新疆乌鲁木齐市第九十八中学2016届九年级上学期第二次月考数学试题(原卷版)
人教版九年级(上第二次月考数学试卷(解析版)
人教版九年级(上)第二次月考数学试卷一、选择题(每小题3分,共36分)1.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=32.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4B.6,5,10,15C.3,2,6,4D.15,3,4,103.已知,则的值是()A.B.C.D.4.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.5.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.156.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠18.如图,在四边形ABCD中,顺次连接各边上的中点,得到四边形EFGH.要使得四边形EFGH为矩形,对角线AC、BD要满足()A.AC=BD B.AC=BD或AC⊥BDC.AC⊥BD D.AC和BD相互平分9.放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A.B.C.D.10.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A.B.C.D.11.△ABC中,DE∥BC,且AD:DB=2:3,那么S△ADE:S四边形DBCE等于()A.2:3B.4:21C.2:5D.4:912.如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共12分)13.若(b+d+f≠0),则=.14.已知线段AB=10,C为AB的黄金分割点(AC>BC),则AC=.15.在一次会议上,每两人都只握一次手,如果一共握手55次,则参加会议的人数为.16.如图,平面直角坐标系中A(4,0),B(0,3),C是AB的中点,M在折线AOB上,直线CM截三角形与三角形ABO相似,M的坐标是.三、解答题(共72分)17.已知:如图,△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点C1的坐标是;(2)△A1B1C1的面积是平方单位.18.解下列方程:(1)2x2+5x=7(公式法);(2)2x2+6x+3=0(配方法).19.求证:不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.20.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.21.如图,△ABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,求EC的长.22.已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.24.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?25.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)设每件商品降价x元,则商场日销售量增加件,每件商品,盈利元(用含x的代数式表示);(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?26.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.27.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?28.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)根据题意知:BP=,BQ=.(用含t的代数式表示)(2)运动几秒时,△BPQ与△ABC相似?(3)连接AQ、CP,若AQ⊥CP,求t的值.参考答案与试题解析一.选择题(共12小题)1.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=3【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4B.6,5,10,15C.3,2,6,4D.15,3,4,10【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选:C.3.已知,则的值是()A.B.C.D.【分析】根据等式的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由,得a=b,==﹣,故选:D.4.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=2,BC==,∴BC:AC:AB=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;B、三边之比::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:A.5.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.15【分析】设袋子中红球有x个,根据摸出红球的频率稳定在0.25左右列出关于x的方程,求出x的值,从而得出答案.【解答】解:设袋子中红球有x个,根据题意,得:=0.25,解得x=5,∴袋子中红球的个数最有可能是5个,故选:A.6.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.【分析】A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;C、其夹角不相等,所以不能判定相似;D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.【解答】解:A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选:C.7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠1【分析】根据根的判别式和一元二次方程的定义可得4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,∴△≥0且k≠1,∴△=4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,∴k≥且k≠1,故选:D.8.如图,在四边形ABCD中,顺次连接各边上的中点,得到四边形EFGH.要使得四边形EFGH为矩形,对角线AC、BD要满足()A.AC=BD B.AC=BD或AC⊥BDC.AC⊥BD D.AC和BD相互平分【分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH =90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】证明:如图,∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选:C.9.放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A.B.C.D.【分析】首先用A,B,C分别表示红荷湿地、台儿庄古城、莲青山,然后画出树状图,再由树状图求得所有等可能的结果与两家抽到同一景点的情况,继而求得答案.【解答】解:用A,B,C分别表示红荷湿地、台儿庄古城、莲青山,画树状图得:∵共有9种等可能的结果,两家抽到同一景点的有3种情况,∴两家抽到同一景点的概率是:=.故选:A.10.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A.B.C.D.【分析】根据平行线分线段成比例定理得到==3,则BC=3CE,然后利用BC+CE=BE=10可计算出CE的长.【解答】解:∵AB∥CD∥EF,∴==3,∴BC=3CE,∵BC+CE=BE,∴3CE+CE=10,∴CE=.故选:C.11.△ABC中,DE∥BC,且AD:DB=2:3,那么S△ADE:S四边形DBCE等于()A.2:3B.4:21C.2:5D.4:9【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2,∵AD:DB=2:3,∴S△ADE:S△ABC=()2=,∴S△ADE:S四边形DBCE=,故选:B.12.如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1B.2C.3D.4【分析】①先证明△ABF≌△ECF,得AB=EC,再得四边形ABEC为平行四边形,进而由∠BAC=90°,得四边形ABCD是正方形,便可判断正误;②由△OCF∽△OAD,得OC:OA=1:2,进而得OC:BE的值,便可判断正误;③根据BC=AB,DE=2AB进行推理说明便可;④由△OCF与△OAD的面积关系和△OCF与△AOF的面积关系,便可得四边形OCEF的面积与△AOD的面积关系.【解答】解:①∵∠BAC=90°,AB=AC,∴BF=CF,∵四边形ABCD是平行四边形,∵∠AFB=∠CFE,∴△ABF≌△ECF(AAS),∴AB=CE,∴四边形ABEC是平行四边形,∵∠BAC=90°,AB=AC,∴四边形ABEC是正方形,故此题结论正确;②∵CF∥AD,∴△OCF∽△OAD,∴OC:OA=CF:AD=CF:BC=1:2,∴OC:AC=1:3,∵AC=BE,∴OC:BE=1:3,故此小题结论正确;③∵AB=CD=EC,∴DE=2AB,∵AB=AC,∠BAC=90°,∴AB=BC,∴DE=2×,故此小题结论正确;④∵△OCF∽△OAD,∴,∴,∵OC:AC=1:3,∴3S△OCF=S△ACF,∵S△ACF=S△CEF,∴,∴,故此小题结论正确.故选:D.二.填空题(共4小题)13.若(b+d+f≠0),则=.【分析】直接根据等比性质求解.【解答】解:∵,故答案为.14.已知线段AB=10,C为AB的黄金分割点(AC>BC),则AC=5﹣5.【分析】根据黄金分割点的定义,知AC为较长线段;则AC=AB,代入数据即可得出AC的值.【解答】解:由于C为线段AB=10的黄金分割点,且AC>BC,AC为较长线段;则AC=10×=5﹣5.15.在一次会议上,每两人都只握一次手,如果一共握手55次,则参加会议的人数为11.【分析】设参加会议有x人,每个人都与其他(x﹣1)人握手,共握手次数为x(x﹣1),根据题意列方程即可.【解答】解:设参加会议有x人,依题意得:x(x﹣1)=55,整理得:x2﹣x﹣110=0,解得x1=11,x2=﹣10,(舍去),答:参加这次会议的有11人.故答案为:11.16.如图,平面直角坐标系中A(4,0),B(0,3),C是AB的中点,M在折线AOB上,直线CM截三角形与三角形ABO相似,M的坐标是(0,)或(2,0)或(,0).【分析】根据勾股定理求出AB,分点M在OB上、点M在OA上两种情况,根据相似三角形的性质计算,得到答案.【解答】解:∵A(4,0),B(0,3),∴OA=4,OB=3,由勾股定理得,AB==5,当点M在OB上,△BMC∽△BOA时,=,∵C是AB的中点,∴OM=OB﹣BM=,∴点M的坐标为(0,);当点M在OA上,△AM′C∽△AOB时,==,∴AM′=2,∴OM′=OA﹣AM′=2,∴点M的坐标为(2,0);当点M在OA上,△AM′′C∽△ABO时,=,即=,解得,AM′′=,∴OM′′=4﹣=,∴点M的坐标为(,0);综上所述,直线CM截三角形与三角形ABO相似,M的坐标是(0,)或(2,0)或(,0).三.解答题17.已知:如图,△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点C1的坐标是(1,0);(2)△A1B1C1的面积是10平方单位.(2)利用梯形面积减去周围三角形面积求出△A1B1C1的面积.【解答】解:(1)如图所示:△A1B1C1即为所求,点C1的坐标是(1,0);故答案为:(1,0);(2))△A1B1C1的面积是:(2+4)×6﹣×2×4﹣×2×4=10.故答案为:10.18.解下列方程:(1)2x2+5x=7(公式法);(2)2x2+6x+3=0(配方法).【分析】(1)方程利用公式法求出解即可;(2)方程利用配方法求出解即可.【解答】解:(1)方程整理得:2x2+5x﹣7=0,这里a=2,b=5,c=﹣7,∵△=b2﹣4ac=25+56=81>0,∴x==,即x1=1,x2=﹣;(2)方程整理得:x2+3x=﹣,配方得:x2+3x+=,即(x+)2=,开方得:x+=±,解得:x1=﹣+,x2=﹣﹣.19.求证:不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.0即可.【解答】证明:∵△=(k+6)2﹣4×1×4(k﹣3)=(k﹣2)2+80,而(k﹣2)2≥0,∴(k﹣2)2+80>0,即△>0,所以不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.20.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.【分析】延长DH交BC于点M,延长AD交BC于N,构造相似三角形,利用相似三角形对应边成比例求解.【解答】解:延长DH交BC于点M,延长AD交BC于N.∴BM=3.4,DM=0.9.由,可得MN=1.2.∴BN=3.4+1.2=4.6.由,可得AB=3.45.所以,大树的高度为3.45米.21.如图,△ABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,求EC的长.【分析】根据平行线和角平分线,可以证明△CDE∽△CAB,DE=BE,根据相似三角形的对应边的比相等,就可以求出EC的长.【解答】解:∵BD平分∠ABC,∴∠ABD=∠DBC.∵DE∥AB,∴∠ABD=∠BDE,∴∠DBC=∠BDE,∴DE=BE=3cm.∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得EC=4.5cm.22.已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.【分析】(1)根据平行四边形性质得出AB∥DC,推出∠1=∠2,根据AAS证两三角形全等即可;(2)根据全等得出AB=CF,根据AB∥CF得出平行四边形ABFC,推出BC=AF,根据矩形的判定推出即可.【解答】证明:(1)如图.∵四边形ABCD是平行四边形,∴AB∥DC即AB∥DF,∴∠1=∠2,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS).(2)∵△ABE≌△FCE,∴AB=FC,∵AB∥FC,∴四边形ABFC是平行四边形,∴AD=BC,∵AF=AD,∴AF=BC,∴四边形ABFC是矩形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.【分析】(1)先证明△AEF≌△DEB(AAS),得AF=DB,根据一组对边平行且相等可得四边形ADCF是平行四边形,由直角三角形斜边中线的性质得:AD=CD,根据菱形的判定即可证明四边形ADCF是菱形;(2)先根据菱形和三角形的面积可得:菱形ADCF的面积=直角三角形ABC的面积,即可解答.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∵,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=×12×16=96.24.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【分析】根据正方形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其它两边或其它两边的延长线,得到的三角形与原三角形相似”,设正方形零件的边长为xmm,则KD=EF=xmm,AK=(80﹣x)mm,根据相似三角形的性质得到比例式,解方程即可得到结果.【解答】解:∵四边形EGHF为正方形,∴BC∥EF,∴△AEF∽△ABC;设正方形零件的边长为xmm,则KD=EF=xmm,AK=(80﹣x)mm,∵AD⊥BC,∴=,∴=,解得:x=48.答:正方形零件的边长为48mm.25.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元(用含x的代数式表示);(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?【分析】(1)分别表示出增加的件数和盈利的金额即可;(2)日盈利=每件商品盈利的钱数×(原来每天销售的商品件数30+2×降价的钱数),把相关数值代入求解即可.【解答】解:(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元,故答案为:2x,(50﹣x).(2)由题意得:(50﹣x)(30+2x)=2000,化简得:x2﹣35x+250=0,解得:x1=10,x2=25,∵该商场为了尽快减少库存,则x=10不合题意,舍去,∴x=25,答:每件商品降价25元,商场日盈利可达2000元;26.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.【分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.【解答】解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,故答案为:100、35;(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800(人);答:大约有800人最认可“微信”这一新生事物.(4)列表如下:共有12种等可能情况,这两位同学最认可的新生事物不一样的有10种;所以这两位同学最认可的新生事物不一样的概率为P==.27.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【分析】(1)设该快递公司投递总件数的月平均增长率为x,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.28.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)根据题意知:BP=5tcm,BQ=(8﹣4t)cm.(用含t的代数式表示)(2)运动几秒时,△BPQ与△ABC相似?(3)连接AQ、CP,若AQ⊥CP,求t的值.【分析】(1)根据题意列式即可;(2)根据勾股定理即可得到结论;分两种情况:①当△BPQ∽△BAC时,BP:BA=BQ:BC;当△BPQ∽△BCA 时,BP:BC=BQ:BA,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(3)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解答】解:(1)根据题意知:BP=5tcm,BQ=8﹣4tcm,故答案为:5tcm,(8﹣4t)cm;(2)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB===10(cm);分两种情况讨论:①当△BPQ∽△BAC时,,∵BP=5t,QC=4t,AB=10,BC=8,∴,解得,t=1,②当△BPQ∽△BCA时,,∴=,解得,t=;∴t=1或时,△BPQ∽△BCA;(3)过P作PM⊥BC于点M,AQ,CP交于点N,如图所示,则PB=5t,PM=3t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴=,∴=,解得t=.。
新疆乌鲁木齐市第九十八中学2016届九年级上学期第二次月考语文试题(原卷版)
新疆乌鲁木齐市第九十八中学2016届九年级上学期第二次月考语文试题第Ⅰ卷(共35分)一、(本大题共5小题,共15分,每小题3分)1.下列词语中加点的字注音全部正确....的一项是()(3分)A.拮据.(jū)倔.强(jué)拈.轻怕重(niān)遒劲.有力(jìng)B.匀称.(chèn)干涸.(hé)浑身解.数(jiě)风雪载.途(zài)C.剽.悍(biāo)炽.热(zhì)嫉.恶如仇(jí)苦心孤诣.(yì)D.涟漪.(yī)稽.首(jī)周道如砥.(dǐ)脍.炙人口(kuài)2.下列各组词语字形没有错误....的一项是( ) (3分)A.恻隐真缔相形见绌翻来覆去B.隐秘凛冽鸦雀无声人情练达C.恣雎销蚀张皇失措一返既往D.烦躁藻饰眼花瞭乱粗制滥造3.下列句子中,加点词语运用不恰当...的一项是()(3分)A. 夜幕降临,站在乌鲁木齐的红山观景台向远处眺望,河滩路上霓虹灯矗立在两旁,灯红酒绿....,一派祥和美丽的景象。
B.沙漠科考队发现所带的淡水已剩不多,必须要精打细算....才能走出沙漠。
C.随着2010年微博的异军突起,权威人士对这项新事物的美妙与危险众说纷纭,莫衷一是....。
D.对如何指挥这项巨大而又复杂的工程,李总工程师早已经胸有成竹....。
4.下列句子排序恰当的一项是()(3分)闲情,是,什么也不做,也不想了。
也是,去水边品茗。
有时,从午后一直坐到日暮黄昏,。
人散去,一回头,仿佛看见丰子恺先生那幅画《人散后,一钩新月天如水》,只见天空晓月一弯,竹帘半卷,竹椅几把,桌上茶杯几盏,就是。
①偷得浮生半日闲,邀三两知己②不见一个人,却有着说不出的意境③不知不觉,一弯晓月爬上柳梢④三月间看桃花开遍陌上,听杜鹃鸣A.②①③④B.④③①②C.④①③②D.②③④①5.下列与课文有关的内容连接不正确...的一项是()(3分)A.《马说》——《韩愈文选》——韩愈——唐代B.《三峡》——《水经注疏》——郦道元——北魏C.《爸爸的花儿落了》——《城南旧事》——林徽音——台湾D.《雷电颂》——《屈原》——郭沫若———现代二、(本大题共3小题,共12分,每小题4分)阅读下面的文章,完成后面小题。
新疆乌鲁木齐市第九十八中学2016届九年级上学期第二次月考数学试题解析(解析版)
一、选择题(每题4分,共40分)1.在下列方程中,一元二次方程是()A.x2-2xy+y2=0 B.x(x+3)=x2-1 C.x2-2x=3 D.11 xx+=【答案】C考点:一元二次方程的定义2.下列图案中,不是中心对称图形的是().A. B. C. D.【答案】C【解析】试题分析:将一个图形围绕某一点旋转180°之后能与原图形完全重合,则这个图形就是中心对称图形. 考点:中心对称图形3.如图,A、C、B是⊙O上三点,若∠AOC=40°,则∠ABC的度数是().A.10° B.20° C.40° D.80°【答案】B【解析】试题分析:在同圆或等圆中,同弧或等弧所对的圆周角的度数等于圆心角度数的一半.考点:圆心角与圆周角之间的关系4.将抛物线21y x =-向左平移2个单位,再向上平移2个单位,得到的抛物线解析式为( ). A. 2(2)1y x =++ B. 2(2)1y x =-- C. 2(2)1y x =-+ D. 2(2)1y x =+- 【答案】A 【解析】试题分析:二次函数图象的平移法则为:上加下减,左加右减. 考点:二次函数图象的平移5.已知关于x 的方程01)12()2(22=+++-x m x m 有两个不等的实数根,则实数m 的取值范围为 ( ) (A)43<m (B) 43≤m (C) 43>m 且2≠m (D)43≥m 且2≠m 【答案】C 【解析】试题分析:当根的判别式大于零时,则方程有两个不相等的实数根,本题还需要注意的就是二次项的系数不为零.考点:根的判别式6.如图,在Rt △ABC 中,∠BAC=90°,AB=AC ,将△ABP 绕点A 逆时针旋转后,能与△ACP '重合,如果AP=3,那么PP '的长等于( ).CA .B ..D.【答案】A考点:旋转图形7.如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为()A.5cmB.6cmC.7cmD.8cm【答案】B【解析】试题分析:延长AO交BC于点E,则△ABE为正三角形,过点O作OD⊥BC,根据直角△ODE求出0E=2cm,则AE=4+2=6cm,则AB=AE=6cm.考点:垂径定理8.小李从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面四条信息:①b2﹣4ac>0;②c>1;③ab>0;④a﹣b+c<0.你认为其中正确的有().A.1个 B.2个 C.3个 D.4个【答案】B考点:二次函数的性质9.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()【答案】C 【解析】试题分析:A 、对于一次函数a <0,对于二次函数a >0,则不正确;B 、对于一次函数b <0,对于二次函数b >0,则不正确;C 、正确;D 、对于一次函数b <0,对于二次函数b >0,则不正确. 考点:函数图象10.如图,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O →C →D →O 的路线匀速运动,设∠APB=y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是( )【答案】B 【解析】试题分析:当点P 在OC 上运动时,∠APB 的角度从90°减小到45°;当点P 在弧CD 上运动时,∠APB 的度数永远都是45°;当点P 在OD 上运动时,∠APB 的度数从45°增加到90°. 考点:圆周角与圆内角二、填空题(每题4分,共20分)11.在函数y =x 的取值范围是______ 【答案】x ≥-1且x ≠12【解析】试题分析:对于分母含有字母的函数,分母不为零,二次根式的被开方数为非负数. 考点:函数自变量的取值范围12.已知a 、b 是等腰△ABC 的底和腰长,若a 、b 均是方程2x -6x+8=0的解,则△ABC 的周长为______ 【答案】6或10或12x【解析】试题分析:根据解方程可得:x=2或x=4;当a=b=2时,周长为6;当a=b=4时,周长为12;当a=2为底,b=4为腰,周长为19;当a=2为腰,b=4为底时,无法构成三角形. 考点:等腰三角形的性质13.已知二次函数2(2)(1)y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.下图分别是当1,0,1,2a a a a =-===时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y = .【答案】y=12x -1考点:二次函数与一次函数综合题.14.如图,是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为5m 的半圆,其边缘AB=CD=20cm ,小明要在AB 上选取一点E ,能够使他从点D 滑到点E 再到点C 的滑行距离最短,则他滑行的最短距离为 m .(π取3)【答案】【解析】试题分析:其侧面展开图如图:作点C 关于AB 的对称点F ,连接DF ,∵中间可供滑行的部分的截面是半径为5cm的半圆,∴BC=πR=5π=15cm,AB=CD=20cm,∴CF=30cm,在Rt△CDF中,==,故他滑行的最短距离约为.考点:展开图形、勾股定理15.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与225xy=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则DEAB= .(2)、由已知得x1+x2=1,x1x2=21+m不等式7+4x1x2>x12+x22可变形为7+4x1x2>(x1+x2)2-2x1x2即7+6x1x2>(x1+x2)2 ∴7+3(m+1)>1 ∴m>-3 ∵m为整数且m≤-21∴m=-2或m=-1;考点:一元二次方程根的判别式与韦达定理.19.(10分)某汽车销售公司2013年盈利1500万元,到2015年盈利2160万元,且从2013年到2015年,每年盈利的年增长率相同.(1)该公司2013年至2015年盈利的年增长率?(2)若该公司盈利的年增长率继续保持不变,预计2016年盈利多少万元?【答案】(1)20% (2)2592考点:一元二次方程的应用20.(12分)如图,在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,O 是AB 上一点,以OA 为半径的⊙O 经过点D 。
新疆乌鲁木齐市第九十八中学2016届九年级数学上学期第三次月考试题新人教版
新疆乌鲁木齐市第九十八中学2016届九年级数学上学期第三次月考试题一、选择题(每题4分,共40分):1.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是( )A .13 B .512 C .112 D .122. .如图,是一个简单的数值运算程序.则输入x 的值为( )A .3或-3B .4或-2C .1或3D .273.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元, 如果平均每月增长率为x ,则由题意列方程应为( )A .2100(1)331x += B .1001002331x +⨯=C .1001003331x +⨯=D .21001(1)(1)331x x ⎡⎤++++=⎣⎦4.已知圆锥的母线长为5cm ,高为3cm ,则这个圆锥的侧面积为( )A .12π cm 2B .15π cm 2C .20π cm 2D .25π cm 25.如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,已知CD=12,BE=3,则⊙O 的直径为( )A.8 B.10 C.15 D.206.圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.10cm C.14cm D.无法确定7.如图,在长为100 m,宽为80 m的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m2,则道路的宽应为多少米?设道路的宽为x m,则可列方程为()A.100×80-100x-80x=7644 B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644 D.100x+80x-x2=76448.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为()A .B .C .D .9.如图,把直角△ABC 的斜边AC 放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A 2B 2C 2的位置,设AB=,BC=1,则顶点A 运动到点A 2的位置时,点A 所经过的路线为( )A .B .C .D .10.如图,在矩形ABCD 中,AB=4cm ,AD=23cm ,E 为CD 边上的中点,点P 从点A 沿折线AE ﹣EC 运动到点C 时停止,点Q 从点A 沿折线AB ﹣BC 运动到点C 时停止,它们运动的速度都是1cm/s .如果点P ,Q 同时开始运动,设运动时间为t (s ),△APQ 的面积为y (cm 2),则y 与t 的函数关系的图象可能是( ).A .B .C .D .二、填空题(每题4分,共20分)11.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为 .12.关于x 的方程21(3)30m m x x --+=是一元二次方程,则m= .13.已知三角形的三边分别为5、12、13,则这个三角形的内切圆半径是 .14.如果点O 为△ABC 的外心,∠BOC=70°,那么∠BAC 等于_____________.15.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2015对应的有序数对为 .三、解答题(共90分):16.先化简,再求值:(本题8分)2222525225ab ab b a ab ab b a +⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛---,其中6-=a ,21-=b17.(本题8分)一元二次方程a (x-1)2+b (x-1)+c=0化为一般形式后为2x 2-3x-1=0,试求a ,b ,c 的值. 18.(本题8分)解不等式组,并把解集表示在数轴上⎪⎩⎪⎨⎧-≥+--->-1312523)2(243x x x x19.(本小题10分)为了解中考体育科目训练情况,某市从全市九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)若全市九年级有学生35000名,如果全部参加这次中考体育科目测试,请估计不及格的人数为.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.20.(10分)(本题10分)已知关于x的方程22)13(22=+++-kkxkx。
2015-2016学年九年级(上)第二次月考数学试卷附答案
九年级(上)第二次月考数学试卷一、选择题(每小题3分,共30分)每题有且只有一个正确答案,请把你认为正确的答案前面的字母填入上表相应的空格内.1.下列交通标志中既是中心对称图形,又是轴对称图形的是( )A .B .C .D .2.下列计算正确的是( )A . 3﹣=3B . 5×5=5C . ÷=2D . =﹣63.如果两圆的半径长分别为7和5,圆心距为3,那么这两个圆的位置关系是( )A . 相切B . 外离C . 内含D . 相交4.“爱运动,强身体”,在我校的运动会中,某班一名200米短跑选手赛前进行了刻苦训练,体育老师对他10次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道他这10次成绩的( )A . 平均数B . 方差C . 众数D . 中位数5.如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB=50°,点D 是弧BAC 上一点,则∠D 的度数是( )A . 40°B . 50°C . 80°D . 20°6.用配方法解方程:x 2﹣4x+2=0,下列配方正确的是( )A . (x ﹣2)2=2B . (x+2)2=2C . (x ﹣2)2=﹣2D . (x ﹣2)2=67.S 型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x ,则下列方程中正确的是( )A . 1500(1+x )2=980B . 980(1+x )2=1500C . 1500(1﹣x )2=980 D . 980(1﹣x )2=15008.如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的( )A.三角形B.平行四边形C.矩形D.正方形9.如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长为1cm,则这个圆锥的底面半径为()A.2cm B.cm C.cm D.cm10.已知m,n是方程x2﹣2x﹣1=0的两根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于()A.﹣5 B.5 C.﹣9 D.9二、填空题(每小题4分,共32分)将答案填写在题中横线上.11.若式子在实数范围内有意义,则x的取值范围是.12.若x=2是方程x2﹣x+a2﹣3=0的解,则a=.13.若实数x、y满足+(y﹣2011)2=0,则x y=.14.已知菱形的边长和一条对角线的长均为4cm,则菱形的面积为.15.如图,CD是⊙O的弦,直径AB过CD的中点M,若∠BOC=40°,则∠ABD=.16.如图,在△ABC中,∠C=120°,CA=CB=6,分别以A,B,C为圆心,以3为半径画弧,三条弧与AB所围成的阴影部分的周长是.17.直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径为18.在矩形ABCD中,AB=3,BC=6,将矩形折叠,使B点落在AD(含端点)上,落点记为E,这时折痕与边BC(含端点)交于F,然后展开铺平,则以B、E、F为顶点的△BEF,称为矩形ABCD 的“折痕三角形”.当折痕△BEF的面积最大时,AE的长为.三、解答题(共9小题,满分78分)19.计算:(π﹣1)0++﹣2.20.解方程:(1)x2﹣6x﹣2=0(2)(x﹣3)2+(x﹣3)=0.21.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)为m选取一个非负整数,使方程有两个不相等的实数根,并求这两个根.22.如图,水平放置的一个油管的截面半径为13cm,其中有油部分油面宽AB为24cm,求油的最大深度.23.一次期中考试中,A、B、C、D、E五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)A B C D E 平均分标准差数学71 72 69 68 70 70英语88 82 94 85 76 6(1)求这五位同学在本次考试中英语成绩的平均分和数学成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩﹣平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问A同学在本次考试中,数学与英语哪个学科考得更好?24.如图,在△ABC中,AB=AC,点E,F分别在AC,AB上,EF∥BC,将△AEF向上翻折,得到△A′EF,再展开.(1)求证:四边形AEA′F是菱形;(2)直接写出当等腰△ABC满足什么条件时,四边形AEA′F将变成正方形?(3)当点A′恰好落在BC上时,直接写出EF与BC的数量关系.25.某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表:(不需化简)时间第一个月第二个月清仓时单价(元)80 40销售量(件)200(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?26.如图,已知:矩形ABCD中,AD=12,DC=10,矩形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,点G以2cm/s的速度从D点向C点运动.(1)若点H是AD上一定点,且AH=2,当运动时间t=1时,四边形EFGH的形状是.(2)若点H是AD上一定点,且AH=2,点G点运动多长时间后,AE的长度为8?(3)如图2,若点H同时也在从A向D以1cm/s的速度运动,连接BF,假设运动的时间为t,求出t为何值时△BEF的面积为25.27.等腰直角△ABC和⊙O如图①放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O 与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动.(1)①秒后边AB所在的直线与⊙O相切.②当△ABC的边(BC边除外)与圆第一次相切时,如图②,切点为E,连接OE并延长OE交直线BC于点F,设C′D=x,则FC′=(用含x的代数式表示),求点B移动的距离.(2)现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位的速度沿BA、BC方向增大.①若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?②是否存在某一时刻,△ABC各边刚好与⊙O都相切?若存在,求出刚好符合条件时两个图形移动了多少时间?若不存在,请说明理由.2014-2015学年江苏省徐州市睢宁县新世纪中学九年级(上)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)每题有且只有一个正确答案,请把你认为正确的答案前面的字母填入上表相应的空格内.1.下列交通标志中既是中心对称图形,又是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.点评:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列计算正确的是()A.3﹣=3 B.5×5=5C.÷=2 D.=﹣6考点:二次根式的加减法;二次根式的乘除法.分析:分别利用二次根式的加减以及乘除运算法则进而化简得出即可.解答:解:A、3﹣=2,故此选项错误;B、5×5=25,故此选项错误;C、÷==2,故此选项正确;D、=﹣6,故此选项错误;故选:C.点评:此题主要考查了二次根式的加减以及乘除运算,正确掌握运算法则是解题关键.3.如果两圆的半径长分别为7和5,圆心距为3,那么这两个圆的位置关系是()A.相切B.外离C.内含D.相交考点:圆与圆的位置关系.分析:由两个圆的半径分别为7和5,圆心距为3,根据两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系即可得出两圆位置关系.解答:解:∵两个圆的半径分别为3和4,圆心距为5,又∵7+5=12,7﹣5=2,2<3<12,∴这两个圆的位置关系是相交.故选D.点评:此题考查了圆与圆的位置关系.此题比较简单,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.4.“爱运动,强身体”,在我校的运动会中,某班一名200米短跑选手赛前进行了刻苦训练,体育老师对他10次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道他这10次成绩的()A.平均数B.方差C.众数D.中位数考点:统计量的选择.分析:根据众数、平均数、中位数、方差的概念分析.解答:解:平均数、众数、中位数是反映一组数据的集中趋势,只有方差是反映数据的波动大小的.故为了判断成绩是否稳定,需要知道的是方差.故选B.点评:此题考查统计学的相关知识.注意:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是弧BAC上一点,则∠D的度数是()A.40°B.50°C.80°D.20°考点:圆周角定理.分析:欲求∠D的度数,需先求出同弧所对的∠A的度数;Rt△ABC中,已知∠ACB的度数,即可求得∠A,由此得解.解答:解:∵AC是⊙O的直径,∴∠ABC=90°;∴∠A=90°﹣∠ACB=40°;∴∠D=∠A=40°.故选A.点评:此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用是解此题的关键.6.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6考点:解一元二次方程-配方法.专题:配方法.分析:在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.解答:解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.点评:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7.S型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x,则下列方程中正确的是()A.1500(1+x)2=980 B.980(1+x)2=1500 C.1500(1﹣x)2=980 D.980(1﹣x)2=1500考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:本题可先列出第一次降价的售价的代数式,再根据第一次的售价列出第二次降价的售价的代数式,然后根据已知条件即可列出方程.解答:解:依题意得:第一次降价的售价为:1500(1﹣x),则第二次降价后的售价为:1500(1﹣x)(1﹣x)=1500(1﹣x)2,∴1500(1﹣x)2=980.故选C.点评:本题考查的是一元二次方程的运用,要注意题意指明的是降价,应该是1﹣x而不是1+x.8.如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的()A.三角形B.平行四边形C.矩形D.正方形考点:图形的剪拼.分析:利用等腰梯形的性质,采用排除法进行分析.解答:解:A、把等腰梯形沿中位线剪开后形成了两个等腰梯形,不可能拼成三角形,故A选项错误;B、把等腰梯形沿中位线剪开,然后下半部分不动,上半部分倒转过来,与下半部分拼在一起,得到一个平行四边形,故B选项正确;C、两个等腰梯形的角不可能为90°,不能拼出矩形,故C选项错误;D、两个等腰梯形的角不可能为90°,不能拼出正方形,故D选项错误;故选:B.点评:本题主要考查等腰梯形的性质及中位线定理的理解及运用,解答本题的关键是熟练掌握等腰梯形的性质,利用实际图形进行剪拼可直观的得到答案.9.如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长为1cm,则这个圆锥的底面半径为()A.2cm B.cm C.cm D.cm考点:弧长的计算;勾股定理.专题:压轴题.分析:用“此扇形的弧长等于圆锥底面周长”作为相等关系,求圆锥的底面半径.解答:解:设圆锥的底面半径为r,则2πr=,所以r=cm.故选C.点评:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.10.已知m,n是方程x2﹣2x﹣1=0的两根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于()A.﹣5 B.5 C.﹣9 D.9考点:一元二次方程的解.分析:先分别把m,n代入方程得到关于m,n的等式,利用整体思想分别求出7m2﹣14m=7(m2﹣2m)=7,3n2﹣6n=3(n2﹣2n)=3,代入所求代数式即可求解.解答:解:∵m,n是方程x2﹣2x﹣1=0的两根∴m2﹣2m=1,n2﹣2n=1∴7m2﹣14m=7(m2﹣2m)=7,3n2﹣6n=3(n2﹣2n)=3∵(7m2﹣14m+a)(3n2﹣6n﹣7)=8∴(7+a)×(﹣4)=8∴a=﹣9.故选C.点评:本题考查了一元二次方程根的意义.把方程的两个根分别代入原方程等式仍然成立,根据此得到需要的等量关系是常用的方法之一.二、填空题(每小题4分,共32分)将答案填写在题中横线上.11.若式子在实数范围内有意义,则x的取值范围是x≤1.考点:二次根式有意义的条件.分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵式子在实数范围内有意义,∴1﹣x≥0,解得x≤1.故答案为:x≤1.点评:本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.12.若x=2是方程x2﹣x+a2﹣3=0的解,则a=±1.考点:一元二次方程的解.专题:计算题.分析:根据一元二次方程的解的定义,把x=2代入方程得到关于a的一元二次方程,然后解此方程即可.解答:解:把x=2代入x2﹣x+a2﹣3=0得4﹣2+a2﹣3=0,解得a=1或a=﹣1.故答案为±1.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.若实数x、y满足+(y﹣2011)2=0,则x y=﹣1.考点:非负数的性质:算术平方根;非负数的性质:偶次方.专题:计算题.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:根据题意得:x+1=0且y﹣2011=0,解得:x=﹣1,y=2011,则原式=﹣1.故答案是:﹣1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.已知菱形的边长和一条对角线的长均为4cm,则菱形的面积为8cm2.考点:菱形的性质.专题:计算题.分析:如图,AC为菱形ABCD的对角线,且AB=AC=4cm,根据菱形的性质得AB=BC=AC,则可判断△ABC为等边三角形,根据等边三角形的面积公式可计算菱形的面积.解答:解:如图,AC为菱形ABCD的对角线,且AB=AC=4cm,∵四边形ABCD为菱形,∴AB=BC=AC=4cm,∴△ABC为等边三角形,∴S菱形ABCD=2S△ABC=2××42=8(cm2).故答案为8cm2.点评:本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.15.如图,CD是⊙O的弦,直径AB过CD的中点M,若∠BOC=40°,则∠ABD=70°.考点:圆周角定理;垂径定理.分析:由CD是⊙O的弦,直径AB过CD的中点M,根据垂径定理即可得AB⊥CD,又由圆周角定理,可求得∠BDC的度数,继而求得答案.解答:解:∵CD是⊙O的弦,直径AB过CD的中点M,∴AB⊥CD,∵∠BDC=∠BOC=×40°=20°,∴∠ABD=90°﹣∠BDC=70°.故答案为:70°.点评:此题考查了圆周角定理与垂径定理.此题难度不大,注意掌握数形结合思想的应用.16.如图,在△ABC中,∠C=120°,CA=CB=6,分别以A,B,C为圆心,以3为半径画弧,三条弧与AB所围成的阴影部分的周长是3π+6﹣6.考点:扇形面积的计算.分析:根据图形和弧长的计算公式进行计算即可.解答:解:∵∠C=120°,CA=CB,∴∠A=∠B=30°,AB=6,∴三条弧与AB所围成的阴影部分的周长=+×2+6﹣6=3π+6﹣6.故答案为:3π+6﹣6.点评:本题考查的是扇形的弧长的计算,掌握弧长的计算公式:l=是解题的关键.17.直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径为4或5考点:三角形的外接圆与外心;勾股定理.分析:直角三角形的外接圆圆心是斜边的中点,那么半径为斜边的一半,分两种情况:①8为斜边长;②6和8为两条直角边长,由勾股定理易求得此直角三角形的斜边长,进而可求得外接圆的半径.解答:解:由勾股定理可知:①直角三角形的斜边长为:8;②直角三角形的斜边长为:=10.因此这个三角形的外接圆半径为4或5.点评:本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.18.在矩形ABCD中,AB=3,BC=6,将矩形折叠,使B点落在AD(含端点)上,落点记为E,这时折痕与边BC(含端点)交于F,然后展开铺平,则以B、E、F为顶点的△BEF,称为矩形ABCD 的“折痕三角形”.当折痕△BEF的面积最大时,AE的长为6﹣3.考点:翻折变换(折叠问题).分析:当点F与点C重合时,△BEF的面积有最大值,设AE=x,则DE=6﹣x,由折叠的性质可知:EC=BC=6,在Rt△EDC中,利用勾股定理可得到关于x的方程,然后解方程即可求得AE的长.解答:解:如图所示:设AE=x,则ED=6﹣x,由折叠的性质可知EC=CB=6.在Rt△EDC中,由勾股定理得:ED2+DC2=EC2,即:(6﹣x)2+32=62,解得:x1=6﹣3,x2=6+3(舍去).∴AE=6﹣3.故答案为:6﹣3.点评:本题主要考查的翻折的性质、勾股定理的应用,根据翻折的性质求得EC的长度,然后在Rt△EDC中,由勾股定理列出关于x的方程是解题的关键.三、解答题(共9小题,满分78分)19.计算:(π﹣1)0++﹣2.考点:实数的运算;零指数幂;负整数指数幂;二次根式的性质与化简.专题:计算题.分析:按照实数的运算法则依次计算;考查知识点:负指数幂、零指数幂、绝对值、二次根式的化简.解答:解:原式=1+2+(﹣5)﹣2=3+3﹣5﹣2=﹣2.点评:传统的小杂烩计算题.涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.20.解方程:(1)x2﹣6x﹣2=0(2)(x﹣3)2+(x﹣3)=0.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.专题:计算题.分析:(1)利用配方法得到(x﹣3)2=11,然后利用直接开平方法解方程;(2)利用提公因式把方程左边分解得到(x﹣3)(x﹣3+1)=0,则原方程可化为x﹣3=0或x﹣3+1=0,然后解两个一次方程即可.解答:解:(1)x2﹣6x=2,x2﹣6x+9=11,(x﹣3)2=11,x﹣3=±,所以x1=3+,x2=3﹣;(2)(x﹣3)(x﹣3+1)=0,x﹣3=0或x﹣3+1=0,所以x1=3,x2=2.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.21.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)为m选取一个非负整数,使方程有两个不相等的实数根,并求这两个根.考点:根的判别式.分析:(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围,(2)选取范围中的非负整数解代入方程解方程即可.解答:解:(1)∵一元二次方程x2﹣2x+m=0有两个实数根,∴△=4﹣4m≥0,解得m≤1;(2)把m=0代入x2﹣2x+m=0得:x2﹣2x=0,解得x1=0,x2=2.点评:此题考查了根的判别式,一元二次方程根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.22.如图,水平放置的一个油管的截面半径为13cm,其中有油部分油面宽AB为24cm,求油的最大深度.考点:垂径定理的应用;勾股定理.分析:根据垂径定理,易知AC、BC的长;连接OA,根据勾股定理即可求出OC的长,进而可求出CD的值.解答:解:如图;连接OA,作OD⊥AB于C,交⊙O于D,根据垂径定理,得AC=BC=12cm;Rt△OAC中,OA=13cm,AC=12cm;根据勾股定理,得:OC==5cm;∴CD=OD﹣OC=8cm;∴油的最大深度8cm.点评:此题主要考查的是垂径定理及勾股定理的应用.解题的关键是正确的构造直角三角形.23.一次期中考试中,A、B、C、D、E五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)A B C D E 平均分标准差数学71 72 69 68 70 70英语88 82 94 85 76 6(1)求这五位同学在本次考试中英语成绩的平均分和数学成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩﹣平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问A同学在本次考试中,数学与英语哪个学科考得更好?考点:标准差;算术平均数.分析:(1)根据算术平均数的计算公式和标准差是方差的算术平方根求出平均数和标准差;(2)根据标准分的计算公式计算比较得到答案.解答:解:(1)五位同学在本次考试中数学成绩的方差为:[(71﹣70)2+(72﹣70)2+(69﹣70)2+(68﹣70)2+(70﹣70)2]=2,则标准差为:,五位同学在本次考试中英语成绩的平均分为:(88+82+94+85+76)=85;(2)A同学数学标准分=(71﹣70)÷=A同学英语标准分(88﹣85)÷6=0.5,>0.5,∴数学学科考得更好.点评:本题考查的是算术平均数和标准差的计算,掌握算术平均数的计算公式和标准差是方差的算术平方根是解题的关键.24.如图,在△ABC中,AB=AC,点E,F分别在AC,AB上,EF∥BC,将△AEF向上翻折,得到△A′EF,再展开.(1)求证:四边形AEA′F是菱形;(2)直接写出当等腰△ABC满足什么条件时,四边形AEA′F将变成正方形?(3)当点A′恰好落在BC上时,直接写出EF与BC的数量关系.考点:翻折变换(折叠问题);菱形的判定;正方形的判定.专题:综合题.分析:(1)由题意易得△AEF为等腰三角形,AE=EA′,AF=FA′,所以四边形AEA′F是菱形;(2)因为有一角为直角的菱形是正方形,故当等腰△ABC的顶角为90°时,四边形AEA′F是正方形;(3)当点A′恰好落在BC上时,高为一半,则EF是中位线,所以EF=BC.解答:解:(1)证明:∵AB=AC,∴∠B=∠C.∵EF∥BC,∴∠AEF=∠C,∠B=∠AFE.∴∠AEF=∠AFE,∴AE=AF.∵AE=EA′,AF=FA′,(3分)∴A′E=AE=AF=A′F,∴四边形AEA′F是菱形.(5分)(2)当等腰△ABC的顶角为90°时,四边形AEA′F是正方形.(7分)(3)EF=BC.(9分)点评:本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何基本知识,解题时应分别对每一个图形进行仔细分析.25.某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表:(不需化简)时间第一个月第二个月清仓时单价(元)80 40销售量(件)200(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?考点:一元二次方程的应用.专题:销售问题;压轴题.分析:(1)根据题意直接用含x的代数式表示即可;(2)利用“获利9000元”,即销售额﹣进价=利润,作为相等关系列方程,解方程求解后要代入实际问题中检验是否符合题意,进行值的取舍.解答:解:(1)80﹣x,200+10x,800﹣200﹣(200+10x)时间第一个月第二个月清仓时单价(元)80 80﹣x 40销售量(件)200 200+10x 800﹣200﹣(200+10x)(2)根据题意,得80×200+(80﹣x)(200+10x)+40[800﹣200﹣(200+10x)]﹣50×800=9000整理得10x2﹣200x+1000=0,即x2﹣20x+100=0,解得x1=x2=10当x=10时,80﹣x=70>50答:第二个月的单价应是70元.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.有关销售问题中的等量关系一般为:利润=售价﹣进价.26.如图,已知:矩形ABCD中,AD=12,DC=10,矩形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,点G以2cm/s的速度从D点向C点运动.(1)若点H是AD上一定点,且AH=2,当运动时间t=1时,四边形EFGH的形状是正方形.(2)若点H是AD上一定点,且AH=2,点G点运动多长时间后,AE的长度为8?(3)如图2,若点H同时也在从A向D以1cm/s的速度运动,连接BF,假设运动的时间为t,求出t为何值时△BEF的面积为25.考点:四边形综合题.分析:(1)当t=1时,DG=2,从而得到DG=AH,然后可证明△HDG∽△EAH,由相似三角形的性质可知:,从而得到GH=HE,又因为四边形EFGH是矩形,故此四边形EFGH是正方形;(2)由(1)可知:△HDG∽△EAH,由相似三角形的性质可知:,即:,从而可求得t=;(3)如图3所示:过点F作FM⊥AB.首先证明△HDG≌△FME,从而得到DH=FM=12﹣t,然后根据△DHG∽△AEH,可知,可求得AE=6,所以BE=4+,接下来利用三角形的面积公式得出三角形BEF的面积与t的函数关系式,利用配方法可求得当t=2时,△BEF的面积有最大值,最大值为25.解答:解:(1)∵t=1,∴DG=2.∴DG=AH.∵四边形EFGH为矩形,∴∠GHE=90°.∴∠DHG+∠AHE=90°.∵∠AHE+∠AEH=90°,∴∠DHG=∠AEH.又∵∠D=∠A=90°,∴△HDG∽△EAH.∴.∴GH=HE.又∵四边形EFGH是矩形,∴四边形EFGH是正方形.(2)由(1)可知:△HDG∽△EAH.∴,即:.解得t=.(3)如图3所示:过点F作FM⊥AB.由(1)可知:∠DHG=∠AEH.∵∠AEH+∠FEM=90°,∠FEM+∠EFM=90°,∴∠HEA=∠EFM.∴∠DHG=∠EFM.在△HDG和△FME中,,∴△HDG≌△FME.∴DH=FM.∵AH=t,DG=2t,∴DH=12﹣t.由(1)可知△DHG∽△AEH.∴即:.∴AE=6.∴BE=4+∴===.∴当t=2时,△BEF的面积为25.点评:本题主要考查的是相似三角形的性质和判定、矩形的性质、全等三角形的性质和判定、配方法求二次函数的最值的综合应用,证得△HDG≌△FME、△DHG∽△AEH是解题的关键.27.等腰直角△ABC和⊙O如图①放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O 与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动.(1)① 2.5秒或3.5秒后边AB所在的直线与⊙O相切.②当△ABC的边(BC边除外)与圆第一次相切时,如图②,切点为E,连接OE并延长OE交直线BC于点F,设C′D=x,则FC′=x(用含x的代数式表示),求点B移动的距离.(2)现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位的速度沿BA、BC方向增大.①若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?②是否存在某一时刻,△ABC各边刚好与⊙O都相切?若存在,求出刚好符合条件时两个图形移动了多少时间?若不存在,请说明理由.考点:圆的综合题.分析:(1)①直接利用圆心O与直线AB的距离为5,以及⊙O的半径为1和△ABC移动的速度求出答案;②第一次相切时,与斜边相切,假设此时,△ABC移至△A′B′C′处,A′C′与⊙O切于点D,连OD 并延长,交B′C′于F.由切线长定理易得CC′的长,进而由三角形运动的速度可得答案;(2)①△ABC与⊙O从开始运动到最后一次相切时,应为AB与圆相切,路程差为6,速度差为1,故从开始运动到最后一次相切的时间为6秒;②求出⊙O与△A′B′C′第二次相切时运动的时间,连接B′′O并延长交A′′C′′于点P,则B′′P⊥A′′C′′,求出OP的长即可得出结论.解答:解:(1)①∵⊙O的半径为1,圆心O与直线AB的距离为5,现△ABC以每秒2个单位的速度向右移动,∴当移动=2.5(秒),或=3.5(秒)时,边AB所在的直线与⊙O相切.故答案为:2.5秒或3.5;②如图2,由题意可得:C′D=C′E=x,∠A′C′B′=45°,∠OEC′=90°,则∠OFD=45°,故EF=EC′=x,则FC′=x,∵DO=DF=1,∴x+x=1,解得:x=﹣1,则点B移动的距离为:BB′=CC′=BD﹣BC﹣DC′=5﹣1﹣(﹣1)=5﹣.故答案为:x;。
九年级(上)第二次月考数学试卷(含答案)
九年级(上)第二次月考数学试卷(含答案)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135° 2.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒ 3.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .10 4.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( )A .⊙O 上B .⊙O 外C .⊙O 内 5.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒;②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ;③sin ∠ABS =32; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④6.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45° 7.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+ 8.已知反比例函数k y x =的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限C .第二、四象限D .第三、四象限 9.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80°10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3πC .23π-D .223π-11.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣212.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的 13.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°14.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .3C .32D .215.用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x -=B .2(1)6x +=C .2(1)9x +=D .2(1)9x -=二、填空题16.二次函数23(1)2y x =-+图象的顶点坐标为________.17.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .18.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.19.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)20.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.21.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.22.方程290x 的解为________.23.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.24.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.25.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.26.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)27.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.28.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.29.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.30.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题31.某校为了丰富学生课余生活,计划开设以下社团:A .足球、B .机器人、C .航模、D .绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目.(1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.32.(问题发现)如图1,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB 的面积最大值是;(问题探究)如图2所示,AB、AC、BC是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F,即分别在BC、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.显然,为了快捷环保和节约成本,就要使线段PE、EF、FP之和最短(各物资站点与所在道路之间的距离、路宽均忽略不计).可求得△PEF周长的最小值为 km;(拓展应用)如图3是某街心花园的一角,在扇形OAB中,∠AOB=90°,OA=12米,在围墙OA和OB上分别有两个入口C和D,且AC=4米,D是OB的中点,出口E在AB 上.现准备沿CE、DE从入口到出口铺设两条景观小路,在四边形CODE内种花,在剩余区域种草.①出口E设在距直线OB多远处可以使四边形CODE的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是400元.请问:在AB上是否存在点E,使铺设小路CE和DE的总造价最低?若存在,求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.33.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A 类(12≤m ≤15),B 类(9≤m ≤11),C 类(6≤m ≤8),D 类(m ≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为 ,扇形统计图中A 类所对的圆心角是 度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C 类的有多少名?34.如图,在矩形 ABCD 中,CE ⊥BD ,AB=4,BC=3,P 为 BD 上一个动点,以 P 为圆心,PB 长半径作⊙P ,⊙P 交 CE 、BD 、BC 交于 F 、G 、H (任意两点不重合),(1)半径 BP 的长度范围为 ;(2)连接 BF 并延长交 CD 于 K ,若 tan ∠KFC = 3 ,求 BP ;(3)连接 GH ,将劣弧 HG 沿着 HG 翻折交 BD 于点 M ,试探究PM BP是否为定值,若是求出该值,若不是,请说明理由.35.一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次.(1)用树状图列出所有可能出现的结果;(2)求3次摸到的球颜色相同的概率.四、压轴题36.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数;(2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求a b的值. 37.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB .(1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.38.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。
九年级上第二次月考数学试卷含答案解析
九年级(上)第二次月考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣22.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.33.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上的任意一点,则PK+QK的最小值为()A.1 B.C.2 D. +14.若a、b、c、d是互不相等的正数,且,则下列式子错误的是()A.B.C.D.5.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O与AD上的一点E 作直线OE,交BA的延长线于点F.若AD=4,DC=3,AF=2,则AE的长是()A.B.C.D.6.关于x的方程ax2+bx+c=3的解与(x﹣1)(x﹣4)=0的解相同,则a+b+c的值为()A.2 B.3 C.1 D.47.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.8.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.59.如图,在△ABC中,EF∥BC,=,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.1310.如图,正方形ABCD中,点E,F分别在AD,DC上,且△BEF为等边三角形,下列结论:①DE=DF;②∠AEB=75°;③BE=DE;④AE+FC=EF.其中正确的结论个数有()A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共12分)11.从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为.12.已知关于x的方程x2+6x+k=0的两个根分别是x1、x2,且+=3,则k的值为.13.已知:x:y:z=2:3:4,则的值为.14.如图,在平面直角坐标系中,四边形OABC是边长为4的正方形,M(4,m)、N(n,4)分别是AB、BC上的两个动点,且ON⊥MN,当OM最小时,m+n=.三.解答题(共11小题,计78分,解答时应有必要步骤)15.解方程(1)x2﹣2x﹣2=0;(2)2(x﹣3)2=x2﹣9.16.先化简再求值:(1+)÷,其中x是方程x2﹣3x=0的根.17.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.18.已知线段a、b、c满足a:b:c=3:2:6,且a+2b+c=26.(1)求a、b、c的值;(2)若线段x是线段a、b的比例中项,求x的值.19.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD、CE.(1)求证:△ACD≌△EDC;(2)若点D是BC中点,说明四边形ADCE是矩形.20.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1米的两扇小门.(1)设花圃的一边AB长为x米,请你用含x的代数式表示另一边AD的长为米;(2)若此时花圃的面积刚好为45m2,求此时花圃的长与宽.21.已知甲同学手中藏有三张分别标有数字、、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果;(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释.22.如图,在由边长为1的小正方形组成的网格图中有△ABC,建立平面直角坐标系后,点O的坐标是(0,0).(1)以O为位似中心,作△A′B′C′∽△ABC,相似比为1:2,且保证△A′B′C′在第三象限;(2)点B′的坐标为(,);(3)若线段BC上有一点D,它的坐标为(a,b),那么它的对应点D′的坐标为(,).23.如图,路灯(P点)距地面8米,身高1.6米的小明从距离路灯的底部(O 点)20米的A点,沿OA所在的直线行走14米到B点(B点在A点的左边)时,身影的长度是变长了还是变短了?变长或变短了多少米?24.正方形ABCD中,E点为BC中点,连接AE,过B点作BF⊥AE,交CD于F 点,交AE于G点,连接GD,过A点作AH⊥GD交GD于H点.(1)求证:△ABE≌△BCF;(2)若正方形边长为4,AH=,求△AGD的面积.25.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD 的顶点A重合.三角板的一边交CD于点F,另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a,BC=b,请直接写出的值.2016-2017学年陕西省汉中XX中学九年级(上)第二次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2【考点】解一元二次方程﹣因式分解法.【分析】利用因式分解法即可将原方程变为x(x﹣2)=0,即可得x=0或x﹣2=0,则求得原方程的根.【解答】解:∵x2=2x,∴x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选C.2.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.3【考点】利用频率估计概率.【分析】摸到红球的频率稳定在25%,即=25%,即可即解得a的值.【解答】解:∵摸到红球的频率稳定在25%,∴=25%,解得:a=12.故本题选A.3.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上的任意一点,则PK+QK的最小值为()A.1 B.C.2 D. +1【考点】轴对称﹣最短路线问题;菱形的性质.【分析】先根据四边形ABCD是菱形可知,AD∥BC,由∠A=120°可知∠B=60°,作点P关于直线BD的对称点P′,连接P′Q,PC,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,再在Rt△BCP′中利用锐角三角函数的定义求出P′C的长即可.【解答】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°﹣∠A=180°﹣120°=60°,作点P关于直线BD的对称点P′,连接P′Q,P′C,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,在Rt△BCP′中,∵BC=AB=2,∠B=60°,∴P′Q=CP′=BC•sinB=2×=.故选:B.4.若a、b、c、d是互不相等的正数,且,则下列式子错误的是()A.B.C.D.【考点】比例的性质.【分析】由a、b、c、d是互不相等的正数,且,根据比例的性质,即可求得∴,,正确,利用排除法,即可求得答案.【解答】解:∵,∴,故A正确;,故B正确;,故C正确;故选D.5.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O与AD上的一点E 作直线OE,交BA的延长线于点F.若AD=4,DC=3,AF=2,则AE的长是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】延长FO,交BC于点G.由平行四边形的性质得出OD=OB,AD∥BC,AB=DC=3,根据ASA证明△DOE≌△BOG,得出DE=BG.再由AE∥BG,得出△AEF∽△BGF,根据相似三角形对应边成比例得出==,设AE=2x,则BG=5x,DE=BG=5x,根据AE+DE=AD=4,求出x=,那么AE=2x=.【解答】解:如图,延长FO,交BC于点G.∵四边形ABCD是平行四边形,∴OD=OB,AD∥BC,AB=DC=3,∴∠EDO=∠GBO,又∠DOE=∠BOG,∴△DOE≌△BOG(ASA).∴DE=BG.∵AE∥BG,∴△AEF∽△BGF,∴=,即==,设AE=2x,则BG=5x,∴DE=BG=5x,∵AE+DE=AD=4,∴2x+5x=4,∴x=,∴AE=2x=.故选C.6.关于x的方程ax2+bx+c=3的解与(x﹣1)(x﹣4)=0的解相同,则a+b+c的值为()A.2 B.3 C.1 D.4【考点】一元二次方程的解.【分析】首先利用因式分解法求出方程(x﹣1)(x﹣4)=0的解,再把x的值代入方程ax2+bx+c=3即可求出a+b+c的值.【解答】解:∵方程(x﹣1)(x﹣4)=0,∴此方程的解为x1=1,x2=4,∵关于x的方程ax2+bx+c=3与方程(x﹣1)(x﹣4)=0的解相同,∴把x1=1代入方程得:a+b+c=3,故选B.7.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率==.故选B.8.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.5【考点】相似三角形的判定与性质;勾股定理;平行四边形的性质.【分析】本题意在综合考查平行四边形、相似三角形、和勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查.在▱ABCD 中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,可得△ADF是等腰三角形,AD=DF=9;△ABE是等腰三角形,AB=BE=6,所以CF=3;在△ABG中,BG⊥AE,AB=6,BG=,可得AG=2,又△ADF是等腰三角形,BG⊥AE,所以AE=2AG=4,所以△ABE的周长等于16,又由▱ABCD可得△CEF∽△BEA,相似比为1:2,所以△CEF的周长为8,因此选A.【解答】解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴AB∥DC,∠BAF=∠DAF,∴∠BAF=∠F,∴∠DAF=∠F,∴AD=FD,∴△ADF是等腰三角形,同理△ABE是等腰三角形,AD=DF=9;∵AB=BE=6,∴CF=3;∴在△ABG中,BG⊥AE,AB=6,BG=,可得:AG=2,又BG⊥AE,∴AE=2AG=4,∴△ABE的周长等于16,又∵▱ABCD∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选:A.9.如图,在△ABC中,EF∥BC,=,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.13【考点】相似三角形的判定与性质.【分析】求出的值,推出△AEF∽△ABC,得出=,把S四边形BCFE=8代入求出即可.【解答】解:∵=,∴==,∵EF∥BC,∴△AEF∽△ABC,∴==,∴9S△AEF=S△ABC,∵S四边形BCFE=8,∴9(S△ABC﹣8)=S△ABC,解得:S△ABC=9.故选A.10.如图,正方形ABCD中,点E,F分别在AD,DC上,且△BEF为等边三角形,下列结论:①DE=DF;②∠AEB=75°;③BE=DE;④AE+FC=EF.其中正确的结论个数有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定与性质;等边三角形的性质;正方形的性质.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据等腰直角三角形的性质可判断③的正误,根据线段垂直平分线的知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∵△BEF是等边三角形,∴BE=BF,∵在Rt△ABE和Rt△BCF中,,∴Rt△ABE≌Rt△BCF(HL),∴AE=CF,∵AD=DC,∴AD﹣AE=CD﹣CF,∴DE=DF,∴①正确;∵DE=DF,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠BEF=60°,∴∠AEB=75°,∴②正确;∵BE=EF=DE,∴③正确;如图,连接BD,交EF于G点∴BD⊥EF,且BD平分EF,∵∠CBD≠∠DBF,∴CF≠FG,∴AE+FC≠EF.∴④错误;故选C.二、填空题(每题3分,共12分)11.从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为.【考点】概率公式.【分析】由从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,直接利用概率公式求解即可求得答案.【解答】解:∵从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,即:、π;∴抽取到无理数的概率为:=.故答案为:.12.已知关于x的方程x2+6x+k=0的两个根分别是x1、x2,且+=3,则k的值为﹣2.【考点】根与系数的关系.【分析】首先根据一元二次方程根与系数得到两根之和和两根之积,然后把+=3转换为=3,然后利用前面的等式即可得到关于k的方程,解方程即可求出结果.【解答】解:∵关于x的方程x2+6x+k=0的两个根分别是x1、x2,∴x1+x2=﹣6,x1x2=k,∵+==3,∴=3,∴k=﹣2.故答案为:﹣2.13.已知:x:y:z=2:3:4,则的值为.【考点】分式的化简求值.【分析】由已知的比例式,设每一份为k,表示出x,y及z,将表示出的x,y 及z代入所求的式子中,化简后即可得到值.【解答】解:由x:y:z=2:3:4,可设x=2k,y=3k,z=4k,∴===.故答案为:.14.如图,在平面直角坐标系中,四边形OABC是边长为4的正方形,M(4,m)、N(n,4)分别是AB、BC上的两个动点,且ON⊥MN,当OM最小时,m+n=5.【考点】正方形的性质;坐标与图形性质;全等三角形的判定与性质;勾股定理.【分析】证明△OCN∽△NBM,列比例式得:m==(n﹣2)2+3,即当n=2时,m有最小值为3,在Rt△OAM中,因为OA是定值,AM的大小决定OM 的大小,由m的最小值计算OM的最小值.【解答】解:由题意得:OA=4,AM=m,OC=4,CN=n,BN=4﹣n,BM=4﹣m,∵四边形OABC是矩形,∴∠OCB=∠ABC=90°,∴∠CNO+∠CON=90°,∵ON⊥MN,∴∠ONM=90°,∴∠CNO+∠MNB=90°,∴∠CON=∠MNB,∴△OCN∽△NBM,∴,∴=,m==(n﹣2)2+3,即当n=2时,m有最小值为3,在Rt△OAM中,OA是定值,AM的大小决定OM的大小,当AM为最小时,OM为最小,∴当AM=m=3时,OM最小,此时m+n=3+2=5,故答案为:5.三.解答题(共11小题,计78分,解答时应有必要步骤)15.解方程(1)x2﹣2x﹣2=0;(2)2(x﹣3)2=x2﹣9.【考点】解一元二次方程﹣因式分解法.【分析】(1)先利用配方法得到(x﹣1)2=3,然后利用直接开平方法解方程;(2)先变形为2(x﹣3)2﹣(x+3)(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣2x=2,x2﹣2x+1=3,(x﹣1)2=3,x﹣1=±,所以x1=1+,x2=1﹣;(2)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.16.先化简再求值:(1+)÷,其中x是方程x2﹣3x=0的根.【考点】分式的化简求值;解一元二次方程﹣因式分解法.【分析】原式被除数括号中两项通分并利用同分母分式的加法法则计算,除数分母利用平方差公式分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出已知方程的解得到x的值,代入计算即可求出值.【解答】解:原式=÷=•=x+1,由x2﹣3x=0,解得:x1=3,x2=0(舍去),当x=3时,原式=3+1=4.17.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【考点】相似三角形的判定与性质.【分析】(1)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.【解答】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴=.∵AB=10,BC=12,∴=,∴BP=.18.已知线段a、b、c满足a:b:c=3:2:6,且a+2b+c=26.(1)求a、b、c的值;(2)若线段x是线段a、b的比例中项,求x的值.【考点】比例线段.【分析】(1)利用a:b:c=3:2:6,可设a=3k,b=2k,c=6k,则3k+2×2k+6k=26,然后解出k的值即可得到a、b、c的值;(2)根据比例中项的定义得到x2=ab,即x2=4×6,然后根据算术平方根的定义求解.【解答】解:(1)∵a:b:c=3:2:6,∴设a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;(2)∵x是a、b的比例中项,∴x2=ab,∴x2=4×6,∴x=2或x=﹣2(舍去),即x的值为.19.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD、CE.(1)求证:△ACD≌△EDC;(2)若点D是BC中点,说明四边形ADCE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【分析】(1)根据平行四边形的性质、等腰三角形的性质,利用全等三角形的判定定理SAS可以证得△ADC≌△ECD;(2)利用等腰三角形的“三合一”性质推知AD⊥BC,即∠ADC=90°;由平行四边形的判定定理(一组对边平行且相等的四边形是平行四边形)证得四边形ADCE 是平行四边形,所以有一个角是直角的平行四边形是矩形.【解答】证明:(1)∵四边形ABDE是平行四边形(已知),∴AB∥DE,AB=DE(平行四边形的对边平行且相等);∴∠B=∠EDC(两直线平行,同位角相等);又∵AB=AC(已知),∴AC=DE(等量代换),∠B=∠ACB(等边对等角),∴∠EDC=∠ACD(等量代换);∵在△ADC和△ECD中,,∴△ADC≌△ECD(SAS);(2)∵四边形ABDE是平行四边形(已知),∴BD∥AE,BD=AE(平行四边形的对边平行且相等),∴AE∥CD,∵点D是BC中点,∴BD=CD,∴AE=CD(等量代换),∴四边形ADCE是平行四边形(一组对边平行且相等的四边形是平行四边形);在△ABC中,AB=AC,BD=CD,∴AD⊥BC(等腰三角形的“三线合一”性质),∴∠ADC=90°,∴四边形ADCE是矩形.20.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1米的两扇小门.(1)设花圃的一边AB长为x米,请你用含x的代数式表示另一边AD的长为24﹣3x米;(2)若此时花圃的面积刚好为45m2,求此时花圃的长与宽.【考点】一元二次方程的应用.【分析】(1)用绳子的总长减去三个AB的长,然后加上两个门的长即可表示出AD的长;(2)由在BC上用其他材料造了宽为1米的两个小门,故长边为22﹣3x+2,令面积为45,解得x.【解答】解:(1)设宽AB为x,则长AD=BC=22﹣3x+2=(24﹣3x)米;(2)由题意可得:(22﹣3x+2)x=45,解得:x1=3;x2=5,∴当AB=3时,BC=15>14,不符合题意舍去,当AB=5时,BC=9,满足题意.答:花圃的长为9米,宽为5米.21.已知甲同学手中藏有三张分别标有数字、、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果;(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释.【考点】游戏公平性;根的判别式;列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【解答】解:(1)画树状图如下:由图可知,共有9种等可能的结果;(2)∵(a,b)的可能结果有(,1)、(,3)、(,2)、(,1)、(,3)、(,2)、(1,1)、(1,3)及(1,2),∴当a=,b=1时,△=b2﹣4ac=﹣1<0,此时ax2+bx+1=0无实数根,当a=,b=3时,△=b2﹣4ac=7>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=2>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=1时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,当a=,b=3时,△=b2﹣4ac=8>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=3>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=1时,△=b2﹣4ac=﹣3<0,此时ax2+bx+1=0无实数根,当a=1,b=3时,△=b2﹣4ac=5>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=2时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,∴P(甲获胜)=P(△>0)=,P(乙获胜)=1﹣=,∴P(甲获胜)>P(乙获胜),∴这样的游戏规则对甲有利,不公平.22.如图,在由边长为1的小正方形组成的网格图中有△ABC,建立平面直角坐标系后,点O的坐标是(0,0).(1)以O为位似中心,作△A′B′C′∽△ABC,相似比为1:2,且保证△A′B′C′在第三象限;(2)点B′的坐标为(﹣2,﹣1);(3)若线段BC上有一点D,它的坐标为(a,b),那么它的对应点D′的坐标为(﹣,﹣).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质进而得出△A′B′C′各顶点的位置,进而得出答案;(2)利用所画图形,得出点B′的坐标;(3)利用位似图形的性质得出点的坐标变化规律即可.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)点B′的坐标为:(﹣2,﹣1);故答案为:﹣2,﹣1.(3)若线段BC上有一点D,它的坐标为(a,b),那么它的对应点D′的坐标为:(﹣,﹣).故答案为:﹣,﹣.23.如图,路灯(P点)距地面8米,身高1.6米的小明从距离路灯的底部(O 点)20米的A点,沿OA所在的直线行走14米到B点(B点在A点的左边)时,身影的长度是变长了还是变短了?变长或变短了多少米?【考点】相似三角形的应用;中心投影.【分析】由题意得出△MAC∽△MOP,△NBD∽△NOP,即可由相似三角形的性质求解.【解答】解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴=,即=,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了,变短了5﹣1.5=3.5(米).24.正方形ABCD中,E点为BC中点,连接AE,过B点作BF⊥AE,交CD于F 点,交AE于G点,连接GD,过A点作AH⊥GD交GD于H点.(1)求证:△ABE≌△BCF;(2)若正方形边长为4,AH=,求△AGD的面积.【考点】正方形的性质;垂线;三角形的面积;全等三角形的判定与性质;直角三角形的性质.【分析】(1)易得∠1=∠3,这两个三角形中都有一个角是直角,加上正方形的边长相等,利用角边角可得这两个三角形全等;(2)求得DG的长就可以求得△AGD的面积.易得F为CD的中点,延长BF交AD的延长线于点M,可构造出△BCF≌△MDF,那么可得DM=BC=AD,就可以求得GD的长,也就求得了△AGD的面积.【解答】证明:(1)正方形ABCD中,∠ABE=90°,∴∠1+∠2=90°,又AE⊥BF,∴∠3+∠2=90°,则∠1=∠3又∵四边形ABCD为正方形,∴∠ABE=∠BCF=90°,AB=BC在△ABE和△BCF中,∴△ABE≌△BCF(ASA)(2)延长BF交AD延长线于M点,∴∠MDF=90°由(1)知△ABE≌△BCF,∴CF=BE∵E点是BC中点,∴BE=BC,即CF=CD=FD,在△BCF和△MDF中,∴△BCF≌△MDF(ASA)∴BC=DM,即DM=AD,D是AM中点又AG⊥GM,即△AGM为直角三角形,∴GD=AM=AD又∵正方形边长为4,∴GD=4S△AGD=GD•AH=×4×=.25.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD 的顶点A重合.三角板的一边交CD于点F,另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a,BC=b,请直接写出的值.【考点】四边形综合题.【分析】(1)由∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,可得∠DEF=∠GEB,又由正方形的性质,可利用ASA证得Rt△FED≌Rt△GEB,则问题得证;(2)首先过点E分别作BC、CD的垂线,垂足分别为H、P,然后利用ASA证得Rt△FEP≌Rt△GEH,则问题得证;(3)首先过点E分别作BC、CD的垂线,垂足分别为M、N,易证得EM∥AB,EN∥AD,则可证得△CEN∽△CAD,△CEM∽△CAB,又由有两角对应相等的三角形相似,证得△GME∽△FNE,根据相似三角形的对应边成比例,即可求得答案.【解答】(1)证明:如图1,∵∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,∴∠DEF=∠GEB,在△FED和△GEB中,,∴△FED≌△GEB(ASA),∴EF=EG;(2)解:成立.证明:如图2,过点E作EH⊥BC于H,过点E作EP⊥CD于P,∵四边形ABCD为正方形,∴CE平分∠BCD,又∵EH⊥BC,EP⊥CD,∴EH=EP,∴四边形EHCP是正方形,∴∠HEP=90°,∵∠GEH+∠HEF=90°,∠PEF+∠HEF=90°,∴∠PEF=∠GEH,∴在Rt△FEP与Rt△GEH中,,∴△FEP≌△GEH(AAS),∴EF=EG;(3)解:如图3,过点E作EM⊥BC于M,过点E作EN⊥CD于N,垂足分别为M、N,则∠MEN=90°,∴EM∥AB,EN∥AD.∴△CEN∽△CAD,△CEM∽△CAB,∴=,=,∴=,即===.∵∠NEF+∠FEM=∠GEM+∠FEM=90°,∴∠GEM=∠FEN,∵∠GME=∠FNE=90°,∴△GME∽△FNE,∴=,∴=.2017年3月10日。
【解析版】乌鲁木齐九十八中2016届九年级上第一次月考数学试卷
4.二次函数 y=ax2 与一次函数 y=﹣ ax(a≠0)在同一坐标系中的图象大致是( )
2015-2016 学年新疆乌鲁木齐九十八中九年级(上)第 一次月考数学试卷
参考答案与试题解析
一、选择题(每题 4 分,共 40 分) 1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )
A.
B.
C.
D.
考点: 轴对称图形. 分析: 据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合, 这样的图形叫做轴对称图形,这条直线叫做对称轴. 解答: 解:A、不是轴对称图形,不符合题意;
6.实数 a,b 在数轴上的位置如图所示,则关于 x 的一元二次方程 ax2+bx+1=0( )
A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不一定有实数根
24.(12 分)(2012•潮安县模拟)如图,有长为 24m 的篱笆,一面利用墙(墙的最大可 用长度 a 为 10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽 AB 为 xm,面积为 Sm2.
所以,对称轴 x= =3;
故选 D. 点评: 本题考查了二次函数的对称性.二次函数关于对称轴成轴对称图形.
3.已知函数
,当函数值 y 随 x 的增大而减小时,x 的取值范围是( )
A.x<1 B.x>1 C.x>﹣ 2 D.﹣ 2<x<4 考点: 二次函数的性质.
分析: 函数
,由于 a= >0,开口向上,则先求出其对称轴,在对称轴左
侧,y 随 x 的增大而减小;对称轴右侧,y 随 x 的增大而增大. 解答: 解:函数 y= x2﹣ x﹣ 4,对称轴 x=1,又其开口向上,
则当 x>1 时,函数 y= x2﹣ x﹣ 4 随 x 的增大而增大,
九年级上学期第二次月考数学试题 (含答案) (精选5套试题) (3)
图1北师大版九年级上学期第二次月考数学试卷(考试时间:100分钟,满分:120分)一、选择题(每小题3分,共30分)1.下列方程是关于x 的一元二次方程的是( ) A .02=++c bx ax B .162-+x xC .02142333=--x x D .032)3(22=-++x x m 2.分别以下列四组数为一个三角形的边长① 6,8,10 ② 5,12,13 ③ 8,15,16④ 4,5,6,其中能构成直角三角形的有( )A .①④B .②③C .①②D .②④3.有三条公路相交如图1,现计划修建一个油库,要求到三条公路的距离相等,则符合条件的油库的位置有( )A .1处B .2处C .3处D .4处4.根据下表的对应值,判断方程02=++c bx ax (c b a a ,,,0≠为常数)的一个解x 的范围是( )x3.23 3.24 3.25 3.26 c bx ax ++2-0.06-0.020.030.09A .3<x <3.33B .3.23<x <3.24C .3.24<x <3.25 D. 3.25<x <3.26 5.方程0422=-+x x 的根的情况是( )A .有两个不相等实数根 B. 有两个相等实数根C. 有一个实数根D.没有实数根6.关于x 的一元二次方程0122=-+x kx 有两个不相等的实数根,则k 的取值范围是( ) A .1->k B. 1>k C. 0≠k D. 1->k 且0≠k 7.已知等腰三角形的一个内角为30°,则这个等腰三角形的顶角..为( ) A. 30° B. 75° C. 75°或120° D. 30°或120°8.九年级(2)的每个同学都将自己的照片向全班其他同学各送一张表示留念,全班共送了2550张,若全班有x 名学生,根据题意列方程为( )A.2550)1(=+x xB.2550)1(=-x xC.2550)1(2=+x xD.25502)1(⨯=-x x 9.如图2,在△ABC 与△DEF 中,已有条件AB =DE ,还需添加两个条件才能使△ABC ≌△DEF ,不能..添加的一组条件是( ) A .∠B =∠E ,BC =EF B. BC =EF ,AC =DFC . ∠A =∠D ,∠B =∠E D. ∠A =∠D ,BC =EF10.如图3,在等腰△ABC 中,AB =AC ,∠A =30°,线段AC 的垂直平分线交AC 于D ,交AB 于E ,连接CE ,则∠BCE 等于( )A.70°B.60°C.45°D.50° 二、填空题(每小题4分,共24分)11.22____)(_____8-=+-x x x12.已知等腰△ABC 的腰AB =AC =10㎝,底BC =12㎝,则∠A 的平分线长是________㎝。
新疆乌鲁木齐市乌鲁木齐九十八中九年级(上)第二次月考物理试卷 (2)
新疆乌鲁木齐市乌鲁木齐九十八中九年级(上)第二次月考物理试卷一、选择题(本题有10个小题,每题3分,共30分.每小题4个选项,其中只有1个选项是符合题意的.选对得3分,多选、不选、错选不得分)1.(3分)下列关于声现象的说法中,正确的是()A.声波在真空中的传播速度等于340m/sB.声波可以传递信息,不可以传递能量C.“引吭高歌”中的“高”是指歌曲的音调高D.“女高音”中的“高”是指声音的频率高2.(3分)下列数据中最符合实际情况的是()A.一节干电池的电压是2VB.我国家庭电路电压为220VC.手电筒中的电流约2AD.家用空调器的电流约10A3.(3分)如图所示的光现象中,与小孔成像的原理相同的是()A.屏幕上的“手影”B.茶杯在镜中的“倒影”C.水中筷子“变弯”D.钢笔“错位”4.(3分)“缥缈的雾,晶莹的露,凝重的霜,轻柔的雪,装扮着我们的生活”,关于这些现象的形成与对应的物态变化的连线,正确的是()A.雾﹣﹣﹣﹣汽化B.露﹣﹣﹣﹣液化C.霜﹣﹣﹣﹣凝固D.雪﹣﹣﹣﹣升华5.(3分)中考期间某考场保密室有两把不同的钥匙,分别由两名保密工作人员保管,只有当两把钥匙都插入钥匙孔(相当于闭合开关)电动门才会打开,单独使用某一把钥匙不能使门打开。
图中符合要求的电路是()A.B.C.D.6.(3分)如图所示,工人用250N的力F将重为400N的物体在10s内匀速提升2m,则此过程中()A.工人做的有用功为800JB.工人做的总功为500JC.滑轮组的机械效率为60%D.拉力做功的功率为20W7.(3分)下列生活实例中,属于内能转化为机械能的是()A.冬天人们常用双手互相摩擦取暖B.用茶壶烧水,水烧开时,茶壶盖被顶起C.钻木取火D.四冲程汽油机的压缩冲程8.(3分)在如图所示的“探究液体内部压强特点”的实验中,将压强计的探头放入水中,下列做法中能使U形管两边液面的高度差减小的是()A.将探头放在同样深度的浓盐水中B.将探头在原位置转动180°C.将探头向下移动一段距离D.将探头向上移动一段距离9.(3分)在图所示的电路中,电源电压保持不变,闭合电键S电路正常工作。
乌市第98中学初三第二次月考试卷
鄞州区2017年初中毕业生学业考试模拟考数 学 试 题考生须知:1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共6页,有三个大题,26个小题.满分为150分,考试时间为120分钟.2.请将姓名、准考证号分别填写在答题卷的规定位置上.3.答题时,把试题卷I 的答案在答题卷I 上对应的选项位置,用2B 铅笔涂黑、涂满.将试题卷II 的答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷II 各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效. 4.不允许使用计算器,没有近似计算要求的试题,结果都不能用近似数表示.试题卷Ⅰ一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只用一项符合题目要求)1.-3的相反数为( ▲ )(A ) 3 (B )-33(C ) 3 (D )-3 2. 随着行政区划调整,2017年我区计划新建续建主次干道项目25个,全年计划完成交通投资19.79亿元,其中19.79亿元用科学记数法可表示为( ▲ )(A )1.979×107元 (B )1.979×108元 (C )1.979×109元 (D )1.979×1010元 3.如图所示的几何体是由一个正方体切去一个小正方体形成,其主视图为( ▲ )(A ) (B ) (C ) (D )4.使式子x +1x -1有意义的x 的取值范围是( ▲ ) (A )x > 1 (B ) x ≠1 (C )x ≥-1且x ≠1 (D )x >-1且x ≠1 5.下列计算正确的是( ▲ )(A )x +x 2=x 3 (B )2x -3x =-x (C ) (x 2)3=x 5 (D )x 6÷x 3=x 26.将一把直尺与一块三角板如图放置,若∠1=46°,则∠2的度数为( ▲ )(A )136° (B )138° (C )140°(D )142°第3题图7.如图所示,矩形ABCD 中,AB =3,BC =5,点E 在AD 上,且BE 平分∠AEC ,则△ABE的面积为( ▲ )(A )2.4 (B )2 (C ) 1.8 (D )1.58.如图,等腰直角△ABC 的中线AE ,CF 相交于点G ,若斜边AB 的长为6,则AG 长为( ▲ ) (A )3 (B )3 2 (C ) 10 (D )139.某单位招聘,总成绩由笔试的70%和面试的30%两部分组成.已知甲应聘者笔试x 分,面试y 分,乙应聘者笔试y 分,面试x 分,而他们的总成绩相差4分,则 |x -y | 的值为( ▲ ) (A )8 (B )10 (C )12 (D )1610.在平面直角坐标系中,点A ,B 的坐标分别为(2m -2,3),(m ,3),且点A 在点B 的左侧,若线段AB 与直线y =-2x +1相交,则m 的取值范围是( ▲ )(A )6 (B )8 (C )12 (D )1612.如图,△ABC 中,D 为BC 上的点,DC =2BD ,以DC 为直径作圆交AB 于点E ,若AE =AC ,则sinB 的值为( ▲)(A )25 (B )34 (C ) 108 (D )368第12题图第6题图21ABCG第8题图F E ABCDE第7题图试题卷Ⅱ二、填空题(每小题4分,共24分) 13.因式分解:a -ab = ▲ .14.若关于x 的一元二次方程ax 2+bx +6=0的一个根为x =2,则代数式2a +b +6的值为 ▲ .15.如图,要拧开一个边长为a =6mm 的正六边形螺帽,扳手张开的开口b 至少为 ▲ mm . 16.如图所示,二次函数y =ax2+bx +c (a ≠0)的图象与x 轴相交于点A ,B ,若其对称轴为直线x =2,则OB -OA 的值为 ▲ .17.如图,将△ABC 绕点A 顺时针旋转,使点C 落在边AB 上的点E 处,点B 落在点D 处,连结BD ,如果∠DAC =∠DBA ,那么∠BAC 度数是 ▲ 度.18.如图,菱形ABCD 边长为9,DF 交AC 于点E ,且AE =AF =6,则EF 的长为 ▲ .三、解答题(第19题6分,第20、21题8分,第22~24题各10分,第25题12分,第26题14分,共78分)19.先化简,再求值: a 2+2a +1a ÷ a +1a -1-a ,其中a =2ABCDEF第18题图CAB第17题图DE第1520.某校组织开展校园诗词大会,参赛学生均作答10题,每答对一题得1分.随机抽取的九年级50名学生答题分数的情况有如下所示的不完整的条形统计图. (1)请补全条形统计图;(2)参赛学生得分的众数为 ▲ 分,中位数为 ▲ 分; (3)求50名参赛学生得分的平均数.21.在3×3的方格纸中,点A ,B ,C ,D ,E 分别位于如图所示的小正方形格点上. (1)在点A ,B ,C ,D ,E 中任取四个点为顶点直接在图上画一个中心对称的四边形; (2)从A ,B ,C 三个点中先任取一个点,在余下的两个点中再取一个点,将所取的这两点与点D ,E 为顶点构成四边形,求所得四边形中面积为2的概率(用树状图或列表法求解).22.已知:抛物线y =-x 2+bx +c 经过点B (-1,0)和点C (2,3). (1)求此抛物线的表达式;(2)如果此抛物线沿y 轴平移一次后过点(-2,1),试确定这次平移的方向和距离.23.如图,Rt △ABC 中,∠ABC 为直角,以AB 为直径作⊙O 交AC 于点D ,点E 为BC 中点,连结DE ,DB (1)求证:DE 与⊙O 相切; (2)若∠C =30°,求∠BOD 的度数;(3)在(2)的条件下,若⊙O 半径为2, 求阴影部分面积.第20题图第21题图BADO第23题图24.我市计划对某地块的1000m 2区域进行绿化,由甲、乙两个工程队合作完成.已知甲队每天能完成绿化的面积是乙队的2倍;若两队分别各完成300m 2的绿化时,甲队比乙队少用3天.(1)求甲、乙两工程队每天能完成的绿化的面积;(2)两队合作完成此工程,若甲队参与施工x 天,试用含x 的代数式表示乙队施工的天数y ; (3)若甲队每天施工费用是0.6万元,乙队每天为0.2万元,且要求两队施工的天数之和不超过16天,应如何安排甲、乙两队施工的天数,才能使施工总费用最低?并求出最低费用时的值.25.定义:如图1,等腰△ABC 中,点E ,F 分别在腰AB ,AC 上,连结EF ,若AE =CF ,则称EF 为该等腰三角形的逆等线.(1)如图1,EF 是等腰△ABC 的逆等线,若EF ⊥AB ,AB =AC =5,AE =2,求逆等线EF的长;(2)如图2,若等腰直角△DEF 的直角顶点D 恰好为等腰直角△ABC 底边BC 上的中点,且点E ,F 分别在AB ,AC 上,求证:EF 为等腰△ABC 的逆等线;(3)如图3,等腰△AOB 的顶点O 与原点重合,底边OB 在x 轴上,反比例函数y =k x(x>0)的图象交△OAB 于点C ,D ,若CD 恰为△AOB 的逆等线,过点C ,D 分别作CE ⊥x 轴,DF ⊥x 轴,已知OE =2,求OF 的长.ACD EFABEF第25题图图2 图126.已知:如图1,在平面直角坐标系中,A(2,-1),以M(-1,0)为圆心,以AM为半径的圆交y轴于点B,连结BM并延长交⊙M于点C,动点P在线段BC上运动,长为53的线段PQ∥x轴(点Q在点P右侧),连结AQ.(1)求⊙M的半径长和点B的坐标;(2)如图2,连结AC,交线段PQ于点N,①求AC所在直线的解析式;②当PN=QN时,求点Q的坐标;(3)点P在线段BC上运动的过程中,请直接写出AQ的最小值和最大值.备用图。
新疆初三初中数学月考试卷带答案解析
新疆初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、填空题1.把一元二次方程化为一般形式是 ,其中二次项为: ,一次项系数为: ,常数项为: .2.写出一个有一根为的一元二次方程 .3.已知三角形两边长分别是2和9,第三边的长为一元二次方程x 2-14x+48=0的一个 根,则这个三角形的周长为 。
4.关于x 一元二次方程2x (kx-4)-x 2+6=0没有实数根,则k 的最小整数值是 。
5.已知方程x 2+kx+3=0的一个根是-1,则k= , 另一根为 .6.若两数和为-7,积为12,则这两个数是 .7.直角三角形的两直角边的比是3︰4,而斜边的长是20㎝,那么这个三角形的面积是 . 8.已知关于x 的方程x²-mx+2m-1=0的两个实数根的平方和为7,那么m 的值是 9.已知x 1,x 2是方程x 2-2x-1=0的两根,则+等于 。
10.如果—8=0,则的值是 。
11.将二次函数配方成的形式,则y= .12.已知抛物线与x 轴有两个交点,那么一元二次方程的根的情况是 . 13.已知抛物线与x 轴交点的横坐标为,则= .14.如图,抛物线的对称轴是,与x 轴交于A 、B 两点,若B 点坐标是,则A 点的坐标是 .二、选择题1.已知一个直角三角形的两条直角边恰好是方程2-8x+7=0的两根,则此三角形的斜边长为( )A .3B .6C .9D .122.关于的一元二次方程有实数根,则( ) A .<0B .>0C .≥0D .≤03.使分式的值等于0的x 的值是( )A .2B .-2C .±2D .±44.已知m 是方程x 2-x-1=0的一个根,则代数式m 2-m 的值等于( )A .-1B .0C .1D .25.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( ) A .x (x+1)=1035 B .x (x-1)=1035 C .x (x+1)=1035D .x (x-1)=10356.已知二次函数,且,,则一定有( )A .B .C .D .≤07.把抛物线向右平移3个单位,再向下平移2个单位,所得图象的解析式是,则有( )A .,B .,C .,D .,8.下面所示各图是在同一直角坐标系内,二次函数与一次函数的大致图象,有且只有一个是正确的,正确的是( )9.抛物线的对称轴是直线( )A .B .C .D .10.二次函数的最小值是( ) A .B .2C .D .1三、解答题1.解下列方程: (1) (2)(3)(4)x 2+4x=22.已知一元二次方程kx 2+(2k-1)x+k+2=0有两个不相等的实数根,求k 的取值范围.3.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.4.阅读下面的例题: 解方程解:当x≥0时,原方程化为x 2-x-2=0,解得:x 1=2,x 2=-1(不合题意,舍去); 当x <0时,原方程化为x 2+ x-2=0,解得:x 1=1,(不合题意,舍去)x 2=-2; ∴原方程的根是x 1=2,x 2=-2. 请参照例题解方程.5.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2 100元,每件衬衫应降价多少元?6.已知抛物线与x 轴只有一个交点,且交点为. (1)求b 、c 的值;(2)若抛物线与y 轴的交点为B ,坐标原点为O ,求△OAB 的面积(答案可带根号)7.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?新疆初三初中数学月考试卷答案及解析一、填空题1.把一元二次方程化为一般形式是,其中二次项为:,一次项系数为:,常数项为: .【答案】x2﹣6x+5=0;x2,﹣6, 5【解析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.把一元二次方程(x﹣3)2=4化为一般形式为:x2﹣6x+5=0,二次项为x2,一次项系数为﹣6,常数项为5【考点】一元二次方程的一般形式.2.写出一个有一根为的一元二次方程 .【答案】x2﹣2x=0(答案不唯一)【解析】设方程的两根是0和2,因而方程是x(x﹣2)=0即x2﹣2x=0,本题答案不唯一.设方程的另一根为0,则根据因式分解法可得方程为x(x﹣2)=0,即x2﹣2x=0;本题答案不唯一.故答案为:x2﹣2x=0.【考点】一元二次方程的解3.已知三角形两边长分别是2和9,第三边的长为一元二次方程x2-14x+48=0的一个根,则这个三角形的周长为。
新疆初三初中数学月考试卷带答案解析
新疆初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.乌鲁木齐市4月份某天的最高气温是6℃,最低气温是﹣2℃,那么这天的温差是( )A .﹣2℃B .8℃C .﹣8℃D .4℃2.下列运算正确的是( )A .6a ﹣5a=1B .(a 2)3=a 5C .3a 2+2a 3=5a 5D .a 6•a 2=a 83.平面直角坐标系内一点P (-2,3),关于原点的对称点的的坐标是( )A .(3,-2)B .(2,3)C .(-2,-3)D .(2,-3)4.一元二次方程x 2﹣2x=0的根是( )A .x 1=0,x 2=﹣2B .x 1=1,x 2=2C .x 1=1,x 2=﹣2D .x 1=0,x 2=25.二次函数y=﹣x 2+bx+c 的图象如图所示:若点A (x 1,y 1),B (x 2,y 2)在此函数图象上,x 1<x 2<1,y 1与y 2的大小关系是( )A .y 1≤y 2B .y 1<y 2C .y 1≥y 2D .y 1>y 26.将一个正方形纸片依次按如图a ,b 的方式对折,然后沿图c 中的虚线裁剪,成图d 样式,将纸展开铺平,所得到的图形是图中的 ( )A .AB .BC .CD .D7.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题1.如果函数y=(k-3)+kx+1是二次函数,那么k= .A.– 3B.3C.0D.3或02.二次函数y=(x+2)2﹣1的图象的对称轴为()A.x=2B.x=﹣2C.x=1D.x=﹣13.计算:(π﹣2015)0﹣(﹣1)2015﹣|﹣3|=__.4.过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为__.5.已知抛物线的顶点在x轴上,则k的值是___________.6.若方程kx2﹣6x+1=0有两个实数根,则k的取值范围是______.7.如果x2-10x+y2-16y+89=0,求的值______.三、单选题已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2B.3C.4D.8四、计算题1.解下列方程:(1)(2)2.先化简,再求值:·(x-3),从不大于4的正整数中,选择一个合适的x的值代入求值.五、解答题1.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证:∠5=∠6.2.已知:关于的方程⑴求证:方程有两个不相等的实数根;⑵若方程的一个根是,求另一个根及值.3.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求∠BCD的度数.4.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,合肥市某家小型“大学生自主创业”的快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?5.本期开学以来,初2017级开展了轰轰烈烈的体育锻炼,为了解考体育科目训练的效果,九年级学生中随机抽取了部分学生进行了以此中考体育科目测试(把测试结果分为四个等级,A等:优秀;B等:良好;C等:及格;D 等:不及格),并将结果汇成了如图1、2所示两幅不同统计图,请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中D等所在的百分比是,并把图2条形统计图补充完整;(3)我校九年级有1800名学生,如果全部参加这次中考体育科目测试,请估计不及格的人数为;6.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.7.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S.△MCB新疆初三初中数学月考试卷答案及解析一、选择题1.乌鲁木齐市4月份某天的最高气温是6℃,最低气温是﹣2℃,那么这天的温差是()A.﹣2℃B.8℃C.﹣8℃D.4℃【答案】B【解析】试题解析:由题意可得,这天的温差是:6-(-2)=8(℃),故选B .2.下列运算正确的是( )A .6a ﹣5a=1B .(a 2)3=a 5C .3a 2+2a 3=5a 5D .a 6•a 2=a 8【答案】D【解析】试题解析:A 、应为6a-5a=a ,故本选项错误;B 、应为(a 2)3=a 2×3=a 6,故本选项错误;C 、3a 2与2a 3不是同类项,不能合并,故本选项错误;D 、a 6•a 2=a 8,正确.故选D .3.平面直角坐标系内一点P (-2,3),关于原点的对称点的的坐标是( )A .(3,-2)B .(2,3)C .(-2,-3)D .(2,-3)【答案】D【解析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.点P (﹣2,3)关于原点对称的点的坐标是(2,﹣3).【考点】关于原点对称的点的坐标.4.一元二次方程x 2﹣2x=0的根是( )A .x 1=0,x 2=﹣2B .x 1=1,x 2=2C .x 1=1,x 2=﹣2D .x 1=0,x 2=2【答案】D【解析】解:x 2﹣x ﹣2=0(x ﹣2)(x+1)=0,解得:x 1=﹣1,x 2=2.故选:D .5.二次函数y=﹣x 2+bx+c 的图象如图所示:若点A (x 1,y 1),B (x 2,y 2)在此函数图象上,x 1<x 2<1,y 1与y 2的大小关系是( )A .y 1≤y 2B .y 1<y 2C .y 1≥y 2D .y 1>y 2【答案】B【解析】由图像可得:对称轴是直线x=1,在对称轴左侧是增函数,∵x 1<x 2<1,∴y 1<y 2,故选B .【考点】二次函数的增减性.6.将一个正方形纸片依次按如图a ,b 的方式对折,然后沿图c 中的虚线裁剪,成图d 样式,将纸展开铺平,所得到的图形是图中的 ( )A.A B.B C.C D.D【答案】D【解析】严格按照图中的顺序向上对折,向右对折,从右下角剪去一个四分之一圆,从左上角和左下角各剪去一个直角三角形,展开得到结论.故选D.【考点】剪纸问题.7.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个【答案】B【解析】试题解析:∵抛物线和x轴有两个交点,∴b2-4ac>0,∴4ac-b2<0,∴①正确;∵对称轴是直线x=-1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(-3,0)和(-2,0)之间,∴把(-2,0)代入抛物线得:y=4a-2b+c>0,∴4a+c>2b,∴②错误;∵把x=1代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵-=-1,∴b=2a,∴3b+2c<0,∴③正确;∵抛物线的对称轴是直线x=-1,∴y=a-b+c的值最大,即把x=m(m≠-1)代入得:y=am2+bm+c<a-b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.【考点】二次函数图象与系数的关系.二、填空题1.如果函数y=(k-3)+kx+1是二次函数,那么k= .A.– 3B.3C.0D.3或0【答案】C【解析】试题解析:根据二次函数的定义,得:k2-3k+2=2,解得k=0或k=3;又∵k-3≠0,∴k≠3.∴当k=0时,这个函数是二次函数.故选C.2.二次函数y=(x+2)2﹣1的图象的对称轴为()A.x=2B.x=﹣2C.x=1D.x=﹣1【答案】B【解析】试题解析:∵二次函数y=(x+2)2-1是顶点式,∴对称轴为:x=-2.故选B.3.计算:(π﹣2015)0﹣(﹣1)2015﹣|﹣3|=__.【答案】-1【解析】试题解析:(π-2015)0-(-1)2015-|-3|=1-(-1)-3=2-3=-1.【点睛】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.4.过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为__.【答案】3.12×106【解析】用科学计数法应表示成a×的形式,其中a是整数位数只有一位的数,n是原数的整数位数减1.【考点】用科学计数法计数.5.已知抛物线的顶点在x轴上,则k的值是___________.【答案】3或-5【解析】试题解析:根据顶点纵坐标公式,抛物线y=x2-2(k+1)x+16的顶点纵坐标为,∵抛物线的顶点在x轴上时,∴顶点纵坐标为0,即=0,解得k=3或-5.6.若方程kx2﹣6x+1=0有两个实数根,则k的取值范围是______.【答案】k≤9且k≠0【解析】若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为0.解:∵方程有两个实数根,∴△=b2﹣4ac=36﹣4k≥0,即k≤9,且k≠0【考点】根的判别式.7.如果x2-10x+y2-16y+89=0,求的值______.【答案】=【解析】试题解析:∵x2-10x+y2-16y+89=(x-5)2+(y-8)2=0,∴x-5=0,y-8=0,解得:x=2,y=3.故:=三、单选题已知一元二次方程x 2﹣6x+c=0有一个根为2,则另一根为()A .2B .3C .4D .8【答案】C【解析】利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6,解得α=4.【考点】根与系数的关系.四、计算题1.解下列方程:(1)(2)【答案】(1),;(2),=﹣1.【解析】(1)先把方程化成一般形式,再利用公式法求解即可;(2)先移项,使方程的右边化为零,再将方程的左边分解为两个一次因式的乘积,令每个因式分别为零,得到两个一元一次方程,解这两个一元一次方程,它们的解就都是原方程的解.试题解析:(1)x 2+4x=6,x 2+4x-6=0,∵△=16-4×1×(-6)=40,∴x=;(2)x (x-3)=-x+3,x (x-3)+x-3=0,(x-3)(x+1)=0,x-3=0,或x+1=0,x 1=3,x 2=-1.2.先化简,再求值:·(x -3),从不大于4的正整数中,选择一个合适的x 的值代入求值. 【答案】取x =4,则原式= (或取x =2,则原式=2). 【解析】先根据分式混合运算的法则把原式进行化简,再选出合适的x 的值代入进行计算即可.试题解析:原式===,当x=4时,原式=.(或取x =2,则原式=2)五、解答题1.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证:∠5=∠6.【答案】证明见解析【解析】因为∠1=∠2,∠3=∠4,AC=CA ,根据ASA 易证△ADC ≌△ABC ,所以有DC=BC ,又因为∠3=∠4,EC=CE ,则可根据SAS 判定△CED ≌△CEB ,故∠5=∠6.试题解析:∵,∴△ADC≌△ABC(ASA).∴DC=BC.又∵,∴△CED≌△CEB(SAS).∴∠5=∠6.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.已知:关于的方程⑴求证:方程有两个不相等的实数根;⑵若方程的一个根是,求另一个根及值.【答案】(1)证明见解析;(2);【解析】(1)根据根的判别式:=,可知方程有2个不相等实数根。
新疆初三初中数学月考试卷带答案解析
新疆初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、单选题1.已知关于的一元二次方程有两个相等的实数根,则的值是()A.4B.-4C.1D.-12.如果,那么代数式的值是( )A.6B.8C.-6D.-83.如图,抛物线的对称轴是直线x=1,且经过点P(3,0),则的值为()A.0B.-1C.1D.24.已知二次函数的图象如图所示,则这个二次函数的表达式为()A.y=x2﹣2x+3B.y=x2﹣2x﹣3C.y=x2+2x﹣3D.y=x2+2x+35.用配方法解方程,下列配方结果正确的是().A.B.C.D.6.如图,在一次函数的图象上取点P,作PA⊥轴于A,PB⊥轴于B,且长方形OAPB的面积为6,则这样的点P个数共有()A.4B.3C.2D.17.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.8.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是A.A B.B C.C D.D二、填空题1.要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x支球队参赛,根据题意列出的方程是________________________________.2.如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴。
给出四个结论:①;②;③;④,其中正确结论的序号是___________3.已知方程是一元二次方程,则m=____________;4.已知二次函数的图像过点A(1,2),B(3,2),C(5,7).若点M(-2,),N(-1,),K(8,)也在二次函数的图像上,则,,的从小到大的关系是__________.5.已知关于x的方程的一个根是2,则m=________,另一根为________.6.阅读材料:已知,是方程的两实数根,则的值为______.7.若二次函数的图象向左平移2个单位长度后,得到函数的图象,则h=______.三、解答题1.当满足条件时,求出方程的根2.关于x的方程x2-2x+k-1=0有两个不等的实数根.(1)求k的取值范围;(2)若k+1是方程x2-2x+k-1=4的一个解,求k的值.3.解下列方程(1)(2x-1)2-25=0;y2=2y+3;(3)x(x+3)=2-x.4.先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.5.已知关于x的一元二次方程。
新疆乌鲁木齐九十八中九年级(上)第二次月考化学试卷
新疆乌鲁木齐九十八中九年级(上)第二次月考化学试卷一、选择题(本大题共10小题,每小题2分,共20分,每小题只有一个选项符合题意)1.(2分)2016年“中国水周”活动的宣传主题是“落实五大发展理念,推进最严格水资源管理”.下列做法不符合这一主题的是()A.逐步淘汰高耗水生产工艺B.农作物采用大水漫灌C.生活污水集中处理后排放D.工业“三废”经过处理达标后再排放.2.(2分)如图是表示气体分子的示意图,图中“●”和“○”分别表示两种不同的原子,其中表示混合物的是()A.B.C.D.3.(2分)区分下列各组物质的两种方法都正确的是()需区分物质方法一方法二A空气和氧气用带火星木条检验闻气味B硬水和软水观察颜色加明矾搅拌C铜丝和铁丝用磁铁吸引观察颜色D二氧化碳和氮气澄清石灰水燃着的木条A.A B.B C.C D.D4.(2分)下列图示中的“错误实验操作”与图下面对应的“可能产生的后果”不一致的是()A.液体喷出B.受热仪器破裂C.污染试剂D.读数偏小5.(2分)某反应的微观示意图如图所示,其中“●”表示汞原子,“○”表示氧原子,下列说法正确的是()A.图中甲、乙、丙三种物质中,甲、丙属于氧化物B.图中甲、乙、丙三种物质均是由分子构成的C.该反应前后分子种类、原子种类均没有改变D.图中甲、乙、丙三种物质中既有单质又有化合物6.(2分)从分子的角度分析并解释下列现象,不正确的是()A.端午时节粽子飘香﹣﹣分子在不停地运动B.干冰升华变为气体,所占体积变大﹣﹣气体分子变大C.晴天湿衣服比阴天干得快﹣﹣晴天气温高,分子运动速率快D.6000L氧气加压后可装入容积40L的钢瓶中﹣﹣分子间有间隔7.(2分)C3N4是一种新型材料,它的硬度比金刚石还高,可做切割工具.在C3N4中,碳元素的化合价为+4,则氮元素的化合价是()A.+5B.+3C.+1D.﹣38.(2分)下列实验中(如图),观察不到明显变化的是()A.B.C.D.9.(2分)下列各组物质中前者属于化合物,后者属于单质的是()A.氧气,稀有气体B.冰水混合物,食盐水C.二氧化碳,液氧D.澄清石灰水,高锰酸钾10.(2分)某科学兴趣小组为了研究物质燃烧的剧烈程度与氧气浓度的关系,需要收集一瓶大约四分之一空气的氧气,下列操作正确的是()A.集气瓶中灌的水B.集气瓶中灌的水C.导管伸入到集气瓶体积的处D.导管伸入到集气瓶体积的处二、填空题(本题包括4道小题,每空1分,共19分)11.(4分)用相应的化学符号填空:(1)n个硫原子;(2)铜元素;(3)两个氧分子(4)水中氧元素的化合价为﹣2价.12.(3分)在宏观、微观和符号之间建立联系是化学学科的特点。
【解析版】乌鲁木齐九十八中2016届九年级上第一次月考数学试卷
2015-2016 学年新疆乌鲁木齐九十八中九年级(上)第 一次月考数学试卷
参考答案与试题解析
一、选择题(每题 4 分,共 40 分) 1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )
A.
B.
C.
D.
考点: 轴对称图形. 分析: 据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合, 这样的图形叫做轴对称图形,这条直线叫做对称轴. 解答: 解:A、不是轴对称图形,不符合题意; B、是轴对称图形,符合题意; C、不是轴对称图形,不符合题意; D、不是轴对称图形,不符合题意. 故选 B. 点评: 本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形 两部分折叠后可重合.
3.已知函数
,当函数值 y 随 x 的增大而减小时,x 的取值范围是( )
A.x<1 B.x>1 C.x>﹣2D.﹣2<x<4
4.二次函数 y=ax2 与一次函数 y=﹣ax(a≠0)在同一坐标系中的图象大致是( )
A.
B.
C.
D.
5.一元二次方程 x2+4=0 根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根
23.(12 分)(2010•宁波)如图,已知二次函数 y=﹣ +bx+c 的图象经过 A(2,0)、
B(0,﹣6)两点. (1)求这个二次函数的解析式; (2)设该二次函数的对称轴与 x 轴交于点 C,连接 BA、BC,求△ABC 的面积.
24.(12 分)(2012•潮安县模拟)如图,有长为 24m 的篱笆,一面利用墙(墙的最大可 用长度 a 为 10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽 AB 为 xm,面积为 Sm2.
第一学期九年级数学第二次月考试卷(含解析)
第一学期九年级数学第二次月考试卷(含解析)一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒2.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .33.已知3sin α=,则α∠的度数是( ) A .30° B .45° C .60°D .90°4.方程 x 2=4的解是( )A .x 1=x 2=2B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-45.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.6.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A 3B 31C 31D .237.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45°8.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13 C .12D .239.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x10.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .43B .23C .33D .3211.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16B .15,15C .15,15.5D .16,1512.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 13.二次函数y =x 2﹣2x +1与x 轴的交点个数是( ) A .0B .1C .2D .314.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°15.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( )A .252-B .25-C .251-D .52-二、填空题16.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.17.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.18.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .19.若a b b -=23,则ab的值为________. 20.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 21.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.22.抛物线()2322y x =+-的顶点坐标是______.23.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒24.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S 甲2=6.5分2,乙同学成绩的方差S 乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).25.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.26.如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.27.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是_____.28.如图,将二次函数y=12(x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.29.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.30.若函数y=(m+1)x2﹣x+m(m+1)的图象经过原点,则m的值为_____.三、解答题31.在Rt△ABC中,AC=BC,∠C=90°,求:(1)cosA;(2)当AB=4时,求BC的长.32.如图,在△ABC中,AB=AC=13,BC=10,求tan B的值.33.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作⊙O 交AC 于点F ,连接DF 、PF .(1)求证:△DPF 为等腰直角三角形; (2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将△EFP 沿PF 翻折,得到△QFP ,当点Q 恰好落在BC 上时,求t 的值.34.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A 类(12≤m ≤15),B 类(9≤m ≤11),C 类(6≤m ≤8),D 类(m ≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为 ,扇形统计图中A 类所对的圆心角是 度; (2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C 类的有多少名?35.已知关于x 的一元二次方程()222140x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.四、压轴题36.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ. (1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.37.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 38. 如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,P 为边BC 上一个动点(可以包括点C 但不包括点B ),以P 为圆心PB 为半径作⊙P 交AB 于点D 过点D 作⊙P 的切线交边AC 于点E ,(1)求证:AE=DE ; (2)若PB=2,求AE 的长;(3)在P 点的运动过程中,请直接写出线段AE 长度的取值范围.39.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(1)当t 为何值时,网球高度达到最大值? (2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.40.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形. (1)已知A (﹣2,3),B (5,0),C (t ,﹣2). ①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为 ;②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D (1,1).E (m ,n )是函数y =4x(x >0)的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用圆内接四边形的对角互补计算∠C的度数.【详解】∵四边形ABCD内接于⊙O,∠A=400,∴∠C=1800-400=1400,故选D.【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.B解析:B【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.3.C解析:C【解析】【分析】根据特殊角三角函数值,可得答案.【详解】解:由sin2α=,得α=60°,故选:C.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.C解析:C【解析】【分析】两边开方得到x=±2.【详解】解:∵x2=4,∴x=±2,∴x1=2,x2=-2.故选:C.【点睛】本题考查了解一元二次方程-直接开平方法:形如ax2+c=0(a≠0)的方程可变形为2=cxa-,当a、c异号时,可利用直接开平方法求解.5.A解析:A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.6.B解析:B 【解析】 【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得2EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案. 【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形, ∴△CEF ∽△AEB , 设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD ,∴CF=DF=BF =12BD =,∴2EF CF BE AB ==,设EF ,则2BE x =,∴(2BF CF DF x ===+,∴(2CD x x ===,((22DE DF EF x x =+=+=+,∴(222EG DG DE x x ===+=,∴(CG CD DG x x =-=-=,∴tan 1x EG ACD CG ∠==.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.7.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.8.D解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张,所以抽到偶数的概率是46=23,故选:D.【点睛】 本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.9.D解析:D【解析】【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.10.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO ,∴1DO 2=,32AD =, ∴223BD OB OD =-=,∴BC =∴13224ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.11.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为(1516)2+÷=15.5岁,故选:C .【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.12.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2,即所列的方程为100(1+x )2=144,故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.13.B解析:B【解析】由△=b 2-4ac=(-2)2-4×1×1=0,可得二次函数y=x 2-2x+1的图象与x 轴有一个交点.故选B .14.A解析:A【解析】【详解】解:∵四边形ABCO 是平行四边形,且OA=OC ,∴四边形ABCO 是菱形,∴AB=OA=OB ,∴△OAB 是等边三角形,∴∠AOB=60°,∵BD 是⊙O 的直径,∴点B 、D 、O 在同一直线上,∴∠ADB=12∠AOB=30° 故选A . 15.A解析:A【解析】根据黄金比的定义得:AP AB = ,得42AP == .故选A. 二、填空题16.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x ﹣2)(x ﹣4)=0,x ﹣2=0,x ﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x 2﹣6x+8=0,(x ﹣2)(x ﹣4)=0,x ﹣2=0,x ﹣4=0,x 1=2,x 2=4,当x =2时,2+3<6,不符合三角形的三边关系定理,所以x =2舍去,当x =4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.17.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 18.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL 的面积减去梯形BENK 的面积,再利用相似三角形的性质求出BK 、EN 的长从而求出梯形的面积即可得出答案.【详解】解:如解析:133【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL 的面积减去梯形BENK 的面积,再利用相似三角形的性质求出BK 、EN 的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH 为正方形,∴NE GH∴△AEN ~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=209同理可求BK=89梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.19.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.20.(6,4).【解析】【分析】 作BQ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD⊥AC 于D ,PF⊥AB 于F ,P解析:(6,4).【解析】【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴AB=2213AQ BQ +=,CQ=AC-AQ=9,∴BC=2215BQ CQ +=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P 的坐标是解题的关键.21.6【解析】【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.22.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .23.120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA ,∵OA,OB 为半径,∴,∴,∴劣弧的度数等于,故答案为:1解析:120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴30OAB ABO ∠=∠=︒,∴180120AOB OAB ABO ∠=︒-∠-∠=︒,∴劣弧AB 的度数等于120︒,故答案为:120.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.24.乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2 >S 乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【解析:乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2>S乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【点睛】本题考查方差的性质,方差越小数据越稳定.25..【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】 解析:12. 【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5, ∴朝上的数字为奇数的概率是36=12; 故答案为:12. 【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键. 26.10【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O 到顶点A 的距离最大.则OA解析:【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】 解:∵sin 45sin AB AO ABO=∠ ∴当∠ABO=90°时,点O 到顶点A 的距离最大.则.故答案是:.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O到顶点A的距离的最大的条件是解题关键.27.(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=OD=2,DE=OA=1,于是得到结论.解析:(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=13OD=2,DE=13OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=13OD=2,BE=13OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.28.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.29.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.30.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.三、解答题31.(1)22;(2)22【解析】【分析】(1)根据等腰直角三角形的判定得到△ABC为等腰直角三角形,则∠A=45°,然后利用特殊角的三角函数值求解即可;(2)根据∠A的正弦求解即可.【详解】∵AC=BC,∠C=90°,∴∠A=∠B=45°,∴cosA=cos45°=22,∴BC=AB sin A⨯=22,【点睛】本题考查解直角三角形及等腰直角三角形的判定,熟练掌握特殊角三角函数值是解题关键.32.12 5【解析】【分析】过A点作AD⊥BC,将等腰三角形转化为直角三角形,利用勾股定理求AD,利用锐角三角函数的定义求∠B的正切值.【详解】过点A作AD⊥BC,垂足为D,∵AB=AC=13,BC=10,∴BD=DC=12BC=5,∴AD222213512AB BD-=-=,在Rt△ABD中,∴tan B125 ADBD==.【点睛】本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.33.(1)详见解析;(2)①1;51.【解析】【分析】(1)要证明三角形△DPF为等腰直角三角形,只要证明∠DFP=90°,∠DPF=∠PDF=45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP=90°,∠DPF=∠PDF=45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t的值即可,注意点P从A出发到B停止,t≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t的值.【详解】证明:(1)∵四边形ABCD是正方形,AC是对角线,∴∠DAC=45°,∵在⊙O中,DF所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴DC CE=,PA AE∴42=,t21解得,t=1;当AE:EC=2:1时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴DC CE=,PA AE∴41=,22t解得,t=4,∵点P从点A到B,t的最大值是4÷2=2,∴当t=4时不合题意,舍去;由上可得,当t为1时,点E恰好为AC的一个三等分点;②如右图所示,∵∠DPF =90°,∠DPF =∠OPF , ∴∠OPF =90°,∴∠DPA +∠QPB =90°,∵∠DPA +∠PDA =90°,∴∠PDA =∠QPB ,∵点Q 落在BC 上,∴∠DAP =∠B =90°,∴△DAP ∽△PBQ ,∴DA DP PB PQ=, ∵DA =AB =4,AP =2t ,∠DAP =90°,∴DP =224(2)t +=224t +,PB =4﹣2t ,设PQ =a ,则PE =a ,DE =DP ﹣a =222t +﹣a ,∵△AEP ∽△CED ,∴AP PE CD DE=, 即22424t t a=+-, 解得,a =224t t +, ∴PQ =224t t +, ∴224244224t t t t +=-+,解得,t 1=﹣5﹣1(舍去),t 2=5﹣1,即t 的值是5﹣1.【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、圆周角定理、相似三角形的判定与性质.34.(1)50,72;(2)作图见解析;(3)90.【解析】【分析】(1)用A 类学生的人数除以A 类学生的人数所占的百分比即可得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C 类学生数和C 类与D 类所占的百分比,从而可以将统计图补充完整;(3)用该校九年级男生的人数乘以该校九年级男生“引体向上”项目成绩为C 类的的学生所占得百分比即可得答案.【详解】(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A 类所对的圆心角是:360°×20%=72°,(2)C 类学生数为:50﹣10﹣22﹣3=15,C 类占抽取样本的百分比为:15÷50×100%=30%,D 类占抽取样本的百分比为:3÷50×100%=6%, 补全的统计图如所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C 类的有90名.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.35.(1)174m >-;(2)4m =- 【解析】【分析】(1)由根的判别式2=40b ac ∆->即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得222125x x +=,又由一元二次方程根与系数的关系1212, b c x x x x a a+=-=,所以有()2221212122x x x x x x +-=+,据此列出关于m 的方程求解.【详解】 (1)∵方程有两个不相等的实数根,∴()()22=2144=417m m m ∆+--+>0 解得:174m >-∴当174m >-时,方程有两个不相等的实数根; (2)由题意得:2221212212521?4x x x x m x x m ⎧+=⎪+=--⎨⎪=-⎩ ∴()()()222222121212=2212424925x x x x x x m m m m ++-=----=++= 解得:2m =或4m =-∵21x 、22x 分别是边长为5的菱形的两条对角线∴122 1 0x x m +=-->,即12m <-∴4m =-【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键. 四、压轴题36.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析. 【解析】【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可.(2) 连接OA , OB , OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出OC AB ⊥,延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证.【详解】解:(1)连接AB ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新疆乌鲁木齐市第九十八中学2016届九年级上学期第二次月考
数学试题
一、选择题(每题4分,共40分)
1.在下列方程中,一元二次方程是( )
A .x 2-2xy+y 2=0
B .x (x+3)=x 2-1
C .x 2-2x=3
D .11x x
+
= 2.下列图案中,不是中心对称图形的是( ). A . B . C . D .
3.如图,A 、C 、B 是⊙O 上三点,若∠AOC=40°,则∠ABC 的度数是( ).
A .10°
B .20°
C .40°
D .80°
4.将抛物线21y x =-向左平移2个单位,再向上平移2个单位,得到的抛物线解析式为( ).
A. 2(2)1y x =++
B. 2(2)1y x =--
C. 2(2)1y x =-+
D. 2(2)1y x =+-
5.已知关于x 的方程01)12()2(22=+++-x m x m 有两个不等的实数根,则实数m 的取值范围为 ( ) (A)43<m (B) 43≤m (C) 43>m 且2≠m (D)4
3≥m 且2≠m 6.如图,在Rt △ABC 中,∠BAC=90°,AB=AC ,将△ABP 绕点A 逆时针旋转后,能与△ACP '重合,如果AP=3,那么PP '的长等于( ).
C
A.
B.
.
D.
7.如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=
∠B=60°,
则AB的长为()
A.5cm
B.6cm
C.7cm
D.8cm
8.小李从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面四条信息:①b2﹣4ac>0;②c>1;③ab>0;④a﹣b+c<
0.你认为其中正确的有().
A.1个 B.2个 C.3个 D.4个
9.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()
10.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()
x
二、填空题(每题4分,共20分)
11.在函数y =x 的取值范围是______ 12.已知a 、b 是等腰△ABC 的底和腰长,若a 、b 均是方程2x -6x+8=0的解,则△ABC 的周长为______
13.已知二次函数2(2)(1)y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.下图分别是当1,0,1,2a a a a =-===时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y = .
14.如图,是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为5m 的半圆,其边缘AB=CD=20cm ,小明要在AB 上选取一点E ,能够使他从点D 滑到点E 再到点C 的滑行距离最短,则他滑行的最短距离为 m .(π取3)
15.如图,平行于x 轴的直线AC 分别交抛物线y 1=x 2
(x ≥0)与2
25x y =(x ≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DE AB = .
17.先化简,再求值(10分):2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭
,其中a 是2x 2-2x-7=0的根. 18.(10分)已知x 1,x 2是一元二次方程01222=++-m x x 的两个实数根.
(1)求实数m 的取值范围;
(2)如果x 1,x 2满足不等式2
2212147x x x x +>+,且m 为整数,求m 的值.
19.(10分)某汽车销售公司2013年盈利1500万元,到2015年盈利2160万元,且从2013年到2015年, 每年盈利的年增长率相同.
(1)该公司2013年至2015年盈利的年增长率?
(2)若该公司盈利的年增长率继续保持不变,预计2016年盈利多少万元?
20.(12分)如图,在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,O 是AB 上一点,以OA 为半径的⊙O 经过点D 。
(1)求证:BC 是⊙O 切线;
(2)若BD=5,DC=3,求AC 的长。
21.(12分)某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x (元/件)之间满足一次函数.
(1)试求y 与x 之间的函数关系式.
(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w 最大?每月的最大毛利润为多少?
(3)若要使某月的毛利润为1800元,售价应定为多少元?
22.(12分)在平面直角坐标系中,点A 的坐标是(0,3),点B 的坐标是()40- ,,
(1)将△AOB 绕点A 逆时针旋转90°得到△AEF ,点O ,B 对应点分别是E ,F ,请在图中画出△AEF ; x
y
1
B A
O
(2)将线段AF 绕点O 旋转180°得到线段MN ,点A 、F 对应点分别是M 、N
,请画出线段MN ,并连结NF ,直接写出线段NF 的长
23.(14分)如图,已知抛物线y=ax 2
+bx+c (a ≠0)交x 轴于A (﹣1,0),B (5,0)两点,与y 轴交于点C (0,2)
(1)求抛物线的解析式;
(2)若点M 为抛物线的顶点,连接BC 、CM 、BM ,求△BCM 的面积;
(3)连接AC ,在x 轴上是否存在点P 使△ACP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.
高考一轮复习:。