计算流体力学基础

合集下载

第1章流体力学与计算流体力学基础

第1章流体力学与计算流体力学基础

第1章 流体力学与计算流体力学基础机进行数值计算,模拟流体流动时的各种相关物理现象,包括流动、热传导、声场等。

计算流体动力学分析广泛应用于航空航天设计、汽车设计、生物医学工业、化工处理工业、1.1 流体力学基础本节将介绍流体力学一些重要的基础知识,包括流体力学的基本概念和基本方程。

流体力学是进行流体力学工程计算的基础,如果想对计算的结果进行分析与整理,在设置边界条件时有所依据,那么学习流体力学的相关知识是必要的。

1.1.1 一些基本概念(1)流体的密度流体密度的定义是单位体积内所含物质的多少。

若密度是均匀的,则有:VM=ρ (1-1) 式中:ρ为流体的密度;M 是体积为V 的流体内所含物质的质量。

由上式可知,密度的单位是kg/m 3。

对于密度不均匀的流体,其某一点处密度的定义为:VMV ΔΔ=→Δ0limρ (1-2)2 Fluent 17.0流体仿真从入门到精通例如,4℃时水的密度为10003kg /m ,常温20℃时空气的密度为1.243kg /m 。

各种流体的具体密度值可查阅相关文献。

流体的密度是流体本身固有的物理量,随着温度和压强的变化而变化。

(2)流体的重度流体的重度与流体密度有一个简单的关系式,即:g ργ= (1-3)式中:g 为重力加速度,值为9.812m /s 。

流体的重度单位为3N /m 。

(3)流体的比重流体的比重定义为该流体的密度与4℃时水的密度之比。

(4)流体的粘性在研究流体流动时,若考虑流体的粘性,则称为粘性流动,相应地称流体为粘性流体;若不考虑流体的粘性,则称为理想流体的流动,相应地称流体为理想流体。

流体的粘性可由牛顿内摩擦定律表示:dyduμτ= (1-4)牛顿内摩擦定律适用于空气、水、石油等大多数机械工业中的常用流体。

凡是符合切应力与速度梯度成正比的流体叫做牛顿流体,即严格满足牛顿内摩擦定律且µ保持为常数的流体,否则就称其为非牛顿流体。

例如,溶化的沥青、糖浆等流体均属于非牛顿流体。

第二章--计算流体力学的基本知识

第二章--计算流体力学的基本知识

第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。

这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。

2.1计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。

20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。

数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。

从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。

数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。

数值计算方法最近发展很快,其重要性与日俱增。

自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。

最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。

航空技术的发展强烈推动了流体力学的迅速发展。

流体运动的规律由一组控制方程描述。

计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。

但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。

计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。

计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler或Navier-Stokes方程)以发现各种流动现象规律的学科。

计算流体力学基础及其应用

计算流体力学基础及其应用

计算流体力学基础及其应用计算流体力学(CFD)是计算机运用精确的数学模型和算法来研究流体力学物理过程的一种技术。

它利用计算机模拟方法处理流体流动和相互作用的过程,以更准确、更快捷的方式研究热流体流动、传热、传质和湍流等物理过程的问题。

CFD的基础是数学方面的流体力学,应用计算机模拟的基本方法是数值方法,用于分析各种流体流动问题以及相关热传导、传质等热力学现象。

此外,计算流体力学还集成有计算机动力学,流体动力学,热力学,结构力学,能量方法,计算工程和多物理场的数值模拟技术,可以更加精准地研究流体动力学,热传递,流体机械,复杂流动等问题。

CFD在工程实践中具有重要作用,其应用领域非常广泛,包括空气、液体、气体和粘性流动等各种固体表面及流体体系的运动和相互作用。

例如,可以用来分析大气环境中污染物的扩散,水力学中河流水流的流动性能和可能形成的机械,风能资源的开发利用,以及气体控制元件的设计等。

CFD技术的研究和应用对改善工业和生活的质量起着重要作用,具有重大的经济效益。

它可以帮助工程师进行快速和准确的表征及设计,从而大大缩短研发和评估的周期,并节省大量的研发费用,从而提高产品的质量和可靠性。

例如,可以用CFD模拟来分析火力发电厂泄漏物介质的运动和湍流,从而确定阀门及其参数,进行管道设计,抑制烟气污染,提高系统效率,实现节能减排等。

此外,CFD还可以用于水工工程,海洋工程,气候变化,大气和海洋环境监测,飞机设计,汽车行业和其他工程方面的问题,有助于数字信息的可视化,预测及避免工程问题,提高效率。

因此,CFD既可以用于重要的实际问题的研究,也可以用于开发新产品,从而为工程实践提供可靠的计算技术,有效地改善系统质量和可靠性,提高经济效益。

综上所述,CFD的研究和应用具有重要的实际意义,可以显着提高工程的质量和可靠性,并带来可观的经济收益。

未来,CFD技术将逐步发展壮大,有效地改善人们的生活和工作环境。

计算流体力学基本概念及详细解析

计算流体力学基本概念及详细解析

第一章 绪 论
在交错网格基础上,提出了同位网格方法,其吸取交错 网格的成功经验,又将求解变量布置在同一套网格上, 在非正交曲线坐标系中得到了广泛的应用。
在SIMPLE算法基础上,先后提出了SIMPLER和 SIMPLEC等改进算法。 这一阶段NHT已经开始走向工业界,经典著作、 商用软件、网格生成技术、更好的算法等等这些为日后 岁计算机工业的快速发展而NHT兴旺发达奠定了坚实的 理论基础、人员基础和物质基础。
第一章 绪 论
计算流体力学的问题 △流动机理不明的问题,数值工作无法进 行 △数值工作自身仍然有许多理论问题有待 解决 △离散化不仅引起定量的误差,同时也会 引起定性的误差,所以数值工作仍然离不 开实验的验证
第一章 绪 论
计算传热学发展简史
早在1933年,英国科学家THOM应用手摇计算机完 成了对一个外掠园流动的数值计算,但真正应用计 算机和数值计算方法求解流动问题,并在全世界范 围内形成规模而且得到有益的结果,大致始于60年 代
2u 2u 2u ˆ u u u u p u v w 2 2 2 t x y z x y z x 2v 2v 2v ˆ v v v v p u v w 2 2 2 t x y z y y z x
计 算 流 体 力 学
Computational Fluid Dynamics
第一章 绪 论
授课人:钱 昆 船舶工程学院
2-18周 研教楼506
第一章 绪 论
1 计算流体力学简介 什么是计算流体力学?
利用数值计算方法通过计算机求解描述 流体运动的控制方程,研究流体运动及 其同其它介质相互作用的各种复杂问题 的学科。 ★数值解而不是解析解 ★计算理论和计算技术起关键作用 ★与计算机的发展紧密相关

流体力学基础

流体力学基础

解:1. 活塞重力Fg: Fg=ρ2gv=120 N
2. 由活塞重力产生的压力pg: pg=Fg/A=3826 Pa
3. 由F产生的压力:
pf=F/A=318 310 Pa 4.h处的压力
p=(pg+pf)+ρ1gh=3.226x105 Pa
结论
从例2.1可以看出,表面力形成的压 力远远大于质量力形成的压力,因此, 在液压传动系统中近似地认为整个液 体内部的压力是处处相等的,并且等 于表面力形成的压力。
定义:又叫条件粘度。它是采用特定的粘度计在规 定的条件下测量出来的液体粘度。
• 恩氏度0E —— 中国、德国、前苏联等用 • 赛氏秒SSU —— 美国用 • 雷氏秒R —— 英国用 • 巴氏度0B —— 法国用
恩氏粘度与运动粘度之间的换算关系(查手册)
3.粘度与压力、温度的关系 压力↑,粘度↑;
温度↑,粘度↓。
4FGh
d2g
三、伯努利方程
理想流体 流束 一维流动
1
2
ds
gdsdA
pdA
(p+dp/ds)dA
压力
dz
重力 惯性力
1、理想流体运动微分方程微分方程
1)在流束两端截面上的压力
d
A (d)sd
A - d
s
d
A
2
2)重力
S
s
gdsdA
ds
3) 小微元体的惯性力
1
m adsd d u A ds(u du A ) pdA
个尺度的粒子的数量) 考虑因素:工作装置的抗污染的能力。
各类液压系统的抗污染等级
第二节 流体静力学
研究内容:研究液体处于静止状态的力学规律和这些规律的 实际应用。 静止液体:指液体内部质点之间没有相对运动,至于液体整 体完全可以象刚体一样做各种运动。

流体力学最基本的三个方程

流体力学最基本的三个方程

流体力学最基本的三个方程流体力学是研究流体运动及其相关物理现象的学科。

它的基础有三个最基本的方程,即连续性方程、动量守恒方程和能量守恒方程。

本文将详细介绍这三个方程的含义和应用。

一、连续性方程:连续性方程,也称为质量守恒方程,描述了流体运动中质量守恒的原理。

它的数学表达式为:∂ρ/∂t+∇·(ρv)=0其中,ρ是流体的密度,v是流体的速度矢量,∂/∂t表示对时间的偏导数,∇·表示向量的散度。

连续性方程的物理意义是说,质量在流体中是守恒的,即单位体积内的质量永远不会改变。

这是由于流体是连续的,无法出现质量的增减。

这个方程告诉我们,流体在流动过程中的速度变化与流体密度变化是相关的。

当流体流动速度较大时,密度通常会变小,反之亦然。

连续性方程的应用十分广泛。

在管道流动中,我们可以利用连续性方程来推导流速和截面积之间的关系。

在天气预报中,连续性方程被用来描述气象现象,如大气的上升和下沉运动,以及风的生成和消散等。

二、动量守恒方程:动量守恒方程描述了流体运动中动量守恒的原理。

它的数学表达式为:∂(ρv)/∂t + ∇·(ρvv) = -∇p + ∇·(μ∇v) + ρg其中,p是流体的压强,μ是流体的黏度,g是重力加速度。

动量守恒方程可以理解为牛顿第二定律在流体力学中的推广。

它表示流体在外力作用下的加速度与压力梯度、黏性力、重力的平衡关系。

动量守恒方程的物理意义是说,流体的运动与施加在流体上的各种力密切相关。

当外力作用于流体时,会引起流体的加速度,也即速度的变化。

这个方程告诉我们,流体的加速度是与外力、黏性力和重力共同作用而产生的。

动量守恒方程的应用十分广泛。

在飞行器设计中,我们可以利用动量守恒方程来研究气动力的产生和改变。

在水力学中,动量守恒方程可以用来分析水流的运动、喷流和冲击等。

三、能量守恒方程:能量守恒方程描述了流体运动中能量守恒的原理。

它的数学表达式为:∂(ρE)/∂t + ∇·(ρEv) = -∇·(pv) + ∇·(κ∇T) + ρg·v +q其中,E是单位质量流体的比总能量(包括内能、动能和位能),T是流体的温度,κ是流体的热传导系数,q是单位质量流体的热源项。

流体力学的数值模拟计算流体力学(CFD)的基础和局限性

流体力学的数值模拟计算流体力学(CFD)的基础和局限性

流体力学的数值模拟计算流体力学(CFD)的基础和局限性流体力学(Fluid Mechanics)是研究流体(包括气体和液体)运动和力学性质的学科。

数值模拟计算流体力学(Computational Fluid Dynamics,简称CFD)是利用计算机和数值计算方法对流体力学问题进行模拟和求解的一种方法。

CFD已经成为研究流体力学问题、设计和优化工程流体系统的重要工具。

本文将探讨CFD的基础原理和其在实践中的局限性。

一、CFD的基础原理1. 连续性方程和Navier-Stokes方程CFD的基础原理建立在连续性方程和Navier-Stokes方程的基础上。

连续性方程描述了流体的质量守恒,即流入和流出某一区域的质量流量必须相等。

Navier-Stokes方程则描述了流体的运动和力学性质。

它包含了质量守恒、动量守恒和能量守恒三个方程。

2. 网格划分在进行CFD计算之前,需要将流体区域划分为离散的小单元,即网格。

网格的形状和大小对数值模拟的精度和计算量有着重要的影响。

常见的网格划分方法包括结构化网格和非结构化网格。

3. 控制方程的离散化将连续性方程和Navier-Stokes方程进行离散化处理,将其转化为代数方程组,是CFD模拟的关键步骤。

常用的离散化方法包括有限差分法、有限元法和有限体积法等。

4. 数值求解方法求解离散化后的方程组是CFD计算的核心内容。

数值求解方法可以分为显式方法和隐式方法。

显式方法将未知变量推导到当前时间级,然后通过已知的变量进行计算,计算速度快但对时间步长有限制;隐式方法则将未知变量推导到下一个时间级,需要迭代求解,计算速度较慢但更稳定。

二、CFD的局限性1. 网格依赖性CFD模拟的结果在很大程度上受到网格划分的影响。

过大或过小的网格单元都会导致计算结果的不准确性。

此外,网格的形状对流场的模拟结果也有很大的影响。

如果网格不够细致,细小的涡旋等流动细节可能无法被捕捉到。

2. 数值扩散和耗散数值模拟中的离散化和近似计算会引入数值扩散和耗散。

第一章 流体力学的基础知识

第一章 流体力学的基础知识

u P u Z1 Z2 2g 2g P
假设从1—1断面到2—2断面流动过程中损失为h, 则实际流体流动的伯努利方程为
2 u12 P u2 Z1 Z2 h 2g 2g
2 1
2 2
P
第一章 流体力学的基础知识
1.3 流体动力学基础
【例 1.2 】如图 1-7所示,要 用水泵将水池中的水抽到用 水设备,已知该设备的用水 量为 60m3/h ,其出水管高
单体面积上流体的静压力称为流体的静压强。
若流体的密度为ρ,则液柱高度h与压力p的关系 为:
p=ρgh
第一章 流体力学的基础知识
1.2 流体静力学基本概念
1.2.1 绝对压强、表压强和大气压强
以绝对真空为基准测得的压力称为绝对压力,它是流 体的真实压力;以大气压为基准测得的压力称为表压 或真空度、相对压力,它是在把大气压强视为零压强 的基础上得出来的。
第一章 流体力学的基础知识
1.3 流体动力学基础
(3) 射流
流体经由孔口或管嘴喷射到某一空间,由于运动的 流体脱离了原来的限制它的固体边界,在充满流体的空 间继续流动的这种流体运动称为射流,如喷泉、消火栓 等喷射的水柱。
第一章 流体力学的基础知识
1.3 流体动力学基础
4. 流体流动的因素
(1) 过流断面
2. 质量密度
单位体积流体的质量称为流体的密度,即ρ=m/V
3. 重量密度
流体单位体积内所具有的重量称为重度或容重,以γ 表示。γ=G/V
第一章 流体力学的基础知识
1.1 流体主要的力学性质
质量密度与重量密度的关系为:
γ=G/V=mg/V=ρg
4. 粘性
表明流体流动时产生内摩擦力阻碍流体质点或流层 间相对运动的特性称为粘性,内摩擦力称为粘滞力。 粘性是流动性的反面,流体的粘性越大,其流动性

CFD基础(流体力学)

CFD基础(流体力学)

第1章CFD 基础计算流体动力学(computational fluid dynamics,CFD)是流体力学的一个分支,它通过计算机模拟获得某种流体在特定条件下的有关信息,实现了用计算机代替试验装置完成“计算试验”,为工程技术人员提供了实际工况模拟仿真的操作平台,已广泛应用于航空航天、热能动力、土木水利、汽车工程、铁道、船舶工业、化学工程、流体机械、环境工程等领域。

本章介绍CFD一些重要的基础知识,帮助读者熟悉CFD的基本理论和基本概念,为计算时设置边界条件、对计算结果进行分析与整理提供参考。

1.1 流体力学的基本概念1.1.1 流体的连续介质模型流体质点(fluid particle):几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。

连续介质(continuum/continuous medium):质点连续地充满所占空间的流体或固体。

连续介质模型(continuum/continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u(t,x,y,z)。

1.1.2 流体的性质1. 惯性惯性(fluid inertia)指流体不受外力作用时,保持其原有运动状态的属性。

惯性与质量有关,质量越大,惯性就越大。

单位体积流体的质量称为密度(density),以r表示,单位为kg/m3。

对于均质流体,设其体积为V,质量为m,则其密度为mρ=(1-1)V对于非均质流体,密度随点而异。

若取包含某点在内的体积V∆,其中质量m∆,则该点密度需要用极限方式表示,即0limV m Vρ∆→∆=∆ (1-2) 2. 压缩性 作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。

压缩性(compressibility)可用体积压缩率k 来量度d /d /d d V V k p pρρ=-= (1-3) 式中:p 为外部压强。

计算流体力学 有限体积法基础及其应用

计算流体力学 有限体积法基础及其应用

一、计算流体力学简介1.1 计算流体力学的定义1.2 计算流体力学的研究对象1.3 计算流体力学的发展历史二、有限体积法基础2.1 有限体积法的理论基础2.1.1 有限体积法的基本原理2.1.2 有限体积法的数学模型2.2 有限体积法的数值求解2.2.1 离散化2.2.2 迭代求解三、有限体积法在计算流体力学中的应用3.1 有限体积法在流体流动模拟中的应用 3.1.1 管道流动模拟3.1.2 自由表面流动模拟3.2 有限体积法在传热问题中的应用3.2.1 对流传热3.2.2 辐射传热四、有限体积法在工程领域中的应用4.1 有限体积法在航空航天领域中的应用 4.2 有限体积法在汽车工程中的应用4.3 有限体积法在建筑工程中的应用五、有限体积法的发展趋势5.1 高性能计算技术对有限体积法的影响5.2 多物理场耦合对有限体积法的挑战5.3 人工智能在有限体积法中的应用六、结论一、计算流体力学简介1.1 计算流体力学的定义计算流体力学(Computational Fluid Dynamics, CFD)是利用计算机模拟流体力学问题的一门学科。

它通过对流动流体的数值解,来研究流体在各种情况下的运动规律和性质。

1.2 计算流体力学的研究对象计算流体力学的研究对象包括流体的流动、传热、传质、振动等现象,以及与流体相关的各种工程问题,如飞机、汽车、建筑等的气动特性分析与设计。

1.3 计算流体力学的发展历史计算流体力学的发展可以追溯到20世纪50年代,当时计算机技术的进步为流体力学问题的数值模拟提供了可能。

随着计算机硬件和软件的不断发展,CFD的应用领域不断扩大,成为现代工程领域不可或缺的工具之一。

二、有限体积法基础2.1 有限体积法的理论基础2.1.1 有限体积法的基本原理有限体积法是求解流体动力学问题的数值方法之一,它基于质量、动量和能量守恒的控制方程,将求解域离散化为有限数量的体积单元,通过对控制方程进行积分,将方程转化为代数方程组。

计算流体力学基础

计算流体力学基础

物理模型与数学模型在概念上的区别
数学模型:对物理模型的数学描写。
比如N-S方程就是对粘性流体动力学的一种数学描写,值得注意的 是,数学模型对物理模型的描写也要通过抽象,简化的过程。
物理模型是指把实际的问题,通过相关的物理定律概括和抽象出来并满足 实际情况的物理表征。
比如,我们研究管道内的流体流动,抽象出来一个直管,和粘性流体模型, 或者我们认为管道内的液体是没有粘性的,使用一个直管和无粘流体模型. 还有,我们根据热传导定律,认为固体的热流率是温度梯度的线形函数, 相应的傅立叶定律就是导热问题的物理模型。因此,不难理解物理模型是 对实际问题的抽象概念,对实际问题的一种描述方式,这种抽象包括了实 际问题的几何模型,时间尺度,以及相应的物理规律。
确定边界条件与初始条件 初始条件与边界条件是控制方程有确定解的前提,控制方程与 相应的初始条件、边界条件的组合构成对一个物理过程完整的数学 描述。 初始条件是所研究对象在过程开始时刻各个求解变量的空间分 布情况。对于瞬态问题,必须给定初始条件。对于稳态问题,不需 要初始条件。 边界条件是在求解区域的边界上所求解的变量或其导数随地点 和时间的变化规律。对于任何问题,都需要给定边界条件。例如, 在锥管内的流动,在锥管进口断面上,我们可给定速度、压力沿半 径方向的分布,而在管壁上,对速度取无滑移边界条件。 对于初始条件和边界条件的处理,直接影响计算结果的精度。
划分计算网
采用数值方法求解控制方程时,都是想办法将控制方程在空 间区域上进行离散,然后求解得到的离散方程组。要想在空间域 上离散控制方程,必须使用网格。现已发展出多种对各种区域进 行离散以生成网格的方法,统称为网格生成技术。 不同的问题采用不同数值解法时,所需要的网格形式是有一 定区别的,但生成网格的方法基本是一致的。目前,网格分结构 网格和非结构网格两大类。简单地讲,结构网格在空间上比较规 范,如对一个四边形区域,网格往往是成行成列分布的,行线和 列线比较明显。而对非结构网格在空间分布上没有明显的行线和 列线。

流体力学基本原理

流体力学基本原理

流体力学基本原理流体力学是研究流体运动规律和流体力学特性的科学领域。

它涉及到众多的概念和原理,这些基本原理给我们提供了了解流体力学现象的基础,以及解决与流体有关的问题的工具。

在本文中,我们将简要介绍流体力学的基本原理。

1. 连续方程连续方程是描述流体运动过程中质量守恒的一个基本原理。

它表明在一个控制体内,流体通过的质量流率与质量的变化率成正比。

这个原理是由质量守恒定律导出的,可以用数学形式表示为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,∂ρ/∂t是密度的变化率,v是流体的速度矢量,∇·(ρv)是速度矢量的散度。

这个方程的解可以揭示流体的质量分布和运动规律。

2. 动量方程动量方程是描述流体运动过程中动量守恒的一个基本原理。

它表明控制体内的动量变化率等于作用在控制体上的合外力。

它可以用数学形式表示为:ρ(Dv/Dt) = ∇·σ + ρg其中,ρ是流体的密度,Dv/Dt是速度变化率,∇·σ是应力张量的散度,g是重力加速度。

这个方程的解可以揭示流体的速度分布和运动规律。

3. 能量方程能量方程是描述流体运动过程中能量守恒的一个基本原理。

它表明控制体内的能量变化率等于作用在控制体上的热力功和各种能量转化的总和。

它可以用数学形式表示为:ρ(De/Dt) = -∇·q + σ·∇v + ρv·g其中,ρ是流体的密度,De/Dt是能量变化率,∇·q是热通量的散度,σ是应力张量,v是速度矢量,g是重力加速度。

这个方程的解可以揭示流体的能量分布和能量转化规律。

4. 流体静力学流体静力学是研究静止流体的力学特性的分支领域。

它基于牛顿第二定律,通过平衡方程研究流体静态的力学平衡情况。

其中包括了静压力和浮力的计算。

流体静力学的基本原理是静力学定律和平衡方程。

5. 流体的流动类型在流体力学中,流体的流动可以分为层流和紊流两种类型。

第1章流体力学基础部分

第1章流体力学基础部分

∵ 液体在静止状态下不呈现粘性
∴ 内部不存在切向剪应力而只有法向应力 (2)各向压力相等
∵ 有一向压力不等,液体就会流动
∴ 各向压力必须相等
1.2.2 静止液体中的压力分布
1、液体静力学基本方程式
质量力(重力、惯性力)作用于液体的所有质点 作用于液体上的力
表面力(法向力、切向力、或其它物体或其它容器对液体、一部
赛氏秒SUS:
雷氏秒R:
美国用
英国用
巴氏度0B:
法国用
恩氏粘度与运动粘度之间的换算关系: ν=(7.310E – 6.31/0E)×10-6
m2/s
三、液体的可压缩性
可压缩性: 液体受压力作用而发生体积缩小性质 1、液体的体积压缩系数(液体的压缩率) 定义:体积为V的液体,当压力增大△p时,体积减小△V, 则液体在单位压力变化下体积的相对变化量 公式:
工作介质: 传递运动和动力 液压油的任务 润滑剂: 润滑运动部件 冷却、去污、防锈
1、 对液压油的要求
(1)合适的粘度和良好的粘温特性;
(2)良好的润滑性;
(3)纯净度好,杂质少; (4)对系统所用金属及密封件材料有良好的相容性。 (5)对热、氧化水解都有良好稳定性,使用寿命长; (6)抗泡沫性、抗乳化性和防锈性好,腐蚀性小; (7)比热和传热系数大,体积膨胀系数小,闪点和燃点高,流 动点和凝固点低。(凝点:油液完全失去其流动性的最高温度) (8)对人体无害,对环境污染小,成本低,价格便宜
υ=q/A
1.3.2 连续性方程--质量守恒定律在流体力学中的应用
1、连续性原理--理想液体在管道中恒定流动时,根据质 量守恒定律,液体在管道内既不能增多,也不能减少,因此 在单位时间内流入液体的质量应恒等于流出液体的质量。 2、连续性方程 ρ 1υ1A1=ρ 2υ2A2 若忽略液体可压缩性 ρ 1=ρ 则 υ1A1=υ2A2 或q=υA=常数

第一节 流体力学基础知识

第一节 流体力学基础知识

B点绝对压强pB
绝对压强
0
0
• 绝对压强:是以完全真空为零点计算的压强,用P'表示。 • 相对压强:是以大气压强Pa为零点计算的压强,用P表示。
绝对压强与相对压强的关系: P = P’ - Pa
• 真空度:是指某点的绝对压强不足于一个大气压强的部 分,用Pk表示。即: Pk = Pa - P' = -P
2、恒定流与非恒定流 (1)恒定流 :流体运动时,流体中任一位置的压 强、流速等运动要素不随时间变化的流动。 (2)非恒定流 :流体运动时,流体中任一位置的 运动要素如压强、流速等随时间变化的流动。
注意:自然界中都是非恒定流,工程中取为恒定流。
3、流线与迹线 (1)流线:同一时刻连续流体质点的流动方向线。 (2)迹线:同一质点在连续时间内的流动轨迹线。
第一章 基本知识
第一节 流体力学基础知识
物质的三种形态:固体、液体和气体 流体力学 ----- 研究流体平衡和运动的 力
学规律及其应用的科学。
第一节 流体的主要物理性质
一. 流体的密度和容重 (一)密度 1 . 密度:对于均质流体,单位体积的质量。
M
V
kg/m3
2 . 容重:对于均质流体,单位体积的重量。
G
N/m3
V
3.密度与容重的关系
G Mg g
VV
4.密度和容重与压力、温度的关系
压力升高
流体的密度和容重增加;
温度升高
流体的密度和容重减小。
(二)流体的粘滞性
1. 流体粘滞性的概念
流体内部质点间或流层间因相对运动而产生内摩
擦力(粘滞力)以反抗流体相对运动的性质。
三、恒定流的连续性方程

流体力学基础知识

流体力学基础知识

一般来说,拖动泵和风机的电动机或者内燃
机的转速是恒定的,然后根据其特性曲线来选取 合适的泵和风机
*其他类型的泵与风机
轴流式水泵与风机 其流动特点是,流体沿叶轮的轴向流入
流出。其性能特点是,轴流式风机风压较 低,但风量较大。 贯流式风机
其流动特点是气流沿着径向流入又从 径向流出。这种风机的风量较小,但是噪 音很低,多用于室内空调。
三、绝对压力与表压力
由p=p0+γh表示的流体静压力是流体的绝对压力, 它是以绝对真空为压力零点计算的流体静压力,代 表流体内部某一点的实际压力。
工程上使用的测压仪表自身也处于大气压力的作用 下,他们在当地大气压力下示数为零。用仪表测量 流体压力得到的读数只反应流体压力比当地大气压 力高或者低多少,其实是一个压力差,因此叫做表 压力。
一定量的流体所受外界压力增大的时 候,其体积将缩小,密度会增大,该性质 称为流体的压缩性。
一定量的流体受热温度升高的时候, 其体积将增大,密度会减小,该性质称为 流体的热胀性。
气体的压缩性必液体显著的多,一般 将液体视为不可压缩流体。在一些情况下 (如空气沿通风管道前进)也将气体视作 不可压缩流体。于此同时,我们对于液体 的热胀性要给予足够的认识和重视。如高 楼水系统种一般设置膨胀水箱。
六、泵与风机
有关离心式水泵的结构和工作原理的内容在 高中物理中已经有讲授,这里不在赘述。需 要注意的是离心式泵与风机是中心进入边沿 流出,离心式水泵开机前要将机壳中注满水。
水泵和风机在工程中是一种能量转换装置, 它消耗原动机的能量,提高流体的全压力。
泵与风机的主要性能参数:流量、扬程和压 头、功率、效率、转速请同学们自行了解。
整个管道的能量损失应该分段计算沿 程损失和局部损失,再进行叠加。

ANSYS CFD 入门指南 计算流体力学基础及应用

ANSYS CFD 入门指南 计算流体力学基础及应用

ANSYS CFD 入门指南计算流体力学基础及应用简介计算流体力学(Computational Fluid Dynamics, CFD)是一种应用数值方法来求解流体动力学方程的方法,通过数值模拟流体运动、热传导和传质过程,可以获取流场各个位置的速度、压力、温度等物理量的数值解,从而分析和预测流体中的流动行为。

ANSYS CFD 是一套强大的计算流体力学软件,它提供了丰富的分析工具和解算器,用于模拟各种复杂流动和换热问题。

本文档将介绍 ANSYS CFD 的基础知识和应用实例,帮助读者掌握使用 ANSYS CFD 进行计算流体力学分析的方法。

第一章 ANSYS CFD 概述1.1 ANSYS CFD 软件简介ANSYS CFD 是美国 ANSYS 公司开发的一款流体力学分析软件。

它基于有限体积法和有限元法,能够求解各种流动和传热问题。

1.2 ANSYS CFD 的功能特点•提供多种模型和物理现象的建模与仿真功能;•支持多种求解器和网格生成工具;•提供丰富的后处理功能,可用于流场可视化和数据分析;•具备良好的可扩展性和并行计算能力。

第二章计算流体力学基础2.1 流体力学基本方程CFD 的基础是流体力学的方程组,包括质量守恒方程、动量方程和能量方程。

本节将介绍这些方程的推导和应用。

2.2 数值离散化方法为了求解流体力学方程组,需要将其离散化为代数方程组。

本节将介绍常用的离散化方法,如有限体积法和有限元法。

2.3 网格生成网格是进行 CFD 计算的基础,合适的网格能够提高计算效果。

本节将介绍常见的网格生成方法和工具。

第三章 ANSYS CFD 基本操作3.1 ANSYS CFD 的界面介绍本节将介绍ANSYS CFD 的主要界面,包括菜单栏、工具栏、工作区等,帮助读者熟悉软件的操作界面。

3.2 模型建立与几何处理在进行 CFD 分析之前,需要建立相应的几何模型,并进行几何处理,例如加工、修复和简化模型。

ansys cfd 入门指南 计算流体力学基础及应用

ansys cfd 入门指南 计算流体力学基础及应用

ansys cfd 入门指南计算流体力学基础及应用【ansys cfd 入门指南计算流体力学基础及应用】1. 介绍计算流体力学(CFD)是一种利用计算机对流体流动和传热过程进行数值模拟和分析的技术。

在工程、航空航天、汽车、船舶、能源等领域中有着广泛的应用。

本文将详细介绍ansys cfd入门指南,帮助大家了解流体力学的基础知识和ansys cfd的应用。

2. 流体力学基础流体力学是研究流体运动的科学,它包括流体的基本性质、流体运动的基本规律和流体力学方程等内容。

在ansys cfd入门指南中,我们首先要了解流体的基本性质,如密度、粘度和压力等概念;其次是流体流动的基本规律,如连续性方程、动量方程和能量方程;最后是流体力学方程,如纳维-斯托克斯方程和能量方程的数学形式。

3. ansys cfd简介ansys cfd是一款强大的计算流体力学软件,它能够对流体流动、传热和传质等问题进行数值模拟和分析。

ansys cfd具有友好的用户界面和丰富的后处理功能,可以满足工程实际应用的需求。

在ansys cfd入门指南中,我们将学习如何使用ansys cfd进行流体力学仿真分析,包括建模、网格划分、求解和后处理等步骤。

4. ansys cfd的应用ansys cfd在工程领域有着广泛的应用,如风力发电机组的气动设计、汽车发动机的冷却系统优化、船舶的流体力学性能分析等。

在ansys cfd入门指南中,我们将结合实际案例,介绍如何使用ansys cfd解决实际工程问题,包括模型建立、边界条件设置、求解过程和结果分析等内容。

5. 个人观点和总结我认为ansys cfd入门指南对于学习流体力学和应用ansys cfd的人来说是非常有价值的。

通过系统学习流体力学的基础知识和ansys cfd 的使用方法,可以更好地理解流体力学的原理和应用。

ansys cfd作为一款先进的计算流体力学软件,可以为工程领域的问题提供可靠的数值模拟和分析方法,为工程设计和优化提供有力的支持。

流体力学 第14章 计算流体力学基础

流体力学 第14章 计算流体力学基础
们用离散的方法,把原来的微分方程近似成一个代数方程组,使其能在计算机上进
行求解。近似公式应用在空间和时间的小域上,从而通过求解微分方程的数值解,
得到离散空间各个小域上具体物理量的数值,给出数值结果,这就是计算流体力学
的基本数学指导思想。
计算流体力学的基本原理
利用计算流体力学对流动问题进行数值模拟时,通常包括如下四个步骤:
• 有限体积法(FVM)——控制体内的平均近似
出发点是守恒型方程的积分形式,求解域被分成若干连续的控制体。在每
一个控制体上满足守恒方程。在每一个控制体的中心作为计算节点,计算该点
上的物理量。控制体边界上的函数值用节点函数值的插值获得。体积分和面
积分用适当的求积公式近似。结果在每个控制体上都有一个代数方程,未知数
网格线的任意一条有且只有一个交点。
(2)非结构化网格
指网格区域内的内部点不具有相同的毗邻单元,即与
网格剖分区域内的不同内点相连的网格数目不同。
计算流体力学的基本要素
• 有限近似
在选定数值网格以后,还必须确定数值离散过程中的近似方法。
近似程度决定了数值求解的精度以及求解的难度和费用。高精度格式的
方程中包含了更多网格节点数,因此求解的工作量和难度也相应地增加。
• 坐标和矢量系统
流体力学的基本方程与坐标无关,但在不同的坐标系下有不同的表达形式,
因此在数值计算时必须选择合适的坐标系,此外,矢量在该坐标系下的表达形
式也必须事先予以确定。
• 数值网络
数值网格定义了所求物理量在空间的位置。数值网格的种类大致可分为:
(1)结构化网格
由多族网格线构成,同族的网格线互不相交,且和其他族
返回目录
3.计算流体力学的控制方程组

计算流体力学基础

计算流体力学基础

For personal use only in study and research; not for commercial use一、计算流体力学的基本介绍一、什么是计算流体力学(CFD)?计算流体力学(Computational Fluid Dynamics)是流体力学的一个新兴的分支,是一个采用数值方法利用计算机来求解流体流动的控制偏微分方程组,并通过得到的流场和其它物理场来研究流体流动现象以及相关的物理或化学过程的学科。

事实上,研究流动现象就是研究流动参数如速度、压力、温度等的空间分布和时间变化,而流动现象是由一些基本的守恒方程(质量、动量、能量等)控制的,因此,通过求解这些流动控制方程,我们就可以得到流动参数在流场中的分布以及随时间的变化,这听起来似乎十分简单。

但遗憾的是,常见的流动控制方程如纳维一斯托克斯(Navier-Stokes)方程或欧拉(Euler)方程都是复杂的非线性的偏微分方程组,以解析方法求解在大多数情况下是不可能的。

实际上,对于绝大多数有实际意义的流动,其控制方程的求解通常都只能采用数值方法的求解。

因此,采用CFD方法在计算机上模拟流体流动现象本质上是流动控制方程(多数情况下是纳维一斯托克斯方程或欧拉方程)的数值求解,而CFD软件本质上就是一些求解流动控制方程的计算机程序。

二、计算流体力学的控制方程计算流体力学的控剖方程就是流体流动的质量、动量和能量守恒方程。

守恒方程的常见的推导方法是基于流体微元的质量、动量和能量衡算。

通过质量衡算可以得到连续性方程,通过动量守恒可以得到动量方程,通过能量衡算可以得到能量方程。

式(1)一(3)是未经任何简化的流动守恒微分方程,即纳维一斯托克斯方程( N-S方程)。

N-S方程可以表示成许多不同形式,上面的N-S方程是所谓的守恒形式,之所以称为守恒形式,是因为这种形式的N-S方程求解的变量p、pu、pv、pw、pE是守恒型的,是质量、动量和能量的守恒变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

傅立叶定律(Fourier’s heat conduction law)
菲克定律(Fick’s mass diffusion law)
牛顿内摩擦定律(Newton’s friction law)
。。。。。。。
物理模型:把实际的问题,通过相关的物理定律概括和抽象出来并满 足实际情况的物理表征。
许多困难。
理论分析方法 优点:所得结果具有普遍性,各种影响因素清晰可见,是指导实验 研究和验证新的数值计算方法的理论基础。 局限性:它往往要求对计算对象进行抽象和简化,才有可能得出理 论解。对于非线性情况,只有少数流动才能给出解析结果。
CFD方法克服了前面两种方法的弱点,在计算机上实现—个特 定的计算,就好像在计算机上做一次物理实验。
CFD因涉及大量数值计算,因此,常需要较高的计算机软硬件配置。
理论分析成本最低 结果最理想 影响因素表达清楚 缺点:局限与非常简单的问题
数值方法 成本较低:数值实验 适用范围宽 缺点:可靠性差,表达困难
实验测量 可靠 成本高
将三种方法有 机结合,互为补 充,必然会取得 相得益彰的效果
物理模型与数学模型在概念上的区别
数学模型:对物理模型的数学描写。 比如N-S方程就是对粘性流体动力学的一种数学描写,值得注意的 是,数学模型对物理模型的描写也要通过抽象,简化的过程。
物理模型是指把实际的问题,通过相关的物理定律概括和抽象出来并满足 实际情况的物理表征。 比如,我们研究管道内的流体流动,抽象出来一个直管,和粘性流体模型, 或者我们认为管道内的液体是没有粘性的,使用一个直管和无粘流体模型. 还有,我们根据热传导定律,认为固体的热流率是温度梯度的线形函数, 相应的傅立叶定律就是导热问题的物理模型。因此,不难理解物理模型是 对实际问题的抽象概念,对实际问题的一种描述方式,这种抽象包括了实 际问题的几何模型,时间尺度,以及相应的物理规律。
CFD:总体步骤
给出物理模型(Physical model / descLeabharlann iption)出发点和 基础!
借助基本原理/定律给出数学模型(Mathematical model)
质量守恒(Mass Conservation)
能量守恒(Energy Conservation)
动量守恒(Momentum Conservation)
可利用计算机进行各种数值试验,例如,选择不同流动参数进行 物理方程中各项有效性和敏感性试验,从而进行方案比较
它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性, 能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、 易燃等真实条件和实验中只能接近而无法达到的理想条件。
数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适 用、适合于在计算机上进行计算的离散的有限数学模型,且最终结果 不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并 有一定的计算误差。
例如,机翼的绕流,通过计算并将其结果在屏幕上显示,就可 以看到流场的各种细节:激波的运动、强度,涡的生成与传播,流 动的分离、表面的压力分布、受力大小及其随时间的变化等。数值 模拟可以形象地再现流动情景,与做实验没有什么区别。
计算流体动力学的特点
流动问题的控制方程一般是非线性的,自变量多,计算域的几何 形状和边界条件复杂,很难求得解析解,而用CFD方法则有可能 找出满足工程需要的数值解
比如,我们研究管道内的流体流动,抽象出来一个直管,和粘性 流体模型,或者我们认为管道内的液体是没有粘性的,使用一个直管 和无粘流体模型.还有,我们根据热传导定律,认为固体的热流率是 温度梯度的线形函数,相应的傅立叶定律就是导热问题的物理模型。 因此,不难理解物理模型是对实际问题的抽象概念,对实际问题的一 种描述方式,这种抽象包括了实际问题的几何模型,时间尺度,以及 相应的物理规律。
它不像物理模型实验一开始就能给出流动现象并定性地描述,往往需 要由原体观测或物理模型试验提供某些流动参数,并需要对建立的数 学模型进行验证。
程序的编制及资料的收集、整理与正确利用,在很大程度上依赖于经 验与技巧。
因数值处理方法等原因有可能导致计算结果的不真实,例如产生数值 粘性和频散等伪物理效应。
➢ CFD的基本思想:把原来在时间域及空间域上连续的物理量的场, 如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替, 通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代 数方程组,然后求解代数方程组获得场变量的近似值。
CFD可以看做是在流动基本方程(质量守恒方程、动量守恒方 程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟, 我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如 速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变 化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算 出相关的其他物理星,如旋转式流体机械的转矩、水力损失和效 率等。此外,与CAD联合,还可进行结构优化设计等。
研究流体流动问题的体系
单纯 实验测试
单纯 理论分析
计算 流体力学
实验测量方法所得到的实验结果真实可信,它是理论分析和数值方
法的基础。
Important!
局限性: (1)实验往往受到模型尺寸、流场扰动、人身安全和测量精度的
限制,有时可能很难通过试验方法得到结果。 (2)实验还会遇到经费投入、人力和物力的巨大耗费及周期长等
第十一章 计算流体力学基础
计算流体力学概述 有限差分法 有限元法 有限体积法 离散方法分类 常用CFD软件
计算流体力学概述
➢ 计算流体动力学(computational Fluid Dynamics,简称CFD)是通过 计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理 现象的系统所做的分析。
数学模型就好理解了,就是对物理模型的数学描写。 比如N-S方程就是对粘性流体动力学的一种数学描写,值得注意的是,数学 模型对物理模型的描写也要通过抽象,简化的过程。
建立控制方程 确立初始条件及边界条件 划分计算网格,生成计算节点
相关文档
最新文档