,)在直线x-9y=0上,得-9=0,即(a n+3a n-1)(a n-3a n-1)=0,又数列{a n}各项均为正数,且a1=2,所以a n+3a n-1>0,所以a n-3a n-1=0,即=3,所以数列{a n}是首项a1=2,公比q=3的等比数列,其前n项和S n==3n-1.3.因为|f(x)|=2,所以x=kπ+,k∈Z,x=2k+1,k∈Z.又因为x>0,所以a n=2n-1(n∈N*).答案:a n=2n-1(n∈N*)4.设等差数列的公差为d,则由题意,得2n+4=2+(n+1)d,解得d=2,于是log2a1=4,log2a2=6,log2a3=8,…,从而a1=24,a2=26,a3=28,….易知数列{a n}是等比数列,其公比q==4,所以S n==(4n-1).答案:(4n-1)1.将题2改为已知函数f(x)=xα的图像过点(4,2),令a n=,n∈N*.记数列{a n}的前n项和为S n,则S2 021等于( )A.-1B.-1C.-1D.2+1【解析】选C.由f(4)=2可得4α=2,解得α=,则f(x)=.所以a n===-,S2 021=a1+a2+a3+…+a2 021=(-)+(-)+(-)+…+(-)+(-)=-1.2.数列{a n}的通项a n=n cos2-sin2,其前n项和为S n,则S40为( )A.10B.15C.20D.25【解析】选C.由题意得,a n=n cos2-sin2=ncos,则a1=0,a2=-2,a3=0,a4=4,a5=0,a6=-6,a7=0,…,于是a2n-1=0,a2n=(-1)n·2n,则S40=(a1+a3+…+a39)+(a2+a4+a6+…+a40)=-2+4-…+40=20.数列与函数综合问题的主要类型及求解策略(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图像研究数列问题.(2)已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n项和公式、求和方法等对式子化简变形.注意数列与函数的不同,数列只能看作是自变量为正整数的一类函数,在解决问题时要注意这一特殊性. 【秒杀绝招】特例法解T2:由题意(, )在直线x-9y=0上,所以—9=0,因为a1=2,易得a2=6,所以S2=8.验证四个选项可排除BCD.考点二数列与不等式的综合【典例】已知数列{a n}的前n项和为S n,且满足a1=,a n=-2·S n·S n-1(n≥2).(1)求数列{a n}的通项公式a n.(2)求证:++…+≤-.【解题导思】序号题目拆解①a n=-2S n·S n-1(n≥2) 利用a n=S n-S n-1将a n=-2S n·S n-1转化为S n,S n-1的关系(1)②求数列{a n}的通项公式a n先求出,利用an=-2S n·S n-1进而求得a n.由(1)得S n=,由=<,放缩后利用裂(2) 求证:++…+≤-.项相消法求和是解题的关键【解析】(1)因为a n=-2S n·S n-1(n≥2),所以S n-S n-1=-2S n·S n-1.两边同除以S n·S n-1,得-=2(n≥2),所以数列是以==2为首项,以d=2为公差的等差数列,所以=+(n-1)·d=2+2(n-1)=2n,所以S n=.将S n=代入a n=-2S n·S n-1,得a n=(2)因为=<=(n≥2),=,所以当n≥2时,++…+=++…+<++…+=-;当n=1时,==-.综上,++…+≤-.数列与不等式的综合问题(1)判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.(2)以数列为载体,考查不等式恒成立的问题,此类问题可转化为函数的最值.(3)考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明:是等比数列,并求{a n}的通项公式.(2)证明:++…+<.【解析】(1)由a n+1=3a n+1得a n+1+=3.又a1+=,所以是首项为,公比为3的等比数列.所以a n+=,因此{a n}的通项公式为a n=.(2)由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤.于是++…+≤1++…+=<.所以++…+<.考点三数列与函数、不等式的综合应用命题 1.考什么:(1)考查求最值、比较大小、求取值范围等问题.精解读(2)考查数学运算、逻辑推理的核心素养及函数与方程、转化与化归等思想方法.2.怎么考:以数列为载体,考查利用函数的性质、图像或不等式的性质进行放缩、比较大小、求范围或最值、证明结论等.3.新趋势:与函数、不等式综合问题的考查学霸好方法1.求最值(或取值范围)问题的解题思路先构造数列对应的函数y=f(x),x∈(0,+∞).再由以下方法求最值:(1)利用函数的单调性(2)利用均值不等式(3)利用导数注意是在正整数内讨论的.2.交汇问题与函数、不等式交汇时,依据函数或不等式的性质求解.求最值问题【典例】1.在等差数列{a n}中,若a1<0,S n为其前n项和且S7=S17,则S n最小时的n的值为( )A.12或13B.11或12C.11D.122.在正项等比数列{a n}中,为a6与a14的等比中项,则a3+3a17的最小值为( ) A.2 B.89 C.6 D.3【解析】1.选D.由S7=S17,依据二次函数对称性知当n=12时,S n最小.2.选C.因为{a n}是正项等比数列,且为a6与a14的等比中项,所以a6a14=3=a3a17,则a3+3a17=a3+3·≥2=6,当且仅当a3=3时,等号成立,所以a3+3a17的最小值为6.求等差数列前n项和的最值常用的方法有哪些?提示:(1)利用等差数列的单调性,求出最值;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n项和S n=An2+Bn(A,B为常数)看作二次函数,根据二次函数的性质求最值.比较大小【典例】数列{a n}是各项均为正数的等比数列,{b n}是等差数列,且a6=b7,则有 ( )A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10的大小不确定【解析】选B.因为a3+a9≥2=2=2a6=2b7=b4+b10,当且仅当a3=a9时取等号.本题利用均值不等式比较两个式子的大小,恰到好处.利用均值不等式≥时一定要满足其成立的三个条件分别是什么?提示:(1)a,b均为正数.(2)a,b的和或积必须有一个为定值.(3)a=b时等号成立.求取值范围问题【典例】设数列{a n}的通项公式为a n=2n-1,记数列的前n项和为T n,若对任意的n∈N*,不等式4T n<a2-a恒成立,则实数a的取值范围为________.【解析】因为a n=2n-1,所以==,所以T n==<,又4T n<a2-a,所以2≤a2-a,解得a≤-1或a≥2,即实数a的取值范围为(-∞,-1]∪[2,+∞).答案:(-∞,-1]∪[2,+∞)1.已知正项等比数列{a n}满足2a5+a4=a3,若存在两项a m,a n,使得8=a1,则+的最小值为________.【解析】因为正项等比数列{a n}满足2a5+a4=a3,所以2a1q4+a1q3=a1q2,整理,得2q2+q-1=0,又q>0,解得,q=,因为存在两项a m,a n使得8=a1,所以64q m+n-2=,整理,得m+n=8,所以+=(m+n)=≥=2,当且仅当=时取等号,此时m,n∈N*,又m+n=8,所以只有当m=6,n=2时,+取得最小值是2.答案:22.已知数列{a n}的前n项和为S n,点(n,S n+3)(n∈N*)在函数y=3×2x的图像上,等比数列{b n}满足b n+b n+1=a n(n ∈N*),其前n项和为T n,则下列结论正确的是 ( )A.S n=2T nB.T n=2b n+1C.T n>a nD.T n<b n+1【解析】选D.因为点(n,S n+3)在函数y=3×2x的图像上,所以S n+3=3×2n,即S n=3×2n-3.当n≥2时,a n=S n-S n-1=3×2n-3-(3×2n-1-3)=3×2n-1,又当n=1时,a1=S1=3,所以a n=3×2n-1.设b n=b1q n-1,则b1q n-1+b1q n=3×2n-1,可得b1=1,q=2,所以数列{b n}的通项公式为b n=2n-1.由等比数列前n项和公式可得T n=2n-1.结合选项可知,只有D正确.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则( )A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解析】选B.因为ln x≤x-1(x>0),所以a1+a2+a3+a4=ln(a1+a2+a3)≤a1+a2+a3-1,所以a4=a1·q3≤-1.由a1>1,得q<0.若q≤-1,则ln(a1+a2+a3)=a1+a2+a3+a4=a1(1+q)·(1+q2)≤0.又a1+a2+a3=a1(1+q+q2)≥a1>1,所以ln(a1+a2+a3)>0,矛盾.因此-1<q<0.所以a1-a3=a1(1-q2)>0,a2-a4=a1q(1-q2)<0,所以a1>a3,a2<a4.1.若定义在R上的函数y=f(x)是奇函数且满足f=f(x),f(-2)=-3,数列{a n}满足a1=-1,且=2×+1(其中S n为{a n}的前n项和),则f(a5)+f(a6)= ( )A.-3B.-2C.3D.2【解析】选C.由f=f(x)可知函数f(x)的图像的对称轴为直线x=.又函数y=f(x)是奇函数,所以有f=f(x)=-f,所以f=-f(x),即f(x-3)=f(x),所以函数y=f(x)的周期为3.由=2×+1得S n=2a n+n.当n≥2时,a n=S n-S n-1=2a n+n-(2a n-1+n-1)=2a n-2a n-1+1,即a n=2a n-1-1,所以a2=-3,a3=-7,a4=-15,a5=-31,a6=-63,则f(a5)+f(a6)=f(-31)+f(-63)=f(-1)+f(0)=-f(1)+f(0).由函数y=f(x)是奇函数可得f(0)=0,由f(-2)=-3可得f(-2)=f(1)=-3,所以f(a5)+f(a6)=3.2.(2019·全国卷Ⅰ)记S n为等差数列{a n}的前n项和,已知S9=-a5.(1)若a3=4,求{a n}的通项公式.(2)若a1>0,求使得S n≥a n的n的取值范围.【解析】(1)设{a n}的公差为d.由S9=-a5得a1+4d=0.由a3=4得a1+2d=4.于是a1=8,d=-2.因此{a n}的通项公式为a n=10-2n.(2)由S9=-a5得a1=-4d,故a n=(n-5)d,S n=.由a1>0知d<0,故S n≥a n等价于n2-11n+10≤0,解得1≤n≤10. 所以n的取值范围是{n|1≤n≤10,n∈N}.。

2022版高考数学一轮复习第八章数列8.5.1等差与等比数列的综合问题练习理北师大版

2022版高考数学一轮复习第八章数列8.5.1等差与等比数列的综合问题练习理北师大版

8.5.1 等差与等比数列的综合问题核心考点·精准研析考点一基本量的运算1.等差数列的首项为1,公差不为0.若a2,a3,a6成等比数列,则前6项的和为()A.-24B.-3C.3D.82.已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则 ( )A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>03.(2019·江苏高考)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是________.4.设公差不为0的等差数列{a n}的前n项和为S n,若a2,a5,a11成等比数列,且a11=2(S m-S n)(m>n>0,m,n∈N*),则m+n=________.【解析】1.选A.设等差数列的公差为d,由a2,a3,a6成等比数列可得=a2a6,即(1+2d)2=(1+d)(1+5d),整理可得d2+2d=0,又公差不为0,则d=-2,故{a n}前6项的和为S6=6a1+d=6×1+×(-2)=-24.2.选B.因为数列{a n}是等差数列,a3,a4,a8成等比数列,所以=,解得a1=-d,所以S4=2=2=-d,所以a1d=-d2<0,dS4=-d2<0.3.设等差数列的首项为a1,公差为d,由a2a5+a8=0,S9=27,得解得a1=-5,d=2,所以S8==4(2a1+7d)=16.答案:164.设公差为d,则=a2a11⇒(a1+4d)2=(a1+d)(a1+10d)(d≠0),整理得a1=2d,由a11=2(S m-S n),可得a1+10d=2,化简得(m2-n2)+3(m-n)=12,即(m-n)(m+n+3)=12,因为m>n>0,m,n∈N*,所以m=5,n=4,所以m+n=9.答案:9已知等比数列{a n}的各项都为正数,且a3,a5,a4成等差数列,则的值是( ) A. B. C. D.【解析】选A.设等比数列{a n}的公比为q,由a3,a5,a4成等差数列,可得a5=a3+a4,即a3q2=a3+a3q,故q2-q-1=0,解得q=或q=(舍去),======.等差数列、等比数列基本量的运算方法(1)等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组)问题.(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.考点二等差、等比数列的综合应用【典例】设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n-a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式.(2)记数列的前n项和为T n,求使得|T n-1|<成立的n的最小值.【解题导思】序号题目拆解(1) ①S n=2a n-a1将S n=2a n-a1利用a n=S n-S n-1转化为a n与a n-1的关系,由S n=2a n-a1,将a2、a3用a1表示②a1,a2+1,a3成等差数列根据关系列方程,得a1(2)①记数列的前n项和为T n由(1)写出的表达式,表示出T n②求使得|T n-1|<成立的n的最小值由|T n-1|<解关于n的不等式【解析】(1)由已知S n=2a n-a1,有a n=S n-S n-1=2a n-2a n-1(n≥2),即a n=2a n-1(n≥2).所以公比q=2.从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1).所以a1+4a1=2(2a1+1),解得a1=2.所以,数列{a n}是首项为2,公比为2的等比数列故,a n=2n.(2)由(1)得=.所以T n=++…+==1-.由|T n-1|<,得<,即2n>1 000.因为29=512<1 000<1 024=210,所以n≥10.于是,使|T n-1|<成立的n的最小值为10.等差数列、等比数列综合问题的两大解题策略(1)设置中间问题:求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意解题细节:在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.【误区警示】在不能使用同一公式进行计算的情况下要注意分类讨论,分类解决问题后还要注意结论的整合.【变式备选】已知等差数列{a n}的各项均为正数,a1=1,前n项和为S n,数列{b n}为等比数列,b1=1,且b2S2=6,b2+S3=8.(1)求数列{a n}与{b n}的通项公式.(2)求++…+.【解析】(1)设等差数列{a n}的公差为d, d>0,{b n}的公比为q,则a n=1+(n-1)d,b n=q n-1.依题意有解得或(舍去).故a n=n,b n=2n-1.(2)由(1)知S n=1+2+…+n=n(n+1),所以==2,所以++…+=2=2=.已知公比不为1的等比数列{a n}的首项a1=,前n项和为S n,且a4+S4,a5+S5,a6+S6成等差数列.(1)求等比数列{a n}的通项公式.(2)对n∈N*,在a n与a n+1之间插入3n个数,使这3n+2个数成等差数列,记插入的这3n个数的和为b n,求数列{b n}的前n项和T n.【解析】(1)设等比数列{a n}的公比为q,a4+S4,a5+S5,a6+S6成等差数列,所以a5+S5-a4-S4=a6+S6-a5-S5,即2a6-3a5+a4=0,所以2q2-3q+1=0.因为q≠1,所以q=,所以等比数列{a n}的通项公式为a n=.(2)由题意得b n=·3n=·,T n=·=.考点三求数列的通项公式命题精解读1.考什么:数列的通项公式2.怎么考:(1)由a n与S n的关系求通项a n(2)由递推公式求通项a n(3)构造新数列求a n3.新趋势:以数列为载体,与函数或不等式等综合考查学霸好方法1.求数列的通项公式a n(1)形如a n+1=a n+f(n)的数列,常用累加法(2)形如a n+1=a n f(n)的数列,常可采用累乘法(3)形如a n+1=ba n+d(其中b,d为常数,b≠0,1)的数列,常用构造法2.交汇问题与函数或不等式等交汇时,经常先构造出新的等差或等比数列求解,然后再求a n 由a n与S n的关系求通项a n【典例】(2018·全国卷Ⅰ改编)记S n为数列{a n}的前n项和.若S n=2a n+1,则a n=________. 【解析】因为S n=2a n+1,当n≥2时,S n-1=2a n-1+1,所以a n=S n-S n-1=2a n-2a n-1,即a n=2a n-1.当n=1时,a1=S1=2a1+1,得a1=-1.所以数列{a n}是首项a1为-1,公比q为2的等比数列,所以a n=-1×2n-1=-2n-1.答案:-2n-1S n与a n关系问题的求解思路如何?提示:根据所求结果的不同要求,将问题向不同的两个方向转化.①利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式②利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式由递推公式求数列通项【典例】1.设数列{a n}满足a1=3,a n+1=a n+,则通项公式a n=________.【解析】原递推公式可化为a n+1=a n+-,则a2=a1+-,a3=a2+-,a4=a3+-,…,a n-1=a n-2+-,a n=a n-1+-,以上(n-1)个式子的等号两端分别相加得,a n=a1+1-,故a n=4-.答案:4-2.在数列{a n}中,a1=1,a n=a n-1(n≥2),则数列{a n}的通项公式为________.【解析】因为a n=a n-1(n≥2),所以a n-1=a n-2,a n-2=a n-3,…,a2=a1.以上(n-1)个式子相乘得a n=a1···…·==.当n=1时,a1=1,上式也成立.所以a n=(n∈N*).答案:a n=(n∈N*)(1)形如a n+1=a n+f(n)的数列,选择何种方法求通项公式?提示:累加法(2)形如a n+1=a n f(n)的数列,选择何种方法求通项公式?提示:累乘法【误区警示】利用累乘法求通项公式时,易出现两个方面的问题:一是在连乘的式子中只写到,漏掉a1而导致错误;二是根据连乘求出a n之后,不注意检验a1是否成立.构造等差、等比数列求通项a n【典例】1.已知数列{a n}满足a1=1,a n+1=3a n+2,则数列{a n}的通项公式为____________.【解析】因为a n+1=3a n+2,所以a n+1+1=3(a n+1),所以=3,所以数列{a n+1}为等比数列,公比q=3,又a1+1=2,所以a n+1=2·3n-1,所以a n=2·3n-1-1(n∈N*).答案:a n=2·3n-1-1(n∈N*)2.已知数列{a n}满足:a n+2=3a n+1-2a n,a1=2,a2=4,n∈N*.求证:数列{a n+1-a n}为等比数列,并求数列{a n}的通项公式.【解析】因为==2,所以数列{a n+1-a n}是公比为2,首项为2的等比数列,所以a n+1-a n=2n,累加可知:a n-a1=2+22+…+2n-1=2n-2(n≥2),a n=2n(n≥2),当n=1时,a1=2满足上式,所以a n=2n(n∈N*).1.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6= ( )A.3×44B.3×44+1C.45D.45+1【解析】选A.a1=1,a2=3S1=3,a3=3S2=12=3×41,a4=3S3=48=3×42,a5=3S4=192=3×43,a6=3S5=768=3×44.【一题多解】选A.当n≥1时,a n+1=3S n,则a n+2=3S n+1,所以a n+2-a n+1=3S n+1-3S n=3a n+1,即a n+2=4a n+1,所以该数列从第2项开始是以4为公比的等比数列,又a2=3S1=3a1=3,所以a n=所以当n=6时,a6=3×46-2=3×44.2.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n= ( )A.2n-1B.C. D.【解析】选B.由已知S n=2a n+1得S n=2(S n+1-S n),即2S n+1=3S n,=,而S1=a1=1,所以S n=.3.设数列{a n}满足a1=1,且a n+1=a n+n+1(n∈N*),则数列{a n}的通项公式为________.【解析】由题意得a2=a1+2,a3=a2+3,…,a n=a n-1+n(n≥2),以上各式相加,得a n=a1+2+3+…+n.又因为a1=1,所以a n=1+2+3+…+n=(n≥2),因为当n=1时也满足上式,所以a n=(n∈N*).答案:a n=4.设数列{a n}满足a1=1,a n+1=2n a n,则通项公式a n=________.【解析】由a n+1=2n a n,得=2n-1(n≥2),所以a n=··…··a1=2n-1·2n-2·…·2·1=21+2+3+…+(n-1)=.又a1=1适合上式,故a n=.答案:1.在数列{a n}中,a1=3,且点P n(a n,a n+1)(n∈N*)在直线4x-y+1=0上,求数列{a n}的通项公式.【解析】因为点P n(a n,a n+1)(n∈N*)在直线4x-y+1=0上,所以4a n-a n+1+1=0,即a n+1=4a n+1,得a n+1+=4,所以是首项为a1+=,公比为4的等比数列,所以a n+=·4n-1,故a n=·4n-1-. 【变式备选】在数列{a n}中,a1=1,数列{a n+1-3a n}是首项为9,公比为3的等比数列.(1)求a2,a3.(2)求数列的前n项和S n.【解析】(1)因为数列{a n+1-3a n}是首项为9,公比为3的等比数列,所以a n+1-3a n=9×3n-1=3n+1,所以a2-3a1=9,a3-3a2=27,所以a2=12,a3=63.(2)因为a n+1-3a n=3n+1,所以-=1,所以数列是首项为,公差为1的等差数列,所以数列的前n项和S n=+=.2.设数列{a n}的前n项和为S n,已知a1=1,a2=2,且a n+2=3S n-S n+1+3,n∈N*.(1)证明:a n+2=3a n.(2)求S2n.【解析】(1)由条件,对任意n∈N*,有a n+2=3S n-S n+1+3,则对任意n∈N*,n≥2,有a n+1=3S n-1-S n+3.两式相减,得a n+2-a n+1=3a n-a n+1,即a n+2=3a n,n≥2,又a1=1,a2=2,所以a3=3S1-S2+3=3a1-(a1+a2)+3=3a1.故对一切n∈N*,a n+2=3a n.(2)由(1)知,a n≠0,所以=3.于是数列{a2n-1}是首项a1=1,公比为3的等比数列;数列{a2n}是首项a2=2,公比为3的等比数列. 因此a2n-1=3n-1,a2n=2×3n-1.于是S2n=a1+a2+…+a2n=(a1+a3+…+a2n-1)+(a2+a4+…+a2n)=(1+3+…+3n-1)+2×(1+3+…+3n-1)=3×(1+3+…+3n-1)=.。

(全国通用版)高考数学一轮复习 第八单元 数列学案 文-人教版高三全册数学学案

(全国通用版)高考数学一轮复习 第八单元 数列学案 文-人教版高三全册数学学案

第八单元 数 列教材复习课“数列”相关基础知识一课过 数列的有关概念 1.数列的有关概念概念 含义数列 按照一定顺序排列的一列数 数列的项数列中的每一个数数列的通项 数列{a n }的第n 项a n通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式前n 项和数列{a n }中,S n =a 1+a 2+…+a n 叫做数列的前n 项和n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[小题速通]1.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21的值为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝ ⎛⎭⎪⎫-32+10×2=72. 2.数列{a n }满足a 1=3,a n +1=a n -1a n(n ∈N *),则a 2 018=( )A.12 B .3 C .-12D.23解析:选D 由a 1=3,a n +1=a n -1a n ,得a 2=a 1-1a 1=23,a 3=a 2-1a 2=-12,a 4=a 3-1a 3=3,……, 由上可得,数列{a n }是以3为周期的周期数列, 故a 2 018=a 672×3+2=a 2=23.3.已知数列{a n }满足a n =32n -11(n ∈N *),前n 项的和为S n ,则关于a n ,S n 的叙述正确的是( )A .a n ,S n 都有最小值B .a n ,S n 都没有最小值C .a n ,S n 都有最大值D .a n ,S n 都没有最大值解析:选A ①∵a n =32n -11,∴当n ≤5时,a n <0且单调递减;当n ≥6时,a n >0,且单调递减.故当n =5时,a 5=-3为a n 的最小值;②由①的分析可知:当n ≤5时,a n <0;当n ≥6时,a n >0.故可得S 5为S n 的最小值. 综上可知,a n ,S n 都有最小值.4.已知数列{a n }中,a 1=1,a n +1=a n +2n +1(n ∈N *),则a 5=________.解析:依题意得a n +1-a n =2n +1,a 5=a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+(a 5-a 4)=1+3+5+7+9=25.答案:25[清易错]1.易混项与项数,它们是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.1.已知数列的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }中的项 B .3只是数列{a n }中的第2项 C .3只是数列{a n }中的第6项D .3是数列{a n }中的第2项或第6项解析:选D 令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.2.已知数列{a n }的前n 项和为S n =3+2n,则数列{a n }的通项公式为________. 解析:当n =1时,a 1=S 1=3+2=5;当n ≥2时,a n =S n -S n -1=3+2n-(3+2n -1)=2n-2n -1=2n -1.因为当n =1时,不符合a n =2n -1,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2等差数列[过双基]1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -12d =n a 1+a n2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题速通]1.在等差数列{a n }中,已知a 2与a 4是方程x 2-6x +8=0的两个根,若a 4>a 2,则a 2 018=( )A .2 018B .2 017C .2 016D .2 015解析:选A 因为a 2与a 4是方程x 2-6x +8=0的两个根,且a 4>a 2,所以a 2=2,a 4=4,则公差d =1,所以a 1=1,则a 2 018=2 018.2.在等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和,则S 5=( ) A .3 B .4 C .5D .6解析:选C ∵等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和, ∴a 2+a 3+a 4=3a 3=3, 解得a 3=1,∴S 5=52(a 1+a 5)=5a 3=5.3.正项等差数列{a n }的前n 项和为S n ,已知a 4+a 10-a 27+15=0,则S 13=( ) A .-39 B .5 C .39D .65解析:选D ∵正项等差数列{a n }的前n 项和为S n ,a 4+a 10-a 27+15=0,∴a 27-2a 7-15=0,解得a 7=5或a 7=-3(舍去), ∴S 13=132(a 1+a 7)=13a 7=13×5=65.4.已知等差数列{a n }的前n 项和为S n ,且3a 3=a 6+4.若S 5<10,则a 2的取值范围是( ) A .(-∞,2) B .(-∞,0) C .(1,+∞)D .(0,2)解析:选A 设等差数列{a n }的公差为d ,∵3a 3=a 6+4, ∴3(a 2+d )=a 2+4d +4,可得d =2a 2-4. ∵S 5<10,∴5a 1+a 52=5a 2+a 42=52a 2+2d2=5(3a 2-4)<10,解得a 2<2.∴a 2的取值范围是(-∞,2).5.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎪⎫-1,-78 [清易错]1.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件. 2.注意区分等差数列定义中同一个常数与常数的区别.1.(2018·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 的值为( )A .18B .19C .20D .21解析:选C 由a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.2.在数列{a n }中,若a 1=-2,且对任意的n ∈N *,有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52D.54解析:选C 由2a n +1=1+2a n ,可得a n +1-a n =12,即数列{a n }是以-2为首项,12为公差的等差数列,则a n =n -52,所以数列{a n }的前10项的和S 10=10×⎝⎛⎭⎪⎫-2+522=52.等比数列1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)都是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k,…为等比数列,公比为q k. [小题速通]1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 11-271-2=381,解得a 1=3.2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:选B 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73.3.设数列{a n }是等比数列,公比q =2,前n 项和为S n ,则S 4a 3的值为( ) A.154 B.152 C.74D.72解析:选A 根据等比数列的公式,得S 4a 3=a 11-q 41-q a 1q 2=1-q 41-q q 2=1-241-2×22=154. 4.已知等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16,则数列{a n }的前2 018项的和为( )A .8 064B .4C .-4D .0解析:选D ∵等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16, ∴a 3a 5=a 2a 6=16,∴a 3,a 5是方程x 2-8x +16=0的两个根, 解得a 3=a 5=4, ∴4q 2=4,∵q ≠1,∴q =-1,∴a 1=a 3q2=4, ∴数列{a n }的前2 018项的和为 S 2 018=4[1--12 018]1--1=0.5.(2018·信阳调研)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( ) A.12 B.22C. 2D .2解析:选B 因为{a n }是等比数列,所以a 5a 7=a 26=4a 24,所以a 6=2a 4,q 2=a 6a 4=2,又q >0,所以q =2,a 1=a 2q =22.[清易错]1.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.1.设数列{a n }为等比数列,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________.解析:当q ≠1时,由题意,a 11-q 31-q=3a 1q 2,即1-q 3=3q 2-3q 3,整理得2q 3-3q 2+1=0,解得q =-12.当q =1时,S 3=3a 3,显然成立. 故q =-12或1.答案:-12或1一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3da 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.2.(2018·江西六校联考)在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( ) A .3 B.17 C .9D .13解析:选A 由a 3a 5a 7=-33,得a 35=-33,即a 5=-3,故a 2a 8=a 25=3.3.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 018=( ) A .8 B .6 C .4D .2解析:选D 由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 018=a 335×6+8=a 8=2.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2,n ∈N *),则a 7=( ) A .53 B .54 C .55D .109解析:选C a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44B .45C.13×(46-1) D.14×(45-1) 解析:选B 由a n +1=3S n ,得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n +1=4a n ,n ≥2,则数列{a n }从第二项起构成等比数列,所以S 6=a 73=3×453=45.6.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有S n T n =n n +1,则a 5b 5等于( )A.34B.56C.910D.1011解析:选C ∵S 9=9a 1+a 92=9a 5,T 9=9b 1+b 92=9b 5,∴a 5b 5=S 9T 9=910.7.已知数列{a n }是首项为1的等比数列,S n 是其前n 项和,若5S 2=S 4,则log 4a 3的值为( )A .1B .2C .0或1D .0或2解析:选C 由题意得,等比数列{a n }中,5S 2=S 4,a 1=1, 所以5(a 1+a 2)=a 1+a 2+a 3+a 4, 即5(1+q )=1+q +q 2+q 3,q 3+q 2-4q -4=0,即(q +1)(q 2-4)=0,解得q =-1或±2,当q =-1时,a 3=1,log 4a 3=0. 当q =±2时,a 3=4,log 4a 3=1. 综上所述,log 4a 3的值为0或1.8.设数列{a n }是公差为d (d >0)的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .75B .90C .105D .120解析:选C 由a 1+a 2+a 3=15得3a 2=15,解得a 2=5,由a 1a 2a 3=80,得(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(d =-3舍去),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105.二、填空题9.若数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,则数列{a n }的通项公式为________.解析:当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13满足a n =13n ,所以a n =13n .答案:a n =13n10.数列{a n }的前n 项和为S n ,若S n =2a n -1,则a n =________. 解析:∵S n =2a n -1,① ∴S n -1=2a n -1-1(n ≥2),② ①-②得a n =2a n -2a n -1, 即a n =2a n -1.∵S 1=a 1=2a 1-1,即a 1=1,∴数列{a n }为首项是1,公比是2的等比数列, 故a n =2n -1.答案:2n -111.已知数列{a n }中,a 2n =a 2n -1+(-1)n,a 2n +1=a 2n +n ,a 1=1,则a 20=________. 解析:由a 2n =a 2n -1+(-1)n,得a 2n -a 2n -1=(-1)n, 由a 2n +1=a 2n +n ,得a 2n +1-a 2n =n ,故a 2-a 1=-1,a 4-a 3=1,a 6-a 5=-1,…,a 20-a 19=1.a 3-a 2=1,a 5-a 4=2,a 7-a 6=3,…,a 19-a 18=9.又a 1=1,累加得:a 20=46. 答案:4612.数列{a n }为正项等比数列,若a 3=3,且a n +1=2a n +3a n -1(n ≥2,n ∈N *),则此数列的前5项和S 5=________.解析:设公比为q (q >0),由a n +1=2a n +3a n -1,可得q 2=2q +3,所以q =3,又a 3=3,则a 1=13,所以此数列的前5项和S 5=13×1-351-3=1213.答案:1213三、解答题13.已知在等差数列{a n }中,a 3=5,a 1+a 19=-18. (1)求公差d 及通项a n ;(2)求数列{a n }的前n 项和S n 及使得S n 取得最大值时n 的值. 解:(1)∵a 3=5,a 1+a 19=-18, ∴⎩⎪⎨⎪⎧a 1+2d =5,2a 1+18d =-18,∴⎩⎪⎨⎪⎧a 1=9,d =-2,∴a n =11-2n .(2)由(1)知,S n =n a 1+a n2=n 9+11-2n2=-n 2+10n =-(n -5)2+25,∴n =5时,S n 取得最大值.14.已知数列{a n }满足a 12+a 222+a 323+…+a n2n =n 2+n .(1)求数列{a n }的通项公式; (2)若b n =-1na n2,求数列{b n }的前n 项和S n .解:(1)∵a 12+a 222+a 323+…+a n2n =n 2+n ,∴当n ≥2时,a 12+a 222+a 323+…+a n -12n -1=(n -1)2+n -1,两式相减得a n2n =2n (n ≥2),∴a n =n ·2n +1(n ≥2).又∵当n =1时,a 12=1+1,∴a 1=4,满足a n =n ·2n +1.∴a n =n ·2n +1.(2)∵b n =-1na n2=n (-2)n,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n ×(-2)n.-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n -1)×(-2)n +n (-2)n +1,∴两式相减得3S n =(-2)+(-2)2+(-2)3+(-2)4+…+(-2)n-n (-2)n +1=-2[1--2n]1--2-n (-2)n +1=--2n +1-23-n (-2)n +1=-3n +1-2n +1+23,∴S n =-3n +1-2n +1+29.高考研究课(一) 等差数列的3考点——求项、求和及判定[全国卷5年命题分析]考点考查频度考查角度等差数列通项5年6考求通项或某一项等差数列前n项和5年5考求项数、求和等差数列的判定5年2考判断数列成等差数列或求使数列成等差数列的参数值等差数列基本量的运算[典例] (1)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S n+2-S n=36,则n =( )A.5 B.5C.7 D.8(2)(2016·全国卷Ⅱ)S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.①求b1,b11,b101;②求数列{b n}的前1 000项和.[解析] (1)法一:由等差数列前n项和公式可得S n+2-S n=(n+2)a1+n+2n+12d-⎣⎢⎡⎦⎥⎤na1+n n-12d=2a1+(2n+1)d=2+4n+2=36,解得n=8.法二:由S n+2-S n=a n+2+a n+1=a1+a2n+2=36,因此a2n+2=a1+(2n+1)d=35,解得n=8.答案:D(2)①设数列{a n}的公差为d,由已知得7+21d=28,解得d=1.所以数列{a n}的通项公式为a n=n.b1=[lg 1]=0,b11=[lg 11]=1,b101=[lg 101]=2.②因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. [方法技巧]等差数列运算的解题思路由等差数列的前n 项和公式及通项公式可知,若已知a 1,d ,n ,a n ,S n 中三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.[即时演练]1.已知数列{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 6=4S 3,则a 10=( ) A.172 B.192 C.910D.89解析:选B ∵S 6=4S 3,公差d =1. ∴6a 1+6×52×1=4×⎝ ⎛⎭⎪⎫3a 1+3×22×1, 解得a 1=12.∴a 10=12+9×1=192.2.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 4-S 2S 5-S 3的值为( ) A .-2 B .-3 C .2D .3解析:选D 设{a n }的公差为d ,因为a 1,a 3,a 4成等比数列, 所以(a 1+2d )2=a 1(a 1+3d ),可得a 1=-4d , 所以S 4-S 2S 5-S 3=a 3+a 4a 4+a 5=-3d-d=3. 3.(2018·大连联考)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4.即所求m 的值为5,k 的值为4.等差数列的判定与证明[典例] 已知{a n }是各项均为正数的等比数列,a 11=8,设b n =log 2a n ,且b 4=17. (1)求证:数列{b n }是以-2为公差的等差数列; (2)设数列{b n }的前n 项和为S n ,求S n 的最大值.[思路点拨] (1)利用等比数列以及对数的运算法则,转化证明数列{b n }是以-2为公差的等差数列;(2)求出数列的和,利用二次函数的性质求解最大值即可. [解] (1)证明:设等比数列{a n }的公比为q , 则b n +1-b n =log 2a n +1-log 2a n =log 2a n +1a n=log 2q , 因此数列{b n }是等差数列. 又b 11=log 2a 11=3,b 4=17, 所以等差数列{b n }的公差d =b 11-b 47=-2,故数列{b n }是以-2为公差的等差数列. (2)由(1)知,b n =25-2n , 则S n =n b 1+b n2=n 23+25-2n2=n (24-n )=-(n -12)2+144,于是当n =12时,S n 取得最大值,最大值为144. [方法技巧]等差数列判定与证明的方法方法 解读适合题型定义法对于n ≥2的任意自然数,a n -a n -1为同一常数⇔{a n }是等差数列解答题中证明问题等差中项法2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题中的判定问题前n 项和公式法 验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立⇔{a n }是等差数列[即时演练]1.(2016·浙江高考)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n+2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列 C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 11+q =2,a 11+q +q2=-6.解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n.(2)由(1)可得S n =-2×[1--2n]1--2=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+-1n2n +13=2S n,故S n +1,S n ,S n +2成等差数列.等差数列的性质[典例] (1)已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(2)已知数列{a n },{b n }为等差数列,前n 项和分别为S n ,T n ,若S n T n =3n +22n ,则a 7b 7=( )A.4126 B.2314 C.117D.116(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.[解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,即a 8=8,m =8.(2)因为{a n },{b n }为等差数列,且S n T n =3n +22n,所以a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=13a 1+a 13213b 1+b 132=S 13T 13=3×13+22×13=4126.(3)∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. [答案] (1)A (2)A (3)60 [方法技巧]等差数列的性质(1)项的性质在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n . [即时演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( )A .95B .100C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2018·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( ) A.5-12 B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q2a 4+a 4q 2=a 31+q 2a 41+q 2=1q =25+1=5-12. 3.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 10b 9+b 12+a 11b 8+b 13=________.解析:∵数列{a n }和{b n }都是等差数列, ∴a 10b 9+b 12+a 11b 8+b 13=a 10+a 11b 9+b 12=a 10+a 11b 10+b 11=S 20T 20=7×2020+3=14023. 答案:14023等差数列前n 项和的最值等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用函数法或通项变号法解决等差数列前n 项和S n 的最值问题.[典例] 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,当S n 取得最大值时,n 的值为________.[解析] 法一:用“函数法”解题由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0.故当n =7时,S n 最大. 法二:用“通项变号法”解题 由法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -1⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. [答案] 7 [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时演练]1.(2018·潍坊模拟)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n n -12×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( )A .8B .9C .10D .11解析:选B 设数列{a n }的公差为d , ∵a 1=-26,a 8+a 13=5,∴-26+7d -26+12d =5,解得d =3, ∴S n =-26n +n n -12×3=32n 2-552n =32⎝ ⎛⎭⎪⎫n -5562-3 02524,∴{a n }的前n 项和S n 取最小值时,n =9.3.已知{a n }是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,则数列{a n }的前n 项和取最大值时,n =________.解析:由S 10=10a 1+a 102=5(a 5+a 6)=0,可得a 5+a 6=0,∴a 5>0,a 6<0,即数列{a n }的前5项和为最大值,∴n =5. 答案:51.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98. 法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.3.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.4.(2013·全国卷Ⅱ)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d .由题意,a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ), 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .一、选择题1.(2018·厦门一中测试)已知数列{a n }中,a 2=32,a 5=98,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 7=( )A.109 B.1110 C.1211D.1312解析:选D 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d ,则1a 5-1=1a 2-1+3d ,即198-1=132-1+3d ,解得d =2,所以1a 7-1=1a 2-1+5d =12,解得a 7=1312. 2.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列, 设首项a 1=4,则a 5=2.由等差数列的性质得a 2+a 4=a 1+a 5=6, 所以第二尺与第四尺的重量之和为6斤.3.(2018·银川一中月考)在等差数列{a n }中,首项a 1>0,公差d ≠0,前n 项和为S n (n ∈N *),有下列命题:①若S 3=S 11,则必有S 14=0;②若S 3=S 11,则必有S 7是S n 中的最大项; ③若S 7>S 8,则必有S 8>S 9; ④若S 7>S 8,则必有S 6>S 9. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选D 对于①,若S 11-S 3=4(a 1+a 14)=0,即a 1+a 14=0,则S 14=14a 1+a 142=0,所以①正确;对于②,当S 3=S 11时,易知a 7+a 8=0,又a 1>0,d ≠0,所以a 7>0>a 8,故S 7是S n 中的最大项,所以②正确;对于③,若S 7>S 8,则a 8<0,那么d <0,可知a 9<0,此时S 9-S 8<0,即S 8>S 9,所以③正确; 对于④,若S 7>S 8,则a 8<0,S 9-S 6=a 7+a 8+a 9=3a 8<0,即S 6>S 9,所以④正确.故选D. 4.(2018·大同模拟)在等差数列{}a n 中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600解析:选B 由a 1+a 2+a 3=3a 2=3,得a 2=1. 由a 18+a 19+a 20=3a 19=87,得a 19=29, 所以S 20=20a 1+a 202=10(a 2+a 19)=300.5.设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n =336,则n 的值为( )A .18B .19C .20D .21解析:选 D 因为{a n }是等差数列,所以S 9=9a 5=18,a 5=2,S n =n a 1+a n2=n a 5+a n -42=n2×32=16n =336,解得n =21. 6.设{a n }是等差数列,d 是其公差,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .当n =6或n =7时S n 取得最大值解析:选C 由S 5<S 6,得a 1+a 2+a 3+a 4+a 5<a 1+a 2+a 3+a 4+a 5+a 6,即a 6>0.同理由S 7>S 8,得a 8<0.又S 6=S 7,∴a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7,∴a 7=0,∴B 正确;∵d =a 7-a 6<0,∴A 正确;而C 选项,S 9>S 5,即a 6+a 7+a 8+a 9>0,可得2(a 7+a 8)>0,由结论a 7=0,a 8<0,知C 选项错误;∵S 5<S 6,S 6=S 7>S 8,∴结合等差数列前n 项和的函数特性可知D 正确.故选C.7.等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( ) A .|a 7|>|a 8|B .|a 7|<|a 8|C .|a 7|=|a 8|D .|a 7|=0解析:选B 因为(S 8-S 5)(S 9-S 5)<0, 所以(a 6+a 7+a 8)(a 6+a 7+a 8+a 9)<0, 因为{a n }为等差数列, 所以a 6+a 7+a 8=3a 7,a 6+a 7+a 8+a 9=2(a 7+a 8),所以a 7(a 7+a 8)<0, 所以a 7与(a 7+a 8)异号. 又公差d >0,所以a 7<0,a 8>0,且|a 7|<|a 8|,故选B. 二、填空题8.在数列{a n }中,a n +1=a n1+3a n ,a 1=2,则a 20=________.解析:由a n +1=a n1+3a n,a 1=2, 可得1a n +1-1a n=3,所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列.所以1a n =12+3(n -1),即a n =26n -5,所以a 20=2115.答案:21159.数列{a n }满足:a 1=1,a n +1=2a n +2n,则数列{a n }的通项公式为________. 解析:∵a 1=1,a n +1=2a n +2n, ∴a n +12n +1=a n 2n +12, ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 12=12,公差d =12的等差数列,故a n 2n =12+(n -1)×12=12n , 即a n =n ·2n -1.答案:a n=n·2n-110.设S n是等差数列{a n}的前n项和,若S4≠0,且S8=3S4,S12=λS8,则λ=________.解析:当S4≠0,且S8=3S4,S12=λS8时,由等差数列的性质得:S4,S8-S4,S12-S8成等差数列,∴2(S8-S4)=S4+(S12-S8),∴2(3S4-S4)=S4+(λ·3S4-3S4),解得λ=2.答案:2三、解答题11.已知数列{a n}是等差数列,且a1,a2,a5成等比数列,a3+a4=12.(1)求a1+a2+a3+a4+a5;(2)设b n=10-a n,数列{b n}的前n项和为S n,若b1≠b2,则n为何值时,S n最大?S n最大值是多少?解:(1)设{a n}的公差为d,∵a1,a2,a5成等比数列,∴(a1+d)2=a1(a1+4d),解得d=0或d=2a1.当d=0时,∵a3+a4=12,∴a n=6,∴a1+a2+a3+a4+a5=30;当d≠0时,∵a3+a4=12,∴a1=1,d=2,∴a1+a2+a3+a4+a5=25.(2)∵b1≠b2,b n=10-a n,∴a1≠a2,∴d≠0,由(1)知a n=2n-1,∴b n=10-a n=10-(2n-1)=11-2n,S n=10n-n2=-(n-5)2+25.∴当n=5时,S n取得最大值,最大值为25.12.(2018·沈阳质检)已知等差数列{a n}的前n项和为S n,且a3+a6=4,S5=-5.(1)求数列{a n}的通项公式;(2)若T n=|a1|+|a2|+|a3|+…+|a n|,求T5的值和T n的表达式.解:(1)设等差数列{a n}的公差为d,由题意知⎩⎪⎨⎪⎧2a 1+7d =4,5a 1+5×42d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2,故a n =2n -7(n ∈N *).(2)由a n =2n -7<0,得n <72,即n ≤3,所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0. 由(1)知S n =n 2-6n ,所以当n ≤3时,T n =-S n =6n -n 2; 当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T 5=13,T n =⎩⎪⎨⎪⎧6n -n 2,n ≤3,n 2-6n +18,n ≥4.13.已知数列{a n }中,a 1=4,a n =a n -1+2n -1+3(n ≥2,n ∈N *).(1)证明数列{a n -2n}是等差数列,并求{a n }的通项公式; (2)设b n =a n2n ,求b n 的前n 项和S n . 解:(1)证明:当n ≥2时,a n =a n -1+2n -1+3=a n -1+2n -2n -1+3,∴a n -2n-(a n -1-2n -1)=3.又a 1=4,∴a 1-2=2,故数列{a n -2n}是以2为首项,3为公差的等差数列, ∴a n -2n=2+(n -1)×3=3n -1, ∴a n =2n +3n -1. (2)b n =a n 2n =2n +3n -12n =1+3n -12n ,∴S n =⎝ ⎛⎭⎪⎫1+22+⎝ ⎛⎭⎪⎫1+522+…+⎝⎛⎭⎪⎫1+3n -12n=n +⎝ ⎛⎭⎪⎫22+522+…+3n -12n ,令T n =22+522+…+3n -12n ,①则12T n =222+523+…+3n -12n +1,②①-②得,12T n =1+322+323+…+32n -3n -12n +1,=1+3×14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-3n -12n +1=52-3n +52n +1,∴S n =n +5-3n +52n .已知数列{a n }的前n 项和为S n ,a 1=3,a n +1=2a n +2n +1-1(n ∈N *).(1)求a 2,a 3;(2)求实数λ使⎩⎨⎧⎭⎬⎫a n +λ2n为等差数列,并由此求出a n 与S n ; (3)求n 的所有取值,使S n a n∈N *,说明你的理由. 解:(1)∵a 1=3,a n +1=2a n +2n +1-1,∴a 2=2×3+22-1=9,a 3=2×9+23-1=25. (2)∵a 1=3,a n +1=2a n +2n +1-1,∴a n +1-1=2(a n -1)+2n +1,∴a n +1-12n +1-a n -12n=1,故λ=-1时,数列⎩⎨⎧⎭⎬⎫a n +λ2n 成等差数列,且首项为a 1-12=1,公差d =1.∴a n -12n=n ,即a n =n ·2n+1.∴S n =(1×2+2×22+3×23+…+n ×2n)+n , 设T n =1×2+2×22+3×23+…+n ×2n,① 则2T n =1×22+2×23+3×24+…+n ×2n +1,②①-②得,-T n =2+22+23+ (2)-n ×2n +1=(1-n )·2n +1-2,∴T n =(n -1)·2n +1+2,∴S n =T n +n =(n -1)·2n +1+2+n .(3)S n a n =n -1·2n +1+n +2n ·2n +1=2+n -2n +1n ·2n +1, 结合y =2x 及y =12x 的图象可知2n >n 2恒成立,∴2n +1>n ,即n -2n +1<0,∵n ·2n+1>0,∴S n a n<2.当n =1时,S n a n =S 1a 1=1∈N *;当n ≥2时,∵a n >0且{a n }为递增数列, ∴S n >0且S n >a n ,∴S n a n >1,即1<S n a n <2,∴当n ≥2时,S n a n∉N *. 综上可得n =1. 高考研究课(二)等比数列的3考点——基本运算、判定和应用 [全国卷5年命题分析]考点考查频度 考查角度等比数列的基本运算 5年7考由项与和的关系求首项、求前n 项和、求项数等等比数列的判定 5年3考 证明等比数列等比数列的综合应用 5年4考求和后放缩法证明不等式,等比数列求项之积的最值等比数列基本量的运算[典例] (1)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( )A .4n -1B .4n-1 C .2n -1D .2n-1(2)(2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.①若a 3+b 3=5,求{b n }的通项公式; ②若T 3=21,求S 3.[解析] (1)设{a n }的公比为q ,∵⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52,ⅰa 1q +a 1q 3=54, ⅱ由(ⅰ)(ⅱ)可得1+q 2q +q 3=2,∴q =12,代入(ⅰ)得a 1=2,∴a n =2×⎝ ⎛⎭⎪⎫12n -1=42n ,∴S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝ ⎛⎭⎪⎫1-12n ,∴S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n =2n -1. 答案:D(2)设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =qn -1.由a 2+b 2=2得d +q =3.(ⅰ) ①由a 3+b 3=5得2d +q 2=6.(ⅱ)联立(ⅰ)(ⅱ)解得⎩⎪⎨⎪⎧d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.②由b 1=1,T 3=21,得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由(ⅰ)得d =8,则S 3=21. 当q =4时,由(ⅰ)得d =-1,则S 3=-6. [方法技巧]解决等比数列有关问题的常用思想方法(1)方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q n 1-q =a 1-a n q1-q.[即时演练]。

2021年高考数学总复习 第八章 数列练习

2021年高考数学总复习 第八章 数列练习

2021年高考数学总复习 第八章 数列练习1.定义:⑴等差数列 ;⑵等比数列 N)n 2,(n )0(}1n 1-n 2n 1n n ∈≥⋅=⇔≠=⇔++a a a q q a a a n{ )0k ,1q ,0q (kq k Sn 0,(n ≠≠≠-=⇔=⇔的常数)均为不为q c cq a n n ; 2.等差、等比数列性质等差数列 等比数列通项公式前n 项和 qq a a qq a S q na S q n n n n --=--=≠==11)1(1.2;1.1111时,时, 性质 ①a n =a m + (n -m)d, ①a n =a m q n-m ;②m+n=p+q 时a m +a n =a p +a q ②m+n=p+q 时a m a n =a p a q③成AP ③成GP④成AP, ④成GP,真题再现:一、选择题1.(xx )已知数列满足{}12430,,103n n n a a a a ++==-则的前项和等于( )A .B .C .D .2 .(xx 安徽)设为等差数列的前项和,,则=( )A .B .C .D .23 .设首项为,公比为错误!未找到引用源。

的等比数列的前项和为,则( )A .B .C .D .4 .(xx 年高考辽宁卷(文))下面是关于公差的等差数列的四个命题:其中的真命题为( )A .B .C .D .5.(广东卷文)已知等比数列的公比为正数,且·=2,=1,则= ( )A. B. C. D.26.已知为等差数列,,则等于( )A. -1B. 1C. 3D.77.(江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, ,则等于( )A. 18B. 24C. 60D. 908.(湖南)设是等差数列的前n 项和,已知,,则等于( )A .13B .35C .49D . 639.(福建卷理)等差数列的前n 项和为,且 =6,=4, 则公差d 等于( )A .1B C.- 2 D 310.(辽宁卷文)已知为等差数列,且-2=-1, =0,则公差d=()A.-2B.-C.D.211.(四川卷文)等差数列{}的公差不为零,首项=1,是和的等比中项,则数列的前10项之和是()A. 90B. 100C. 145D. 19012.(重庆卷文)设是公差不为0的等差数列,且成等比数列,则的前项和=()A.B.C.D.二、填空题1 .(xx年高考重庆卷(文))若2、、、、9成等差数列,则____________.2 .(xx年高考北京卷(文))若等比数列满足,则公比=__________;前项=_____________.3 .(xx年高考广东卷(文))设数列是首项为,公比为的等比数列,则________4 .(xx年高考江西卷(文))某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵树是前一天的2倍,则需要的最少天数n(n∈N*)等于_____________.5 .(xx年高考辽宁卷(文))已知等比数列是递增数列,是的前项和,若是方程的两个根,则____________.6.(xx年上海高考数学试题(文科))在等差数列中,若,则_________.7.(全国卷Ⅰ理)设等差数列的前项和为,若,则=8.(浙江理)设等比数列的公比,前项和为,则.9.(北京文)若数列满足:,则;前8项的和 .(用数字作答)10.(全国卷Ⅱ文)设等比数列{}的前n项和为。

2019版高考数学(理科)一轮复习通用版:第八单元数列

2019版高考数学(理科)一轮复习通用版:第八单元数列

第八单元 数 列教材复习课“数列”相关基础知识一课过数列的有关概念[过双基]1.数列的有关概念概念 含义数列 按照一定顺序排列的一列数 数列的项 数列中的每一个数 数列的通项 数列{a n }的第n 项a n通项公式 如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式前n 项和数列{a n }中,S n =a 1+a 2+…+a n 叫做数列的前n 项和2.a n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[小题速通]1.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21的值为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 2.数列{a n }满足a 1=3,a n +1=a n -1a n (n ∈N *),则a 2 018=( )A.12 B .3 C .-12D.23 解析:选D 由a 1=3,a n +1=a n -1a n ,得a 2=a 1-1a 1=23,a 3=a 2-1a 2=-12,a 4=a 3-1a 3=3,……,由上可得,数列{a n }是以3为周期的周期数列,故a 2 018=a 672×3+2=a 2=23.3.已知数列{a n }满足a n =32n -11(n ∈N *),前n 项的和为S n ,则关于a n ,S n 的叙述正确的是( ) A .a n ,S n 都有最小值 B .a n ,S n 都没有最小值 C .a n ,S n 都有最大值 D .a n ,S n 都没有最大值解析:选A ①∵a n =32n -11,∴当n ≤5时,a n <0且单调递减;当n ≥6时,a n >0,且单调递减. 故当n =5时,a 5=-3为a n 的最小值;②由①的分析可知:当n ≤5时,a n <0;当n ≥6时,a n >0.故可得S 5为S n 的最小值. 综上可知,a n ,S n 都有最小值.4.已知数列{a n }中,a 1=1,a n +1=a n +2n +1(n ∈N *),则a 5=________.解析:依题意得a n +1-a n =2n +1,a 5=a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+(a 5-a 4)=1+3+5+7+9=25. 答案:25[清易错]1.易混项与项数,它们是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n-S n -1的形式,但它只适用于n ≥2的情形.1.已知数列的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }中的项 B .3只是数列{a n }中的第2项 C .3只是数列{a n }中的第6项 D .3是数列{a n }中的第2项或第6项解析:选D 令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项. 2.已知数列{a n }的前n 项和为S n =3+2n ,则数列{a n }的通项公式为________.解析:当n =1时,a 1=S 1=3+2=5;当n ≥2时,a n =S n -S n -1=3+2n -(3+2n -1)=2n -2n -1=2n -1.因为当n =1时,不符合a n =2n -1,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2等差数列1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项. 2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. [小题速通]1.在等差数列{a n }中,已知a 2与a 4是方程x 2-6x +8=0的两个根,若a 4>a 2,则a 2 018=( ) A .2 018 B .2 017 C .2 016D .2 015解析:选A 因为a 2与a 4是方程x 2-6x +8=0的两个根,且a 4>a 2,所以a 2=2,a 4=4,则公差d =1,所以a 1=1,则a 2 018=2 018.2.在等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和,则S 5=( ) A .3 B .4 C .5D .6解析:选C ∵等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和, ∴a 2+a 3+a 4=3a 3=3, 解得a 3=1,∴S 5=52(a 1+a 5)=5a 3=5.3.正项等差数列{a n }的前n 项和为S n ,已知a 4+a 10-a 27+15=0,则S 13=( )A .-39B .5C .39D .65解析:选D ∵正项等差数列{a n }的前n 项和为S n , a 4+a 10-a 27+15=0,∴a 27-2a 7-15=0,解得a 7=5或a 7=-3(舍去), ∴S 13=132(a 1+a 7)=13a 7=13×5=65.4.已知等差数列{a n }的前n 项和为S n ,且3a 3=a 6+4.若S 5<10,则a 2的取值范围是( )A .(-∞,2)B .(-∞,0)C .(1,+∞)D .(0,2)解析:选A 设等差数列{a n }的公差为d ,∵3a 3=a 6+4, ∴3(a 2+d )=a 2+4d +4,可得d =2a 2-4. ∵S 5<10,∴5(a 1+a 5)2=5(a 2+a 4)2=5(2a 2+2d )2=5(3a 2-4)<10,解得a 2<2. ∴a 2的取值范围是(-∞,2).5.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 [清易错]1.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件. 2.注意区分等差数列定义中同一个常数与常数的区别.1.(2018·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 的值为( )A .18B .19C .20D .21解析:选C 由a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.2.在数列{a n }中,若a 1=-2,且对任意的n ∈N *,有2a n +1=1+2a n ,则数列{a n }前10项的和为( ) A .2 B .10 C.52D.54解析:选C 由2a n +1=1+2a n ,可得a n +1-a n =12,即数列{a n }是以-2为首项,12为公差的等差数列,则a n =n -52,所以数列{a n }的前10项的和S 10=10×⎝⎛⎭⎫-2+522=52.等比数列1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)都是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍然是等比数列; (4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .[小题速通]1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3.2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:选B 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73.3.设数列{a n }是等比数列,公比q =2,前n 项和为S n ,则S 4a 3的值为( )A.154B.152C.74D.72解析:选A 根据等比数列的公式,得S 4a 3=a 1(1-q 4)1-q a 1q 2=1-q 4(1-q )q 2=1-24(1-2)×22=154. 4.已知等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16,则数列{a n }的前2 018项的和为( ) A .8 064 B .4 C .-4D .0解析:选D ∵等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16, ∴a 3a 5=a 2a 6=16,∴a 3,a 5是方程x 2-8x +16=0的两个根, 解得a 3=a 5=4, ∴4q 2=4,∵q ≠1,∴q =-1,∴a 1=a 3q 2=4,∴数列{a n }的前2 018项的和为 S 2 018=4[1-(-1)2 018]1-(-1)=0.5.(2018·信阳调研)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( ) A.12 B.22C. 2D .2解析:选B 因为{a n }是等比数列,所以a 5a 7=a 26=4a 24,所以a 6=2a 4,q 2=a 6a 4=2,又q >0, 所以q =2,a 1=a 2q =22.[清易错]1.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.1.设数列{a n }为等比数列,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 解析:当q ≠1时,由题意,a 1(1-q 3)1-q =3a 1q 2,即1-q 3=3q 2-3q 3,整理得2q 3-3q 2+1=0,解得q =-12.当q =1时,S 3=3a 3,显然成立. 故q =-12或1.答案:-12或1一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4D .8解析:选C 设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3da 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 2.(2018·江西六校联考)在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( ) A .3 B.17 C .9D .13解析:选A 由a 3a 5a 7=-33,得a 35=-33,即a 5=-3,故a 2a 8=a 25=3.3.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 018=( ) A .8 B .6 C .4D .2解析:选D 由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 018=a 335×6+8=a 8=2.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2,n ∈N *),则a 7=( ) A .53 B .54 C .55D .109解析:选C a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44 B .45 C.13×(46-1) D.14×(45-1) 解析:选B 由a n +1=3S n ,得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n +1=4a n ,n ≥2,则数列{a n }从第二项起构成等比数列,所以S 6=a 73=3×453=45.6.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有S n T n =n n +1,则a 5b 5等于( )A.34 B.56 C.910D.1011解析:选C ∵S 9=9(a 1+a 9)2=9a 5,T 9=9(b 1+b 9)2=9b 5, ∴a 5b 5=S 9T 9=910. 7.已知数列{a n }是首项为1的等比数列,S n 是其前n 项和,若5S 2=S 4,则log 4a 3的值为( ) A .1 B .2 C .0或1D .0或2 解析:选C 由题意得,等比数列{a n }中,5S 2=S 4,a 1=1, 所以5(a 1+a 2)=a 1+a 2+a 3+a 4, 即5(1+q )=1+q +q 2+q 3,q 3+q 2-4q -4=0,即(q +1)(q 2-4)=0, 解得q =-1或±2,当q =-1时,a 3=1,log 4a 3=0. 当q =±2时,a 3=4,log 4a 3=1. 综上所述,log 4a 3的值为0或1.8.设数列{a n }是公差为d (d >0)的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( ) A .75 B .90 C .105D .120解析:选C 由a 1+a 2+a 3=15得3a 2=15,解得a 2=5,由a 1a 2a 3=80,得(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(d =-3舍去),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105.二、填空题9.若数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,则数列{a n }的通项公式为________.解析:当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13, 两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13满足a n =13n ,所以a n =13n .答案:a n =13n10.数列{a n }的前n 项和为S n ,若S n =2a n -1,则a n =________. 解析:∵S n =2a n -1,① ∴S n -1=2a n -1-1(n ≥2),② ①-②得a n =2a n -2a n -1, 即a n =2a n -1.∵S 1=a 1=2a 1-1,即a 1=1,∴数列{a n }为首项是1,公比是2的等比数列, 故a n =2n -1.答案:2n -111.已知数列{a n }中,a 2n =a 2n -1+(-1)n ,a 2n +1=a 2n +n ,a 1=1,则a 20=________. 解析:由a 2n =a 2n -1+(-1)n ,得a 2n -a 2n -1=(-1)n , 由a 2n +1=a 2n +n ,得a 2n +1-a 2n =n ,故a 2-a 1=-1,a 4-a 3=1,a 6-a 5=-1,…,a 20-a 19=1. a 3-a 2=1,a 5-a 4=2,a 7-a 6=3,…,a 19-a 18=9. 又a 1=1,累加得:a 20=46. 答案:4612.数列{a n }为正项等比数列,若a 3=3,且a n +1=2a n +3a n -1(n ≥2,n ∈N *),则此数列的前5项和S 5=________.解析:设公比为q (q >0),由a n +1=2a n +3a n -1,可得q 2=2q +3,所以q =3,又a 3=3,则a 1=13,所以此数列的前5项和S 5=13×(1-35)1-3=1213.答案:1213三、解答题13.已知在等差数列{a n }中,a 3=5,a 1+a 19=-18. (1)求公差d 及通项a n ;(2)求数列{a n }的前n 项和S n 及使得S n 取得最大值时n 的值. 解:(1)∵a 3=5,a 1+a 19=-18,∴⎩⎪⎨⎪⎧ a 1+2d =5,2a 1+18d =-18,∴⎩⎪⎨⎪⎧a 1=9,d =-2,∴a n =11-2n . (2)由(1)知,S n =n (a 1+a n )2=n (9+11-2n )2=-n 2+10n =-(n -5)2+25, ∴n =5时,S n 取得最大值.14.已知数列{a n }满足a 12+a 222+a 323+…+a n2n =n 2+n .(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n2,求数列{b n }的前n 项和S n .解:(1)∵a 12+a 222+a 323+…+a n2n =n 2+n ,∴当n ≥2时,a 12+a 222+a 323+…+a n -12n -1=(n -1)2+n -1,两式相减得a n 2n =2n (n ≥2),∴a n =n ·2n +1(n ≥2).又∵当n =1时,a 12=1+1,∴a 1=4,满足a n =n ·2n +1.∴a n =n ·2n +1.(2)∵b n =(-1)n a n 2=n (-2)n ,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n ×(-2)n .-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n -1)×(-2)n +n (-2)n +1,∴两式相减得3S n =(-2)+(-2)2+(-2)3+(-2)4+…+(-2)n -n (-2)n +1=-2[1-(-2)n ]1-(-2)-n (-2)n +1=-(-2)n +1-23-n (-2)n +1=-(3n +1)(-2)n +1+23,∴S n =-(3n +1)(-2)n +1+29.高考研究课(一) 等差数列的3考点——求项、求和及判定 [全国卷5年命题分析]考点 考查频度 考查角度 等差数列通项 5年4考 求通项或某一项 等差数列前n 项和 5年4考 求项数、求和 等差数列的判定5年1考判断数列成等差数列等差数列基本量的运算[典例] (1)设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5 B .5 C .7D .8(2)(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.①求b 1,b 11,b 101;②求数列{b n }的前1 000项和.[解析] (1)法一:由等差数列前n 项和公式可得 S n +2-S n =(n +2)a 1+(n +2)(n +1)2d -⎣⎡⎦⎤na 1+n (n -1)2d =2a 1+(2n +1)d =2+4n +2=36, 解得n =8.法二:由S n +2-S n =a n +2+a n +1=a 1+a 2n +2=36,因此a 2n +2=a 1+(2n +1)d =35,解得n =8. 答案:D(2)①设数列{a n }的公差为d , 由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. ②因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. [方法技巧]等差数列运算的解题思路由等差数列的前n 项和公式及通项公式可知,若已知a 1,d ,n ,a n ,S n 中三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.[即时演练]1.已知数列{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 6=4S 3,则a 10=( ) A.172 B.192 C.910D.89解析:选B ∵S 6=4S 3,公差d =1. ∴6a 1+6×52×1=4×⎝⎛⎭⎫3a 1+3×22×1, 解得a 1=12.∴a 10=12+9×1=192.2.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 4-S 2S 5-S 3的值为( )A .-2B .-3C .2D .3解析:选D 设{a n }的公差为d ,因为a 1,a 3,a 4成等比数列, 所以(a 1+2d )2=a 1(a 1+3d ),可得a 1=-4d , 所以S 4-S 2S 5-S 3=a 3+a 4a 4+a 5=-3d-d=3. 3.(2018·大连联考)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36. (1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4.即所求m 的值为5,k 的值为4.等差数列的判定与证明[典例] (2017·n n -k n -k +1+…+a n -1+a n +1+…+a n+k -1+a n +k =2ka n ,对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”. (1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.[思路点拨] (1)利用等差数列的性质“a n -k +a n +k =2a n ”,构造出{a n }是“P (3)数列”需要满足的条件即可证明;(2)根据等差数列定义、通项公式、中项公式即可证明{a n }为等差数列.[证明] (1)因为{a n }是等差数列,设其公差为d , 则a n =a 1+(n -1)d ,从而,当n ≥4时,a n -k +a n +k =a 1+(n -k -1)d +a 1+(n +k -1)d =2a 1+2(n -1)d =2a n ,k =1,2,3, 所以a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n , 因此等差数列{a n }是“P (3)数列”.(2)数列{a n }既是“P (2)数列”,又是“P (3)数列”,因此, 当n ≥3时,a n -2+a n -1+a n +1+a n +2=4a n ,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d′,所以数列{a n}是等差数列.[方法技巧]等差数列判定与证明的方法方法解读适合题型定义法对于n≥2的任意自然数,a n-a n-1为同一常数⇔{a n}是等差数列解答题中证明问题等差中项法2a n-1=a n+a n-2(n≥3,n∈N*)成立⇔{a n}是等差数列通项公式法a n=pn+q(p,q为常数)对任意的正整数n都成立⇔{a n}是等差数列选择、填空题中的判定问题前n项和公式法验证S n=An2+Bn(A,B是常数)对任意的正整数n 都成立⇔{a n}是等差数列[1.(2016·浙江高考)如图,点列{A n},{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+2,n ∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+2,n∈N*(P≠Q表示点P与Q不重合).若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S2n}是等差数列C.{d n}是等差数列D.{d2n}是等差数列解析:选A由题意,过点A1,A2,A3,…,A n,A n+1,…分别作直线B1B n+1的垂线,高分别记为h1,h2,h3,…,h n,h n+1,…,根据平行线的性质,得h1,h2,h3,…,h n,h n+1,…成等差数列,又S n=12×|B n B n+1|×h n,|B n B n+1|为定值,所以{S n}是等差数列.故选A.2.(2017·全国卷Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =(-2)×[1-(-2)n ]1-(-2)=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2⎣⎡⎦⎤-23+(-1)n 2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.等差数列的性质[典例] (1)已知等差数列{a n 361013a m =8,则m 的值为( ) A .8 B .12 C .6D .4(2)已知数列{a n },{b n }为等差数列,前n 项和分别为S n ,T n ,若S n T n =3n +22n ,则a 7b 7=( )A.4126 B.2314 C.117D.116(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. [解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,即a 8=8,m =8. (2)因为{a n },{b n }为等差数列,且S n T n=3n +22n ,所以a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=13(a 1+a 13)213(b 1+b 13)2=S 13T 13=3×13+22×13=4126.(3)∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. [答案] (1)A (2)A (3)60[方法技巧]等差数列的性质(1)项的性质在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n . [即时演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2018·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3(1+q 2)a 4(1+q 2)=1q =25+1=5-12. 3.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 10b 9+b 12+a 11b 8+b 13=________.解析:∵数列{a n }和{b n }都是等差数列,∴a 10b 9+b 12+a 11b 8+b 13=a 10+a 11b 9+b 12=a 10+a 11b 10+b 11=S 20T 20=7×2020+3=14023. 答案:14023等差数列前n 项和的最值等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用函数法或通项变号法解决等差数列前n 项和S n 的最值问题.n n 1311n [解析] 法一:用“函数法”解题由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0.故当n =7时,S n 最大. 法二:用“通项变号法”解题 由法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. [答案] 7 [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解. (2)通项变号法①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时演练]1.(2018·潍坊模拟)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15 B .S 16 C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20, ∴10a 1+10×92d =20a 1+20×192d ,解得d =-2, ∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( ) A .8 B .9 C .10D .11解析:选B 设数列{a n }的公差为d , ∵a 1=-26,a 8+a 13=5,∴-26+7d -26+12d =5,解得d =3, ∴S n =-26n +n (n -1)2×3=32n 2-552n =32⎝⎛⎭⎫n -5562-3 02524, ∴{a n }的前n 项和S n 取最小值时,n =9.3.已知{a n }是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,则数列{a n }的前n 项和取最大值时,n =________.解析:由S 10=10(a 1+a 10)2=5(a 5+a 6)=0, 可得a 5+a 6=0,∴a 5>0,a 6<0,即数列{a n }的前5项和为最大值,∴n =5. 答案:51.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98. 法二:∵{a n }是等差数列, ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.3.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.4.(2013·全国卷Ⅱ)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d .由题意,a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ), 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .一、选择题1.(2018·厦门一中测试)已知数列{a n }中,a 2=32,a 5=98,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 7=( )A.109 B.1110 C.1211D.1312解析:选D 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d ,则1a 5-1=1a 2-1+3d ,即198-1=132-1+3d ,解得d =2,所以1a 7-1=1a 2-1+5d =12,解得a 7=1312.2.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列, 设首项a 1=4,则a 5=2.由等差数列的性质得a 2+a 4=a 1+a 5=6, 所以第二尺与第四尺的重量之和为6斤.3.(2018·银川一中月考)在等差数列{a n }中,首项a 1>0,公差d ≠0,前n 项和为S n (n ∈N *),有下列命题: ①若S 3=S 11,则必有S 14=0;②若S 3=S 11,则必有S 7是S n 中的最大项; ③若S 7>S 8,则必有S 8>S 9; ④若S 7>S 8,则必有S 6>S 9. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选D 对于①,若S 11-S 3=4(a 1+a 14)=0,即a 1+a 14=0,则S 14=14(a 1+a 14)2=0,所以①正确;对于②,当S 3=S 11时,易知a 7+a 8=0,又a 1>0,d ≠0,所以a 7>0>a 8,故S 7是S n 中的最大项,所以②正确;对于③,若S 7>S 8,则a 8<0,那么d <0,可知a 9<0,此时S 9-S 8<0,即S 8>S 9,所以③正确; 对于④,若S 7>S 8,则a 8<0,S 9-S 6=a 7+a 8+a 9=3a 8<0,即S 6>S 9,所以④正确.故选D.4.(2018·大同模拟)在等差数列{}a n 中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( ) A .290 B .300 C .580D .600解析:选B 由a 1+a 2+a 3=3a 2=3,得a 2=1. 由a 18+a 19+a 20=3a 19=87,得a 19=29, 所以S 20=20(a 1+a 20)2=10(a 2+a 19)=300. 5.设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n =336,则n 的值为( )A .18B .19C .20D .21解析:选D 因为{a n }是等差数列,所以S 9=9a 5=18,a 5=2,S n =n (a 1+a n )2=n (a 5+a n -4)2=n2×32=16n=336,解得n =21.6.设{a n }是等差数列,d 是其公差,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5D .当n =6或n =7时S n 取得最大值解析:选C 由S 5<S 6,得a 1+a 2+a 3+a 4+a 5<a 1+a 2+a 3+a 4+a 5+a 6,即a 6>0.同理由S 7>S 8,得a 8<0.又S 6=S 7,∴a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7,∴a 7=0,∴B 正确;∵d =a 7-a 6<0,∴A 正确;而C 选项,S 9>S 5,即a 6+a 7+a 8+a 9>0,可得2(a 7+a 8)>0,由结论a 7=0,a 8<0,知C 选项错误;∵S 5<S 6,S 6=S 7>S 8,∴结合等差数列前n 项和的函数特性可知D 正确.故选C.7.等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( ) A .|a 7|>|a 8| B .|a 7|<|a 8| C .|a 7|=|a 8|D .|a 7|=0解析:选B 因为(S 8-S 5)(S 9-S 5)<0, 所以(a 6+a 7+a 8)(a 6+a 7+a 8+a 9)<0, 因为{a n }为等差数列, 所以a 6+a 7+a 8=3a 7, a 6+a 7+a 8+a 9=2(a 7+a 8), 所以a 7(a 7+a 8)<0, 所以a 7与(a 7+a 8)异号. 又公差d >0,所以a 7<0,a 8>0,且|a 7|<|a 8|,故选B. 二、填空题8.在数列{a n }中,a n +1=a n1+3a n,a 1=2,则a 20=________. 解析:由a n +1=a n1+3a n ,a 1=2,可得1a n +1-1a n=3,所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列.所以1a n=12+3(n -1),即a n =26n -5,所以a 20=2115.答案:21159.数列{a n }满足:a 1=1,a n +1=2a n +2n ,则数列{a n }的通项公式为________. 解析:∵a 1=1,a n +1=2a n +2n , ∴a n +12n +1=a n 2n +12,∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 12=12,公差d =12的等差数列,故a n 2n =12+(n -1)×12=12n , 即a n =n ·2n -1.答案:a n =n ·2n -110.设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,S 12=λS 8,则λ=________. 解析:当S 4≠0,且S 8=3S 4,S 12=λS 8时,由等差数列的性质得:S 4,S 8-S 4,S 12-S 8成等差数列, ∴2(S 8-S 4)=S 4+(S 12-S 8), ∴2(3S 4-S 4)=S 4+(λ·3S 4-3S 4), 解得λ=2. 答案:2 三、解答题11.已知数列{a n }是等差数列,且a 1,a 2,a 5成等比数列,a 3+a 4=12. (1)求a 1+a 2+a 3+a 4+a 5;(2)设b n =10-a n ,数列{b n }的前n 项和为S n ,若b 1≠b 2,则n 为何值时,S n 最大?S n 最大值是多少? 解:(1)设{a n }的公差为d , ∵a 1,a 2,a 5成等比数列, ∴(a 1+d )2=a 1(a 1+4d ), 解得d =0或d =2a 1.当d =0时,∵a 3+a 4=12,∴a n =6, ∴a 1+a 2+a 3+a 4+a 5=30;当d ≠0时,∵a 3+a 4=12,∴a 1=1,d =2, ∴a 1+a 2+a 3+a 4+a 5=25.(2)∵b 1≠b 2,b n =10-a n ,∴a 1≠a 2,∴d ≠0, 由(1)知a n =2n -1,∴b n =10-a n =10-(2n -1)=11-2n ,S n =10n -n 2=-(n -5)2+25. ∴当n =5时,S n 取得最大值,最大值为25.12.(2018·沈阳质检)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5. (1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式. 解:(1)设等差数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧2a 1+7d =4,5a 1+5×42d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2, 故a n =2n -7(n ∈N *).(2)由a n =2n -7<0,得n <72,即n ≤3,所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0. 由(1)知S n =n 2-6n ,所以当n ≤3时,T n =-S n =6n -n 2; 当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T 5=13,T n =⎩⎪⎨⎪⎧6n -n 2,n ≤3,n 2-6n +18,n ≥4.13.已知数列{a n }中,a 1=4,a n =a n -1+2n -1+3(n ≥2,n ∈N *).(1)证明数列{a n -2n }是等差数列,并求{a n }的通项公式; (2)设b n =a n2n ,求b n 的前n 项和S n .解:(1)证明:当n ≥2时,a n =a n -1+2n -1+3=a n -1+2n -2n -1+3,∴a n -2n -(a n -1-2n -1)=3.又a 1=4,∴a 1-2=2,故数列{a n -2n }是以2为首项,3为公差的等差数列, ∴a n -2n =2+(n -1)×3=3n -1, ∴a n =2n +3n -1.(2)b n =a n 2n =2n+3n -12n=1+3n -12n , ∴S n =⎝⎛⎭⎫1+22+⎝⎛⎭⎫1+522+…+⎝⎛⎭⎫1+3n -12n =n +⎝⎛⎭⎫22+522+…+3n -12n ,令T n =22+522+…+3n -12n ,①则12T n =222+523+…+3n -12n +1,② ①-②得,12T n =1+322+323+…+32n -3n -12n +1,=1+3×14⎣⎡⎦⎤1-⎝⎛⎭⎫12n-11-12-3n-12n+1=52-3n+52n+1,∴S n=n+5-3n+5 2n.已知数列{a n}的前n项和为S n,a1=3,a n+1=2a n+2n+1-1(n∈N*).(1)求a2,a3;(2)求实数λ使⎩⎨⎧⎭⎬⎫a n+λ2n为等差数列,并由此求出a n与S n;(3)求n的所有取值,使S na n∈N*,说明你的理由.解:(1)∵a1=3,a n+1=2a n+2n+1-1,∴a2=2×3+22-1=9,a3=2×9+23-1=25.(2)∵a1=3,a n+1=2a n+2n+1-1,∴a n+1-1=2(a n-1)+2n+1,∴a n+1-12n+1-a n-12n=1,故λ=-1时,数列⎩⎨⎧⎭⎬⎫a n+λ2n成等差数列,且首项为a1-12=1,公差d=1. ∴a n-12n=n,即a n=n·2n+1.∴S n=(1×2+2×22+3×23+…+n×2n)+n,设T n=1×2+2×22+3×23+…+n×2n,①则2T n=1×22+2×23+3×24+…+n×2n+1,②①-②得,-T n=2+22+23+…+2n-n×2n+1=(1-n)·2n+1-2,∴T n=(n-1)·2n+1+2,∴S n=T n+n=(n-1)·2n+1+2+n.(3)S na n=(n-1)·2n+1+n+2n·2n+1=2+n-2n+1n·2n+1,结合y=2x及y=12x的图象可知2n>n2恒成立,∴2n+1>n,即n-2n+1<0,∵n·2n+1>0,∴S na n<2.当n=1时,S na n=S1a1=1∈N*;当n≥2时,∵a n>0且{a n}为递增数列,∴S n>0且S n>a n,∴S na n>1,即1<S na n<2,∴当n≥2时,S na n∉N*.综上可得n =1. 高考研究课(二)等比数列的3考点——基本运算、判定和应用 [全国卷5年命题分析]考点考查频度 考查角度等比数列的基本运算 5年5考 由项与和的关系求首项、求前n 项和、求项数等 等比数列的判定 5年2考 证明等比数列等比数列的综合应用5年3考求和后放缩法证明不等式,等比数列求项之积的最值等比数列基本量的运算[典例] (1)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n =( )A .4n -1B .4n -1C .2n -1D .2n -1(2)(2018·石家庄模拟)设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *). ①求数列{a n }的通项公式;②若数列{b n }满足b n =1a n ,求数列{b n }前n 项和T n .[解析] (1)设{a n }的公比为q ,∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52, (ⅰ)a 1q +a 1q 3=54, (ⅱ)由(ⅰ)(ⅱ)可得1+q 2q +q 3=2,∴q =12,代入(ⅰ)得a 1=2, ∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n ,∴S n a n=4⎝⎛⎭⎫1-12n 42n =2n-1.答案:D(2)①当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1), 即6a n =9(a n -a n -1),∴a n =3a n -1.∴数列{a n }是首项为13,公比为3的等比数列,其通项公式为a n =13×3n -1=3n -2.②∵b n =1a n =⎝⎛⎭⎫13n -2,∴{b n }是首项为3,公比为13的等比数列,∴T n =b 1+b 2+…+b n =3⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=92⎣⎡⎦⎤1-⎝⎛⎭⎫13n .[方法技巧]解决等比数列有关问题的常用思想方法(1)方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.[即时演练]1.已知数列{a n }是首项a 1=14的等比数列,其前n 项和为S n ,S 3=316,若a m =-1512,则m 的值为( )A .8B .10C .9D .7解析:选A 设数列{a n }的公比为q , 若q =1,则S 3=34≠316,不符合题意,∴q ≠1.由⎩⎨⎧a 1=14,S 3=a 1(1-q 3)1-q=316,得⎩⎨⎧a 1=14q =-12,∴a n =14·⎝⎛⎭⎫-12n -1=⎝⎛⎭⎫-12n +1. 由a m =⎝⎛⎭⎫-12m +1=-1512, 得m =8.2.(2018·汕头模拟)设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列.(1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列, ∴S n =2n -1,又当n ≥2时,a n =S n -S n -1=2n -1-2n -2=2n -2.当n =1时,a 1=1,不适合上式.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+…+a 2n +1=1+2(4n -1)3=22n +1+13.等比数列的判定与证明[典例] (1)已知数列{a n 12n +2n +1n {a n }有下列命题: ①数列{a n }是等差数列; ②数列{a n +1-a n }是等比数列; ③当n ≥2时,a n 都是质数; ④1a 1+1a 2+…+1a n <2,n ∈N *, 则其中正确的命题有( ) A .② B .①② C .③④D .②④(2)已知数列{a n }满足a 1=12,a n =a n -12-a n -1(n ≥2).①求证:⎩⎨⎧⎭⎬⎫1a n-1为等比数列,并求出{a n }的通项公式;②若b n =2n -1a n,求{b n }的前n 项和S n . [解析] (1)∵a n +2=3a n +1-2a n , ∴a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=2为首项、2为公比的等比数列, ∴a n -a n -1=2n -1,a n -1-a n -2=2n -2,…a 2-a 1=21,累加得:a n -a 1=21+22+…+2n -1=2(1-2n -1)1-2=2n -2,。

2021版高考数学一轮复习第八章数列8.1数列(含函数特性)练习理北师大版

2021版高考数学一轮复习第八章数列8.1数列(含函数特性)练习理北师大版

8.1 数列(含函数特征)中心考点·精确研析考点一数列的相关观点及通公式1. 数列 {a n} 中,a 1=1, 当 n≥ 2 且 n∈ N*,a n=,a3+a5= ()A. B. C. D.2. 已知数列 {a n} 的通公式a n=n2-8n+15,3()A. 不是数列 {a n} 中的B. 不过数列 {a n} 中的第 2C. 不过数列 {a n} 中的第 6D. 是数列 {a n} 中的第 2 或第 63. 数列,- , ,-, ⋯的一个通公式()A.a n=(-1) n·B.a n=(-1) n·C.a n=(-1) n+1·D.a n=(-1) n+1·4. 若数列 {a n} 足 a1=1, 且于随意的n∈ N*都有 a n+1=a n+n+1,+ +⋯ +等于()A. B. C. D.5. 在数列 {a n} 中 ,a 1=2,a n+1=a n+ln,a n=()A.2+ln nB.2+(n-1)ln nC.2+nln nD.1+n+ln n【分析】 1. D. 因 a n=(n ≥ 2), 所以 a3= ,a 5= , 所以 a3+a5= + = + =.2. D. 令 a n=3, 即 n2-8n+15=3, 解得 n=2 或 6, 故 3 是数列 {a n} 中的第 2 或第 6.3. D. 数列是分数形式, 分子奇数2n+1, 分母是指数2n, 各的符号由 (-1)n+1 来确立,所以D正确.4. D. 由 a n+1=a n+n+1, 得 a n+1-a n=n+1,a2-a 1=1+1,a 3-a 2=2+1,a 4-a 3=3+1, ⋯ ,a -an-1=(n-1)+1, 以上等式相加 , 得 a -a =2+3+⋯ +(n-1)+n,把 a =1 代入上式得 a =1+2+3+⋯n n11n+(n-1)+n=,所以==2,+ +⋯+=2=2=.5. A. 因 a n+1=a n+ln,所以 a n-a n-1 =ln=ln(n ≥ 2),所以 a n=(a n-a n-1 )+(a n-1 -a n-2)+ ⋯ +(a 2-a 1)+a 1=ln+ln+⋯ +ln+ln 2+2=2+ln=2+ln n(n≥ 2).又 a1=2 合适上式 , 故 a n=2+ln n(n ∈N* ).将 T3 改已知数列的前42,0,2,0,依此数列的通不行能是() A.a n=(-1) n-1+1 B.a n=C.a n=2sinD.a n=cos(n- 1) π+1【分析】选 C. 对 n=1,2,3,4进行考证,a n=2sin不合题意.1.由前几项概括数列通项公式的常用方法及详细策略(1)常用方法 : 察看 ( 察看规律 ) 、比较 ( 比较已知数列 ) 、概括、转变 ( 转变为特别数列 ) 、联想 ( 联想常有的数列)等方法.(2)详细策略 : ①分式中分子、分母的特点;②相邻项的变化特点;③各项的符号特点和绝对值特点;④关于分式还能够考虑对分子、分母各个击破, 或找寻分子、分母之间的关系;⑤关于符号交替出现的状况, 可用 (-1)k k+1*办理 .或 (-1),k ∈ N2.递推公式推导通项公式的方法(1)累加法 :a n+1-a n=f(n).(2)累乘法 :=f(n).(3) 待定系数法 :a n+1=pa n+q( 此中 p,q 均为常数 ,pq(p-1)≠ 0).把原递推公式转变为:a n+1-t=p(a n-t),此中t=, 再利用换元法转变为等比数列求解.【秒杀绝招】1.代入法解 T2 依据选项可直接把n=2 或 n=6 代入查验 .2.特值查验法解T3 先利用清除法清除 A、 B, 而后可直接把n=3 代入查验清除 C.考点二a n与 S n的关系及其应用【典例】 1. 设数列 {a n} 的前 n 项和为 S n, 且 S n =2(a n-1)(n ∈N* ), 则 a n= ()A.2nB.2n-1C.2 nD.2 n-12. 设 S n是数列 {a n} 的前 n 项和 , 且 a1=-1,a n+1=S n S n+1, 求 a n.【解题导思】序号联想解题(1) 看到 a n 与 S n 的关系 , 想到利用 a n =S n -S n-1 (n ≥ 2) 化 a n 与 a n-1的关系1(2) 也能够先 n=1,n=2,n=3 行清除(1) 利用 a n+1=S n+1-S n 化 S n+1 与 S n 的关系2, 并 n=1nnnn-1n能否建立(2) 求得 S , 代入 a =S -S(n ≥ 2) 得 a1111nnn-1nn-1,【分析】 1. C. 当 n=1 ,a =S =2(a -1), 可得 a =2, 当 n ≥ 2 ,a =S -S=2a -2a 所以 a n =2a n-1 ,所以数列 {a n } 首 2, 公比 2 的等比数列 ,所以 a n =2n .【一 多解】 C.利用 推关系求出a =2,a =4,a 3=8, 易确立 C.122. 由已知得 a n+1=S n+1-S n =S n+1S n , 两 同 除以 S n+1S n ,得- =-1,故数列是以 -1 首 ,-1 公差的等差数列 , =-1-(n-1)=-n, 所以 S n =- .当 n ≥ 2,a n =S n -S n-1 =- + = ,故 a n =【答 模板微 】本例2 的模板化 程:建模板 : 当 n=1,a 1=S 1=-1,⋯⋯⋯⋯求首当 n ≥ 2 ,a =S -Sn-1 =-+=, ⋯⋯⋯⋯作差求通nna 1=-1 不合适 a n = , ⋯ ⋯⋯⋯故 a n = ⋯⋯⋯⋯套模板 : 已知数列 {a n} 的前 n 和 S n=n2+2n+1,a n=________.【分析】当n=1 ,a 1=S1=1+2+1=4,⋯⋯⋯⋯求首当 n≥ 2 ,a n=S n-S n-1 =2n+1, ⋯⋯⋯⋯作差求通a1=4 不合适 a n=2n+1,⋯⋯⋯⋯故 a n=⋯⋯⋯⋯答案 :1.已知 S n求 a n的三个步(1)先利用 a1=S1求出 a1.(2)用 n-1 替 S n中的 n 获得一个新的关系, 利用 a n=S n-S n-1 (n ≥ 2) 即可求出当 n≥ 2 a n的表达式 .(3)注意 n=1 的表达式能否能够与n≥ 2 的表达式归并 .2.S n与 a n关系的求解思路依据所求果的不一样要求, 将向不一样的两个方向化 .(1)利用 a n=S n-S n-1 (n ≥ 2)化只含 S n,S n-1的关系式 , 再求解 .(2)利用 S-Sn-1=a (n ≥ 2)化只含 a ,an-1的关系式 , 再求解 .n n n1. 已知数列 {a n} 的前 n 和 S n=2n-3, 数列 {a n} 的通公式是________.【分析】当n=1,a 1=S1=2-3=-1;当 n≥ 2 ,a n=S n-S n-1 =(2 n-3)-(2n-1 -3)=2n -2 n-1 =2n-1 . 当 n=1 不足 , 故 a n=答案 :a n=2. 已知数列 {a n} 的前 n 和 S n,a 1=1,S n=2a n+1,S n=()A.2 n-1B.C. D.【分析】选 B. 由已知 S =2an+1得 S=2(S -S ), 即 2S =3S,= , 而 S =a =1, 所以 S =.nnn+1nn+1n11n【变式备选】已知数列 {a n } 的前 n 项和为 S n , 求 {a n } 的通项公式 .n2nn(1)S =2n -3n.(2)S=3 +b.【分析】 (1) 当 n=1 时 ,a =S =2-3=-1;当 n ≥ 2 时 ,a =S-S2-3n)-[2(n-1)2因为 a 也适n-1 =(2n-3(n-1)]=4n-5.11nn1合此等式 , 所以 a n =4n-5.(2)a 1=S 1=3+b,当 n ≥ 2 时 ,a n =S n -S n-1 =(3 n +b)-(3 n-1 +b)=2 · 3n-1 . 当 b=-1 时 ,a 1 合适此等式 ; 当 b ≠-1 时 ,a 1 不合适此等式 . 所以当 b=-1 时 ,a n =2· 3n-1 ; 当 b ≠-1 时 ,a n =考点三 数列的性质及其应用命1. 考什么 : 考察数列的单一性、周期性、最值问题题2. 怎么考 : 因为数列能够看作是一类特别的函数值, 所以数列也具备函数应具备的性质 , 所以经常精以数列为载体 , 考察单一性、周期性以及最值等问题. 解题过程中经常浸透逻辑推理的中心修养.解3. 新趋向 : 由递推关系求通项公式考察求通项公式的方法成为考试的新趋向 读1. 解决数列单一性问题的三种方法(1) 作差比较法学 (2) 作商比较法霸(3) 联合相应函数的图像直观判断 .好2. 解决数列周期性问题的方法方先依据已知条件求出数列的前几项 , 确立数列的周期 , 再依据周期性求值 .法3. 求数列最大项或最小项的方法(1) 利用不等式组 (n ≥ 2) 找到数列的最大项 ;(2) 利用不等式(n ≥ 2) 找到数列的最小.4.交数列的函数特征可利用数形合、分行解数列的性n n1于随意的正整数2-3t-3an≤ 0恒建立 , 正数 t 的【典例】已知增数列 {a },a≥ 0,a=0.n, 不等式 t -最大()A.1B.2C.3D.6【分析】 C. 因数列 {a n} 是增数列 ,又 t 2--3t-3a n=(t-a n-3)(t+a n)≤0,t+a n>0, 所以 t ≤ a n+3 恒建立 ,t ≤ (a n+3) min=a1+3=3, 所以 t max=3.在数列的恒建立中, 若波及求参数的最, 怎样行合理地化?提示 : 在波及求参数的最 , 经常与已知数列的性相关 , 所以解决 , 需要先判断数列的性 .数列的周期性【典例】若数列 {a } 足 a =2,a=, a2 022的()n1n+1A.2B.-3C.-D.【分析】 B. 因 a1=2,a n+1=, 所以 a2==-3, 同理可得 :a =-,a =,a5=2,a =-3,a=-,a8=, ⋯ , 可得 a =a , a=a=a =-3.3467n+4n 2 022505× 4+22在求数列中某一的, 特是的序号大, 考怎样求解?提示 : 在求数列中某一项的值 , 特别是该项的序号较大时 , 应当考虑该数列能否拥有周期性 , 利用周期性即可求出该数列中的某一项 .数列中的最值【典例】数列 {a } 的通项为 a =*是 {a } 中的最大值 , 则 a 的取值(n ∈ N ), 若 an n5n范围是 ________.【分析】当n≤ 4 时 ,a n=2n-1 单一递加 , 所以 n=4 时取最大值 ,a 4=24-1=15. 当 n≥ 5时 ,a n=-n 2+(a-1)n=-+.因为 a5是 {a n} 中的最大值 ,所以解得 9≤ a≤ 12. 所以 a 的取值范围是[9,12].答案 :[9,12]当数列波及最大项或最小项问题时, 除了用不等式组求解, 还能够考虑什么方法?提示 : 解决数列的最值问题 , 除了用不等式组求解 , 还能够将数列看作某个函数 , 利用求函数的最值的方法求数列的最值 .1. 在数列中,a1=2,a n+1=-, 则 a2 020等于 ()A.2B.-C.-D.1【分析】A. 因 a 2=- =- ,a 3=- =- ,a 4=- =2, 所以 a 3n+1=2,a 3n+2=- ,a 3n+3=- , 所以 a 2020=a 3×673+1=2.*2. 已知数列 {a n } 足 a n = (n ∈N ), 数列 {a n } 的最小 是第 ______ .【分析】因 a =, 所以数列 {a } 的最小 必a <0, 即<0,3n-16<0, 进而 n<*. 又 n ∈ N, 所以nnn当 n=5,a n 的 最小 .答案 :53. 已知数列 {a n } 中 ,a n =n 2+λn, 且 {a n } 增数列 , 求 数 λ 的取 范 .【分析】 因 a n+1-a n =(n+1) 2+λ(n+1) -n 2- λn=2n+λ+1, 所以由 {a n } 增数列可得 2n+λ+1>0, 即 λ>-2n-1 全部 n ∈N * 恒建立 . 因 n=1 ,-2n-1 获得最大 -3, 所以 λ>-3, 即 λ∈ (- 3,+ ∞).【一 多解】函数f(n)=n 2+λn 的 像的 称 是n=- , 如 , 只要要 - < , λ>-3, 即 λ∈ (- 3,+ ∞).1.(2020 ·石家庄模 ) 已知在正 等比数列 中 ,a 2 020 =4a 2 018 ,a 2+a 4=20, a 2 020 的个位数字是 ( )A.2B.4C.6D.8【分析】 C. 公比 q(q>0), 依 意得解得 a =q=2, 故 a2 0192 0201个位数字是2个位数字是3个位数字是4的个位数字2 020=2× 2 =2 , 注意到22,24,2 8,21是6,25 的个位数字是 2,2 6 的个位数字是 4, ⋯ , 故 2n 的个位数字的周期4, 而 22 020 =2505× 4, 故其个位数字6.2. 数列 {a n } 的通 公式 a n = , 数列 {a n } 中的最大 是 ( )A.3B.19C.D.【分析】选 C. 令 f(x)=x+(x>0), 运用基本不等式得f(x)≥2, 当且仅当x=3时,等号建立.因为 a n=, 所以≤, 因为 n∈ N* , 故当 n=9 或 n=10 时 ,a n=最大.。

2018-2019学年高考数学(文科)一轮复习通用版:第八单元 数 列

2018-2019学年高考数学(文科)一轮复习通用版:第八单元  数 列

第八单元 数 列教材复习课“数列”相关基础知识一课过1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[小题速通]1.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21的值为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 2.数列{a n }满足a 1=3,a n +1=a n -1a n(n ∈N *),则a 2 018=( )A.12 B .3 C .-12D.23解析:选D由a1=3,a n+1=a n-1a n,得a2=a1-1a1=23,a3=a2-1a2=-12,a4=a3-1a3=3,……,由上可得,数列{a n}是以3为周期的周期数列,故a2 018=a672×3+2=a2=2 3.3.已知数列{a n}满足a n=32n-11(n∈N*),前n项的和为S n,则关于a n,S n的叙述正确的是()A.a n,S n都有最小值B.a n,S n都没有最小值C.a n,S n都有最大值D.a n,S n都没有最大值解析:选A①∵a n=32n-11,∴当n≤5时,a n<0且单调递减;当n≥6时,a n>0,且单调递减.故当n=5时,a5=-3为a n的最小值;②由①的分析可知:当n≤5时,a n<0;当n≥6时,a n>0.故可得S5为S n的最小值.综上可知,a n,S n都有最小值.4.已知数列{a n}中,a1=1,a n+1=a n+2n+1(n∈N*),则a5=________.解析:依题意得a n+1-a n=2n+1,a5=a1+(a2-a1)+(a3-a2)+(a4-a3)+(a5-a4)=1+3+5+7+9=25.答案:25[清易错]1.易混项与项数,它们是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.在利用数列的前n项和求通项时,往往容易忽略先求出a1,而是直接把数列的通项公式写成a n=S n-S n-1的形式,但它只适用于n≥2的情形.1.已知数列的通项公式为a n=n2-8n+15,则()A.3不是数列{a n}中的项B.3只是数列{a n}中的第2项C.3只是数列{a n}中的第6项D.3是数列{a n}中的第2项或第6项解析:选D令a n=3,即n2-8n+15=3,解得n=2或6,故3是数列{a n}中的第2项或第6项.2.已知数列{a n}的前n项和为S n=3+2n,则数列{a n}的通项公式为________.解析:当n=1时,a1=S1=3+2=5;当n≥2时,a n=S n-S n-1=3+2n-(3+2n-1)=2n-2n -1=2n -1.因为当n =1时,不符合a n =2n -1,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥21.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题速通]1.在等差数列{a n }中,已知a 2与a 4是方程x 2-6x +8=0的两个根,若a 4>a 2,则a 2 018=( )A .2 018B .2 017C .2 016D .2 015解析:选A 因为a 2与a 4是方程x 2-6x +8=0的两个根,且a 4>a 2,所以a 2=2,a 4=4,则公差d =1,所以a 1=1,则a 2 018=2 018.2.在等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和,则S 5=( ) A .3 B .4 C .5D .6解析:选C ∵等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和, ∴a 2+a 3+a 4=3a 3=3, 解得a 3=1,∴S 5=52(a 1+a 5)=5a 3=5.3.正项等差数列{a n }的前n 项和为S n ,已知a 4+a 10-a 27+15=0,则S 13=( )A .-39B .5C .39D .65解析:选D ∵正项等差数列{a n }的前n 项和为S n , a 4+a 10-a 27+15=0,∴a 27-2a 7-15=0,解得a 7=5或a 7=-3(舍去), ∴S 13=132(a 1+a 7)=13a 7=13×5=65. 4.已知等差数列{a n }的前n 项和为S n ,且3a 3=a 6+4.若S 5<10,则a 2的取值范围是( ) A .(-∞,2) B .(-∞,0) C .(1,+∞)D .(0,2)解析:选A 设等差数列{a n }的公差为d ,∵3a 3=a 6+4, ∴3(a 2+d )=a 2+4d +4,可得d =2a 2-4.∵S 5<10,∴5(a 1+a 5)2=5(a 2+a 4)2=5(2a 2+2d )2=5(3a 2-4)<10,解得a 2<2.∴a 2的取值范围是(-∞,2).5.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 [清易错]1.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件. 2.注意区分等差数列定义中同一个常数与常数的区别.1.(2018·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 的值为( )A .18B .19C .20D .21解析:选C 由a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.2.在数列{a n }中,若a 1=-2,且对任意的n ∈N *,有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52D.54解析:选C 由2a n +1=1+2a n ,可得a n +1-a n =12,即数列{a n }是以-2为首项,12为公差的等差数列,则a n =n -52,所以数列{a n }的前10项的和S 10=10×⎝⎛⎭⎫-2+522=52.1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)都是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . [小题速通]1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3.2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:选B 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73.3.设数列{a n }是等比数列,公比q =2,前n 项和为S n ,则S 4a 3的值为( )A.154B.152C.74D.72解析:选A 根据等比数列的公式,得S 4a 3=a 1(1-q 4)1-q a 1q 2=1-q 4(1-q )q 2=1-24(1-2)×22=154. 4.已知等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16,则数列{a n }的前2 018项的和为( )A .8 064B .4C .-4D .0解析:选D ∵等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16, ∴a 3a 5=a 2a 6=16,∴a 3,a 5是方程x 2-8x +16=0的两个根, 解得a 3=a 5=4, ∴4q 2=4,∵q ≠1,∴q =-1,∴a 1=a 3q 2=4,∴数列{a n }的前2 018项的和为 S 2 018=4[1-(-1)2 018]1-(-1)=0.5.(2018·信阳调研)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( ) A.12 B.22C. 2D .2解析:选B 因为{a n }是等比数列,所以a 5a 7=a 26=4a 24,所以a 6=2a 4,q 2=a 6a 4=2,又q >0, 所以q =2,a 1=a 2q =22.[清易错]1.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n-S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.1.设数列{a n }为等比数列,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 解析:当q ≠1时,由题意,a 1(1-q 3)1-q =3a 1q 2,即1-q 3=3q 2-3q 3,整理得2q 3-3q 2+1=0,解得q =-12.当q =1时,S 3=3a 3,显然成立. 故q =-12或1.答案:-12或1一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3da 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 2.(2018·江西六校联考)在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( ) A .3 B.17 C .9D .13解析:选A 由a 3a 5a 7=-33,得a 35=-33,即a 5=-3,故a 2a 8=a 25=3.3.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 018=( ) A .8 B .6 C .4D .2解析:选D 由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 018=a 335×6+8=a 8=2.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2,n ∈N *),则a 7=( ) A .53 B .54 C .55D .109解析:选C a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44 B .45 C.13×(46-1) D.14×(45-1) 解析:选B 由a n +1=3S n ,得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n +1=4a n ,n ≥2,则数列{a n }从第二项起构成等比数列,所以S 6=a 73=3×453=45.6.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有S n T n=n n +1,则a 5b 5等于( )A.34B.56C.910D.1011解析:选C ∵S 9=9(a 1+a 9)2=9a 5,T 9=9(b 1+b 9)2=9b 5, ∴a 5b 5=S 9T 9=910. 7.已知数列{a n }是首项为1的等比数列,S n 是其前n 项和,若5S 2=S 4,则log 4a 3的值为( )A .1B .2C .0或1D .0或2 解析:选C 由题意得,等比数列{a n }中,5S 2=S 4,a 1=1, 所以5(a 1+a 2)=a 1+a 2+a 3+a 4, 即5(1+q )=1+q +q 2+q 3,q 3+q 2-4q -4=0,即(q +1)(q 2-4)=0, 解得q =-1或±2,当q =-1时,a 3=1,log 4a 3=0. 当q =±2时,a 3=4,log 4a 3=1. 综上所述,log 4a 3的值为0或1.8.设数列{a n }是公差为d (d >0)的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .75B .90C .105D .120解析:选C 由a 1+a 2+a 3=15得3a 2=15,解得a 2=5,由a 1a 2a 3=80,得(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(d =-3舍去),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105.二、填空题9.若数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,则数列{a n }的通项公式为________.解析:当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13, 两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13满足a n =13n ,所以a n =13n .答案:a n =13n10.数列{a n }的前n 项和为S n ,若S n =2a n -1,则a n =________. 解析:∵S n =2a n -1,① ∴S n -1=2a n -1-1(n ≥2),② ①-②得a n =2a n -2a n -1, 即a n =2a n -1.∵S 1=a 1=2a 1-1,即a 1=1,∴数列{a n }为首项是1,公比是2的等比数列, 故a n =2n -1.答案:2n -111.已知数列{a n }中,a 2n =a 2n -1+(-1)n ,a 2n +1=a 2n +n ,a 1=1,则a 20=________. 解析:由a 2n =a 2n -1+(-1)n ,得a 2n -a 2n -1=(-1)n , 由a 2n +1=a 2n +n ,得a 2n +1-a 2n =n ,故a 2-a 1=-1,a 4-a 3=1,a 6-a 5=-1,…,a 20-a 19=1. a 3-a 2=1,a 5-a 4=2,a 7-a 6=3,…,a 19-a 18=9. 又a 1=1,累加得:a 20=46. 答案:4612.数列{a n }为正项等比数列,若a 3=3,且a n +1=2a n +3a n -1(n ≥2,n ∈N *),则此数列的前5项和S 5=________.解析:设公比为q (q >0),由a n +1=2a n +3a n -1,可得q 2=2q +3,所以q =3,又a 3=3,则a 1=13,所以此数列的前5项和S 5=13×(1-35)1-3=1213.答案:1213三、解答题13.已知在等差数列{a n }中,a 3=5,a 1+a 19=-18. (1)求公差d 及通项a n ;(2)求数列{a n }的前n 项和S n 及使得S n 取得最大值时n 的值. 解:(1)∵a 3=5,a 1+a 19=-18,∴⎩⎪⎨⎪⎧ a 1+2d =5,2a 1+18d =-18,∴⎩⎪⎨⎪⎧a 1=9,d =-2,∴a n =11-2n . (2)由(1)知,S n =n (a 1+a n )2=n (9+11-2n )2=-n 2+10n =-(n -5)2+25, ∴n =5时,S n 取得最大值.14.已知数列{a n }满足a 12+a 222+a 323+…+a n2n =n 2+n .(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n2,求数列{b n }的前n 项和S n .解:(1)∵a 12+a 222+a 323+…+a n2n =n 2+n ,∴当n ≥2时,a 12+a 222+a 323+…+a n -12n -1=(n -1)2+n -1,两式相减得a n 2n =2n (n ≥2),∴a n =n ·2n +1(n ≥2).又∵当n =1时,a 12=1+1,∴a 1=4,满足a n =n ·2n +1.∴a n =n ·2n +1.(2)∵b n =(-1)n a n 2=n (-2)n ,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n ×(-2)n .-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n -1)×(-2)n +n (-2)n +1,∴两式相减得3S n =(-2)+(-2)2+(-2)3+(-2)4+…+(-2)n -n (-2)n+1=-2[1-(-2)n ]1-(-2)-n (-2)n +1=-(-2)n +1-23-n (-2)n +1=-(3n +1)(-2)n +1+23,∴S n =-(3n +1)(-2)n +1+29.高考研究课(一) 等差数列的3考点——求项、求和及判定 [全国卷5年命题分析][典例] (1)设S n n 1S n +2-S n =36,则n =( )A .5B .5C .7D .8(2)(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.①求b 1,b 11,b 101;②求数列{b n }的前1 000项和.[解析] (1)法一:由等差数列前n 项和公式可得S n +2-S n =(n +2)a 1+(n +2)(n +1)2d -⎣⎡⎦⎤na 1+n (n -1)2d =2a 1+(2n +1)d =2+4n +2=36, 解得n =8.法二:由S n +2-S n =a n +2+a n +1=a 1+a 2n +2=36,因此a 2n +2=a 1+(2n +1)d =35,解得n =8.答案:D(2)①设数列{a n }的公差为d , 由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. ②因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. [方法技巧]等差数列运算的解题思路由等差数列的前n 项和公式及通项公式可知,若已知a 1,d ,n ,a n ,S n 中三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.[即时演练]1.已知数列{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 6=4S 3,则a 10=( ) A.172 B.192 C.910D.89解析:选B ∵S 6=4S 3,公差d =1. ∴6a 1+6×52×1=4×⎝⎛⎭⎫3a 1+3×22×1,解得a 1=12.∴a 10=12+9×1=192.2.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 4-S 2S 5-S 3的值为( )A .-2B .-3C .2D .3解析:选D 设{a n }的公差为d ,因为a 1,a 3,a 4成等比数列, 所以(a 1+2d )2=a 1(a 1+3d ),可得a 1=-4d , 所以S 4-S 2S 5-S 3=a 3+a 4a 4+a 5=-3d-d=3. 3.(2018·大连联考)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4.即所求m 的值为5,k 的值为4.[典例] 已知{a n 11n 2n ,且b 4=17. (1)求证:数列{b n }是以-2为公差的等差数列; (2)设数列{b n }的前n 项和为S n ,求S n 的最大值.[思路点拨] (1)利用等比数列以及对数的运算法则,转化证明数列{b n }是以-2为公差的等差数列;(2)求出数列的和,利用二次函数的性质求解最大值即可. [解] (1)证明:设等比数列{a n }的公比为q , 则b n +1-b n =log 2a n +1-log 2a n =log 2a n +1a n =log 2q ,因此数列{b n }是等差数列.又b 11=log 2a 11=3,b 4=17, 所以等差数列{b n }的公差d =b 11-b 47=-2, 故数列{b n }是以-2为公差的等差数列. (2)由(1)知,b n =25-2n ,则S n =n (b 1+b n )2=n (23+25-2n )2=n (24-n )=-(n -12)2+144,于是当n =12时,S n 取得最大值,最大值为144. [方法技巧]等差数列判定与证明的方法1.(2016·浙江高考)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n+2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =(-2)×[1-(-2)n ]1-(-2)=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2⎣⎡⎦⎤-23+(-1)n 2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.[典例] (1)n 3610a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(2)已知数列{a n },{b n }为等差数列,前n 项和分别为S n ,T n ,若S n T n =3n +22n ,则a 7b 7=( )A.4126 B.2314 C.117D.116(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.[解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,即a 8=8,m =8.(2)因为{a n },{b n }为等差数列,且S n T n=3n +22n ,所以a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=13(a 1+a 13)213(b 1+b 13)2=S 13T 13=3×13+22×13=4126.(3)∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. [答案] (1)A (2)A (3)60 [方法技巧]等差数列的性质(1)项的性质在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n . [即时演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2018·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3(1+q 2)a 4(1+q 2)=1q =25+1=5-12. 3.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 10b 9+b 12+a 11b 8+b 13=________.解析:∵数列{a n }和{b n }都是等差数列,∴a 10b 9+b 12+a 11b 8+b 13=a 10+a 11b 9+b 12=a 10+a 11b 10+b 11=S 20T 20=7×2020+3=14023. 答案:14023等差数列前n 项和的最值等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用函数法或通项变号法解决等差数列前n 项和S n 的最值问题.[典例] 等差数列{a n n 1311n n 的值为________.[解析] 法一:用“函数法”解题 由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0. 故当n =7时,S n 最大. 法二:用“通项变号法”解题 由法一可知,d =-213a 1. 要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. [答案] 7 [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时演练]1.(2018·潍坊模拟)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20, ∴10a 1+10×92d =20a 1+20×192d ,解得d =-2, ∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( )A .8B .9C .10D .11解析:选B 设数列{a n }的公差为d , ∵a 1=-26,a 8+a 13=5,∴-26+7d -26+12d =5,解得d =3, ∴S n =-26n +n (n -1)2×3=32n 2-552n =32⎝⎛⎭⎫n -5562-3 02524, ∴{a n }的前n 项和S n 取最小值时,n =9.3.已知{a n }是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,则数列{a n }的前n 项和取最大值时,n =________.解析:由S 10=10(a 1+a 10)2=5(a 5+a 6)=0, 可得a 5+a 6=0,∴a 5>0,a 6<0,即数列{a n }的前5项和为最大值,∴n =5. 答案:51.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98. 法二:∵{a n }是等差数列, ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.3.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.4.(2013·全国卷Ⅱ)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d .由题意,a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ), 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .一、选择题1.(2018·厦门一中测试)已知数列{a n }中,a 2=32,a 5=98,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 7=( )A.109 B.1110 C.1211D.1312解析:选D 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d ,则1a 5-1=1a 2-1+3d ,即198-1=132-1+3d ,解得d =2,所以1a 7-1=1a 2-1+5d =12,解得a 7=1312.2.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列,设首项a1=4,则a5=2.由等差数列的性质得a2+a4=a1+a5=6,所以第二尺与第四尺的重量之和为6斤.3.(2018·银川一中月考)在等差数列{a n}中,首项a1>0,公差d≠0,前n项和为S n(n∈N*),有下列命题:①若S3=S11,则必有S14=0;②若S3=S11,则必有S7是S n中的最大项;③若S7>S8,则必有S8>S9;④若S7>S8,则必有S6>S9.其中正确命题的个数是()A.1 B.2C.3 D.4解析:选D对于①,若S11-S3=4(a1+a14)=0,即a1+a14=0,则S14=14(a1+a14)2=0,所以①正确;对于②,当S3=S11时,易知a7+a8=0,又a1>0,d≠0,所以a7>0>a8,故S7是S n中的最大项,所以②正确;对于③,若S7>S8,则a8<0,那么d<0,可知a9<0,此时S9-S8<0,即S8>S9,所以③正确;对于④,若S7>S8,则a8<0,S9-S6=a7+a8+a9=3a8<0,即S6>S9,所以④正确.故选D.4.(2018·大同模拟)在等差数列{}a n中,a1+a2+a3=3,a18+a19+a20=87,则此数列前20项的和等于()A.290 B.300C.580 D.600解析:选B由a1+a2+a3=3a2=3,得a2=1.由a18+a19+a20=3a19=87,得a19=29,所以S20=20(a1+a20)2=10(a2+a19)=300.5.设等差数列{a n}的前n项和为S n,且S9=18,a n-4=30(n>9),若S n=336,则n的值为()A.18 B.19C.20 D.21解析:选D因为{a n}是等差数列,所以S9=9a5=18,a5=2,S n=n(a1+a n)2=n(a5+a n-4)2=n 2×32=16n =336,解得n =21. 6.设{a n }是等差数列,d 是其公差,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .当n =6或n =7时S n 取得最大值解析:选C 由S 5<S 6,得a 1+a 2+a 3+a 4+a 5<a 1+a 2+a 3+a 4+a 5+a 6,即a 6>0.同理由S 7>S 8,得a 8<0.又S 6=S 7,∴a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7,∴a 7=0,∴B 正确;∵d =a 7-a 6<0,∴A 正确;而C 选项,S 9>S 5,即a 6+a 7+a 8+a 9>0,可得2(a 7+a 8)>0,由结论a 7=0,a 8<0,知C 选项错误;∵S 5<S 6,S 6=S 7>S 8,∴结合等差数列前n 项和的函数特性可知D 正确.故选C.7.等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( )A .|a 7|>|a 8|B .|a 7|<|a 8|C .|a 7|=|a 8|D .|a 7|=0解析:选B 因为(S 8-S 5)(S 9-S 5)<0,所以(a 6+a 7+a 8)(a 6+a 7+a 8+a 9)<0,因为{a n }为等差数列,所以a 6+a 7+a 8=3a 7,a 6+a 7+a 8+a 9=2(a 7+a 8),所以a 7(a 7+a 8)<0,所以a 7与(a 7+a 8)异号.又公差d >0,所以a 7<0,a 8>0,且|a 7|<|a 8|,故选B.二、填空题8.在数列{a n }中,a n +1=a n 1+3a n,a 1=2,则a 20=________. 解析:由a n +1=a n 1+3a n,a 1=2, 可得1a n +1-1a n=3, 所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列. 所以1a n=12+3(n -1),即a n =26n -5,所以a 20=2115. 答案:21159.数列{a n }满足:a 1=1,a n +1=2a n +2n ,则数列{a n }的通项公式为________. 解析:∵a 1=1,a n +1=2a n +2n ,∴a n +12n +1=a n 2n +12, ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 12=12,公差d =12的等差数列, 故a n 2n =12+(n -1)×12=12n , 即a n =n ·2n -1. 答案:a n =n ·2n -1 10.设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,S 12=λS 8,则λ=________. 解析:当S 4≠0,且S 8=3S 4,S 12=λS 8时,由等差数列的性质得:S 4,S 8-S 4,S 12-S 8成等差数列,∴2(S 8-S 4)=S 4+(S 12-S 8),∴2(3S 4-S 4)=S 4+(λ·3S 4-3S 4),解得λ=2.答案:2三、解答题11.已知数列{a n }是等差数列,且a 1,a 2,a 5成等比数列,a 3+a 4=12.(1)求a 1+a 2+a 3+a 4+a 5;(2)设b n =10-a n ,数列{b n }的前n 项和为S n ,若b 1≠b 2,则n 为何值时,S n 最大?S n 最大值是多少?解:(1)设{a n }的公差为d ,∵a 1,a 2,a 5成等比数列,∴(a 1+d )2=a 1(a 1+4d ),解得d =0或d =2a 1.当d =0时,∵a 3+a 4=12,∴a n =6,∴a 1+a 2+a 3+a 4+a 5=30;当d ≠0时,∵a 3+a 4=12,∴a 1=1,d =2,∴a 1+a 2+a 3+a 4+a 5=25.(2)∵b 1≠b 2,b n =10-a n ,∴a 1≠a 2,∴d ≠0,由(1)知a n =2n -1,∴b n =10-a n =10-(2n -1)=11-2n ,S n =10n -n 2=-(n -5)2+25. ∴当n =5时,S n 取得最大值,最大值为25.12.(2018·沈阳质检)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5.(1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式. 解:(1)设等差数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧ 2a 1+7d =4,5a 1+5×42d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2, 故a n =2n -7(n ∈N *).(2)由a n =2n -7<0,得n <72,即n ≤3, 所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0. 由(1)知S n =n 2-6n ,所以当n ≤3时,T n =-S n =6n -n 2;当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T 5=13,T n =⎩⎪⎨⎪⎧6n -n 2,n ≤3,n 2-6n +18,n ≥4. 13.已知数列{a n }中,a 1=4,a n =a n -1+2n -1+3(n ≥2,n ∈N *). (1)证明数列{a n -2n }是等差数列,并求{a n }的通项公式;(2)设b n =a n 2n ,求b n 的前n 项和S n . 解:(1)证明:当n ≥2时,a n =a n -1+2n -1+3=a n -1+2n -2n -1+3, ∴a n -2n -(a n -1-2n -1)=3. 又a 1=4,∴a 1-2=2,故数列{a n -2n }是以2为首项,3为公差的等差数列,∴a n -2n =2+(n -1)×3=3n -1,∴a n =2n +3n -1.(2)b n =a n 2n =2n +3n -12n =1+3n -12n , ∴S n =⎝⎛⎭⎫1+22+⎝⎛⎭⎫1+522+…+⎝⎛⎭⎫1+3n -12n =n +⎝⎛⎭⎫22+522+…+3n -12n , 令T n =22+522+…+3n -12n ,①则12T n =222+523+…+3n -12n +1,② ①-②得,12T n =1+322+323+…+32n -3n -12n +1, =1+3×14⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-3n -12n +1=52-3n +52n +1, ∴S n =n +5-3n +52n.已知数列{a n }的前n 项和为S n ,a 1=3,a n +1=2a n +2n +1-1(n ∈N *). (1)求a 2,a 3;(2)求实数λ使⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列,并由此求出a n 与S n ; (3)求n 的所有取值,使S n a n∈N *,说明你的理由. 解:(1)∵a 1=3,a n +1=2a n +2n +1-1, ∴a 2=2×3+22-1=9,a 3=2×9+23-1=25.(2)∵a 1=3,a n +1=2a n +2n +1-1, ∴a n +1-1=2(a n -1)+2n +1, ∴a n +1-12n +1-a n -12n =1, 故λ=-1时,数列⎩⎨⎧⎭⎬⎫a n +λ2n 成等差数列,且首项为a 1-12=1,公差d =1. ∴a n -12n =n ,即a n =n ·2n +1. ∴S n =(1×2+2×22+3×23+…+n ×2n )+n ,设T n =1×2+2×22+3×23+…+n ×2n ,①则2T n =1×22+2×23+3×24+…+n ×2n +1,② ①-②得,-T n =2+22+23+…+2n -n ×2n +1=(1-n )·2n +1-2, ∴T n =(n -1)·2n +1+2, ∴S n =T n +n =(n -1)·2n +1+2+n . (3)S n a n =(n -1)·2n +1+n +2n ·2n +1=2+n -2n +1n ·2n +1, 结合y =2x 及y =12x 的图象可知2n >n 2恒成立, ∴2n +1>n ,即n -2n +1<0,∵n ·2n +1>0,∴S n a n<2.当n =1时,S n a n =S 1a 1=1∈N *; 当n ≥2时,∵a n >0且{a n }为递增数列,∴S n >0且S n >a n ,∴S n a n >1,即1<S n a n <2,∴当n ≥2时,S n a n∉N *. 综上可得n =1.高考研究课(二)等比数列的3考点——基本运算、判定和应用[全国卷5年命题分析][典例] (1)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n =( ) A .4n -1 B .4n -1C .2n -1 D .2n -1 (2)(2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.①若a 3+b 3=5,求{b n }的通项公式;②若T 3=21,求S 3.[解析] (1)设{a n }的公比为q ,∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧ a 1+a 1q 2=52, (ⅰ)a 1q +a 1q 3=54, (ⅱ)由(ⅰ)(ⅱ)可得1+q 2q +q3=2,∴q =12,代入(ⅰ)得a 1=2, ∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n , ∴S n a n=4⎝⎛⎭⎫1-12n 42n=2n -1. 答案:D(2)设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3.(ⅰ)①由a 3+b 3=5得2d +q 2=6.(ⅱ)联立(ⅰ)(ⅱ)解得⎩⎪⎨⎪⎧ d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2. 因此{b n }的通项公式为b n =2n -1. ②由b 1=1,T 3=21,得q 2+q -20=0,解得q =-5或q =4.当q =-5时,由(ⅰ)得d =8,则S 3=21.当q =4时,由(ⅰ)得d =-1,则S 3=-6.[方法技巧]解决等比数列有关问题的常用思想方法(1)方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q. [即时演练]1.已知数列{a n }是首项a 1=14的等比数列,其前n 项和为S n ,S 3=316,若a m =-1512,则m 的值为( )A .8B .10C .9D .7解析:选A 设数列{a n }的公比为q ,若q =1,则S 3=34≠316,不符合题意,∴q ≠1. 由⎩⎨⎧a 1=14,S 3=a 1(1-q 3)1-q =316,得⎩⎨⎧ a 1=14q =-12,∴a n =14·⎝⎛⎭⎫-12n -1=⎝⎛⎭⎫-12n +1. 由a m =⎝⎛⎭⎫-12m +1=-1512, 得m =8.2.(2017·北京高考)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;(2)求和:b 1+b 3+b 5+…+b 2n -1.解:(1)设等差数列{a n }的公差为d .因为⎩⎪⎨⎪⎧a 1=1,a 2+a 4=10, 所以2a 1+4d =10,解得d =2,所以a n =2n -1.(2)设等比数列{b n }的公比为q .因为b 1=1,b 2b 4=a 5,所以b 1q ·b 1q 3=9.解得q 2=3.所以b 2n -1=b 1q 2n -2=3n -1. 从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.[典例] (1)n 12n +2n +1n N *,对数列{a n }有下列命题:①数列{a n }是等差数列;②数列{a n +1-a n }是等比数列;③当n ≥2时,a n 都是质数;④1a 1+1a 2+…+1a n<2,n ∈N *, 则其中正确的命题有( )A .②B .①②C.③④D.②④(2)设数列{a n}的前n项和为S n,已知a1+2a2+3a3+…+na n=(n-1)S n+2n(n∈N*).①求a2,a3的值;②求证:数列{S n+2}是等比数列.[解析](1)∵an+2=3a n+1-2a n,∴a n+2-a n+1=2(a n+1-a n),∴数列{a n+1-a n}是以a2-a1=2为首项、2为公比的等比数列,∴a n-a n-1=2n-1,a n-1-a n-2=2n-2,…a2-a1=21,累加得:a n-a1=21+22+…+2n-1=2(1-2n-1)1-2=2n-2,∴a n=2n-2+a1=2n-1.显然①②③中,只有②正确,又∵1a n=12n-1<12n-1(n≥2),∴1a1+1a2+…+1a n<1+12+122+…+12n-1=1-12n1-12<2,故④正确;综上所述,①③错误,②④正确.答案:D(2)[思路点拨]①令n=1,2,3,即可求出结论;②当n≥2时,a1+2a2+3a3+…+(n-1)a n-1=(n-2)S n-1+2(n-1),与已知式相减,再利用a n=S n-S n-1(n≥2),化简整理,即可得出结论.解:①∵a1+2a2+3a3+…+na n=(n-1)S n+2n(n∈N*),∴当n=1时,a1=2×1=2;当n=2时,a1+2a2=(a1+a2)+4,∴a2=4;当n=3时,a1+2a2+3a3=2(a1+a2+a3)+6,∴a3=8.②证明:∵a1+2a2+3a3+…+na n=(n-1)S n+2n(n∈N*),(ⅰ)∴当n≥2时,a1+2a2+3a3+…+(n-1)a n-1=(n-2)·S n-1+2(n-1).(ⅱ)(ⅰ)-(ⅱ)得na n=(n-1)S n-(n-2)S n-1+2=n(S n-S n-1)-S n+2S n-1+2=na n-S n+2S n-1+2.∴-S n+2S n-1+2=0,即S n=2S n-1+2,。

「精品」全国通用版高考数学一轮复习第八单元数列学案文

「精品」全国通用版高考数学一轮复习第八单元数列学案文

第八单元 数 列教材复习课“数列”相关基础知识一课过1.数列的有关概念2n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[小题速通]1.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21的值为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝ ⎛⎭⎪⎫-32+10×2=72. 2.数列{a n }满足a 1=3,a n +1=a n -1a n(n ∈N *),则a 2 018=( ) A.12B .3C .-12D.23解析:选D 由a 1=3,a n +1=a n -1a n ,得a 2=a 1-1a 1=23,a 3=a 2-1a 2=-12,a 4=a 3-1a 3=3,……, 由上可得,数列{a n }是以3为周期的周期数列, 故a 2 018=a 672×3+2=a 2=23.3.已知数列{a n }满足a n =32n -11(n ∈N *),前n 项的和为S n ,则关于a n ,S n 的叙述正确的是( )A .a n ,S n 都有最小值B .a n ,S n 都没有最小值C .a n ,S n 都有最大值D .a n ,S n 都没有最大值解析:选A ①∵a n =32n -11,∴当n ≤5时,a n <0且单调递减;当n ≥6时,a n >0,且单调递减.故当n =5时,a 5=-3为a n 的最小值;②由①的分析可知:当n ≤5时,a n <0;当n ≥6时,a n >0.故可得S 5为S n 的最小值. 综上可知,a n ,S n 都有最小值.4.已知数列{a n }中,a 1=1,a n +1=a n +2n +1(n ∈N *),则a 5=________.解析:依题意得a n +1-a n =2n +1,a 5=a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+(a 5-a 4)=1+3+5+7+9=25.答案:25[清易错]1.易混项与项数,它们是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.1.已知数列的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }中的项 B .3只是数列{a n }中的第2项 C .3只是数列{a n }中的第6项 D .3是数列{a n }中的第2项或第6项解析:选D 令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.2.已知数列{a n }的前n 项和为S n =3+2n,则数列{a n }的通项公式为________. 解析:当n =1时,a 1=S 1=3+2=5;当n ≥2时,a n =S n -S n -1=3+2n-(3+2n -1)=2n -2n -1=2n -1.因为当n =1时,不符合a n =2n -1,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥21.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -2d =n a 1+a n2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. [小题速通]1.在等差数列{a n }中,已知a 2与a 4是方程x 2-6x +8=0的两个根,若a 4>a 2,则a 2 018=( ) A .2 018 B .2 017 C .2 016D .2 015解析:选A 因为a 2与a 4是方程x 2-6x +8=0的两个根,且a 4>a 2,所以a 2=2,a 4=4,则公差d =1,所以a 1=1,则a 2 018=2 018.2.在等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和,则S 5=( ) A .3 B .4 C .5D .6解析:选C ∵等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和, ∴a 2+a 3+a 4=3a 3=3, 解得a 3=1,∴S 5=52(a 1+a 5)=5a 3=5.3.正项等差数列{a n }的前n 项和为S n ,已知a 4+a 10-a 27+15=0,则S 13=( ) A .-39 B .5 C .39D .65解析:选D ∵正项等差数列{a n }的前n 项和为S n ,a 4+a 10-a 27+15=0,∴a 27-2a 7-15=0,解得a 7=5或a 7=-3(舍去), ∴S 13=132(a 1+a 7)=13a 7=13×5=65.4.已知等差数列{a n }的前n 项和为S n ,且3a 3=a 6+4.若S 5<10,则a 2的取值范围是( ) A .(-∞,2) B .(-∞,0) C .(1,+∞)D .(0,2)解析:选A 设等差数列{a n }的公差为d ,∵3a 3=a 6+4, ∴3(a 2+d )=a 2+4d +4,可得d =2a 2-4. ∵S 5<10,∴a 1+a 52=a 2+a 42=a 2+2d2=5(3a 2-4)<10,解得a 2<2.∴a 2的取值范围是(-∞,2).5.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎪⎫-1,-78 [清易错]1.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件. 2.注意区分等差数列定义中同一个常数与常数的区别.1.(2018·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 的值为( )A .18B .19C .20D .21解析:选C 由a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.2.在数列{a n }中,若a 1=-2,且对任意的n ∈N *,有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52D.54解析:选C 由2a n +1=1+2a n ,可得a n +1-a n =12,即数列{a n }是以-2为首项,12为公差的等差数列,则a n =n -52,所以数列{a n }的前10项的和S 10=10×⎝⎛⎭⎪⎫-2+522=52.1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)都是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k.[小题速通]1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1-271-2=381,解得a 1=3.2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( ) A .2 B.73 C.310D .1或2解析:选B 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73.3.设数列{a n }是等比数列,公比q =2,前n 项和为S n ,则S 4a 3的值为( ) A.154 B.152C.74D.72解析:选A 根据等比数列的公式,得S 4a 3=a 1-q41-qa 1q2=1-q4-q q2=1-24-2=154. 4.已知等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16,则数列{a n }的前2 018项的和为( ) A .8 064 B .4 C .-4D .0解析:选D ∵等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16, ∴a 3a 5=a 2a 6=16,∴a 3,a 5是方程x 2-8x +16=0的两个根, 解得a 3=a 5=4, ∴4q 2=4,∵q ≠1,∴q =-1,∴a 1=a 3q2=4, ∴数列{a n }的前2 018项的和为S 2 018=4[1-- 2 018]1--=0.5.(2018·信阳调研)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( ) A.12 B.22C. 2D .2解析:选B 因为{a n }是等比数列,所以a 5a 7=a 26=4a 24,所以a 6=2a 4,q 2=a 6a 4=2,又q >0, 所以q =2,a 1=a 2q =22. [清易错]1.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n-S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.1.设数列{a n }为等比数列,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 解析:当q ≠1时,由题意,a 1-q 31-q=3a 1q 2,即1-q 3=3q 2-3q 3,整理得2q 3-3q 2+1=0,解得q =-12.当q =1时,S 3=3a 3,显然成立. 故q =-12或1.答案:-12或1一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3da 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.2.(2018·江西六校联考)在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( ) A .3 B.17 C .9D .13解析:选A 由a 3a 5a 7=-33,得a 35=-33,即a 5=-3,故a 2a 8=a 25=3.3.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 018=( ) A .8 B .6 C .4D .2解析:选D 由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 018=a 335×6+8=a 8=2.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2,n ∈N *),则a 7=( ) A .53 B .54 C .55D .109解析:选C a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44B .45C.13×(46-1) D.14×(45-1) 解析:选B 由a n +1=3S n ,得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n+1=4a n ,n ≥2,则数列{a n }从第二项起构成等比数列,所以S 6=a 73=3×453=45.6.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有S n T n =n n +1,则a 5b 5等于( )A.34B.56C.910D.1011解析:选C ∵S 9=a 1+a 92=9a 5,T 9=b 1+b 92=9b 5,∴a 5b 5=S 9T 9=910. 7.已知数列{a n }是首项为1的等比数列,S n 是其前n 项和,若5S 2=S 4,则log 4a 3的值为( ) A .1 B .2 C .0或1D .0或2解析:选C 由题意得,等比数列{a n }中,5S 2=S 4,a 1=1, 所以5(a 1+a 2)=a 1+a 2+a 3+a 4, 即5(1+q )=1+q +q 2+q 3,q 3+q 2-4q -4=0,即(q +1)(q 2-4)=0,解得q =-1或±2,当q =-1时,a 3=1,log 4a 3=0. 当q =±2时,a 3=4,log 4a 3=1. 综上所述,log 4a 3的值为0或1.8.设数列{a n }是公差为d (d >0)的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .75B .90C .105D .120解析:选C 由a 1+a 2+a 3=15得3a 2=15,解得a 2=5,由a 1a 2a 3=80,得(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(d =-3舍去),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105.二、填空题9.若数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,则数列{a n }的通项公式为________.解析:当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13满足a n =13n ,所以a n =13n .答案:a n =13n10.数列{a n }的前n 项和为S n ,若S n =2a n -1,则a n =________. 解析:∵S n =2a n -1,① ∴S n -1=2a n -1-1(n ≥2),② ①-②得a n =2a n -2a n -1, 即a n =2a n -1.∵S 1=a 1=2a 1-1,即a 1=1,∴数列{a n }为首项是1,公比是2的等比数列, 故a n =2n -1.答案:2n -111.已知数列{a n }中,a 2n =a 2n -1+(-1)n,a 2n +1=a 2n +n ,a 1=1,则a 20=________. 解析:由a 2n =a 2n -1+(-1)n,得a 2n -a 2n -1=(-1)n, 由a 2n +1=a 2n +n ,得a 2n +1-a 2n =n ,故a 2-a 1=-1,a 4-a 3=1,a 6-a 5=-1,…,a 20-a 19=1.a 3-a 2=1,a 5-a 4=2,a 7-a 6=3,…,a 19-a 18=9.又a 1=1,累加得:a 20=46. 答案:4612.数列{a n }为正项等比数列,若a 3=3,且a n +1=2a n +3a n -1(n ≥2,n ∈N *),则此数列的前5项和S 5=________.解析:设公比为q (q >0),由a n +1=2a n +3a n -1,可得q 2=2q +3,所以q =3,又a 3=3,则a 1=13,所以此数列的前5项和S 5=13-351-3=1213. 答案:1213三、解答题13.已知在等差数列{a n }中,a 3=5,a 1+a 19=-18. (1)求公差d 及通项a n ;(2)求数列{a n }的前n 项和S n 及使得S n 取得最大值时n 的值. 解:(1)∵a 3=5,a 1+a 19=-18,∴⎩⎪⎨⎪⎧a 1+2d =5,2a 1+18d =-18,∴⎩⎪⎨⎪⎧a 1=9,d =-2,∴a n =11-2n .(2)由(1)知,S n =n a 1+a n2=n+11-2n 2=-n 2+10n =-(n -5)2+25,∴n =5时,S n 取得最大值.14.已知数列{a n }满足a 12+a 222+a 323+…+a n2n =n 2+n .(1)求数列{a n }的通项公式; (2)若b n =-na n2,求数列{b n }的前n 项和S n .解:(1)∵a 12+a 222+a 323+…+a n2n =n 2+n ,∴当n ≥2时,a 12+a 222+a 323+…+a n -12n -1=(n -1)2+n -1,两式相减得a n2n =2n (n ≥2),∴a n =n ·2n +1(n ≥2).又∵当n =1时,a 12=1+1,∴a 1=4,满足a n =n ·2n +1.∴a n =n ·2n +1.(2)∵b n =-na n2=n (-2)n,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n ×(-2)n.-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n -1)×(-2)n +n (-2)n +1,∴两式相减得3S n =(-2)+(-2)2+(-2)3+(-2)4+…+(-2)n-n (-2)n +1=-2[1--n]1---n (-2)n +1=--n +1-23-n (-2)n +1=-n +-n +1+23,∴S n =-n +-n +1+29.高考研究课(一) 等差数列的3考点——求项、求和及判定 [全国卷5年命题分析]等差数列基本量的运算[典例] (1)设S n n 1n +2-S n =36,则n =( ) A .5 B .5 C .7D .8(2)(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.①求b 1,b 11,b 101;②求数列{b n }的前1 000项和.[解析] (1)法一:由等差数列前n 项和公式可得S n +2-S n =(n +2)a 1+n +n +2d -⎣⎢⎡⎦⎥⎤na 1+n n -2d =2a 1+(2n +1)d =2+4n +2=36,解得n =8.法二:由S n +2-S n =a n +2+a n +1=a 1+a 2n +2=36,因此a 2n +2=a 1+(2n +1)d =35,解得n =8. 答案:D(2)①设数列{a n }的公差为d , 由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.②因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. [方法技巧]等差数列运算的解题思路由等差数列的前n 项和公式及通项公式可知,若已知a 1,d ,n ,a n ,S n 中三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.[即时演练]1.已知数列{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 6=4S 3,则a 10=( ) A.172 B.192C.910D.89解析:选B ∵S 6=4S 3,公差d =1.∴6a 1+6×52×1=4×⎝ ⎛⎭⎪⎫3a 1+3×22×1, 解得a 1=12.∴a 10=12+9×1=192.2.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 4-S 2S 5-S 3的值为( )A .-2B .-3C .2D .3解析:选D 设{a n }的公差为d ,因为a 1,a 3,a 4成等比数列, 所以(a 1+2d )2=a 1(a 1+3d ),可得a 1=-4d , 所以S 4-S 2S 5-S 3=a 3+a 4a 4+a 5=-3d-d=3. 3.(2018·大连联考)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36. (1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4.即所求m 的值为5,k 的值为4.[典例] 已知{a n }11n 2n b 4=17. (1)求证:数列{b n }是以-2为公差的等差数列; (2)设数列{b n }的前n 项和为S n ,求S n 的最大值.[思路点拨] (1)利用等比数列以及对数的运算法则,转化证明数列{b n }是以-2为公差的等差数列;(2)求出数列的和,利用二次函数的性质求解最大值即可. [解] (1)证明:设等比数列{a n }的公比为q , 则b n +1-b n =log 2a n +1-log 2a n =log 2a n +1a n=log 2q ,因此数列{b n }是等差数列. 又b 11=log 2a 11=3,b 4=17, 所以等差数列{b n }的公差d =b 11-b 47=-2,故数列{b n }是以-2为公差的等差数列. (2)由(1)知,b n =25-2n , 则S n =n b 1+b n2=n+25-2n 2=n (24-n )=-(n -12)2+144,于是当n =12时,S n 取得最大值,最大值为144. [方法技巧]等差数列判定与证明的方法[1.(2016·浙江高考)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n+2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列 C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q . 由题设可得⎩⎪⎨⎪⎧a 1+q =2,a 1+q +q2=-6.解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =---n]1--=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+-n2n +13=2S n,故S n +1,S n ,S n +2成等差数列.[典例] (1)n 361013=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(2)已知数列{a n },{b n }为等差数列,前n 项和分别为S n ,T n ,若S n T n =3n +22n ,则a 7b 7=( )A.4126 B.2314 C.117D.116(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. [解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,即a 8=8,m =8. (2)因为{a n },{b n }为等差数列,且S n T n =3n +22n,所以a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132b 1+b 132=S 13T 13=3×13+22×13=4126.(3)∵S 10,S 20-S 10,S 30-S 20成等差数列,∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. [答案] (1)A (2)A (3)60 [方法技巧]等差数列的性质(1)项的性质在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n . [即时演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2018·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12B.5+12 C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3+q2a 4+q2=1q=25+1=5-12. 3.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 10b 9+b 12+a 11b 8+b 13=________.解析:∵数列{a n }和{b n }都是等差数列,∴a 10b 9+b 12+a 11b 8+b 13=a 10+a 11b 9+b 12=a 10+a 11b 10+b 11=S 20T 20=7×2020+3=14023. 答案:14023等差数列前n 项和的最值等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用函数法或通项变号法解决等差数列前n 项和S n 的最值问题.n n 1311n ________.[解析] 法一:用“函数法”解题由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,因为a 1>0,所以-a 113<0.故当n =7时,S n 最大. 法二:用“通项变号法”解题 由法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. [答案] 7 [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时演练]1.(2018·潍坊模拟)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n n -12×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( ) A .8 B .9 C .10D .11解析:选B 设数列{a n }的公差为d , ∵a 1=-26,a 8+a 13=5,∴-26+7d -26+12d =5,解得d =3, ∴S n =-26n +n n -2×3=32n 2-552n =32⎝ ⎛⎭⎪⎫n -5562-3 02524,∴{a n }的前n 项和S n 取最小值时,n =9.3.已知{a n }是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,则数列{a n }的前n 项和取最大值时,n =________.解析:由S 10=a 1+a 102=5(a 5+a 6)=0,可得a 5+a 6=0,∴a 5>0,a 6<0,即数列{a n }的前5项和为最大值,∴n =5. 答案:51.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98. 法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.3.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.4.(2013·全国卷Ⅱ)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d .由题意,a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ), 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .一、选择题1.(2018·厦门一中测试)已知数列{a n }中,a 2=32,a 5=98,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 7=( ) A.109 B.1110 C.1211D.1312解析:选D 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d ,则1a 5-1=1a 2-1+3d ,即198-1=132-1+3d ,解得d=2,所以1a 7-1=1a 2-1+5d =12,解得a 7=1312. 2.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列, 设首项a 1=4,则a 5=2.由等差数列的性质得a 2+a 4=a 1+a 5=6, 所以第二尺与第四尺的重量之和为6斤.3.(2018·银川一中月考)在等差数列{a n }中,首项a 1>0,公差d ≠0,前n 项和为S n (n ∈N *),有下列命题:①若S 3=S 11,则必有S 14=0;②若S 3=S 11,则必有S 7是S n 中的最大项; ③若S 7>S 8,则必有S 8>S 9; ④若S 7>S 8,则必有S 6>S 9. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选D 对于①,若S 11-S 3=4(a 1+a 14)=0,即a 1+a 14=0,则S 14=a 1+a 142=0,所以①正确;对于②,当S 3=S 11时,易知a 7+a 8=0,又a 1>0,d ≠0,所以a 7>0>a 8,故S 7是S n 中的最大项,所以②正确;对于③,若S 7>S 8,则a 8<0,那么d <0,可知a 9<0,此时S 9-S 8<0,即S 8>S 9,所以③正确; 对于④,若S 7>S 8,则a 8<0,S 9-S 6=a 7+a 8+a 9=3a 8<0,即S 6>S 9,所以④正确.故选D. 4.(2018·大同模拟)在等差数列{}a n 中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600解析:选B 由a 1+a 2+a 3=3a 2=3,得a 2=1. 由a 18+a 19+a 20=3a 19=87,得a 19=29, 所以S 20=a 1+a 202=10(a 2+a 19)=300.5.设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n =336,则n 的值为( ) A .18 B .19 C .20D .21解析:选D 因为{a n }是等差数列,所以S 9=9a 5=18,a 5=2,S n =n a 1+a n2=n a 5+a n -42=n2×32=16n =336,解得n =21. 6.设{a n }是等差数列,d 是其公差,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .当n =6或n =7时S n 取得最大值解析:选C 由S 5<S 6,得a 1+a 2+a 3+a 4+a 5<a 1+a 2+a 3+a 4+a 5+a 6,即a 6>0.同理由S 7>S 8,得a 8<0.又S 6=S 7,∴a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7,∴a 7=0,∴B 正确;∵d =a 7-a 6<0,∴A 正确;而C 选项,S 9>S 5,即a 6+a 7+a 8+a 9>0,可得2(a 7+a 8)>0,由结论a 7=0,a 8<0,知C 选项错误;∵S 5<S 6,S 6=S 7>S 8,∴结合等差数列前n 项和的函数特性可知D 正确.故选C.7.等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( ) A .|a 7|>|a 8| B .|a 7|<|a 8| C .|a 7|=|a 8|D .|a 7|=0解析:选B 因为(S 8-S 5)(S 9-S 5)<0, 所以(a 6+a 7+a 8)(a 6+a 7+a 8+a 9)<0, 因为{a n }为等差数列, 所以a 6+a 7+a 8=3a 7,a 6+a 7+a 8+a 9=2(a 7+a 8),所以a 7(a 7+a 8)<0, 所以a 7与(a 7+a 8)异号. 又公差d >0,所以a 7<0,a 8>0,且|a 7|<|a 8|,故选B. 二、填空题8.在数列{a n }中,a n +1=a n1+3a n ,a 1=2,则a 20=________.解析:由a n +1=a n1+3a n ,a 1=2,可得1a n +1-1a n=3,所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列.所以1a n =12+3(n -1),即a n =26n -5,所以a 20=2115.答案:21159.数列{a n }满足:a 1=1,a n +1=2a n +2n,则数列{a n }的通项公式为________. 解析:∵a 1=1,a n +1=2a n +2n,∴a n +12n +1=a n 2n +12, ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 12=12,公差d =12的等差数列,故a n 2n =12+(n -1)×12=12n , 即a n =n ·2n -1.答案:a n =n ·2n -110.设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,S 12=λS 8,则λ=________. 解析:当S 4≠0,且S 8=3S 4,S 12=λS 8时,由等差数列的性质得:S 4,S 8-S 4,S 12-S 8成等差数列, ∴2(S 8-S 4)=S 4+(S 12-S 8), ∴2(3S 4-S 4)=S 4+(λ·3S 4-3S 4), 解得λ=2. 答案:2 三、解答题11.已知数列{a n }是等差数列,且a 1,a 2,a 5成等比数列,a 3+a 4=12. (1)求a 1+a 2+a 3+a 4+a 5;(2)设b n =10-a n ,数列{b n }的前n 项和为S n ,若b 1≠b 2,则n 为何值时,S n 最大?S n 最大值是多少?解:(1)设{a n }的公差为d , ∵a 1,a 2,a 5成等比数列, ∴(a 1+d )2=a 1(a 1+4d ), 解得d =0或d =2a 1.当d =0时,∵a 3+a 4=12,∴a n =6, ∴a 1+a 2+a 3+a 4+a 5=30;当d ≠0时,∵a 3+a 4=12,∴a 1=1,d =2, ∴a 1+a 2+a 3+a 4+a 5=25.(2)∵b 1≠b 2,b n =10-a n ,∴a 1≠a 2,∴d ≠0, 由(1)知a n =2n -1,∴b n =10-a n =10-(2n -1)=11-2n ,S n =10n -n 2=-(n -5)2+25. ∴当n =5时,S n 取得最大值,最大值为25.12.(2018·沈阳质检)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5. (1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式.解:(1)设等差数列{a n }的公差为d , 由题意知⎩⎪⎨⎪⎧2a 1+7d =4,5a 1+5×42d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2,故a n =2n -7(n ∈N *).(2)由a n =2n -7<0,得n <72,即n ≤3,所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0. 由(1)知S n =n 2-6n ,所以当n ≤3时,T n =-S n =6n -n 2; 当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T 5=13,T n =⎩⎪⎨⎪⎧6n -n 2,n ≤3,n 2-6n +18,n ≥4.13.已知数列{a n }中,a 1=4,a n =a n -1+2n -1+3(n ≥2,n ∈N *).(1)证明数列{a n -2n}是等差数列,并求{a n }的通项公式; (2)设b n =a n2n ,求b n 的前n 项和S n . 解:(1)证明:当n ≥2时,a n =a n -1+2n -1+3=a n -1+2n -2n -1+3,∴a n -2n-(a n -1-2n -1)=3.又a 1=4,∴a 1-2=2,故数列{a n -2n}是以2为首项,3为公差的等差数列, ∴a n -2n=2+(n -1)×3=3n -1, ∴a n =2n +3n -1. (2)b n =a n 2n =2n +3n -12n =1+3n -12n ,∴S n =⎝ ⎛⎭⎪⎫1+22+⎝ ⎛⎭⎪⎫1+522+…+⎝⎛⎭⎪⎫1+3n -12n=n +⎝ ⎛⎭⎪⎫22+522+…+3n -12n ,令T n =22+522+…+3n -12n ,①则12T n =222+523+…+3n -12n +1,② ①-②得,12T n =1+322+323+…+32n -3n -12n +1,=1+3×14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-3n -12n +1=52-3n +52n +1,∴S n =n +5-3n +52n.已知数列{a n }的前n 项和为S n ,a 1=3,a n +1=2a n +2n +1-1(n ∈N *).(1)求a 2,a 3; (2)求实数λ使⎩⎨⎧⎭⎬⎫a n +λ2n为等差数列,并由此求出a n 与S n ; (3)求n 的所有取值,使S na n∈N *,说明你的理由. 解:(1)∵a 1=3,a n +1=2a n +2n +1-1,∴a 2=2×3+22-1=9,a 3=2×9+23-1=25. (2)∵a 1=3,a n +1=2a n +2n +1-1,∴a n +1-1=2(a n -1)+2n +1,∴a n +1-12n +1-a n -12n=1,故λ=-1时,数列⎩⎨⎧⎭⎬⎫a n +λ2n成等差数列,且首项为a 1-12=1,公差d =1. ∴a n -12n=n ,即a n =n ·2n+1.∴S n =(1×2+2×22+3×23+…+n ×2n)+n , 设T n =1×2+2×22+3×23+…+n ×2n,① 则2T n =1×22+2×23+3×24+…+n ×2n +1,②①-②得,-T n =2+22+23+ (2)-n ×2n +1=(1-n )·2n +1-2,∴T n =(n -1)·2n +1+2,∴S n =T n +n =(n -1)·2n +1+2+n .(3)S n a n =n -n +1+n +2n ·2n +1=2+n -2n +1n ·2n +1, 结合y =2x 及y =12x 的图象可知2n >n 2恒成立,∴2n +1>n ,即n -2n +1<0,∵n ·2n+1>0,∴S na n<2.当n =1时,S n a n =S 1a 1=1∈N *;当n ≥2时,∵a n >0且{a n }为递增数列,∴S n >0且S n >a n ,∴S na n >1,即1<S n a n <2,∴当n ≥2时,S n a n∉N *. 综上可得n =1. 高考研究课(二)等比数列的3考点——基本运算、判定和应用 [全国卷5年命题分析][典例] (1)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=2,a 2+a 4=54,则S na n =( )A .4n -1B .4n-1 C .2n -1D .2n-1(2)(2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a2+b 2=2.①若a 3+b 3=5,求{b n }的通项公式; ②若T 3=21,求S 3.[解析] (1)设{a n }的公比为q ,∵⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52,ⅰa 1q +a 1q 3=54, ⅱ由(ⅰ)(ⅱ)可得1+q 2q +q 3=2,∴q =12,代入(ⅰ)得a 1=2,∴a n =2×⎝ ⎛⎭⎪⎫12n -1=42n ,∴S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝ ⎛⎭⎪⎫1-12n ,∴S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n =2n -1. 答案:D(2)设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =qn -1.由a 2+b 2=2得d +q =3.(ⅰ) ①由a 3+b 3=5得2d +q 2=6.(ⅱ)联立(ⅰ)(ⅱ)解得⎩⎪⎨⎪⎧d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.②由b 1=1,T 3=21,得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由(ⅰ)得d =8,则S 3=21. 当q =4时,由(ⅰ)得d =-1,则S 3=-6. [方法技巧]解决等比数列有关问题的常用思想方法(1)方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1-q n1-q=a 1-a n q1-q. [即时演练]1.已知数列{a n }是首项a 1=14的等比数列,其前n 项和为S n ,S 3=316,若a m =-1512,则m 的值为( )A .8B .10C .9D .7解析:选A 设数列{a n }的公比为q , 若q =1,则S 3=34≠316,不符合题意,∴q ≠1.由⎩⎪⎨⎪⎧a 1=14,S 3=a 1-q31-q=316,得⎩⎪⎨⎪⎧a 1=14q =-12,∴a n =14·⎝ ⎛⎭⎪⎫-12n -1=⎝ ⎛⎭⎪⎫-12n +1.由a m =⎝ ⎛⎭⎪⎫-12m +1=-1512,得m =8.2.(2017·北京高考)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1. 解:(1)设等差数列{a n }的公差为d .因为⎩⎪⎨⎪⎧a 1=1,a 2+a 4=10,所以2a 1+4d =10, 解得d =2,所以a n =2n -1. (2)设等比数列{b n }的公比为q .因为b 1=1,b 2b 4=a 5,所以b 1q ·b 1q 3=9. 解得q 2=3. 所以b 2n -1=b 1q2n -2=3n -1.从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n-12.[典例] (1)n 12n +2n +1n {a n }有下列命题: ①数列{a n }是等差数列; ②数列{a n +1-a n }是等比数列; ③当n ≥2时,a n 都是质数; ④1a 1+1a 2+…+1a n<2,n ∈N *,则其中正确的命题有( ) A .② B .①② C .③④D .②④(2)设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *). ①求a 2,a 3的值;。

高考数学(理)一轮专题重组卷:第一部分 专题八 数列 Word版含解析

高考数学(理)一轮专题重组卷:第一部分 专题八 数列 Word版含解析

专题八 数列本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·青岛模拟)数列1,3,6,10,15,…的一个通项公式是( ) A .a n =n 2-(n -1) B .a n =n 2-1 C .a n =n (n +1)2 D .a n =n (n -1)2答案 C解析 设此数列为{a n },则由题意可得a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,… 仔细观察数列1,3,6,10,15,…可以发现: 1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4, 15=1+2+3+4+5, …所以第n 项为1+2+3+4+5+…+n =n (n +1)2,所以数列1,3,6,10,15,…的通项公式为a n =n (n +1)2.2.(2019·三明模拟)已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,则数列{a n }的通项公式为( )A .a n =2nB .a n =⎩⎨⎧3,n =1,2n ,n ≥2C .a n =2n -1D .a n =2n +1答案 B解析 由log 2(S n +1)=n +1,得S n +1=2n +1.当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=2n.所以数列{a n }的通项公式为a n =⎩⎨⎧3,n =1,2n ,n ≥2.故选B.3.(2019·长春模拟)已知等差数列{a n }的前n 项和为S n ,若S 13<0,S 12>0,则在数列中绝对值最小的项为( )A .第5项B .第6项C .第7项D .第8项 答案 C解析 根据等差数列{a n }的前n 项和公式S n =n (a 1+a n )2,因为⎩⎨⎧S 13<0,S 12>0,所以⎩⎨⎧a 1+a 13<0,a 1+a 12>0,由⎩⎨⎧ a 1+a 13=2a 7,a 1+a 12=a 6+a 7,得⎩⎨⎧a 7<0,a 6+a 7>0,所以数列{a n }中绝对值最小的项为第7项.4.(2019·牡丹江二模)设等差数列{a n }满足a 5=11,a 12=-3,其前n 项和S n 的最大值为M ,则lg M =( )A .1B .-1C .2D .-2 答案 C解析 由a 5=11,a 12=-3,得公差d =-3-1112-5=-2,所以a n =11+(n -5)(-2)=21-2n ,所以a 1=19,故S n =19n +n (n -1)2×(-2)=-n 2+20n =-(n -10)2+100≤100,所以M =100,所以lg M =2.5.(2019·南阳月考)已知各项均不为零的数列{a n },定义向量c n =(a n ,a n +1),b n =(n ,n +1),n ∈N *.下列命题中真命题是( )A .若∀n ∈N *总有c n ⊥b n 成立,则数列{a n }是等比数列B .若∀n ∈N *总有c n ∥b n 成立,则数列{a n }是等比数列C .若∀n ∈N *总有c n ⊥b n 成立,则数列{a n }是等差数列D .若∀n ∈N *总有c n ∥b n 成立,则数列{a n }是等差数列 答案 D解析 ∵向量c n =(a n ,a n +1),b n =(n ,n +1),n ∈N *,∴当c n ∥b n 时,(n +1)a n-na n +1=0,即a n =na 1,∴数列{a n }为等差数列,∴D 正确,B 错误;当c n ⊥b n 时,na n +(n +1)a n +1=0,即a n =(-1)n -1n ·a 1,∴数列{a n }既不是等差数列,也不是等比数列,∴A ,C 错误.故选D.6.(2019·全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2 答案 C解析由题意知⎩⎨⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎨⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C.7.(2019·重庆市重点中学联考)已知{a n }是首项为32的等比数列,S n 是其前n 项和,且S 6S 3=6564,则数列{|log 2a n |}的前10项和为( )A .58B .56C .50D .45 答案 A解析 设数列{a n }的公比为q ,根据题意知S 6-S 3S 3=164=q 3,所以q =14,从而有a n =32·⎝ ⎛⎭⎪⎫14n -1=27-2n ,所以log 2a n =7-2n ,所以|log 2a n |=|2n -7|,所以数列{|log 2a n |}的前10项和等于5+3+1+1+3+5+7+9+11+13=3×(5+1)2+7×(1+13)2=58.故选A.8.(2019·宜宾二诊)设S n 为等比数列{a n }的前n 项和,若a n >0,a 1=12,S n <2,则{a n }的公比的取值范围是( )A.⎝ ⎛⎦⎥⎤0,34B.⎝ ⎛⎦⎥⎤0,23C.⎝ ⎛⎭⎪⎫0,34D.⎝ ⎛⎭⎪⎫0,23 答案 A解析 设等比数列{a n }的公比为q ,则q ≠1.∵a n >0,a 1=12,S n <2,∴12×q n -1>0,12(1-q n )1-q <2,∴1>q >0.∴1≤4-4q ,解得q ≤34.综上可得,{a n }的公比的取值范围是⎝ ⎛⎦⎥⎤0,34.故选A.9.(2019·揭阳模拟)已知数列{a n }满足2a 1+22a 2+…+2n a n =n (n ∈N *),数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1log 2a n log 2a n +1的前n 项和为S n ,则S 1·S 2·S 3·…·S 10=( )A.110B.15C.111D.211 答案 C解析 ∵2a 1+22a 2+…+2n a n =n (n ∈N *),∴2a 1+22a 2+…+2n -1a n -1=n -1(n ≥2),∴2n a n =1(n ≥2),当n =1时也满足,故a n =12n ,故1log 2a n log 2a n +1=1log 22-n log 22-(n +1)=1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1, ∴S 1·S 2·S 3·…·S 10=12×23×34×…×910×1011=111,故选C.10.(2019·辽宁省鞍山市模拟)等差数列{a n }和{b n }的前n 项和分别为S n 与T n ,对一切自然数n 都有S n T n =2n 3n +1,则a 6b 6等于( )A.23B.914C.2031D.1117 答案 D解析 ∵{a n }和{b n }均为等差数列,且前n 项和分别为S n 与T n ,S n T n =2n3n +1,∴a 6b 6=11a 611b 6=11·a 1+a 11211·b 1+b 112=S 11T 11=2×113×11+1=1117.故选D.11.(2019·四川省高三一诊)已知正项等比数列{a n }的前n 项和S n 满足S 4-2S 2=3,则S 6-S 4的最小值为( )A.14 B .3 C .4 D .12 答案 D解析 根据题意,设该等比数列的首项为a 1,公比为q ,若S 4-2S 2=3,则有S 4-2S 2=a 1+a 2+a 3+a 4-2(a 1+a 2)=(a 3+a 4)-(a 1+a 2)=(q 2-1)(a 1+a 2)=3,又由数列{a n }为正项的等比数列,则q >1,则(a 1+a 2)=3q 2-1,则S 6-S 4=(a 5+a 6)=q 4×(a 1+a 2)=3q 2-1×q 4=3⎣⎢⎡⎦⎥⎤(q 2-1)+1q 2-1+2≥6+3×2×(q 2-1)×1q 2-1=12,当且仅当q 2=2时等号成立,即S 6-S 4的最小值为12.故选D.12.(2019·广州市天河区高三一模)若数列{b n }满足:b 12+b 222+…+b n2n =2n (n ∈N *),则数列{b n }的前n 项和S n 为( )A .2n +1B .4·2n -4C .2n +2-2D .2n +2-4 答案 D解析 数列{b n }满足:b 12+b 222+…+b n2n =2n (n ∈N *), 可得b 12+b 222+…+b n -12n -1=2(n -1)(n ∈N *),可得b n2n =2n -2(n -1)=2, 可得b n =2n +1(n ≥2). 当n =1时,b 1=4,所以数列{b n }的通项公式为b n =2n +1. 所以数列{b n }是等比数列,公比为2.数列{b n}的前n项和S n=4(1-2n)1-2=2n+2-4.故选D.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·河南省八市重点高中高三第二次联合测评)将正整数1,2,3,…,n,…排成数表如表所示,即第一行3个数,第二行6个数,且后一行比前一行多3个数,若第i行,第j列的数可用(i,j)表示,则100可表示为________.答案(8,9)解析∵第一行有a1=3个数,第二行有a2=6个数,∴每一行的数的个数组成以3为首项,3为公差的等差数列,∴第n行有a n=3+3(n-1)=3n个数,由求和公式可得前n行共12n(3+3n)个数,经验证可得第8行的最后1个数为85,按表中的规律可得第8行共24个数,第一个为108,∴100为第8行的第9个数,故答案为(8,9).14.(2019·江苏南通市重点中学模拟)设y=f(x)是一次函数,f(0)=1,且f(1),f(4),f(13)成等比数列,则f(2)+f(4)+…+f(2n)=________.答案n(2n+3)解析设y=f(x)=ax+b,∵f(0)=1,∴b=1,f(1),f(4),f(13)成等比数列,所以有(4a+1)2=(a+1)(13a+1),∴a =2,y =f (x )=2x +1,∴f (2)+f (4)+…+f (2n )=4(1+2+…+n )+n =2n (n +1)+n =n (2n +3). 15.(2019·江苏省镇江市期末)已知等差数列{a n }的公差为d (d ≠0),前n 项和为S n ,且数列{S n +n }也为公差为d 的等差数列,则d =________.答案 2(a 1+1)解析 ∵等差数列{a n }的公差为d (d ≠0),前n 项和为S n ,且数列{S n +n }也为公差为d 的等差数列,∴S n =na 1+n (n -1)2d ,即S 1=a 1,S 2=2a 1+d ,S 3=3a 1+3d ,∴a 1+1,2(a 1+1)+d ,3(a 1+1)+3d 成等差数列, ∴22(a 1+1)+d =a 1+1+3(a 1+1)+3d , ∴8(a 1+1)+4d =4(a 1+1)+3d + 23(a 1+1)2+3(a 1+1)d , 整理,得d =2(a 1+1).16.(2019·新疆高三一模)已知数列{a n }为等差数列,a 3=3,a 1+a 2+…+a 6=21,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若对一切n ∈N *,恒有S 2n -S n >m16,则m 能取到的最大正整数是________.答案 7解析 设数列{a n }的公差为d ,由题意得, ⎩⎨⎧ a 1+2d =3,6a 1+15d =21,解得⎩⎨⎧a 1=1,d =1, ∴a n =n ,且1a n =1n ,∴S n =1+12+13+…+1n ,令T n =S 2n -S n =1n +1+1n +2+…+12n ,则T n +1=1n +2+1n +3+…+12n +2,∵T n +1-T n =12n +2+12n +1-1n +1=12n +1+12(n +1)-22(n +1)=12n +1-12n +2>0, ∴T n +1>T n ,则T n 随着n 的增大而增大,即T n 在n =1处取最小值, ∴T 1=S 2-S 1=12,∵对一切n ∈N *,恒有S 2n -S n >m16成立, ∴12>m16即可,解得m <8, 故m 能取到的最大正整数是7.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2019·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解 (1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ). 又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列. 由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1, 所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12, b n =12[(a n +b n )-(a n -b n )]=12n -n +12.18.(本小题满分12分)(2019·广东二模)已知数列{a n }满足a 1·a 2·a 3·…·a n -1·a n =n +1(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =a n +1a n,求数列{b n }的前n 项和S n .解 (1)数列{a n }满足a 1·a 2·a 3·…·a n -1·a n =n +1, ① 则当n ≥2时,a 1·a 2·a 3·…·a n -1=n , ② ①②,得a n =n +1n , 当n =1时,a 1=2,满足上式. 所以a n =n +1n . (2)由于a n =n +1n ,所以b n =a n +1a n =n +1n +n n +1=1+1n +1-1n +1=2+1n -1n +1,则S n =2+⎝ ⎛⎭⎪⎫1-12+2+⎝ ⎛⎭⎪⎫12-13+…+2+⎝ ⎛⎭⎪⎫1n -1n +1=2n +⎝ ⎛⎭⎪⎫1-1n +1=2n +1-1n +1. 19.(本小题满分12分)(2019·江西红色七校联考)已知数列{a n }为等差数列,S n 为{a n }的前n 项和,2a 2+a 5=a 8,S 5=25.数列{b n }为等比数列且b n >0,b 1=a 1,b 22=a 1a 5.(1)求数列{a n }和{b n }的通项公式; (2)记c n =4(2log 3b n +3)·a n,其前n 项和为T n ,求证:T n ≥43.解 (1)设等差数列{a n }的公差为d ,则由2a 2+a 5=a 8,S 5=25,得⎩⎪⎨⎪⎧2(a 1+d )=3d ,5a 1+5×4×d 2=25,解得⎩⎨⎧a 1=1,d =2,所以a n =2n -1.所以a 1=1,a 5=9.设等比数列{b n }的公比为q ,由b 22=a 1a 5且b n >0,得b 2=q =3,∴b n =3n -1.(2)证明:c n =4(2log 3b n +3)·a n =4(2n +1)(2n -1)=2⎝ ⎛⎭⎪⎫12n -1-12n +1,T n =2⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=2⎝ ⎛⎭⎪⎫1-12n +1, 易知T n 随着n 的增大而增大, 所以T n ≥T 1=2⎝ ⎛⎭⎪⎫1-13=43. 20.(本小题满分12分)(2019·贵阳模拟)已知数列{a n }中,a 1=1,S n 是数列{a n }的前n 项和,且对任意的r ,t ∈N *,都有S r S t=⎝ ⎛⎭⎪⎫r t 2.(1)判断{a n }是否为等差数列,并证明你的结论;(2)若数列{b n }满足a nb n=2n -1(n ∈N *),设T n 是数列{b n }的前n 项和,证明:T n <6.解 (1){a n }是等差数列.证明如下: 因为对任意的r ,t ∈N *,都有S r S t =⎝ ⎛⎭⎪⎫r t 2,所以对任意的n ∈N *,有S nS 1=n 2,即S n =n 2.从而n ≥2时,a n =S n -S n -1=2n -1,且n =1时此式也成立. 所以a n +1-a n =2(n ∈N *),即{a n }是以1为首项,2为公差的等差数列. (2)证明:由a nb n =2n -1,得b n =2n -12n -1.T n =1·⎝ ⎛⎭⎪⎫120+3·⎝ ⎛⎭⎪⎫121+…+(2n -1)·⎝ ⎛⎭⎪⎫12n -1, 12T n =1·⎝ ⎛⎭⎪⎫121+3·⎝ ⎛⎭⎪⎫122+…+(2n -3)·⎝ ⎛⎭⎪⎫12n -1+(2n -1)·⎝ ⎛⎭⎪⎫12n . 两式相减,得12T n =1+2·⎝ ⎛⎭⎪⎫121+2·⎝ ⎛⎭⎪⎫122+…+2·⎝ ⎛⎭⎪⎫12n -1-(2n -1)·⎝ ⎛⎭⎪⎫12n=1+2·12-⎝ ⎛⎭⎪⎫12n1-12-(2n -1)·⎝ ⎛⎭⎪⎫12n =1+4⎝ ⎛⎭⎪⎫12-12n -(2n -1)·⎝ ⎛⎭⎪⎫12n =3-(2n +3)⎝ ⎛⎭⎪⎫12n ,T n =6-(2n +3)⎝ ⎛⎭⎪⎫12n -1.∵n ∈N *,∴T n =6-(2n +3)⎝ ⎛⎭⎪⎫12n -1<6.21.(本小题满分12分)(2019·天津高考)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n =⎩⎨⎧1,2k <n <2k +1,b k ,n =2k,其中k ∈N *. ①求数列{a 2n (c 2n -1)}的通项公式; ②求∑i =12na i c i (n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意得⎩⎨⎧ 6q =6+2d ,6q 2=12+4d ,解得⎩⎨⎧d =3,q =2, 故a n =4+(n -1)×3=3n +1,b n =6×2n -1=3×2n .所以,{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n . (2)①a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. ②∑i =12na i c i =∑i =12n[a i +a i (c i -1)]=∑i =12na i +∑i =1na 2i (c 2i -1)=⎝ ⎛⎭⎪⎫2n×4+2n (2n -1)2×3+∑i =1n (9×4i -1)=(3×22n -1+5×2n -1)+9×4(1-4n )1-4-n=27×22n -1+5×2n -1-n -12(n ∈N *).22.(本小题满分12分)(2019·北京高考)已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若a i 1<a i 2<…<a i m ,则称新数列a i 1,a i 2,…,a i m为{a n}的长度为m的递增子列.规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(2)已知数列{a n}的长度为p的递增子列的末项的最小值为a m,长度为q的递增子列的末项的最小值为a n0.若p<q,求证:a m<a n;(3)设无穷数列{a n}的各项均为正整数,且任意两项均不相等.若{a n}的长度为s的递增子列末项的最小值为2s-1,且长度为s末项为2s-1的递增子列恰有2s -1个(s=1,2,…),求数列{a n}的通项公式.解(1)1,3,5,6.(答案不唯一)(2)证明:设长度为q,末项为a n0的一个递增子列为a r1,a r2,…,a rq-1,a n.由p<q,得a rp≤a rq-1<a n.因为{a n}的长度为p的递增子列末项的最小值为a m0,又a r1,a r2,…,a rp是{a n}的长度为p的递增子列,所以a m0≤a rp.所以a m<a n.(3)由题设知,所有正奇数都是{a n}中的项.先证明:若2m是{a n}中的项,则2m必排在2m-1之前(m为正整数).假设2m排在2m-1之后.设a p1,a p2,…,a pm-1,2m-1是数列{a n}的长度为m,末项为2m-1的递增子列,则a p1,a p2,…,a pm-1,2m-1,2m是数列{a n}的长度为m+1,末项为2m的递增子列.与已知矛盾.再证明:所有正偶数都是{a n}中的项.假设存在正偶数不是{a n}中的项,设不在{a n}中的最小的正偶数为2m.因为2k排在2k-1之前(k=1,2,…,m-1),所以2k和2k-1不可能在{a n}的同一个递增子列中.又{a n}中不超过2m+1的数为1,2,…,2m-2,2m-1,2m+1,所以{a n}的长度为m+1且末项为2m+1的递增子列个数至多为×1×1=2m-1<2m.与已知矛盾.最后证明:2m 排在2m -3之后(m ≥2且m 为整数).假设存在2m (m ≥2),使得2m 排在2m -3之前,则{a n }的长度为m +1且末项为2m +1的递增子列的个数小于2m .与已知矛盾.综上,数列{a n }只可能为2,1,4,3,…,2m -3,2m ,2m -1,…. 经验证,数列2,1,4,3,…,2m -3,2m,2m -1,…符合条件. 所以a n =⎩⎨⎧n +1,n 为奇数,n -1,n 为偶数.。

2019年高考数学(文科)一轮复习通用版:第八单元 数 列

2019年高考数学(文科)一轮复习通用版:第八单元  数 列

第八单元 数 列教材复习课“数列”相关基础知识一课过1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[小题速通]1.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21的值为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 2.数列{a n }满足a 1=3,a n +1=a n -1a n(n ∈N *),则a 2 018=( )A.12 B .3 C .-12D.23解析:选D由a1=3,a n+1=a n-1a n,得a2=a1-1a1=23,a3=a2-1a2=-12,a4=a3-1a3=3,……,由上可得,数列{a n}是以3为周期的周期数列,故a2 018=a672×3+2=a2=2 3.3.已知数列{a n}满足a n=32n-11(n∈N*),前n项的和为S n,则关于a n,S n的叙述正确的是()A.a n,S n都有最小值B.a n,S n都没有最小值C.a n,S n都有最大值D.a n,S n都没有最大值解析:选A①∵a n=32n-11,∴当n≤5时,a n<0且单调递减;当n≥6时,a n>0,且单调递减.故当n=5时,a5=-3为a n的最小值;②由①的分析可知:当n≤5时,a n<0;当n≥6时,a n>0.故可得S5为S n的最小值.综上可知,a n,S n都有最小值.4.已知数列{a n}中,a1=1,a n+1=a n+2n+1(n∈N*),则a5=________.解析:依题意得a n+1-a n=2n+1,a5=a1+(a2-a1)+(a3-a2)+(a4-a3)+(a5-a4)=1+3+5+7+9=25.答案:25[清易错]1.易混项与项数,它们是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.在利用数列的前n项和求通项时,往往容易忽略先求出a1,而是直接把数列的通项公式写成a n=S n-S n-1的形式,但它只适用于n≥2的情形.1.已知数列的通项公式为a n=n2-8n+15,则()A.3不是数列{a n}中的项B.3只是数列{a n}中的第2项C.3只是数列{a n}中的第6项D.3是数列{a n}中的第2项或第6项解析:选D令a n=3,即n2-8n+15=3,解得n=2或6,故3是数列{a n}中的第2项或第6项.2.已知数列{a n}的前n项和为S n=3+2n,则数列{a n}的通项公式为________.解析:当n=1时,a1=S1=3+2=5;当n≥2时,a n=S n-S n-1=3+2n-(3+2n-1)=2n-2n -1=2n -1.因为当n =1时,不符合a n =2n -1,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥21.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题速通]1.在等差数列{a n }中,已知a 2与a 4是方程x 2-6x +8=0的两个根,若a 4>a 2,则a 2 018=( )A .2 018B .2 017C .2 016D .2 015解析:选A 因为a 2与a 4是方程x 2-6x +8=0的两个根,且a 4>a 2,所以a 2=2,a 4=4,则公差d =1,所以a 1=1,则a 2 018=2 018.2.在等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和,则S 5=( ) A .3 B .4 C .5D .6解析:选C ∵等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和, ∴a 2+a 3+a 4=3a 3=3, 解得a 3=1,∴S 5=52(a 1+a 5)=5a 3=5.3.正项等差数列{a n }的前n 项和为S n ,已知a 4+a 10-a 27+15=0,则S 13=( )A .-39B .5C .39D .65解析:选D ∵正项等差数列{a n }的前n 项和为S n , a 4+a 10-a 27+15=0,∴a 27-2a 7-15=0,解得a 7=5或a 7=-3(舍去), ∴S 13=132(a 1+a 7)=13a 7=13×5=65. 4.已知等差数列{a n }的前n 项和为S n ,且3a 3=a 6+4.若S 5<10,则a 2的取值范围是( ) A .(-∞,2) B .(-∞,0) C .(1,+∞)D .(0,2)解析:选A 设等差数列{a n }的公差为d ,∵3a 3=a 6+4, ∴3(a 2+d )=a 2+4d +4,可得d =2a 2-4.∵S 5<10,∴5(a 1+a 5)2=5(a 2+a 4)2=5(2a 2+2d )2=5(3a 2-4)<10,解得a 2<2.∴a 2的取值范围是(-∞,2).5.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 [清易错]1.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件. 2.注意区分等差数列定义中同一个常数与常数的区别.1.(2018·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 的值为( )A .18B .19C .20D .21解析:选C 由a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.2.在数列{a n }中,若a 1=-2,且对任意的n ∈N *,有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52D.54解析:选C 由2a n +1=1+2a n ,可得a n +1-a n =12,即数列{a n }是以-2为首项,12为公差的等差数列,则a n =n -52,所以数列{a n }的前10项的和S 10=10×⎝⎛⎭⎫-2+522=52.1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)都是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . [小题速通]1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3.2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:选B 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73.3.设数列{a n }是等比数列,公比q =2,前n 项和为S n ,则S 4a 3的值为( )A.154B.152C.74D.72解析:选A 根据等比数列的公式,得S 4a 3=a 1(1-q 4)1-q a 1q 2=1-q 4(1-q )q 2=1-24(1-2)×22=154. 4.已知等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16,则数列{a n }的前2 018项的和为( )A .8 064B .4C .-4D .0解析:选D ∵等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16, ∴a 3a 5=a 2a 6=16,∴a 3,a 5是方程x 2-8x +16=0的两个根, 解得a 3=a 5=4, ∴4q 2=4,∵q ≠1,∴q =-1,∴a 1=a 3q 2=4,∴数列{a n }的前2 018项的和为 S 2 018=4[1-(-1)2 018]1-(-1)=0.5.(2018·信阳调研)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( ) A.12 B.22C. 2D .2解析:选B 因为{a n }是等比数列,所以a 5a 7=a 26=4a 24,所以a 6=2a 4,q 2=a 6a 4=2,又q >0, 所以q =2,a 1=a 2q =22.[清易错]1.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n-S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.1.设数列{a n }为等比数列,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 解析:当q ≠1时,由题意,a 1(1-q 3)1-q =3a 1q 2,即1-q 3=3q 2-3q 3,整理得2q 3-3q 2+1=0,解得q =-12.当q =1时,S 3=3a 3,显然成立. 故q =-12或1.答案:-12或1一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3da 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 2.(2018·江西六校联考)在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( ) A .3 B.17 C .9D .13解析:选A 由a 3a 5a 7=-33,得a 35=-33,即a 5=-3,故a 2a 8=a 25=3.3.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 018=( ) A .8 B .6 C .4D .2解析:选D 由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 018=a 335×6+8=a 8=2.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2,n ∈N *),则a 7=( ) A .53 B .54 C .55D .109解析:选C a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44 B .45 C.13×(46-1) D.14×(45-1) 解析:选B 由a n +1=3S n ,得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n +1=4a n ,n ≥2,则数列{a n }从第二项起构成等比数列,所以S 6=a 73=3×453=45.6.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有S n T n=n n +1,则a 5b 5等于( )A.34B.56C.910D.1011解析:选C ∵S 9=9(a 1+a 9)2=9a 5,T 9=9(b 1+b 9)2=9b 5, ∴a 5b 5=S 9T 9=910. 7.已知数列{a n }是首项为1的等比数列,S n 是其前n 项和,若5S 2=S 4,则log 4a 3的值为( )A .1B .2C .0或1D .0或2 解析:选C 由题意得,等比数列{a n }中,5S 2=S 4,a 1=1, 所以5(a 1+a 2)=a 1+a 2+a 3+a 4, 即5(1+q )=1+q +q 2+q 3,q 3+q 2-4q -4=0,即(q +1)(q 2-4)=0, 解得q =-1或±2,当q =-1时,a 3=1,log 4a 3=0. 当q =±2时,a 3=4,log 4a 3=1. 综上所述,log 4a 3的值为0或1.8.设数列{a n }是公差为d (d >0)的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .75B .90C .105D .120解析:选C 由a 1+a 2+a 3=15得3a 2=15,解得a 2=5,由a 1a 2a 3=80,得(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(d =-3舍去),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105.二、填空题9.若数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,则数列{a n }的通项公式为________.解析:当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13, 两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13满足a n =13n ,所以a n =13n .答案:a n =13n10.数列{a n }的前n 项和为S n ,若S n =2a n -1,则a n =________. 解析:∵S n =2a n -1,① ∴S n -1=2a n -1-1(n ≥2),② ①-②得a n =2a n -2a n -1, 即a n =2a n -1.∵S 1=a 1=2a 1-1,即a 1=1,∴数列{a n }为首项是1,公比是2的等比数列, 故a n =2n -1.答案:2n -111.已知数列{a n }中,a 2n =a 2n -1+(-1)n ,a 2n +1=a 2n +n ,a 1=1,则a 20=________. 解析:由a 2n =a 2n -1+(-1)n ,得a 2n -a 2n -1=(-1)n , 由a 2n +1=a 2n +n ,得a 2n +1-a 2n =n ,故a 2-a 1=-1,a 4-a 3=1,a 6-a 5=-1,…,a 20-a 19=1. a 3-a 2=1,a 5-a 4=2,a 7-a 6=3,…,a 19-a 18=9. 又a 1=1,累加得:a 20=46. 答案:4612.数列{a n }为正项等比数列,若a 3=3,且a n +1=2a n +3a n -1(n ≥2,n ∈N *),则此数列的前5项和S 5=________.解析:设公比为q (q >0),由a n +1=2a n +3a n -1,可得q 2=2q +3,所以q =3,又a 3=3,则a 1=13,所以此数列的前5项和S 5=13×(1-35)1-3=1213.答案:1213三、解答题13.已知在等差数列{a n }中,a 3=5,a 1+a 19=-18. (1)求公差d 及通项a n ;(2)求数列{a n }的前n 项和S n 及使得S n 取得最大值时n 的值. 解:(1)∵a 3=5,a 1+a 19=-18,∴⎩⎪⎨⎪⎧ a 1+2d =5,2a 1+18d =-18,∴⎩⎪⎨⎪⎧a 1=9,d =-2,∴a n =11-2n . (2)由(1)知,S n =n (a 1+a n )2=n (9+11-2n )2=-n 2+10n =-(n -5)2+25, ∴n =5时,S n 取得最大值.14.已知数列{a n }满足a 12+a 222+a 323+…+a n2n =n 2+n .(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n2,求数列{b n }的前n 项和S n .解:(1)∵a 12+a 222+a 323+…+a n2n =n 2+n ,∴当n ≥2时,a 12+a 222+a 323+…+a n -12n -1=(n -1)2+n -1,两式相减得a n 2n =2n (n ≥2),∴a n =n ·2n +1(n ≥2).又∵当n =1时,a 12=1+1,∴a 1=4,满足a n =n ·2n +1.∴a n =n ·2n +1.(2)∵b n =(-1)n a n 2=n (-2)n ,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n ×(-2)n .-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n -1)×(-2)n +n (-2)n +1,∴两式相减得3S n =(-2)+(-2)2+(-2)3+(-2)4+…+(-2)n -n (-2)n+1=-2[1-(-2)n ]1-(-2)-n (-2)n +1=-(-2)n +1-23-n (-2)n +1=-(3n +1)(-2)n +1+23,∴S n =-(3n +1)(-2)n +1+29.高考研究课(一) 等差数列的3考点——求项、求和及判定 [全国卷5年命题分析][典例] (1)设S n n 1S n +2-S n =36,则n =( )A .5B .5C .7D .8(2)(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.①求b 1,b 11,b 101;②求数列{b n }的前1 000项和.[解析] (1)法一:由等差数列前n 项和公式可得S n +2-S n =(n +2)a 1+(n +2)(n +1)2d -⎣⎡⎦⎤na 1+n (n -1)2d =2a 1+(2n +1)d =2+4n +2=36, 解得n =8.法二:由S n +2-S n =a n +2+a n +1=a 1+a 2n +2=36,因此a 2n +2=a 1+(2n +1)d =35,解得n =8.答案:D(2)①设数列{a n }的公差为d , 由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. ②因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. [方法技巧]等差数列运算的解题思路由等差数列的前n 项和公式及通项公式可知,若已知a 1,d ,n ,a n ,S n 中三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.[即时演练]1.已知数列{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 6=4S 3,则a 10=( ) A.172 B.192 C.910D.89解析:选B ∵S 6=4S 3,公差d =1. ∴6a 1+6×52×1=4×⎝⎛⎭⎫3a 1+3×22×1,解得a 1=12.∴a 10=12+9×1=192.2.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 4-S 2S 5-S 3的值为( )A .-2B .-3C .2D .3解析:选D 设{a n }的公差为d ,因为a 1,a 3,a 4成等比数列, 所以(a 1+2d )2=a 1(a 1+3d ),可得a 1=-4d , 所以S 4-S 2S 5-S 3=a 3+a 4a 4+a 5=-3d-d=3. 3.(2018·大连联考)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4.即所求m 的值为5,k 的值为4.[典例] 已知{a n 11n 2n ,且b 4=17. (1)求证:数列{b n }是以-2为公差的等差数列; (2)设数列{b n }的前n 项和为S n ,求S n 的最大值.[思路点拨] (1)利用等比数列以及对数的运算法则,转化证明数列{b n }是以-2为公差的等差数列;(2)求出数列的和,利用二次函数的性质求解最大值即可. [解] (1)证明:设等比数列{a n }的公比为q , 则b n +1-b n =log 2a n +1-log 2a n =log 2a n +1a n =log 2q ,因此数列{b n }是等差数列.又b 11=log 2a 11=3,b 4=17, 所以等差数列{b n }的公差d =b 11-b 47=-2, 故数列{b n }是以-2为公差的等差数列. (2)由(1)知,b n =25-2n ,则S n =n (b 1+b n )2=n (23+25-2n )2=n (24-n )=-(n -12)2+144,于是当n =12时,S n 取得最大值,最大值为144. [方法技巧]等差数列判定与证明的方法1.(2016·浙江高考)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n+2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =(-2)×[1-(-2)n ]1-(-2)=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2⎣⎡⎦⎤-23+(-1)n 2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.[典例] (1)n 3610a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(2)已知数列{a n },{b n }为等差数列,前n 项和分别为S n ,T n ,若S n T n =3n +22n ,则a 7b 7=( )A.4126 B.2314 C.117D.116(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.[解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,即a 8=8,m =8.(2)因为{a n },{b n }为等差数列,且S n T n=3n +22n ,所以a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=13(a 1+a 13)213(b 1+b 13)2=S 13T 13=3×13+22×13=4126.(3)∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. [答案] (1)A (2)A (3)60 [方法技巧]等差数列的性质(1)项的性质在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n . [即时演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2018·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3(1+q 2)a 4(1+q 2)=1q =25+1=5-12. 3.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 10b 9+b 12+a 11b 8+b 13=________.解析:∵数列{a n }和{b n }都是等差数列,∴a 10b 9+b 12+a 11b 8+b 13=a 10+a 11b 9+b 12=a 10+a 11b 10+b 11=S 20T 20=7×2020+3=14023. 答案:14023等差数列前n 项和的最值等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用函数法或通项变号法解决等差数列前n 项和S n 的最值问题.[典例] 等差数列{a n n 1311n n 的值为________.[解析] 法一:用“函数法”解题 由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0. 故当n =7时,S n 最大. 法二:用“通项变号法”解题 由法一可知,d =-213a 1. 要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. [答案] 7 [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时演练]1.(2018·潍坊模拟)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20, ∴10a 1+10×92d =20a 1+20×192d ,解得d =-2, ∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( )A .8B .9C .10D .11解析:选B 设数列{a n }的公差为d , ∵a 1=-26,a 8+a 13=5,∴-26+7d -26+12d =5,解得d =3, ∴S n =-26n +n (n -1)2×3=32n 2-552n =32⎝⎛⎭⎫n -5562-3 02524, ∴{a n }的前n 项和S n 取最小值时,n =9.3.已知{a n }是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,则数列{a n }的前n 项和取最大值时,n =________.解析:由S 10=10(a 1+a 10)2=5(a 5+a 6)=0, 可得a 5+a 6=0,∴a 5>0,a 6<0,即数列{a n }的前5项和为最大值,∴n =5. 答案:51.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98. 法二:∵{a n }是等差数列, ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.3.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.4.(2013·全国卷Ⅱ)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d .由题意,a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ), 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .一、选择题1.(2018·厦门一中测试)已知数列{a n }中,a 2=32,a 5=98,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 7=( )A.109 B.1110 C.1211D.1312解析:选D 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d ,则1a 5-1=1a 2-1+3d ,即198-1=132-1+3d ,解得d =2,所以1a 7-1=1a 2-1+5d =12,解得a 7=1312.2.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列,设首项a1=4,则a5=2.由等差数列的性质得a2+a4=a1+a5=6,所以第二尺与第四尺的重量之和为6斤.3.(2018·银川一中月考)在等差数列{a n}中,首项a1>0,公差d≠0,前n项和为S n(n∈N*),有下列命题:①若S3=S11,则必有S14=0;②若S3=S11,则必有S7是S n中的最大项;③若S7>S8,则必有S8>S9;④若S7>S8,则必有S6>S9.其中正确命题的个数是()A.1 B.2C.3 D.4解析:选D对于①,若S11-S3=4(a1+a14)=0,即a1+a14=0,则S14=14(a1+a14)2=0,所以①正确;对于②,当S3=S11时,易知a7+a8=0,又a1>0,d≠0,所以a7>0>a8,故S7是S n中的最大项,所以②正确;对于③,若S7>S8,则a8<0,那么d<0,可知a9<0,此时S9-S8<0,即S8>S9,所以③正确;对于④,若S7>S8,则a8<0,S9-S6=a7+a8+a9=3a8<0,即S6>S9,所以④正确.故选D.4.(2018·大同模拟)在等差数列{}a n中,a1+a2+a3=3,a18+a19+a20=87,则此数列前20项的和等于()A.290 B.300C.580 D.600解析:选B由a1+a2+a3=3a2=3,得a2=1.由a18+a19+a20=3a19=87,得a19=29,所以S20=20(a1+a20)2=10(a2+a19)=300.5.设等差数列{a n}的前n项和为S n,且S9=18,a n-4=30(n>9),若S n=336,则n的值为()A.18 B.19C.20 D.21解析:选D因为{a n}是等差数列,所以S9=9a5=18,a5=2,S n=n(a1+a n)2=n(a5+a n-4)2=n 2×32=16n =336,解得n =21. 6.设{a n }是等差数列,d 是其公差,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .当n =6或n =7时S n 取得最大值解析:选C 由S 5<S 6,得a 1+a 2+a 3+a 4+a 5<a 1+a 2+a 3+a 4+a 5+a 6,即a 6>0.同理由S 7>S 8,得a 8<0.又S 6=S 7,∴a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7,∴a 7=0,∴B 正确;∵d =a 7-a 6<0,∴A 正确;而C 选项,S 9>S 5,即a 6+a 7+a 8+a 9>0,可得2(a 7+a 8)>0,由结论a 7=0,a 8<0,知C 选项错误;∵S 5<S 6,S 6=S 7>S 8,∴结合等差数列前n 项和的函数特性可知D 正确.故选C.7.等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( )A .|a 7|>|a 8|B .|a 7|<|a 8|C .|a 7|=|a 8|D .|a 7|=0解析:选B 因为(S 8-S 5)(S 9-S 5)<0,所以(a 6+a 7+a 8)(a 6+a 7+a 8+a 9)<0,因为{a n }为等差数列,所以a 6+a 7+a 8=3a 7,a 6+a 7+a 8+a 9=2(a 7+a 8),所以a 7(a 7+a 8)<0,所以a 7与(a 7+a 8)异号.又公差d >0,所以a 7<0,a 8>0,且|a 7|<|a 8|,故选B.二、填空题8.在数列{a n }中,a n +1=a n 1+3a n,a 1=2,则a 20=________. 解析:由a n +1=a n 1+3a n,a 1=2, 可得1a n +1-1a n=3, 所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列. 所以1a n=12+3(n -1),即a n =26n -5,所以a 20=2115. 答案:21159.数列{a n }满足:a 1=1,a n +1=2a n +2n ,则数列{a n }的通项公式为________. 解析:∵a 1=1,a n +1=2a n +2n ,∴a n +12n +1=a n 2n +12, ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 12=12,公差d =12的等差数列, 故a n 2n =12+(n -1)×12=12n , 即a n =n ·2n -1. 答案:a n =n ·2n -1 10.设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,S 12=λS 8,则λ=________. 解析:当S 4≠0,且S 8=3S 4,S 12=λS 8时,由等差数列的性质得:S 4,S 8-S 4,S 12-S 8成等差数列,∴2(S 8-S 4)=S 4+(S 12-S 8),∴2(3S 4-S 4)=S 4+(λ·3S 4-3S 4),解得λ=2.答案:2三、解答题11.已知数列{a n }是等差数列,且a 1,a 2,a 5成等比数列,a 3+a 4=12.(1)求a 1+a 2+a 3+a 4+a 5;(2)设b n =10-a n ,数列{b n }的前n 项和为S n ,若b 1≠b 2,则n 为何值时,S n 最大?S n 最大值是多少?解:(1)设{a n }的公差为d ,∵a 1,a 2,a 5成等比数列,∴(a 1+d )2=a 1(a 1+4d ),解得d =0或d =2a 1.当d =0时,∵a 3+a 4=12,∴a n =6,∴a 1+a 2+a 3+a 4+a 5=30;当d ≠0时,∵a 3+a 4=12,∴a 1=1,d =2,∴a 1+a 2+a 3+a 4+a 5=25.(2)∵b 1≠b 2,b n =10-a n ,∴a 1≠a 2,∴d ≠0,由(1)知a n =2n -1,∴b n =10-a n =10-(2n -1)=11-2n ,S n =10n -n 2=-(n -5)2+25. ∴当n =5时,S n 取得最大值,最大值为25.12.(2018·沈阳质检)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5.(1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式. 解:(1)设等差数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧ 2a 1+7d =4,5a 1+5×42d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2, 故a n =2n -7(n ∈N *).(2)由a n =2n -7<0,得n <72,即n ≤3, 所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0. 由(1)知S n =n 2-6n ,所以当n ≤3时,T n =-S n =6n -n 2;当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T 5=13,T n =⎩⎪⎨⎪⎧6n -n 2,n ≤3,n 2-6n +18,n ≥4. 13.已知数列{a n }中,a 1=4,a n =a n -1+2n -1+3(n ≥2,n ∈N *). (1)证明数列{a n -2n }是等差数列,并求{a n }的通项公式;(2)设b n =a n 2n ,求b n 的前n 项和S n . 解:(1)证明:当n ≥2时,a n =a n -1+2n -1+3=a n -1+2n -2n -1+3, ∴a n -2n -(a n -1-2n -1)=3. 又a 1=4,∴a 1-2=2,故数列{a n -2n }是以2为首项,3为公差的等差数列,∴a n -2n =2+(n -1)×3=3n -1,∴a n =2n +3n -1.(2)b n =a n 2n =2n +3n -12n =1+3n -12n , ∴S n =⎝⎛⎭⎫1+22+⎝⎛⎭⎫1+522+…+⎝⎛⎭⎫1+3n -12n =n +⎝⎛⎭⎫22+522+…+3n -12n , 令T n =22+522+…+3n -12n ,①则12T n =222+523+…+3n -12n +1,② ①-②得,12T n =1+322+323+…+32n -3n -12n +1, =1+3×14⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-3n -12n +1=52-3n +52n +1, ∴S n =n +5-3n +52n.已知数列{a n }的前n 项和为S n ,a 1=3,a n +1=2a n +2n +1-1(n ∈N *). (1)求a 2,a 3;(2)求实数λ使⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列,并由此求出a n 与S n ; (3)求n 的所有取值,使S n a n∈N *,说明你的理由. 解:(1)∵a 1=3,a n +1=2a n +2n +1-1, ∴a 2=2×3+22-1=9,a 3=2×9+23-1=25.(2)∵a 1=3,a n +1=2a n +2n +1-1, ∴a n +1-1=2(a n -1)+2n +1, ∴a n +1-12n +1-a n -12n =1, 故λ=-1时,数列⎩⎨⎧⎭⎬⎫a n +λ2n 成等差数列,且首项为a 1-12=1,公差d =1. ∴a n -12n =n ,即a n =n ·2n +1. ∴S n =(1×2+2×22+3×23+…+n ×2n )+n ,设T n =1×2+2×22+3×23+…+n ×2n ,①则2T n =1×22+2×23+3×24+…+n ×2n +1,② ①-②得,-T n =2+22+23+…+2n -n ×2n +1=(1-n )·2n +1-2, ∴T n =(n -1)·2n +1+2, ∴S n =T n +n =(n -1)·2n +1+2+n . (3)S n a n =(n -1)·2n +1+n +2n ·2n +1=2+n -2n +1n ·2n +1, 结合y =2x 及y =12x 的图象可知2n >n 2恒成立, ∴2n +1>n ,即n -2n +1<0,∵n ·2n +1>0,∴S n a n<2.当n =1时,S n a n =S 1a 1=1∈N *; 当n ≥2时,∵a n >0且{a n }为递增数列,∴S n >0且S n >a n ,∴S n a n >1,即1<S n a n <2,∴当n ≥2时,S n a n∉N *. 综上可得n =1.高考研究课(二)等比数列的3考点——基本运算、判定和应用[全国卷5年命题分析][典例] (1)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n =( ) A .4n -1 B .4n -1C .2n -1 D .2n -1 (2)(2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.①若a 3+b 3=5,求{b n }的通项公式;②若T 3=21,求S 3.[解析] (1)设{a n }的公比为q ,∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧ a 1+a 1q 2=52, (ⅰ)a 1q +a 1q 3=54, (ⅱ)由(ⅰ)(ⅱ)可得1+q 2q +q3=2,∴q =12,代入(ⅰ)得a 1=2, ∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n , ∴S n a n=4⎝⎛⎭⎫1-12n 42n=2n -1. 答案:D(2)设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3.(ⅰ)①由a 3+b 3=5得2d +q 2=6.(ⅱ)联立(ⅰ)(ⅱ)解得⎩⎪⎨⎪⎧ d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2. 因此{b n }的通项公式为b n =2n -1. ②由b 1=1,T 3=21,得q 2+q -20=0,解得q =-5或q =4.当q =-5时,由(ⅰ)得d =8,则S 3=21.当q =4时,由(ⅰ)得d =-1,则S 3=-6.[方法技巧]解决等比数列有关问题的常用思想方法(1)方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q. [即时演练]1.已知数列{a n }是首项a 1=14的等比数列,其前n 项和为S n ,S 3=316,若a m =-1512,则m 的值为( )A .8B .10C .9D .7解析:选A 设数列{a n }的公比为q ,若q =1,则S 3=34≠316,不符合题意,∴q ≠1. 由⎩⎨⎧a 1=14,S 3=a 1(1-q 3)1-q =316,得⎩⎨⎧ a 1=14q =-12,∴a n =14·⎝⎛⎭⎫-12n -1=⎝⎛⎭⎫-12n +1. 由a m =⎝⎛⎭⎫-12m +1=-1512, 得m =8.2.(2017·北京高考)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;(2)求和:b 1+b 3+b 5+…+b 2n -1.解:(1)设等差数列{a n }的公差为d .因为⎩⎪⎨⎪⎧a 1=1,a 2+a 4=10, 所以2a 1+4d =10,解得d =2,所以a n =2n -1.(2)设等比数列{b n }的公比为q .因为b 1=1,b 2b 4=a 5,所以b 1q ·b 1q 3=9.解得q 2=3.所以b 2n -1=b 1q 2n -2=3n -1. 从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.[典例] (1)n 12n +2n +1n N *,对数列{a n }有下列命题:①数列{a n }是等差数列;②数列{a n +1-a n }是等比数列;③当n ≥2时,a n 都是质数;④1a 1+1a 2+…+1a n<2,n ∈N *, 则其中正确的命题有( )A .②B .①②C.③④D.②④(2)设数列{a n}的前n项和为S n,已知a1+2a2+3a3+…+na n=(n-1)S n+2n(n∈N*).①求a2,a3的值;②求证:数列{S n+2}是等比数列.[解析](1)∵an+2=3a n+1-2a n,∴a n+2-a n+1=2(a n+1-a n),∴数列{a n+1-a n}是以a2-a1=2为首项、2为公比的等比数列,∴a n-a n-1=2n-1,a n-1-a n-2=2n-2,…a2-a1=21,累加得:a n-a1=21+22+…+2n-1=2(1-2n-1)1-2=2n-2,∴a n=2n-2+a1=2n-1.显然①②③中,只有②正确,又∵1a n=12n-1<12n-1(n≥2),∴1a1+1a2+…+1a n<1+12+122+…+12n-1=1-12n1-12<2,故④正确;综上所述,①③错误,②④正确.答案:D(2)[思路点拨]①令n=1,2,3,即可求出结论;②当n≥2时,a1+2a2+3a3+…+(n-1)a n-1=(n-2)S n-1+2(n-1),与已知式相减,再利用a n=S n-S n-1(n≥2),化简整理,即可得出结论.解:①∵a1+2a2+3a3+…+na n=(n-1)S n+2n(n∈N*),∴当n=1时,a1=2×1=2;当n=2时,a1+2a2=(a1+a2)+4,∴a2=4;当n=3时,a1+2a2+3a3=2(a1+a2+a3)+6,∴a3=8.②证明:∵a1+2a2+3a3+…+na n=(n-1)S n+2n(n∈N*),(ⅰ)∴当n≥2时,a1+2a2+3a3+…+(n-1)a n-1=(n-2)·S n-1+2(n-1).(ⅱ)(ⅰ)-(ⅱ)得na n=(n-1)S n-(n-2)S n-1+2=n(S n-S n-1)-S n+2S n-1+2=na n-S n+2S n-1+2.∴-S n+2S n-1+2=0,即S n=2S n-1+2,。

精编2019年高考数学(文科)一轮复习通用版:第八单元 数 列

精编2019年高考数学(文科)一轮复习通用版:第八单元  数 列

第八单元 数 列教材复习课“数列”相关基础知识一课过1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[小题速通]1.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21的值为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 2.数列{a n }满足a 1=3,a n +1=a n -1a n(n ∈N *),则a 2 018=( )A.12 B .3 C .-12D.23解析:选D由a1=3,a n+1=a n-1a n,得a2=a1-1a1=23,a3=a2-1a2=-12,a4=a3-1a3=3,……,由上可得,数列{a n}是以3为周期的周期数列,故a2 018=a672×3+2=a2=2 3.3.已知数列{a n}满足a n=32n-11(n∈N*),前n项的和为S n,则关于a n,S n的叙述正确的是()A.a n,S n都有最小值B.a n,S n都没有最小值C.a n,S n都有最大值D.a n,S n都没有最大值解析:选A①∵a n=32n-11,∴当n≤5时,a n<0且单调递减;当n≥6时,a n>0,且单调递减.故当n=5时,a5=-3为a n的最小值;②由①的分析可知:当n≤5时,a n<0;当n≥6时,a n>0.故可得S5为S n的最小值.综上可知,a n,S n都有最小值.4.已知数列{a n}中,a1=1,a n+1=a n+2n+1(n∈N*),则a5=________.解析:依题意得a n+1-a n=2n+1,a5=a1+(a2-a1)+(a3-a2)+(a4-a3)+(a5-a4)=1+3+5+7+9=25.答案:25[清易错]1.易混项与项数,它们是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.在利用数列的前n项和求通项时,往往容易忽略先求出a1,而是直接把数列的通项公式写成a n=S n-S n-1的形式,但它只适用于n≥2的情形.1.已知数列的通项公式为a n=n2-8n+15,则()A.3不是数列{a n}中的项B.3只是数列{a n}中的第2项C.3只是数列{a n}中的第6项D.3是数列{a n}中的第2项或第6项解析:选D令a n=3,即n2-8n+15=3,解得n=2或6,故3是数列{a n}中的第2项或第6项.2.已知数列{a n}的前n项和为S n=3+2n,则数列{a n}的通项公式为________.解析:当n=1时,a1=S1=3+2=5;当n≥2时,a n=S n-S n-1=3+2n-(3+2n-1)=2n-2n -1=2n -1.因为当n =1时,不符合a n =2n -1,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥21.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题速通]1.在等差数列{a n }中,已知a 2与a 4是方程x 2-6x +8=0的两个根,若a 4>a 2,则a 2 018=( )A .2 018B .2 017C .2 016D .2 015解析:选A 因为a 2与a 4是方程x 2-6x +8=0的两个根,且a 4>a 2,所以a 2=2,a 4=4,则公差d =1,所以a 1=1,则a 2 018=2 018.2.在等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和,则S 5=( ) A .3 B .4 C .5D .6解析:选C ∵等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和, ∴a 2+a 3+a 4=3a 3=3, 解得a 3=1,∴S 5=52(a 1+a 5)=5a 3=5.3.正项等差数列{a n }的前n 项和为S n ,已知a 4+a 10-a 27+15=0,则S 13=( )A .-39B .5C .39D .65解析:选D ∵正项等差数列{a n }的前n 项和为S n , a 4+a 10-a 27+15=0,∴a 27-2a 7-15=0,解得a 7=5或a 7=-3(舍去), ∴S 13=132(a 1+a 7)=13a 7=13×5=65. 4.已知等差数列{a n }的前n 项和为S n ,且3a 3=a 6+4.若S 5<10,则a 2的取值范围是( ) A .(-∞,2) B .(-∞,0) C .(1,+∞)D .(0,2)解析:选A 设等差数列{a n }的公差为d ,∵3a 3=a 6+4, ∴3(a 2+d )=a 2+4d +4,可得d =2a 2-4.∵S 5<10,∴5(a 1+a 5)2=5(a 2+a 4)2=5(2a 2+2d )2=5(3a 2-4)<10,解得a 2<2.∴a 2的取值范围是(-∞,2).5.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 [清易错]1.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件. 2.注意区分等差数列定义中同一个常数与常数的区别.1.(2018·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 的值为( )A .18B .19C .20D .21解析:选C 由a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.2.在数列{a n }中,若a 1=-2,且对任意的n ∈N *,有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52D.54解析:选C 由2a n +1=1+2a n ,可得a n +1-a n =12,即数列{a n }是以-2为首项,12为公差的等差数列,则a n =n -52,所以数列{a n }的前10项的和S 10=10×⎝⎛⎭⎫-2+522=52.1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)都是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . [小题速通]1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3.2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:选B 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73.3.设数列{a n }是等比数列,公比q =2,前n 项和为S n ,则S 4a 3的值为( )A.154B.152C.74D.72解析:选A 根据等比数列的公式,得S 4a 3=a 1(1-q 4)1-q a 1q 2=1-q 4(1-q )q 2=1-24(1-2)×22=154. 4.已知等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16,则数列{a n }的前2 018项的和为( )A .8 064B .4C .-4D .0解析:选D ∵等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16, ∴a 3a 5=a 2a 6=16,∴a 3,a 5是方程x 2-8x +16=0的两个根, 解得a 3=a 5=4, ∴4q 2=4,∵q ≠1,∴q =-1,∴a 1=a 3q 2=4,∴数列{a n }的前2 018项的和为 S 2 018=4[1-(-1)2 018]1-(-1)=0.5.(2018·信阳调研)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( ) A.12 B.22C. 2D .2解析:选B 因为{a n }是等比数列,所以a 5a 7=a 26=4a 24,所以a 6=2a 4,q 2=a 6a 4=2,又q >0, 所以q =2,a 1=a 2q =22.[清易错]1.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n-S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.1.设数列{a n }为等比数列,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 解析:当q ≠1时,由题意,a 1(1-q 3)1-q =3a 1q 2,即1-q 3=3q 2-3q 3,整理得2q 3-3q 2+1=0,解得q =-12.当q =1时,S 3=3a 3,显然成立. 故q =-12或1.答案:-12或1一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3da 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 2.(2018·江西六校联考)在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( ) A .3 B.17 C .9D .13解析:选A 由a 3a 5a 7=-33,得a 35=-33,即a 5=-3,故a 2a 8=a 25=3.3.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 018=( ) A .8 B .6 C .4D .2解析:选D 由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 018=a 335×6+8=a 8=2.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2,n ∈N *),则a 7=( ) A .53 B .54 C .55D .109解析:选C a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44 B .45 C.13×(46-1) D.14×(45-1) 解析:选B 由a n +1=3S n ,得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n +1=4a n ,n ≥2,则数列{a n }从第二项起构成等比数列,所以S 6=a 73=3×453=45.6.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有S n T n=n n +1,则a 5b 5等于( )A.34B.56C.910D.1011解析:选C ∵S 9=9(a 1+a 9)2=9a 5,T 9=9(b 1+b 9)2=9b 5, ∴a 5b 5=S 9T 9=910. 7.已知数列{a n }是首项为1的等比数列,S n 是其前n 项和,若5S 2=S 4,则log 4a 3的值为( )A .1B .2C .0或1D .0或2 解析:选C 由题意得,等比数列{a n }中,5S 2=S 4,a 1=1, 所以5(a 1+a 2)=a 1+a 2+a 3+a 4, 即5(1+q )=1+q +q 2+q 3,q 3+q 2-4q -4=0,即(q +1)(q 2-4)=0, 解得q =-1或±2,当q =-1时,a 3=1,log 4a 3=0. 当q =±2时,a 3=4,log 4a 3=1. 综上所述,log 4a 3的值为0或1.8.设数列{a n }是公差为d (d >0)的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .75B .90C .105D .120解析:选C 由a 1+a 2+a 3=15得3a 2=15,解得a 2=5,由a 1a 2a 3=80,得(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(d =-3舍去),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105.二、填空题9.若数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,则数列{a n }的通项公式为________.解析:当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13, 两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13满足a n =13n ,所以a n =13n .答案:a n =13n10.数列{a n }的前n 项和为S n ,若S n =2a n -1,则a n =________. 解析:∵S n =2a n -1,① ∴S n -1=2a n -1-1(n ≥2),② ①-②得a n =2a n -2a n -1, 即a n =2a n -1.∵S 1=a 1=2a 1-1,即a 1=1,∴数列{a n }为首项是1,公比是2的等比数列, 故a n =2n -1.答案:2n -111.已知数列{a n }中,a 2n =a 2n -1+(-1)n ,a 2n +1=a 2n +n ,a 1=1,则a 20=________. 解析:由a 2n =a 2n -1+(-1)n ,得a 2n -a 2n -1=(-1)n , 由a 2n +1=a 2n +n ,得a 2n +1-a 2n =n ,故a 2-a 1=-1,a 4-a 3=1,a 6-a 5=-1,…,a 20-a 19=1. a 3-a 2=1,a 5-a 4=2,a 7-a 6=3,…,a 19-a 18=9. 又a 1=1,累加得:a 20=46. 答案:4612.数列{a n }为正项等比数列,若a 3=3,且a n +1=2a n +3a n -1(n ≥2,n ∈N *),则此数列的前5项和S 5=________.解析:设公比为q (q >0),由a n +1=2a n +3a n -1,可得q 2=2q +3,所以q =3,又a 3=3,则a 1=13,所以此数列的前5项和S 5=13×(1-35)1-3=1213.答案:1213三、解答题13.已知在等差数列{a n }中,a 3=5,a 1+a 19=-18. (1)求公差d 及通项a n ;(2)求数列{a n }的前n 项和S n 及使得S n 取得最大值时n 的值. 解:(1)∵a 3=5,a 1+a 19=-18,∴⎩⎪⎨⎪⎧ a 1+2d =5,2a 1+18d =-18,∴⎩⎪⎨⎪⎧a 1=9,d =-2,∴a n =11-2n . (2)由(1)知,S n =n (a 1+a n )2=n (9+11-2n )2=-n 2+10n =-(n -5)2+25, ∴n =5时,S n 取得最大值.14.已知数列{a n }满足a 12+a 222+a 323+…+a n2n =n 2+n .(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n2,求数列{b n }的前n 项和S n .解:(1)∵a 12+a 222+a 323+…+a n2n =n 2+n ,∴当n ≥2时,a 12+a 222+a 323+…+a n -12n -1=(n -1)2+n -1,两式相减得a n 2n =2n (n ≥2),∴a n =n ·2n +1(n ≥2).又∵当n =1时,a 12=1+1,∴a 1=4,满足a n =n ·2n +1.∴a n =n ·2n +1.(2)∵b n =(-1)n a n 2=n (-2)n ,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n ×(-2)n .-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n -1)×(-2)n +n (-2)n +1,∴两式相减得3S n =(-2)+(-2)2+(-2)3+(-2)4+…+(-2)n -n (-2)n+1=-2[1-(-2)n ]1-(-2)-n (-2)n +1=-(-2)n +1-23-n (-2)n +1=-(3n +1)(-2)n +1+23,∴S n =-(3n +1)(-2)n +1+29.高考研究课(一) 等差数列的3考点——求项、求和及判定 [全国卷5年命题分析][典例] (1)设S n n 1S n +2-S n =36,则n =( )A .5B .5C .7D .8(2)(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.①求b 1,b 11,b 101;②求数列{b n }的前1 000项和.[解析] (1)法一:由等差数列前n 项和公式可得S n +2-S n =(n +2)a 1+(n +2)(n +1)2d -⎣⎡⎦⎤na 1+n (n -1)2d =2a 1+(2n +1)d =2+4n +2=36, 解得n =8.法二:由S n +2-S n =a n +2+a n +1=a 1+a 2n +2=36,因此a 2n +2=a 1+(2n +1)d =35,解得n =8.答案:D(2)①设数列{a n }的公差为d , 由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. ②因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. [方法技巧]等差数列运算的解题思路由等差数列的前n 项和公式及通项公式可知,若已知a 1,d ,n ,a n ,S n 中三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.[即时演练]1.已知数列{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 6=4S 3,则a 10=( ) A.172 B.192 C.910D.89解析:选B ∵S 6=4S 3,公差d =1. ∴6a 1+6×52×1=4×⎝⎛⎭⎫3a 1+3×22×1,解得a 1=12.∴a 10=12+9×1=192.2.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 4-S 2S 5-S 3的值为( )A .-2B .-3C .2D .3解析:选D 设{a n }的公差为d ,因为a 1,a 3,a 4成等比数列, 所以(a 1+2d )2=a 1(a 1+3d ),可得a 1=-4d , 所以S 4-S 2S 5-S 3=a 3+a 4a 4+a 5=-3d-d=3. 3.(2018·大连联考)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4.即所求m 的值为5,k 的值为4.[典例] 已知{a n 11n 2n ,且b 4=17. (1)求证:数列{b n }是以-2为公差的等差数列; (2)设数列{b n }的前n 项和为S n ,求S n 的最大值.[思路点拨] (1)利用等比数列以及对数的运算法则,转化证明数列{b n }是以-2为公差的等差数列;(2)求出数列的和,利用二次函数的性质求解最大值即可. [解] (1)证明:设等比数列{a n }的公比为q , 则b n +1-b n =log 2a n +1-log 2a n =log 2a n +1a n =log 2q ,因此数列{b n }是等差数列.又b 11=log 2a 11=3,b 4=17, 所以等差数列{b n }的公差d =b 11-b 47=-2, 故数列{b n }是以-2为公差的等差数列. (2)由(1)知,b n =25-2n ,则S n =n (b 1+b n )2=n (23+25-2n )2=n (24-n )=-(n -12)2+144,于是当n =12时,S n 取得最大值,最大值为144. [方法技巧]等差数列判定与证明的方法1.(2016·浙江高考)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n+2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =(-2)×[1-(-2)n ]1-(-2)=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2⎣⎡⎦⎤-23+(-1)n 2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.[典例] (1)n 3610a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(2)已知数列{a n },{b n }为等差数列,前n 项和分别为S n ,T n ,若S n T n =3n +22n ,则a 7b 7=( )A.4126 B.2314 C.117D.116(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.[解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,即a 8=8,m =8.(2)因为{a n },{b n }为等差数列,且S n T n=3n +22n ,所以a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=13(a 1+a 13)213(b 1+b 13)2=S 13T 13=3×13+22×13=4126.(3)∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. [答案] (1)A (2)A (3)60 [方法技巧]等差数列的性质(1)项的性质在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n . [即时演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2018·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3(1+q 2)a 4(1+q 2)=1q =25+1=5-12. 3.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 10b 9+b 12+a 11b 8+b 13=________.解析:∵数列{a n }和{b n }都是等差数列,∴a 10b 9+b 12+a 11b 8+b 13=a 10+a 11b 9+b 12=a 10+a 11b 10+b 11=S 20T 20=7×2020+3=14023. 答案:14023等差数列前n 项和的最值等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用函数法或通项变号法解决等差数列前n 项和S n 的最值问题.[典例] 等差数列{a n n 1311n n 的值为________.[解析] 法一:用“函数法”解题 由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0. 故当n =7时,S n 最大. 法二:用“通项变号法”解题 由法一可知,d =-213a 1. 要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. [答案] 7 [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时演练]1.(2018·潍坊模拟)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20, ∴10a 1+10×92d =20a 1+20×192d ,解得d =-2, ∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( )A .8B .9C .10D .11解析:选B 设数列{a n }的公差为d , ∵a 1=-26,a 8+a 13=5,∴-26+7d -26+12d =5,解得d =3, ∴S n =-26n +n (n -1)2×3=32n 2-552n =32⎝⎛⎭⎫n -5562-3 02524, ∴{a n }的前n 项和S n 取最小值时,n =9.3.已知{a n }是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,则数列{a n }的前n 项和取最大值时,n =________.解析:由S 10=10(a 1+a 10)2=5(a 5+a 6)=0, 可得a 5+a 6=0,∴a 5>0,a 6<0,即数列{a n }的前5项和为最大值,∴n =5. 答案:51.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98. 法二:∵{a n }是等差数列, ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.3.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.4.(2013·全国卷Ⅱ)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d .由题意,a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ), 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .一、选择题1.(2018·厦门一中测试)已知数列{a n }中,a 2=32,a 5=98,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 7=( )A.109 B.1110 C.1211D.1312解析:选D 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d ,则1a 5-1=1a 2-1+3d ,即198-1=132-1+3d ,解得d =2,所以1a 7-1=1a 2-1+5d =12,解得a 7=1312.2.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列,设首项a1=4,则a5=2.由等差数列的性质得a2+a4=a1+a5=6,所以第二尺与第四尺的重量之和为6斤.3.(2018·银川一中月考)在等差数列{a n}中,首项a1>0,公差d≠0,前n项和为S n(n∈N*),有下列命题:①若S3=S11,则必有S14=0;②若S3=S11,则必有S7是S n中的最大项;③若S7>S8,则必有S8>S9;④若S7>S8,则必有S6>S9.其中正确命题的个数是()A.1 B.2C.3 D.4解析:选D对于①,若S11-S3=4(a1+a14)=0,即a1+a14=0,则S14=14(a1+a14)2=0,所以①正确;对于②,当S3=S11时,易知a7+a8=0,又a1>0,d≠0,所以a7>0>a8,故S7是S n中的最大项,所以②正确;对于③,若S7>S8,则a8<0,那么d<0,可知a9<0,此时S9-S8<0,即S8>S9,所以③正确;对于④,若S7>S8,则a8<0,S9-S6=a7+a8+a9=3a8<0,即S6>S9,所以④正确.故选D.4.(2018·大同模拟)在等差数列{}a n中,a1+a2+a3=3,a18+a19+a20=87,则此数列前20项的和等于()A.290 B.300C.580 D.600解析:选B由a1+a2+a3=3a2=3,得a2=1.由a18+a19+a20=3a19=87,得a19=29,所以S20=20(a1+a20)2=10(a2+a19)=300.5.设等差数列{a n}的前n项和为S n,且S9=18,a n-4=30(n>9),若S n=336,则n的值为()A.18 B.19C.20 D.21解析:选D因为{a n}是等差数列,所以S9=9a5=18,a5=2,S n=n(a1+a n)2=n(a5+a n-4)2=n 2×32=16n =336,解得n =21. 6.设{a n }是等差数列,d 是其公差,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .当n =6或n =7时S n 取得最大值解析:选C 由S 5<S 6,得a 1+a 2+a 3+a 4+a 5<a 1+a 2+a 3+a 4+a 5+a 6,即a 6>0.同理由S 7>S 8,得a 8<0.又S 6=S 7,∴a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7,∴a 7=0,∴B 正确;∵d =a 7-a 6<0,∴A 正确;而C 选项,S 9>S 5,即a 6+a 7+a 8+a 9>0,可得2(a 7+a 8)>0,由结论a 7=0,a 8<0,知C 选项错误;∵S 5<S 6,S 6=S 7>S 8,∴结合等差数列前n 项和的函数特性可知D 正确.故选C.7.等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( )A .|a 7|>|a 8|B .|a 7|<|a 8|C .|a 7|=|a 8|D .|a 7|=0解析:选B 因为(S 8-S 5)(S 9-S 5)<0,所以(a 6+a 7+a 8)(a 6+a 7+a 8+a 9)<0,因为{a n }为等差数列,所以a 6+a 7+a 8=3a 7,a 6+a 7+a 8+a 9=2(a 7+a 8),所以a 7(a 7+a 8)<0,所以a 7与(a 7+a 8)异号.又公差d >0,所以a 7<0,a 8>0,且|a 7|<|a 8|,故选B.二、填空题8.在数列{a n }中,a n +1=a n 1+3a n,a 1=2,则a 20=________. 解析:由a n +1=a n 1+3a n,a 1=2, 可得1a n +1-1a n=3, 所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列. 所以1a n=12+3(n -1),即a n =26n -5,所以a 20=2115. 答案:21159.数列{a n }满足:a 1=1,a n +1=2a n +2n ,则数列{a n }的通项公式为________. 解析:∵a 1=1,a n +1=2a n +2n ,∴a n +12n +1=a n 2n +12, ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 12=12,公差d =12的等差数列, 故a n 2n =12+(n -1)×12=12n , 即a n =n ·2n -1. 答案:a n =n ·2n -1 10.设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,S 12=λS 8,则λ=________. 解析:当S 4≠0,且S 8=3S 4,S 12=λS 8时,由等差数列的性质得:S 4,S 8-S 4,S 12-S 8成等差数列,∴2(S 8-S 4)=S 4+(S 12-S 8),∴2(3S 4-S 4)=S 4+(λ·3S 4-3S 4),解得λ=2.答案:2三、解答题11.已知数列{a n }是等差数列,且a 1,a 2,a 5成等比数列,a 3+a 4=12.(1)求a 1+a 2+a 3+a 4+a 5;(2)设b n =10-a n ,数列{b n }的前n 项和为S n ,若b 1≠b 2,则n 为何值时,S n 最大?S n 最大值是多少?解:(1)设{a n }的公差为d ,∵a 1,a 2,a 5成等比数列,∴(a 1+d )2=a 1(a 1+4d ),解得d =0或d =2a 1.当d =0时,∵a 3+a 4=12,∴a n =6,∴a 1+a 2+a 3+a 4+a 5=30;当d ≠0时,∵a 3+a 4=12,∴a 1=1,d =2,∴a 1+a 2+a 3+a 4+a 5=25.(2)∵b 1≠b 2,b n =10-a n ,∴a 1≠a 2,∴d ≠0,由(1)知a n =2n -1,∴b n =10-a n =10-(2n -1)=11-2n ,S n =10n -n 2=-(n -5)2+25. ∴当n =5时,S n 取得最大值,最大值为25.12.(2018·沈阳质检)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5.(1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式. 解:(1)设等差数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧ 2a 1+7d =4,5a 1+5×42d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2, 故a n =2n -7(n ∈N *).(2)由a n =2n -7<0,得n <72,即n ≤3, 所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0. 由(1)知S n =n 2-6n ,所以当n ≤3时,T n =-S n =6n -n 2;当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T 5=13,T n =⎩⎪⎨⎪⎧6n -n 2,n ≤3,n 2-6n +18,n ≥4. 13.已知数列{a n }中,a 1=4,a n =a n -1+2n -1+3(n ≥2,n ∈N *). (1)证明数列{a n -2n }是等差数列,并求{a n }的通项公式;(2)设b n =a n 2n ,求b n 的前n 项和S n . 解:(1)证明:当n ≥2时,a n =a n -1+2n -1+3=a n -1+2n -2n -1+3, ∴a n -2n -(a n -1-2n -1)=3. 又a 1=4,∴a 1-2=2,故数列{a n -2n }是以2为首项,3为公差的等差数列,∴a n -2n =2+(n -1)×3=3n -1,∴a n =2n +3n -1.(2)b n =a n 2n =2n +3n -12n =1+3n -12n , ∴S n =⎝⎛⎭⎫1+22+⎝⎛⎭⎫1+522+…+⎝⎛⎭⎫1+3n -12n =n +⎝⎛⎭⎫22+522+…+3n -12n , 令T n =22+522+…+3n -12n ,①则12T n =222+523+…+3n -12n +1,② ①-②得,12T n =1+322+323+…+32n -3n -12n +1, =1+3×14⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-3n -12n +1=52-3n +52n +1, ∴S n =n +5-3n +52n.已知数列{a n }的前n 项和为S n ,a 1=3,a n +1=2a n +2n +1-1(n ∈N *). (1)求a 2,a 3;(2)求实数λ使⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列,并由此求出a n 与S n ; (3)求n 的所有取值,使S n a n∈N *,说明你的理由. 解:(1)∵a 1=3,a n +1=2a n +2n +1-1, ∴a 2=2×3+22-1=9,a 3=2×9+23-1=25.(2)∵a 1=3,a n +1=2a n +2n +1-1, ∴a n +1-1=2(a n -1)+2n +1, ∴a n +1-12n +1-a n -12n =1, 故λ=-1时,数列⎩⎨⎧⎭⎬⎫a n +λ2n 成等差数列,且首项为a 1-12=1,公差d =1. ∴a n -12n =n ,即a n =n ·2n +1. ∴S n =(1×2+2×22+3×23+…+n ×2n )+n ,设T n =1×2+2×22+3×23+…+n ×2n ,①则2T n =1×22+2×23+3×24+…+n ×2n +1,② ①-②得,-T n =2+22+23+…+2n -n ×2n +1=(1-n )·2n +1-2, ∴T n =(n -1)·2n +1+2, ∴S n =T n +n =(n -1)·2n +1+2+n . (3)S n a n =(n -1)·2n +1+n +2n ·2n +1=2+n -2n +1n ·2n +1, 结合y =2x 及y =12x 的图象可知2n >n 2恒成立, ∴2n +1>n ,即n -2n +1<0,∵n ·2n +1>0,∴S n a n<2.当n =1时,S n a n =S 1a 1=1∈N *; 当n ≥2时,∵a n >0且{a n }为递增数列,∴S n >0且S n >a n ,∴S n a n >1,即1<S n a n <2,∴当n ≥2时,S n a n∉N *. 综上可得n =1.高考研究课(二)等比数列的3考点——基本运算、判定和应用[全国卷5年命题分析][典例] (1)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n =( ) A .4n -1 B .4n -1C .2n -1 D .2n -1 (2)(2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.①若a 3+b 3=5,求{b n }的通项公式;②若T 3=21,求S 3.[解析] (1)设{a n }的公比为q ,∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧ a 1+a 1q 2=52, (ⅰ)a 1q +a 1q 3=54, (ⅱ)由(ⅰ)(ⅱ)可得1+q 2q +q3=2,∴q =12,代入(ⅰ)得a 1=2, ∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n , ∴S n a n=4⎝⎛⎭⎫1-12n 42n=2n -1. 答案:D(2)设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3.(ⅰ)①由a 3+b 3=5得2d +q 2=6.(ⅱ)联立(ⅰ)(ⅱ)解得⎩⎪⎨⎪⎧ d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2. 因此{b n }的通项公式为b n =2n -1. ②由b 1=1,T 3=21,得q 2+q -20=0,解得q =-5或q =4.当q =-5时,由(ⅰ)得d =8,则S 3=21.当q =4时,由(ⅰ)得d =-1,则S 3=-6.[方法技巧]解决等比数列有关问题的常用思想方法(1)方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q. [即时演练]1.已知数列{a n }是首项a 1=14的等比数列,其前n 项和为S n ,S 3=316,若a m =-1512,则m 的值为( )A .8B .10C .9D .7解析:选A 设数列{a n }的公比为q ,若q =1,则S 3=34≠316,不符合题意,∴q ≠1. 由⎩⎨⎧a 1=14,S 3=a 1(1-q 3)1-q =316,得⎩⎨⎧ a 1=14q =-12,∴a n =14·⎝⎛⎭⎫-12n -1=⎝⎛⎭⎫-12n +1. 由a m =⎝⎛⎭⎫-12m +1=-1512, 得m =8.2.(2017·北京高考)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;(2)求和:b 1+b 3+b 5+…+b 2n -1.解:(1)设等差数列{a n }的公差为d .因为⎩⎪⎨⎪⎧a 1=1,a 2+a 4=10, 所以2a 1+4d =10,解得d =2,所以a n =2n -1.(2)设等比数列{b n }的公比为q .因为b 1=1,b 2b 4=a 5,所以b 1q ·b 1q 3=9.解得q 2=3.所以b 2n -1=b 1q 2n -2=3n -1. 从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.[典例] (1)n 12n +2n +1n N *,对数列{a n }有下列命题:①数列{a n }是等差数列;②数列{a n +1-a n }是等比数列;③当n ≥2时,a n 都是质数;④1a 1+1a 2+…+1a n<2,n ∈N *, 则其中正确的命题有( )A .②B .①②C.③④D.②④(2)设数列{a n}的前n项和为S n,已知a1+2a2+3a3+…+na n=(n-1)S n+2n(n∈N*).①求a2,a3的值;②求证:数列{S n+2}是等比数列.[解析](1)∵an+2=3a n+1-2a n,∴a n+2-a n+1=2(a n+1-a n),∴数列{a n+1-a n}是以a2-a1=2为首项、2为公比的等比数列,∴a n-a n-1=2n-1,a n-1-a n-2=2n-2,…a2-a1=21,累加得:a n-a1=21+22+…+2n-1=2(1-2n-1)1-2=2n-2,∴a n=2n-2+a1=2n-1.显然①②③中,只有②正确,又∵1a n=12n-1<12n-1(n≥2),∴1a1+1a2+…+1a n<1+12+122+…+12n-1=1-12n1-12<2,故④正确;综上所述,①③错误,②④正确.答案:D(2)[思路点拨]①令n=1,2,3,即可求出结论;②当n≥2时,a1+2a2+3a3+…+(n-1)a n-1=(n-2)S n-1+2(n-1),与已知式相减,再利用a n=S n-S n-1(n≥2),化简整理,即可得出结论.解:①∵a1+2a2+3a3+…+na n=(n-1)S n+2n(n∈N*),∴当n=1时,a1=2×1=2;当n=2时,a1+2a2=(a1+a2)+4,∴a2=4;当n=3时,a1+2a2+3a3=2(a1+a2+a3)+6,∴a3=8.②证明:∵a1+2a2+3a3+…+na n=(n-1)S n+2n(n∈N*),(ⅰ)∴当n≥2时,a1+2a2+3a3+…+(n-1)a n-1=(n-2)·S n-1+2(n-1).(ⅱ)(ⅰ)-(ⅱ)得na n=(n-1)S n-(n-2)S n-1+2=n(S n-S n-1)-S n+2S n-1+2=na n-S n+2S n-1+2.∴-S n+2S n-1+2=0,即S n=2S n-1+2,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周周测8 数列的综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·山西太原五中调考)把1,3,6,10,15,…这些数叫做三角形数,这是因为这些数目的圆点可以排成一个正三角形(如图所示).则第7个三角形数是( ) A .27 B .28 C .29 D .30 答案:B 解析:观察三角形数的增长规律,可以发现每一项比它的前一项多的点数正好是该项的序号,即a n =a n -1+n (n ≥2).所以根据这个规律计算可知,第7个三角形数是a 7=a 6+7=a 5+6+7=15+6+7=28.故选B.2.(2018·山东潍坊期中)在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n =( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n 答案:A解析:解法一 由已知得a n +1-a n =ln ⎝⎛⎭⎪⎫1+1n =ln n +1n,而a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1,n ≥2,所以a n =ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝ ⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=ln n +2,n ≥2.当n =1时,a 1=2=ln1+2.故选A.解法二 由a n =a n -1+ln ⎝ ⎛⎭⎪⎫1+1n -1=a n -1+ln n n -1=a n -1+ln n -ln(n -1)(n ≥2),可知a n -ln n =a n -1-ln(n -1)(n ≥2).令b n =a n -ln n ,则数列{b n }是以b 1=a 1-ln1=2为首项的常数列,故b n =2,所以2=a n -ln n ,所以a n =2+ln n .故选A.3.已知数列{a n }的通项公式为a n =2n 2+tn +1,若{a n }是单调递增数列,则实数t 的取值范围是( )A .(-6,+∞) B.(-∞,-6) C .(-∞,-3) D .(-3,+∞) 答案:A解析:解法一 因为{a n }是单调递增数列,所以对于任意的n ∈N *,都有a n +1>a n ,即2(n +1)2+t (n +1)+1>2n 2+tn +1,化简得t >-4n -2,所以t >-4n -2对于任意的n ∈N *都成立,因为-4n -2≤-6,所以t >-6.选A.解法二 设f (n )=2n 2+tn +1,其图象的对称轴为n =-t4,要使{a n }是递增数列,则-t 4<1+22,即t >-6.选A. 4.(2017·新课标全国卷Ⅲ,9)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 答案:A解析:本题主要考查等差数列的通项公式及前n 项和公式.设等差数列{a n }的公差为d ,依题意得a 23=a 2·a 6,即(1+2d )2=(1+d )(1+5d ),解得d =-2或d =0(舍去),又a 1=1,∴S 6=6×1+6×52×(-2)=-24.故选A. 5.(2018·大理一诊)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=45,则a 5=( ) A .4 B .5 C .6 D .9 答案:D解析:由等差数列的性质知a 3+a 4+a 5+a 6+a 7=5a 5=45,所以a 5=9.故选D.6.(2018·安徽合肥二模)已知⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134 答案:A解析:由题意,得1a 1=1,1a 4=14,所以等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d =1a 4-1a 13=-14,由此可得1a n =1+(n -1)×⎝ ⎛⎭⎪⎫-14=-n 4+54,因此1a 10=-54,所以a 10=-45.故选A. 7.已知等比数列{a n }共有10项,其中奇数项之积为2,偶数项之积为64,则其公比q 为( )A.32B. 2 C .2 D .2 2 答案:C 解析:由奇数项之积为2,偶数项之积为64,得a 1·a 3·a 5·a 7·a 9=2,a 2·a 4·a 6·a 8·a 10=64,则q 5=a 2·a 4·a 6·a 8·a 10a 1·a 3·a 5·a 7·a 9=32,则q =2,故选C.8.(2018·辽宁盘锦高中月考)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5 B.3116或5 C.3116D.158 答案:C解析:若q =1,则由9S 3=S 6,得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1.由9S 3=S 6,得9×a 11-q 31-q =a 11-q 61-q ,解得q =2.故a n =a 1q n -1=2n -1,1a n =⎝ ⎛⎭⎪⎫12n -1.所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,以12为公比的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为T 5=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=3116.故选C.9.(2018·潍坊二模)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则此人第4天和第5天共走的路程为( )A .60里B .48里C .36里D .24里 答案:C解析:由题意知,此人每天走的路程构成公比为12的等比数列.设等比数列的首项为a 1,则有a 1⎝ ⎛⎭⎪⎫1-1261-12=378,解得a 1=192,a 4=192×18=24,a 5=24×12=12,a 4+a 5=24+12=36,所以此人第4天和第5天共走了36里路,故选C.10.(2018·河北冀州中学质检)已知数列{a n }满足a 1=0,a n +1=a n +2n ,那么a 2 017的值是( )A .2 0172B .2 015×2 017C .2 016×2 018 D.2 016×2 017 答案:D解析:因为a n +1=a n +2n ,a 1=0所以⎩⎪⎨⎪⎧a n =a n -1+2n -1,a n -1=a n -2+2n -2,a n -2=a n -3+2n -3,……a 3=a 2+2×2,a 2=a 1+2×1,将这n -1个式子累加得a n =a 1+2×1+2×2+…+2(n -2)+2(n -1)=0+2×[1+n -1]n -12=n (n -1).所以a 2 017=2 016×2017,故选D.11.(2018·大理一模)若数列{a n }的首项a 1=2,且a n +1=3a n +2(n ∈N *),令b n =log 3(a n+1),则b 1+b 2+b 3+…+b 100=( )A .4 900B .4 950C .5 000D .5 050 答案:D解析:由a n +1=3a n +2(n ∈N *)可得a n +1+1=3(a n +1),故a n +1+1a n +1=3,所以数列{a n +1}是以3为首项,3为公比的等比数列,所以a n +1=3n,所以b n =log 3(a n +1)=n ,因此b 1+b 2+b 3+…+b 100=100×1+1002=5 050,选D.12.已知数列{a n }的通项公式为a n =3n -1,令c n =log 3a 2n ,b n =1c n ·c n +2,记数列{b n }的前n 项和为T n ,若对任意的n ∈N *,λ<T n 恒成立,则实数λ的取值范围为( )A.⎝ ⎛⎭⎪⎫-∞,16B.⎝ ⎛⎭⎪⎫-∞,13C.⎝ ⎛⎭⎪⎫-∞,14D.⎝⎛⎭⎪⎫-∞,15 答案:D解析:∵a n =3n -1,c n =log 3a 2n ,∴c n =2n -1,∴c n +2=2n +3,b n =12n -12n +3=14⎝ ⎛⎭⎪⎫12n -1-12n +3,∴T n =14⎝ ⎛11-15+13-17+15-19+…+⎭⎪⎫12n -3-12n +1+12n -1-12n +3= 14⎝ ⎛⎭⎪⎫1+13-12n +1-12n +3= 13-14⎝ ⎛⎭⎪⎫12n +1+12n +3,由于T n 随着n 的增大而增大,∴T n 的最小值为T 1=15,∴λ的取值范围为λ<15,选D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.(2018·兰州一模)在数列1,2,7,10,13,…中,219是这个数列的第________项.答案:26解析:数列1,2,7,10,13,…,即数列1,3×1+1,3×2+1,3×3+1,3×4+1,…,∴该数列的通项公式为a n =3n -1+1=3n -2,∴3n -2=219=76,∴n =26,故219是这个数列的第26项.14.已知S n 为数列{a n }的前n 项和,a 12+a 23+a 34+…+a n -1n=a n -2(n ≥2),且a 1=2,则{a n }的通项公式为________.答案:a n =n +1解析:∵a 12+a 23+a 34+…+a n -1n =a n -2(n ≥2),∴当n =2时,a 12=a 2-2,解得a 2=3.a 12+a 23+a 34+…+a n -12+a nn +1=a n +1-2,a n n +1=a n +1-2-(a n -2)(n ≥2),得a n +1n +2=a nn +1(n ≥2),∴a n +1n +2=a n n +1=…=a 23=1,∴a n =n +1(n ≥2),当n =1时也满足,故a n =n +1. 15.已知等比数列{a n }满足a 1=12,a 2a 8=2a 5+3,则a 9=________.答案:18解析:解法一 先由已知条件得出基本量a 1,q ,再由等比数列的通项公式求得a 9.设公比为q ,由a 2a 8=2a 5+3,得a 21q 8=2a 1q 4+3,又a 1=12,所以q 8-4q 4-12=0,解得q 4=6或q 4=-2(舍去),所以a 9=a 1q 8=12×62=18.解法二 由等比数列的性质可得a 2a 8=a 25,可得a 5=3,由a 1a 9=a 25即可求出a 9.根据等比数列的性质,可得a 2a 8=a 25,又a 2a 8=2a 5+3,所以a 25-2a 5-3=0, 解得a 5=3或a 5=-1,因为a 1>0,所以a 5=a 1q 4>0,所以a 5=3,因为a 1a 9=a 25,所以a 9=a 25a 1=18.16.已知等差数列{a n }的前n 项和为S n ,满足S 8=S 12,且a 1>0,则S n 中最大的是________. 答案:S 10解析:通解 设等差数列{a n }的公差为d ,根据S 8=S 12可得8a 1+8×72d =12a 1+12×112d ,即2a 1+19d =0,得到d =-219a 1,从而S n =na 1+n n -12×⎝ ⎛⎭⎪⎫-219a 1=-a 119(n -10)2+10019a 1,由a 1>0可知-a 119<0.故当n =10时,S n 最大.优解 根据S 8=S 12可得a 9+a 10+a 11+a 12=0,再根据等差数列的性质可得a 10+a 11=0,由a 1>0可知a 10>0,a 11<0.从而可知所有正数相加时,S n 可取得最大值,即前10项和最大.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1.(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式.解析:(1)证明:(a n +1-1)(a n -1)=3[(a n -1)-(a n +1-1)],∴1a n +1-1-1a n -1=13,即b n +1-b n =13,∴{b n }是等差数列. (2)∵b 1=1,∴b n =13n +23,a n -1=3n +2,∴a n =n +5n +2.18.(本小题满分12分)(2018·内蒙古呼和浩特二中月考)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解析:(1)因为a 2n -(2a n +1-1)a n -2a n +1=0,所以当n =1时,a 21-(2a 2-1)a 1-2a 2=0.因为a 1=1,所以a 2=12.同理,当n =2时,a 22-(2a 3-1)a 2-2a 3=0,所以a 3=14.(2)因为a 2n -(2a n +1-1)a n -2a n +1=0, 所以2a n +1(a n +1)=a n (a n +1).因为{a n }的各项均为正数,所以2a n +1=a n ,即a n +1=12a n ,而a 1=1,所以{a n }是以1为首项,12为公比的等比数列,所以a n =12n -1.19.(本小题满分12分)(2018·新疆模拟)已知数列{a n }的前n 项和为S n ,满足S n =2a n -2n (n ∈N *). (1)证明:{a n +2}是等比数列,并求{a n }的通项公式;(2)数列{b n }满足b n =log 2(a n +2),T n 为数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和,若T n <a 对任意正整数n 都成立,求a 的取值范围.解析:(1)证明:因为S n =2a n -2n (n ∈N *)①,所以a 1=S 1=2a 1-2,得a 1=2.当n ≥2时,S n -1=2a n -1-2(n -1)②.由①②两式相减得a n =2a n -1+2,变形得a n +2=2(a n -1+2).又因为a 1+2=4,所以{a n +2}是以4为首项,2为公比的等比数列,所以a n +2=4×2n-1,所以a n =4×2n -1-2=2n +1-2(n ≥2).又a 1=2也符合上述表达式,所以a n =2n +1-2(n ∈N *).(2)因为b n =log 2(a n +2)=log 22n +1=n +1,1b n b n +1=1n +1n +2=1n +1-1n +2,所以T n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2<12,依题意得a ≥12,即a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 20.(本小题满分12分)(2018·北京四中月考)等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行 9 8 18(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)nln a n ,求数列{b n }的前n 项和S n . 解析:(1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18,所以{a n }的公比q =3.所以a n =2·3n -1(n ∈N *).(2)由(1)得b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n[ln2+(n -1)ln3]=2·3n -1+(-1)n ·(ln2-ln3)+(-1)nn ln3,所以S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln2-ln3)+[-1+2-3+…+(-1)nn ]ln3.①当n 为偶数时,S n =2×1-3n1-3+n 2ln3=3n+n 2ln3-1;②当n 为奇数时,S n =2×1-3n1-3-(ln2-ln3)+⎝ ⎛⎭⎪⎫n -12-n ln3=3n -n -12ln3-ln2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln3-1,n 为偶数,3n-n -12ln3-ln2-1,n 为奇数.21.(本小题满分12分)设数列{a n }的前n 项和为S n ,已知a 1=2,a 2=8,S n +1+4S n -1=5S n (n ≥2),T n 是数列{log 2a n }的前n 项和.(1)求数列{a n }的通项公式;(2)求满足⎝ ⎛⎭⎪⎫1-1T 2⎝ ⎛⎭⎪⎫1-1T 3·…·⎝ ⎛⎭⎪⎫1-1T n ≥1 0112 018的最大正整数n 的值.解析:(1)∵当n ≥2时,S n +1+4S n -1=5S n , ∴S n +1-S n =4(S n -S n -1), ∴a n +1=4a n .∵a 1=2,a 2=8, ∴a 2=4a 1,∴数列{a n }是以2为首项,4为公比的等比数列,∴a n =2×4n -1=22n -1.(2)由(1)得log 2a n =log 222n -1=2n -1, ∴T n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1) =n 1+2n -12=n 2.∴⎝⎛⎭⎪⎫1-1T 2⎝⎛⎭⎪⎫1-1T 3·…·⎝ ⎛⎭⎪⎫1-1T n = ⎝ ⎛⎭⎪⎫1-122⎝ ⎛⎭⎪⎫1-132·…·⎝ ⎛⎭⎪⎫1-1n 2= 22-122×32-132×42-142×…×n 2-1n 2= 1×3×2×4×3×5×…×n -1n +122×32×42×…×n 2=n +12n, 令n +12n ≥1 0112 018,解得n ≤1 0092,∴正整数n 的最大值为504. 22.(本小题满分12分)(2017·天津卷,18)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解析:本小题主要考查等差数列、等比数列及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由已知b 2+b 3=12,得b 1(q +q 2)=12,而b 1=2,所以q 2+q -6=0.解得q =2或q =-3,又因为q >0,解得q =2,所以b n =2n. 由b 3=a 4-2a 1,可得3d -a 1=8①. 由S 11=11b 4,可得a 1+5d =16②. 联立①②,解得a 1=1,d =3, 由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n,故T n =2×4+5×42+8×43+…+(3n -1)×4n ,①4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,② ①-②,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=12×1-4n1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8,得T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.。

相关文档
最新文档