物理弹簧问题分析的思维起点
弹簧类型题
弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。
弹簧问题
物理弹簧问题分析的思维起点东北师范大学附属中学卫青山尹雄杰由于弹簧与其相连接的物体构成的系统的运动状态具有很强的综合性和隐蔽性;由于弹簧与其相连接的物体相互作用时涉及到的物理概念和物理规律较多,因而多年来,弹簧试题深受高考命题专家们物理教师的青睐,在物理高考中弹簧问题频频出现已见怪不怪了。
弹簧问题不仅能考查学生分析物理过程,理清物理思路,建立物理图景的能力,而且对考查学生知识综合能力和知识迁移能力,培养学生物理思维品质和挖掘学生学习潜能也具有积极意义。
因此,弹簧问题也就成为高考命题专家每年命题的重点、难点和热点。
与弹簧相连接的物理问题表现的形式固然很多,但总是有规律可循,有方法可依,存在基于弹簧特性分析问题的思维起点。
一、以弹簧遵循的胡克定律为分析问题的思维起点弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即或。
显然,弹簧的长度发生变化的时候,胡克定律首先成了弹簧问题分析的思维起点。
例1 劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。
解析物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。
由匀变速直线运动公式及牛顿定律得:①②③解以上三式得:。
显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。
二、以弹簧的伸缩性质为分析问题的思维起点弹簧能承受拉伸的力,也能承受压缩的力。
在分析有关弹簧问题时,分析弹簧承受的是拉力还是压力成了弹簧问题分析的思维起点。
例2如图1所示,小圆环重固定的大环半径为R,轻弹簧原长为L(L<2R),其劲度系数为k,接触光滑,求小环静止时。
弹簧与竖直方向的夹角。
解析以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。
弹簧物理知识点总结图表
弹簧物理知识点总结图表弹簧是一种具有弹性的物体,它能够在受到外力作用后发生形变,并在外力撤去后恢复原状。
弹簧在工程中有广泛的应用,包括机械、汽车、航空航天等领域。
弹簧物理是物理学的一个重要分支,研究弹簧的力学性质和应用原理。
本文将对弹簧物理的知识点进行总结,希望能够对读者有所帮助。
弹簧的基本概念弹簧是一种具有弹性的物体,它能够在受到外力作用后发生形变,并在外力撤去后恢复原状。
弹簧通常由金属材料制成,如钢、铜等。
根据弹簧的形状和用途不同,可以分为压缩弹簧、拉伸弹簧和扭转弹簧等几种类型。
弹簧的力学性质弹簧的力学性质主要包括弹性系数、弹性极限、屈服极限等。
弹性系数是衡量弹簧刚度的物理量,通常用符号k表示。
弹簧的弹性系数与材料的种类、截面积和长度等因素有关,一般通过实验测定。
弹性极限是指在受到外力作用下,弹簧恢复原状的最大应力值。
屈服极限是指在受到外力作用下,弹簧开始发生塑性变形的应力值。
弹簧的应力分析在受力作用下,弹簧内部会产生应力,根据受力形式的不同,弹簧的应力分析也有所不同。
对于拉伸弹簧,其内部应力主要是拉应力,而对于压缩弹簧,则是压应力。
弹簧的应力分析是弹簧力学研究的重要内容,它不仅可以指导弹簧的设计和制造,还能够为弹簧的使用提供理论依据。
弹簧的位移分析在受到外力的作用下,弹簧会发生形变,其形变大小通常用位移来描述。
弹簧的位移分析是指在受力作用下,弹簧的长度、形状等参数如何发生改变的问题。
弹簧的位移分析对于弹簧的设计和应用至关重要,它能够为弹簧系统的稳定性和可靠性提供重要参考。
弹簧的振动弹簧系统在受到外力作用时会产生振动现象,这种振动通常可以用简谐振动来描述。
弹簧的振动是弹簧物理的重要内容之一,它在机械、汽车等领域有着广泛的应用。
弹簧的振动理论不仅可以指导弹簧系统的设计和优化,还可以为弹簧系统的故障诊断和预防提供理论依据。
弹簧的能量分析在受到外力作用时,弹簧会吸收能量并进行储存,在外力撤去后恢复原状并释放能量。
高中物理弹簧的问题教案
高中物理弹簧的问题教案
主题:弹簧
教学目标:
1. 了解弹簧的基本原理和性质;
2. 掌握弹簧的弹性系数和胡克定律的概念;
3. 能够解决与弹簧相关的问题。
教学准备:
1. PowerPoint课件;
2. 实验装置:弹簧、重物、测力计等。
教学步骤:
1. 引入:通过展示一些弹簧的应用场景,如弹性床垫、弹簧测力计等,引起学生对弹簧的兴趣。
2. 理论讲解:介绍弹簧的基本原理和性质,包括弹性系数、弹簧的工作原理等。
3. 实验演示:进行弹簧实验演示,让学生通过实验测量弹簧的弹性系数并理解胡克定律。
4. 问题讨论:提出一些与弹簧相关的问题,并让学生尝试解答,加深对弹簧的理解。
5. 拓展延伸:讲解弹簧在不同物理场景下的应用,如弹簧振子、弹簧势能等。
6. 总结复习:对本节课所学内容进行总结,并强调弹簧的重要性和应用。
教学反思:
在教学过程中,要注意理论和实践相结合,引导学生通过实验和问题解答来深化对弹簧的认识。
同时,要注重引导学生发现问题、探索解决问题的方法,培养他们的思维能力和实践能力。
高三物理 弹簧类问题专题学案
高三物理综合复习与能力训练专题弹簧类问题弹簧与其相连接的物体相互作用时,运动过程中涉及到的物理概念和理规律较多,有很强的综合性和隐蔽性,因此探讨弹簧问题能增强我们分析物理过程,建立物理图景的能力,同时对培养同学们知识综合能力和知识迁移能力、提高物理思维品质具有积极意义。
一、平衡类问题:以弹簧遵循的胡克定律为分析问题的思维起点与弹簧有关的物理问题的表现形式,存在基于弹簧特性的思维起点,即弹力的大小遵循胡克定律F =kx 。
弹簧的长度发生变化的时候,弹力也发生变化。
在力的平衡类问题中常用弹力的这一特点。
【针对训练】1.如图所示,轻弹簧的一端固定在天花板上,另一端系一小球。
当小球处于静止时,弹簧的长度为L 1,若对小球施加一个水平力的作用,使得小球再次静止时,弹簧与竖直方向的夹角为60°,此时弹簧的长度变为L 2,比较L 1和L 2,有 ( )A .L 1=L 2B .L 1<L 2C .L 1>L 2D .无法比较2.如图所示,用细线将A 物体悬挂在顶板上。
B 物体放在水平地面上。
A 、B 间有一根处于压缩状态的轻弹簧,此时弹簧的弹力为2N 。
已知A 、B 两物体的质量分别是0.3kg 和0.4kg 。
取g =10m/s 2。
则细线的拉力及B 对地面的压力的值分别是( )A .7N 和0NB .5N 和2NC .1N 和6ND .2N 和5N3. 图中,a 、b 、c 为三物块,M 、N 为两个轻质弹簧,R 为跨过光滑定滑轮的轻绳,它们连接如图,并处于平衡状态( )A .有可能N 处于拉伸状态而M 处于压缩状态 B. 有可能N 处于压缩状态而M 处于拉伸状态 C. 有可能N 处于不伸不缩状态而M 处于拉伸状态 D. 有可能N 处于拉伸状态而M 处于不伸不缩状态4.木块A 、B 分别重50N 和60N ,它们与水平地面之间的动摩擦因数均为0.25,夹在A 、B 之间的轻弹簧被压缩了2cm ,弹簧的劲度系数为400N/m .系统置于水平地面上静止不动.现用F =1N 的水平拉力作用在木块B 上,如图所示,力F 作用后( )A .木块A 所受摩擦力大小为12.5N ;B .木块A 所受摩擦力大小为11.5NC .木块B 所受摩擦力大小为9N ;D .木块B 所受摩擦力大小为7N5.(2013东城二模19)如图所示(a),一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态.现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移s的关系如图(b)所示(g=10 m/s2),则下列结论正确的是A.物体与弹簧分离时,弹簧处于压缩状态B.弹簧的劲度系数为7.5 N/cmC.物体的质量为3 kgD.物体的加速度大小为5 m/s2二、突变类问题:以弹簧特有的惰性特性为分析问题的思维起点由于弹簧的特殊结构,在两端都有约束时弹簧的弹力是渐变的而不是突变的,弹力的变化需要一定的“时间”。
对弹簧弹力改变的认识
对弹簧弹力改变的认识摘要:轻弹簧是一种理想化的物理模型,高中物理以轻弹簧为模型,设置了许多复杂的物理情景,可从考查力的概念,物体的平衡,牛顿运动定律的应用及能量的转化与能量守恒,为高考命题的重点,这类题目几乎每年高考卷面均有命题,所以应引起广大师生的重视。
关键词:弹簧;弹力;剪断弹力是高考命题的一个重点,弹力的大小与方向时刻要与当时的形变相对应,因此也成为高中学生理解的一个难点,本文将通过几个例题来分析高中物理中剪断弹簧后弹力的变化情况。
一、弹簧的弹力是一种由于弹簧形变而产生的一种接触力。
当题目出现与弹簧相关联的物理情景时,需要注意弹簧弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置x0,现长位置x,找出形变量△x=∣x-x0∣与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
二、由于弹簧的特殊结构。
弹簧的弹力是渐变的,而不是突变的,弹力的变化需要一定的“时间”。
有时充分利用弹簧的这一“惰性”是解决问题的关键。
因此分析弹簧问题时利用弹簧的惰性自然成了分析弹簧问题的思维起点。
但对于从中间剪断弹簧的问题时,则弹簧的弹力将消失。
例1.a、b球质量均为m,ab间用轻弹簧连接,将a球用细绳悬挂于o点,如图示,剪断细绳的瞬间,试分析ab球产生的加速度大小与方向。
分析:开始a球与b球处于平衡状态,其受力图示见右:剪断绳oa瞬间,a、b球均未发生位移变化,故弹簧产生的弹力kx也不会变化,kx=mg,所以剪断绳瞬间,b受力没发生变化,其加速度ab=0;a球受到合外力为kx+mg,其加速度aa==2g竖直向下。
例2.试分析,将上题中绳与弹簧位置互换后悬挂,将绳剪断瞬间,ab球加速度的大小与方向?分析:开始a球与b球处于平衡状态,剪断绳ab瞬间,a、b球均未发生位移变化,故弹簧产生的弹力kx也不会变化,kx=2mg,所以剪断绳瞬间,b受力发生变化,其加速度ab=g;a球受到合外力为kx-mg,其加速度aa=(kx-mg)/m=g竖直向下所以,aa=g,竖直向上;ab=g,竖直向下。
物理弹簧类问题解题技巧
物理弹簧类问题解题技巧(一)弹簧类命题的突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小不变,即弹的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:Wk=-(kx22 -kx12),弹力的功等于弹性势能增量的负值。
弹性势能的公式Ep=kx2,高考不作定量要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
(二)弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或^f=kx来求解3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
高中物理中的弹簧振子问题解析
高中物理中的弹簧振子问题解析弹簧振子是高中物理课程中的重要内容之一,它是力学中的一个经典问题。
弹簧振子的研究对于理解振动现象、能量转化以及波动等方面具有重要意义。
本文将从弹簧振子的基本原理、运动方程、振动频率和能量转化等方面进行解析。
弹簧振子的基本原理是基于胡克定律,即弹簧的伸长量与所受外力成正比。
当弹簧受到拉伸或压缩时,它会产生恢复力,使得弹簧试图回到其平衡位置。
这种恢复力与弹簧的伸长量成正比,而且方向与伸长量相反。
根据牛顿第二定律,弹簧振子的运动可以用运动方程描述。
弹簧振子的运动方程可以表示为:m(d²x/dt²) = -kx,其中m是振子的质量,k是弹簧的劲度系数,x是振子的位移。
这个方程可以通过解微分方程得到振子的位移随时间的变化规律。
当忽略阻尼和外力的影响时,弹簧振子的解是一个简谐振动。
简谐振动的特点是振动频率恒定,且振幅不断变化。
振动频率可以通过振子的质量和弹簧的劲度系数来确定。
频率的公式是ω = √(k/m),其中ω是角频率,它等于2π乘以振动频率。
这个公式告诉我们,当弹簧的劲度系数增大或质量减小时,振动频率会增大。
弹簧振子的能量转化也是一个重要的研究方向。
在振动过程中,能量在势能和动能之间不断转化。
当振子位于平衡位置时,它的动能最大,势能为零。
而当振子位移最大时,势能最大,动能为零。
在振动过程中,动能和势能不断交替,总能量保持不变。
弹簧振子的能量转化可以通过数学公式来描述。
振子的势能可以表示为Ep = (1/2)kx²,动能可以表示为Ek = (1/2)mv²,其中Ep是势能,Ek是动能,k是劲度系数,x是位移,m是质量,v是速度。
根据能量守恒定律,Ep + Ek = 常数。
这个公式告诉我们,当振子的位移增大时,势能增大,而动能减小;反之,当位移减小时,势能减小,动能增大。
除了基本原理、运动方程、振动频率和能量转化,弹簧振子还有一些其他的研究方向。
重点高中物理必修一弹簧问题
精心整理高中物理弹簧模型问题一、物理模型:轻弹簧是不计自身质量,能产生沿轴线的拉伸或压缩形变,故产生向内或向外的弹力。
二、模型力学特征:轻弹簧既可以发生拉伸形变,又可发生压缩形变,其弹力方向一定沿弹簧方向,弹簧两端弹力的大小相等,方向相反。
三、弹簧物理问题:1.弹簧平衡问题:抓住弹簧形变量、运动和力、促平衡、列方程。
2.弹簧模型应用牛顿第二定律的解题技巧问题:(1) 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。
而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。
(2) 弹簧长度不变,弹力不变问题:当物体除受弹簧本身的弹力外,还受到其它外力时,当弹簧长度不发生变化时,弹簧的弹力是不变的,出就是形变量不变,抓住这一状态分析物体的另外问题。
(3) 弹簧中的临界问题:当弹簧的长度发生改变导致弹力发生变化的过程中,往往会出现临界问题:如“两物体分离”、“离开地面”、“恰好”、“刚好”……这类问题找出隐含条件是求解本类题型的关键。
3.弹簧双振子问题:它的构造是:一根弹簧两端各连接一个小球(物体),这样的装置称为“弹簧双振子”。
本模型它涉及到力和运动、动量和能量等问题。
本问题对过程分析尤为重要。
1.弹簧称水平放置、牵连物体弹簧示数确定【例1】物块1、2放在光滑水平面上用轻弹簧相连,如图1所示。
今对物块1、2分别施以相反的水平力F1、F2,且F1>F2,则:A .弹簧秤示数不可能为F1B .若撤去F1,则物体1的加速度一定减小C .若撤去F2,弹簧称的示数一定增大D .若撤去F2,弹簧称的示数一定减小即正确答案为A 、D【点评】对于轻弹簧处于加速状态时要运用整体和隔离分析,再用牛顿第二定律列方程推出表达式进行比较讨论得出答案。
若是平衡时弹簧产生的弹力和外力大小相等。
主要看能使弹簧发生形变的力就能分析出弹簧的弹力。
高中物理中的弹簧问题归类剖析
高中物理中的弹簧问题归类分析 (教师版 )有关弹簧的题目在高考取几乎年年出现,因为弹簧弹力是变力,学生常常对弹力大小和方向的变化过程缺少清楚的认识,不可以成立与之有关的物理模型并进行分类,致使解题思路不清、效率低下、错误率较高 .在详细实质问题中,因为弹簧特征使得与其相连物体所构成系统的运动状态拥有很强的综合性和隐蔽性,加之弹簧在伸缩过程中波及力和加快度、功和能、冲量和动量等多个物理观点和规律,所以弹簧试题也就成为高考取的重、难、热门, 一、“轻弹簧”类问题在中学阶段,凡波及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常有的理想化物理模型 .因为“轻弹簧”质量不计,选用随意小段弹簧,其两头所受张力必定均衡,不然,这小段弹簧的加快度会无穷大 .故轻弹簧中各部分间的张力到处相等,均等于弹簧两头的受力.弹簧一端受力为F ,另一端受力必定也为 F ,假如弹簧秤,则弹簧秤示数为F .【例 1】如下图,一个弹簧秤放在圆滑的水平面上,外壳质量m 不可以忽视,弹簧及挂钩质量不计,施加水平方向的力 F 1、 F 2 ,且 F 1F 2 ,则弹簧秤沿水平方向的加快度为,弹簧秤的读数为.【分析】 以整个弹簧秤为研究对象,利用牛顿运动定律得:F 1 F 2 ma ,即 aF 1F 2m仅以轻质弹簧为研究对象,则弹簧两头的受力都F 1 ,所以弹簧秤的读数为F 1 .说明 : F 2 作用在弹簧秤外壳上, 并无作用在弹簧左端, 弹簧左端的受力是由外壳内侧供给的.F 1 F 2F 1 【答案】 am二、质量不行忽视的弹簧【例 2】如图 3-7-2 所示,一质量为 M 、长为 L 的均质弹簧平放在圆滑的水平面 , 在弹簧右 端施加一水平力 F 使弹簧向右做加快运动 . 试分析弹簧上各部分的受力状况.【分析】 弹簧在水平力作用下向右加快运动,据牛顿第二定律得其加快度F, 取弹簧左部随意长度 x 为研究aM图 3-7-2对象,设其质量为m 得弹簧上的弹力为:x M Fx Fx FT x ma 【答案】 T xL MLL三、 弹簧的弹力不可以突变( 弹簧弹力刹时 ) 问题弹簧 (特别是软质弹簧 )弹力与弹簧的形变量有关, 因为弹簧两头一般与物体连结,因弹簧形变过程需要一段时间,其长度变化不可以在瞬时达成,所以弹簧的弹力不可以在瞬时发生突变.即能够以为弹力大小和方向不变,与弹簧对比较,轻绳和轻杆的弹力能够突变.【例 3】如下图,木块 A 与 B 用轻弹簧相连,竖直放在木块 C 上,三者静置于地面, A 、B 、C 的质量之比是 1:2:3. 设全部接触面都圆滑,当沿水平方向迅速抽出木块 C 的刹时,木块 A 和 B 的加快度分别是 a A = 与 a B =【分析】由题意可设 A 、B 、C 的质量分别为 m 、2m 、3m ,以木块 A 为研究对象,抽出木块 C 前, 木块 A 遇到重力和弹力一对均衡力,抽出木块 C 的刹时,木块 A 遇到重力和弹力的大小和方 向均不变,故木块 A的刹时加快度为 0. 以木块 A 、B 为研究对象,由均衡条件可知,木块 C 对木块 B 的作使劲3F CB mg .以木块 B 为研究对象, 木块 B 遇到重力、 弹力和 F CB 三力均衡, 抽出木块 C 的刹时,木块 B 遇到重力和弹力的大小和方向均不变,F CB 刹时变成 0,故木块 C 的刹时合外力为 3mg , 竖直向下,刹时加快度为【答案】 01.5g .说明:差别于不行伸长的轻质绳中张力瞬时能够突变 .【例 4】如图 3-7-4 所示,质量为住,使小球恰巧处于静止状态 . 当m 的小球用水平弹簧连结, 并用倾角为 300 的圆滑木板AB 忽然向下撤退的瞬时,小球的加快度为 ( )AB 托A. 0B. 大小为 2 3g ,方向竖直向下3C.大小为2 3g ,方向垂直于木板向下3图 3-7-4D. 大小为2 3g ,方向水平向右3【分析】 末撤退木板前, 小球受重力 G 、弹簧拉力 F 、木板支持力 F N 作用而均衡, 如图 3-7-5所示,有 F Nmg.cosG 和弹力 F 保持不变 ( 弹簧弹力不可以突变 ) ,而木板支持力 F N 立刻撤退木板的瞬时,重力 消逝 , 小球所受 G 和 F 的协力大小等于撤以前的 F N ( 三力均衡 ) ,方向与 F N 相反,故加快度方 向为垂直木板向下,大小为F N g2 3 gamcos3【答案】 C.图 3-7-5四、弹簧长度的变化问题设劲度系数为 k 的弹簧遇到的压力为F 1 时压缩量为 x 1 ,弹簧遇到的拉力为 F 2 时伸长量为x 2 ,此时的“ - ”号表示弹簧被压缩 .若弹簧受力由压力 F 1 变成拉力 F 2 ,弹簧长度将由压缩量x 1 变成伸长量 x 2 ,长度增添量为 x 1 x 2 .由胡克定律有 : F 1 k( x 1 ) , F 2kx 2 .则: F 2 ( F 1 ) kx 2( kx 1 ) ,即 F k x说明 :弹簧受力的变化与弹簧长度的变化也相同按照胡克定律, 此时 x 表示的物理意义是弹簧长度的改变量,其实不是形变量 .【例 5】如图 3-7-6 所示,劲度系数为 k 1 的轻质弹簧两头分别与质量为 m 1 、m 2 的物块 1、2 拴接,劲度系数为 k 2 的轻质弹簧上端与物块 2 拴接,下端压在桌面上 ( 不拴接 ) ,整个系统处于均衡状态 . 现将物块 1 迟缓地竖直上提,直到下边那个弹簧的下端刚离开桌面. 在此过程中,物块 2 的重力势能增添了 , 物块 1 的重力势能增添了.【分析】由题意可知,弹簧k 2 长度的增添量就是物块2 的高度增添量,弹 图 3-7-6簧 k 2 长度的增添量与弹簧 k 1 长度的增添量之和就是物块 1 的高度增添量 .由物体的受力均衡可知,弹簧 k 2 的弹力将由本来的压力 (m 1 m 2 ) g 变成 0, 弹簧 k 1 的弹力将 由本来的压力 m 1 g 变成拉力 m 2 g , 弹力的改变量也为 ( m 1 m 2 )g . 所以 k 1 、 k 2 弹簧的伸长量分别为 : 1( m 1m 2 ) g 和 1(m 1 m 2 )gk 1k 2故物块 2 的重力势能增加了1m2 (m1 m2 )g 2,物块 1 的重力势能增加了k2( 1 1)m1 (m1m2 ) g2k1 k2【答案】1m2 (m1 m2 ) g2(11)m1 (m1m2 )g 2 k2k1k2五、弹簧形变量能够代表物体的位移弹簧弹力知足胡克定律F kx ,此中x为弹簧的形变量,两头与物体相连时x 亦即物体的位移,所以弹簧能够与运动学知识联合起来编成习题.【例 6】如图3-7-7 所示,在倾角为的圆滑斜面上有两个用轻质弹簧相连结的物块A、B ,其质量分别为 m A、m B,弹簧的劲度系数为k , C为一固定挡板,系统处于静止状态, 现开始用一恒力 F 沿斜面方向拉A使之向上运动,求 B 刚要走开C时 A 的加快度 a 和从开始到此时 A 的位移 d (重力加快度为 g ).【分析】系统静止时 , 设弹簧压缩量为x1,弹簧弹力为 F1,分析A受力可知 : F1kx1 m A g sinm A g sin解得 : x1k在恒力 F 作用下物体 A 向上加快运动时,弹簧由压缩渐渐变成伸图 3-7-7长状态 . 设物体B刚要走开挡板 C 时弹簧的伸长量为x2,分析物体B 的受力有: kx2m B g sin, 解得 x2m B g sink设此时物体 A 的加快度为a,由牛顿第二定律有: F m A g sin kx2m A aF(m A m B )g sin解得 : a mA因物体 A 与弹簧连在一同,弹簧长度的改变量代表物体 A 的位移,故有 d x1x2,即(m A m B ) g sindk(m A m B )g sin【答案】 dk六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时辰要与当时的形变相对应 .一般应从弹簧的形变分析下手,先确立弹簧原长地点、现长地点及临界地点,找出形变量 x 与物体空间地点变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长地点对应的形变量有关.以此来分析计算物体运动状态的可能变化.联合弹簧振子的简谐运动,分析波及弹簧物体的变加快度运动,常常能达到事半功倍的效果.此时要先确立物体运动的均衡地点,差别物体的原长地点,进一步确立物体运动为简谐运动.联合与均衡地点对应的答复力、加快度、速度的变化规律,很简单分析物体的运动过程.【例 7】如图 3-7-8 所示,质量为m的物体A用一轻弹簧与下方地面上质量也为m 的物体B相连,开始时 A 和 B 均处于静止状态,此时弹簧压缩量为x0,一条不行伸长的轻绳绕过轻滑轮,一端连结物体 A 、另一端C握在手中,各段绳均恰巧处于挺直状态,物体 A 上方的一段绳索沿竖直方向且足够长 . 此刻 C 端施加水平恒力F使物体A从静止开始向上运动 .( 整个过程弹簧一直处在弹性限度之内).(1) 假如在 C 端所施加的恒力大小为3mg ,则在物体B刚要走开地面时物体 A 的速度为多大?(2) 若将物体B的质量增添到 2m,为了保证运动中物体 B 一直不走开地图 3-7-8面,则 F 最大不超出多少 ?【分析】 由题意可知,弹簧开始的压缩量x 0 mg ,k 物体 B 刚要走开地面时弹簧的伸长量也是x 0mg.(1)若F 3mg , 在弹簧伸长到kx 0 时,物体 B 走开地面, 此时弹簧弹性势能与施力前相等,F 所做的功等于物体 A 增添的动能及重力势能的和 .即: F 2x mg 2 x 0 1mv 2 得: v 2 2gx 0(2) 所施加的力为恒力 2F 0 时,物体 B 不走开地面, 类比竖直弹簧振子, 物体 A 在竖直方向上除了受变化的弹力外,再遇到恒定的重力和拉力. 故物体 A 做简谐运动 .在最低点有: F 0 mg kx 0 ma 1 , 式中 k 为弹簧劲度系数, a 1 为在最低点物体A 的加快度 .在最高点,物体 B 恰巧不走开地面, 此时弹簧被拉伸, 伸长量为 2x 0 ,则 : k(2 x 0 ) mg F 0ma 2而 kx 0mg ,简谐运动在上、下振幅处a 1 a 2 ,解得:3mg F 02也能够利用简谐运动的均衡地点求恒定拉力F 0 . 物体 A 做简谐运动的最低点压缩量为x 0 ,最高点伸长量为 2x 0 ,则上下运动中点为均衡地点,即伸长量为所在处. 由 mgkxF 0 , 解得:23mg .F 02【答案】 2 2 gx 03mg2说明 : 差别原长地点与均衡地点 .和原长地点对应的形变量与弹力大小、方向、弹性势能有关 ,和均衡地点对应的位移量与答复大小、方向、速度、加快度有关.七.与弹簧有关的临界问题经过弹簧相联系的物体,在运动过程中常常波及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰巧要走开地面;互相接触的物体恰巧要离开等 .此类问题的解题要点是利用好临界条件,获得解题实用的物理量和结论.【例 8】如图 3-7-9 所示, A 、B 两木块叠放在竖直轻弹簧上,已知木块 A 、B 的质量分别为 0.42kg 和 0.40kg ,弹簧的劲度系数 k 100N / m ,若在 A 上作用一个竖直向上的力 F ,使A 由静止开始以2 的加快度竖直向上做匀加快运动( g 10 m / s 2 )求:(1) 使木块 A 竖直做匀加快运动的过程中,力 F 的最大值 ; (2) 若木块由静止开始做匀加快运动, 直到 A 、B 分别的过程中, 弹簧的弹性 势能减少了 0.248J ,求这一过程中 F 对木块做的功 .【分析】 本题难点在于可否确立两物体分别的临界点. 当 F 0 ( 即不加竖直 图 3-7-9向上 F 力) 时,设木块 A 、B 叠放在弹簧上处于均衡时弹簧的压缩量为 x , 有 :kx (m A m B )g , 即 x(m A m B )g①k对木块 A 施加力 F , A 、 B 受力如图 3-7-10所示,对木块 A 有:F Nm A g m A a②对木块 B 有: kx 'Nm B g m B a ③可知,当 N 0 时,木块 A 、B 加快度相同,由②式知欲使木块 A 匀加快运动,随 N 减小 F 增大,当N 0 时 , F 获得了最大值 F m , 即 :F m m A (a又当 N0 时, A 、B 开始分别,由③式知,弹簧压缩量kx'm B (a g) ,则 x'm B (a g ) ④k木块 A 、 B 的共同速度: v 2 2a( x x ') ⑤ 由题知,此过程弹性势能减少了 W P E PJ图 3-7-10设F力所做的功为W F,对这一过程应用功能原理,得:W 1(mAm )v2(m m) g( x x ') EPF2B AB联立①④⑤⑥式,且PE J,得:W F10 2J【答案】( 1)F m W F102JN【例 9】如图 3-7-11所示,一质量为M 的塑料球形容器,在 A 处与水平面接触 . 它的内部有向来立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为 m 的小球在竖直方向振动,当加一直上的匀强电场后,弹簧正幸亏原长时,小球恰巧有最大速度. 在振动过程中球形容器对桌面的最小压力为0,求小球振动的最大加快度和容器对桌面的最大压力.图 3-7-11【分析】因为弹簧正幸亏原长时小球恰巧速度最大,所以有: qE mg①小球在最高点时容器对桌面的压力最小,有:kx Mg②此时小球受力如图 3-7-12所示,所受协力为 F mg kx qE③由以上三式得小球的加快度a Mg .m明显,在最低点容器对桌面的压力最大,由振动的对称性可知小球在最低点和最高点有相同的加快度,解以上式子得:kx Mg所以容器对桌面的压力为:图 3-7-12 F N Mg kx2Mg .【答案】Mg2Mg m八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储藏必定的弹性势能,所以弹簧的弹性势能能够与机械能守恒规律综合应用,我们用公式E P 12kx2计算弹簧势能,弹簧在相等形变量时所拥有的弹性势能相等一般是考试热门 .弹簧弹力做功等于弹性势能的减少许.弹簧的弹力做功是变力做功,法求解 :(1) 因该变力为线性变化,能够先求均匀力,再用功的定义进行计算(2) 利用 F x 图线所包围的面积大小求解;(3) 用微元法计算每一小段位移做功,再累加乞降;(4) 依据动能定理、能量转变和守恒定律求解.一般能够用以下四种方;因为弹性势能仅与弹性形变量有关,弹性势能的公式高考取不作定量要求,所以,在求弹力做功或弹性势能的改变时,一般从能量的转变与守恒的角度来求解.特别是波及两个物理过程中的弹簧形变量相等时,常常弹性势能的改变能够抵消或代替求解.【例 10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块 A 和B 大小可忽视,它们分别带有Q A和Q B的电荷量,质量分别为m A和 m B . 两物块由绝缘的轻弹簧相连,一个不行伸长的轻绳越过滑轮,一端与 B 连结,另一端连结轻质小钩. 整个装置处于场强为 E 、方向水平向左的匀强电场中, A 、B开始时静止,已知弹簧的劲度系数为k ,不计全部摩擦及A、B 间的库仑力,A、B所带电荷量保持不变, B 不会遇到滑轮.(1) 若在小钩上挂质量为 M 的物块 C 并由静止开释,可使物块不会走开 P , 求物块 C 降落的最大距离 h .A 对挡板P 的压力恰为零,但(2) 若 C 的质量为 2M , 则当 A 刚走开挡板 P 时, B 的速度多大 ?【分析】 经过物理过程的分析可知,当物块A 刚走开挡板 P 时, 弹力恰巧与 A 所受电场力均衡,弹簧伸长量必定,前后两次改变物块 C 质量,在第 (2) 问对应的物理过程中, 弹簧长度的变化及弹性势能的改变相同,能够代替求解.图 3-7-13设开始时弹簧压缩量为x 1 ,由均衡条件kx 1 Q B E , 可得 x 1Q B Ek①设当 A 刚走开挡板时弹簧的伸长量为Q A E ②x 2 , 由 kx 2 Q A E ,可得 : x 2降落的最大距离为 :k故 C 12③h xx由①②③三式可得 :hE(Q A Q B )④k(2) 由能量守恒定律可知, 物块 C 着落过程中, C 重力势能的减少许等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和.当 C 的质量为 M 时,有: MgHQ B EhE 弹⑤当 C 的质量为 2M 时,设 A 刚走开挡板时 B 的速度为 v ,则有:2MgH Q B EhE 弹1(2 M m B )v 2 ⑥2由④⑤⑥三式可得A 刚走开 P 时B 的速度为 :v2MgE (Q A Q B ) ⑦k (2 M m B )【答案】( 1) h E (Q A Q B ) (2) v 2MgE (Q A Q B )kk (2 Mm B )【例 11】如图 3-7-14所示,质量为 m 1 的物体 A 经一轻质弹簧与下方地面上的质量为m 2 的物体 B 相连,弹簧的劲度系数为 k , 物体 A 、B 都处于静止状态 . 一不行伸长的轻绳一端绕过轻滑轮连结物体 A ,另一端连结一轻挂钩 . 开始时各段绳都处于挺直状态, 物体 A 上方的一段绳沿竖直方向 . 现给挂钩挂一质量为 m 2 的物体 C 并从静止开释,已知它恰巧能使物体 B 走开地面但不持续上涨 . 若将物体 C 换成另一质量为 (m m ) 的物体 D ,仍从上述初始地点由静止释1 2放,则此次物体 B 刚离地时物体 D 的速度大小是多少 ?已知重力加快度为 g【分析】 开始时物体 A 、B 静止,设弹簧压缩量为x 1 ,则有: kx 1 m 1g悬挂物体 C 并开释后,物体 C 向下、物体 A 向上运动,设物体B 刚要离地时弹簧伸长量为 x 2 ,有 kx 2m 2 gB 不再上涨表示此时物体A 、C 的速度均为零,物体 C 己降落到其最低点 , 与初 状态对比,由机械能守恒得弹簧弹性势能的增添量为:E m 2 g (x 1 x 2 ) m 1g (x 1 x 2 )物体 C 换成物体 D 后,物体 B 离地时弹簧势能的增量与前一次相同,由能量关 图 3-7-14系得:1( m 2 m 1 )v 21m 1v 2 ( m 2 m 1 )g ( x 1 x 2 ) m 1 g( x 1 x 2 )E联立上式解得题中所 求速度为:222m 1 (m 1 m 2 ) g22m 1 ( m 1m 2 )g 2【答案】 vv(2 m 1 m 2 )k(2 m 1 m 2 )k说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转变守恒的联合常常在一些题目中需要综合使用.九、弹簧弹力的双向性弹簧能够伸长也能够被压缩,所以弹簧的弹力拥有双向性,亦即弹力既可能是推力又可能是拉力,这种问题常常是一题多解.【例 12】如图3-7-15 所示,质量为 m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为 1200 ,已知弹簧 a 、 b 对证点的作使劲均为F ,则弹簧 c 对证点作使劲的大小可能为( ) A 、 0 B、 F mg C 、 F mg D 、 mg F 【分析】 因为两弹簧间的夹角均为图 3-7-151200,弹簧 a 、 b 对证点作使劲的协力 仍为 F ,弹簧 a 、b 对证点有可能是拉力,也有可能是推力 , 因 F 与 mg 的大小关系不确立,故 上述四个选项均有可能 . 正确答案 :ABCD【答案】 ABCD十、弹簧振子弹簧振子的位移、速度、加快度、动能和弹性势能之间存在着特别关系,弹簧振子类问题往常就是考察这些关系,各物理量的周期性变化也是考察的要点 .【例 13】如图 3-7-16 所示,一轻弹簧与一物体构成弹簧振子,物体在同一竖图 3-7-16直线上的 A 、B 间做简谐运动,O 点为均衡地点 ; C 为 AO 的中点,已知OC h ,弹簧振子周期为 T , 某时辰弹簧振子恰巧经过 C 点并向上运动 , 则此后时辰开始计时,以下说法中正确的选项是 ( )A 、 tT时辰,振子回到 C 点4B 、 t T时间内,振子运动的行程为4h2C 、 t3T时辰,振子的振动位移为8 D 、 t 3T8 时辰,振子的振动速度方向向下【分析】 振子在点 A 、 C 间的均匀速度小于在点 C 、O 间的均匀速度, 时间大于 T,选项 A 、C8 错误 ; 经 T振子运动 O 点以下与点 C 对称的地点,总行程为 4h,选项 B 正确 ; 经 t3T振子在28点 O 、B 间向下运动,选项 D 正确 .【答案】 B D十一、弹簧串、并联组合弹簧串连或并联后劲度系数会发生变化,弹簧组合的劲度系数能够用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特色要掌握 :弹簧串连时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例 14】 如图 3-7-17所示,两个劲度系数分别为k 1、k 2 的轻弹簧竖直悬挂,下端用圆滑细绳连结, 并有一圆滑的轻滑轮放在细线上; 滑轮下端挂一重为 G的物体后滑轮降落,求滑轮静止后重物降落的距离.【分析】 两弹簧从形式上看仿佛是并联,但因每根弹簧的弹力相等,故两弹簧实为串连; 两弹簧的弹力均G,可得两弹簧的伸长量分别为x 1G , 图 3-7-1722k 1x 2G ,两弹簧伸长量之和 xx 1 x 2 ,故重物降落的高度为x G( k 1 k 2 )2k 2 : h4k 1k 22【答案】 G(k1k2 )4k1k2。
物理力学弹簧的伸缩与弹性势能分析
物理力学弹簧的伸缩与弹性势能分析教案:物理力学弹簧的伸缩与弹性势能分析引言:本节课将分析物理力学中弹簧的伸缩现象以及弹性势能的计算方法。
通过深入理解弹簧的特性和应用,帮助学生掌握弹簧的基本知识,并培养学生解决实际问题的能力。
一、弹簧的伸缩现象1. 弹簧的定义和结构弹簧是一种能够在外力作用下发生形变并具有恢复力的物体。
它通常由金属线材制成,呈螺旋状或扁平状结构。
2. 弹簧的伸缩规律弹簧伸缩的大小与外力的大小成正比。
根据胡克定律,弹簧受力与其伸缩变化之间存在线性关系,即F=kx,其中F为外力,k为弹簧的弹性系数,x为弹簧的伸缩量。
3. 弹簧的弹性系数弹簧的弹性系数k是衡量其刚度的物理量。
弹簧的弹性系数越大,表示其抵抗形变的能力越强,弹簧的刚度也越大。
二、弹性势能的计算1. 弹簧变形中的弹性势能当弹簧发生伸缩变形时,其储存了一定的弹性势能。
弹性势能可以表示为Ep=1/2kx^2,其中Ep为弹簧的弹性势能,k为弹簧的弹性系数,x为弹簧的伸缩量。
2. 弹簧系统中的总弹性势能对于由多个弹簧连接而成的系统,其总弹性势能可以通过求和的方式计算。
假设系统中有n个弹簧,总弹性势能为Et=1/2(k1x1^2 +k2x2^2 + ... + knxn^2),其中Et为总弹性势能,ki为第i个弹簧的弹性系数,xi为第i个弹簧的伸缩量。
3. 弹簧与其他物体的机械能转换弹簧的弹性势能可以转化为其他形式的机械能。
例如,当弹簧释放时,弹性势能转化为动能;当弹簧受到外力压缩时,动能转化为弹性势能。
三、案例分析与应用通过案例分析,帮助学生更好地理解弹簧的伸缩与弹性势能的概念,并应用到实际问题的解决中。
(案例一)弹簧振子的周期:给出一个弹簧挂在竖直平面上,将质量球连接到其底端,并将其拉伸一定长度后释放。
学生需要计算并讨论弹簧振子的周期与弹簧的弹性系数、质量球的质量以及振幅等因素的关系。
(案例二)弹簧助力器的设计:假设学生需要设计一个能够帮助开启重门的弹簧助力器。
2019-2020年高三物理一轮专题复习弹簧问题
2019-2020年高三物理一轮专题复习弹簧问题知识导图轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,应引起足够重视。
2016年 第11题 18分 考查弹簧做功与弹性势能问题2014年 第6题 8分 考查弹簧的瞬时性问题模型2013年 第11题 18分 考查弹簧的临界问题及做功问题2011年 第6题 8分 考查弹力的计算及瞬时性问题1. 通过本节课的学习,让学生加深弹簧问题的几个考点,学会每个考点对应的解题方法。
2. 让学生认识到弹簧问题的共性:不能突变;弹簧问题一定要找到几个临界点。
3. 提升学生综合分析物理问题能力,学会用动量能量的观点解决物理问题。
题型分类及方法点拨类型一 弹簧的伸长量和弹力的计算方法点拨:这类题一般以单一问题出现,涉及到的知识点是胡克定律:F=kx . 解题的主要关键是找弹簧原长位置。
例题1: 如图所示,劲度系数为 k 2 的轻质弹簧竖直固定在桌面上,上端连一质量为 m 的物块,另一劲度系数为 k 1 的弹簧的上端 A 缓慢向上提,当提到下端弹簧的弹力大小恰好等于23mg 时,求 A 点上提的高度。
精华提炼:1212木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面弹簧。
在这过程中下面木块移动的距离为( )A.m 1g k 1B.m 2g k 1C.m 1g k 2D.m 2g k 2练习2. 一个长度为 L 的轻弹簧,将其上端固定,下端挂一个质量为 m 的小球时,弹簧的总长度变为 2L 。
现将两个这样的弹簧按如图所示方式连接,A 、 B 两小球的质量均为 m ,则两小球平衡时,B 小球距悬点 O 的距离为(不考虑小球的大小) ( )A. 3LB. 4LC. 5LD. 6L类型二 瞬时性问题 方法点拨:这类问题主要考查弹簧弹力不能发生突变这一特性。
高三物理冲刺教案9:有关弹簧问题的分析
高三物理冲刺教案9:有关弹簧问题的分析高考趋势展望弹簧类问题历来是学生学习的难点,在近几年的高考中时有出现.从高考考查的特点看,涉及弹簧类问题多是一些综合性较强、物理过程又比较复杂的问题,一般要用动量守恒定律、能量守恒定律及其他力学规律解决.根据高考对此类问题考查的特点,在第二阶段的复习中,应弄清弹簧与其关联物之间存在的力、运动状态、动量或者机械能之间的联系,正确分析弹簧关联物的运动情况,恰当选取物理规律进行计算.由于此类问题涉及力学规律较多,有利于考查考生综合分析问题的能力,在未来的高考中仍将是十分重要的考查点.知识要点整合在有关弹簧类问题中,要特别注意弹簧及关联物体具有如下特点:1.弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化.2.只有一端有关联物体,另一端固定的弹簧,当弹簧伸长到最长或压缩到最短时,物体速度最小(为零),弹簧的弹性势能最大,此时,也是联系物体的速度方向发生改变的时刻.若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零.若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零.3.两端均有关联物的弹簧,弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相等,弹簧具有最大的弹性势能;当弹簧恢复原长时,相关联物体的速度相差最大,弹簧对关联物体的作用力为零.若物体再受阻力时,弹力与阻力相等时,物体速度最大.精典题例解读[例1]如图1-9-1所示,一轻弹簧一端系在墙上O点,自由伸长到B点,今将一质量为m的小物体靠着弹簧,将弹簧压缩到A点,然后释放,小物体能在水平面上运动到C点静止,AC距离为s,若将小物体系在弹簧上,在A点由静止释放,则小物体将做阻尼运动到最后静止,设小物体通过的总路程为l,则下列答案正确的是图1-9-1A.s>lB.s=lC.s<lD.以上A、B答案都有可能【解析】物体不系在弹簧上时,由A运动到C的过程中,水平方向只受弹力及滑动摩擦力,由能量守恒定律可知:弹簧的弹性势能E p全部转化成热能(通过克服摩擦力做功)即:F f·s=E p. ①若物体系在弹簧上做阻尼运动时,水平方向受力与前面相同,只不过随运动方向的不同,摩擦力方向不同,但大小恒定且与上一种情况下相等,摩擦力始终做负功,由能量守恒定律可知:弹簧的弹性势能也要通过物体克服摩擦阻力做功而转化成热能.由于水平面不光滑,物体可能停在B点以外的位置,此时弹力不为零,但地面对物体的静摩擦力与之平衡而静止.此时,弹簧仍具有弹性势能E p′,所以有F f·l=E p-E p′②又E p′>0 ③由①②③式可得:l<s.故答案A正确.物体也有可能停在B点,此时弹力为零,地面对物体的摩擦力也为零,弹簧的弹性势能E p′=0. ④由①②④式可得:l=s.故答案B正确.综合以上分析:本题答案选D.小结:本题没有复杂定量的计算,主要是通过定性的分析及简单的推导即可确定正确答案,但是要正确求解本题,除有关的基本知识,如弹簧问题、物体受力问题、运动情况需熟知外,对整个物理过程的分析也是很重要的.特别是,系住物体与不系住物体相比,两种情况下有哪些相同之处,又有哪些不同的地方,特别要搞清楚,系住物体使物体做阻尼振动时,为什么有可能停在B 点,也有可能停在B 点以外的位置,这是解决本题的关键所在.[例2]如图1-9-2所示,两物体原来静止质量m 1=2m 2,两物体与水平面的摩擦因数为μ2= 2μ1,当烧断细线后,弹簧恢复到原长时,两物体脱离弹簧时的速度均不为零,则图1-9-2A.两物体在脱离弹簧时速率最大B.两物体在刚脱离弹簧时速率之比v 1/v 2=1/2C.两物体的速率同时达到最大值D.两物体在弹开后同时达到静止【解析】 m 1物体受到的摩擦力F 1=μ1m 1g ,m 2物体受到的摩擦力F 2=μ2m 2g . 所以:11222121221121=⨯⨯==g m g m g m g m F F μμμμ m 1和m 2组成的系统所受合外力为零,系统动量守恒,即:m 1v 1-m 2v 2=0.所以2121=v v 即在运动中的任何时刻,二者的速度比都是1/2,并且同时达到最大值,故B 、C 正确.当弹力大于摩擦力时,物体做加速运动,弹力小于摩擦力时,物体做减速运动,所以弹力等于摩擦力时,速率最大,故A 项错.离开弹簧后,物体只受摩擦力.根据动量定理得:-μmgt =0-mv .所以t ∝μv 所以:111221122121=⨯=⋅=μμv v t t ,同时静止.故D 项正确. 综合以上分析:本题正确答案B 、C 、D.小结:1.本题中的m 1、m 2物体都受摩擦力,一般情况下m 1、m 2组成的系统动量是不守恒的.但通过具体计算却发现系统的合外力仍为零,可由动量守恒定律求解速度,这是本题的一个特点.2.由于物体均受摩擦力作用,所以,只有物体所受合外力为零,即弹簧弹力等于摩擦力大小时速度最大.而不是弹簧恢复原长时速度最大,这是本题的又一个特点.[例3]如图1-9-3所示,A 、B 两物体的质量分别是m 1=5 kg ,m 2=3 kg.它们在光滑水平面上沿同一直线向右运动,速度分别为v 1=5 m/s,v 2=1 m/s.当A 追上B 后,与B 上固定的质量不计的弹簧发生相互作用.弹簧被压缩后再伸长,把A 、B 两物体弹开,已知A 、B 两物体作用前后均沿同一直线运动,弹簧压缩时未超过弹簧的弹性限度.图1-9-3求:(1)AB 相互作用后的最终速度各是多少?(2)碰撞中弹簧具有的最大弹性势能是多少?【解析】 A 、B 相互作用过程中系统水平方向的动量守恒,系统无机械能损失,机械能守恒,由此可解得A 、B 最终速度.当A 、B 两物体速度相同时弹簧的压缩量最大,弹簧具有最大弹性势能.(1)以AB 为系统,在碰撞过程中所受合外力为零,总动量守恒,则有:(取运动方向为正向) m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ① 又AB 相互作用时,只有弹力做功,机械能守恒. 即作用前后的动能守恒有:21m 1v 12+21m 2v 22=21m 1v 1′2+21m 2v 2′2 ②把以上两式移项变形为: m 1(v 1-v 1′)=m 2(v 2′-v 2) ③ m 1(v 12-v 1′2)=m 2(v 2′2-v 22) ④ ③④两式相除得:v 1+v 1′=v 2+v 2′ 所以v 2′=v 1+v 1′-v 2⑤将⑤式代入①式得:m 1v 1+m 2v 2=m 1v 1′+m 2(v 1+v 1′-v 2) 所以碰后A 的速度 v 1′=21221212)(m m v m v m m ++-=351325)35(+⨯⨯+⨯- m/s=2 m/sv 1′方向水平向右将v 1′代入⑤式得:v 2′=v 1+v 1′-v 2=5+2-1=6 m/s 即碰后B 的速度是v 2′=6 m/s v 2′方向水平向右.(2)A 相对B 静止时,弹簧压缩最短,弹性势能最大,这时A 、B 速度相同,根据动量守恒定律得: m 1v 1+m 2v 2=(m 1+m 2)v 所以共同运动的速度 v =351355212211+⨯+⨯=++m m v m v m m/s=3.5 m/s由机械能守恒定律有:p 221222211)(212121E v m m v m v m +⋅+=+ 所以弹簧的最大弹性势能E p =21m 1v 12+21m 2v 22-21(m 1+m 2)·v 2 =21×5×52 J+21×3×12 J-21×(5+3)×3.52 J=15 J. 小结:这是一道综合题,要同时用到能量守恒和动量守恒来解题,所以分析清楚物理过程,判定守恒定律各自成立的条件是解题的重点更是难点.另外弄清何时弹性势能最大也是一个关键.应用强化训练1.质量为m 的物体静止于光滑水平桌面上的A 点如图1-9-4所示,现用水平恒力F 分别通过细绳和轻质弹簧把物体由A 点从静止拉到B 点.两种情况下水平恒力所做的功分别为W 1和W 2,物体到B 点时具有的动能分别为E k1和E k2,则它们之间的关系为图1-9-4A.W1=W2,E k1=E k2B.W1>W2,E k1>E k2C.W1<W2,E k1<E k2D.W1<W2,E k1=E k2【解析】由于弹簧发生形变,第2种情况在F的方向上通过的位移大,所以W1<W2.物体在两种情况下通过的位移相同,且由于轻弹簧发生形变的时间可以忽略,即认为在弹簧右端施恒力F后,弹簧立即发生相应的形变,使弹簧作用于A的拉力瞬间变为和F相等,故可以认为在物体发生相同的位移情况下,外力对物体做的功相同,所以由动能定理知E k1=E k2,故正确答案为D.【答案】D2.劲度系数为k的轻质弹簧,上端固定,下端拴一个小球,静止时球距地面高为h,用手竖直拉球使之着地,若从静止开始释放小球(弹簧始终在弹性限度内)则:①刚释放小球时,小球所受合外力大小为kh②小球运动到离地面高为h时其动量最大③小球上升到最大高度时,加速度大小一定等于g④小球上升到最大高度时,弹簧的弹性势能一定等于0以上说法正确的是A.①②B.③④C.①③D.②④【解析】球静止时,设弹簧被拉长h0,如图示:受两个力:则kh0=mg当球被拉着地后,弹力F=k(h+h0)所以球所受合力F合=F-mg=k(h+h0)-kh0=kh故①正确.当球又回升到离地面高为h的平衡位置时,向上的合力为零,再向上升,合力方向向下,开始减速,所以高为h处球的动量最大,故②正确.又因为不知h0与h的具体关系,故③④两种说法是错误的,而③④两种说法只有在h=h0时才正确,所以本题答案选A.【答案】A3.如图1-9-5所示:一弹簧一端系在墙上O点,自由伸长到B点,今将一小物体m连在弹簧上,并压缩到A点然后释放,小物体能运动到C点静止,物体与水平地面的动摩擦因数恒定,试判断下列说法正确的是图1-9-5A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B,先加速后减速,从B到C一直做减速运动D.物体在B点所受合外力为零【解析】物体在从A向B运动时受四个力作用,如图(1)所示竖直方向是一对平衡力.图(1)图(2)又因为到B点时,弹力F=0.故合力就等于F f,与运动方向正相反,所以,到B点以前就已经开始做减速运动了,只有在AB间某一点F=F f时,F合=0,加速度等于零,速度达到最大.越过B点后,物体受力如图(2)示.即合力F合=F f+F,故B到C,一直做减速运动,故选项C正确.【答案】C4.如图1-9-6所示,质量相同的木块A、B用轻弹簧连接置于光滑的水平面上,开始弹簧处于自然状态.现用水平恒力F推木块A,则从加上力F后到弹簧第一次被压缩到最短的过程中图1-9-6A.两木块速度相同时,加速度a A=a BB.两木块速度相同时,加速度a A>a BC.两木块加速度相同时,速度v A<v BD.两木块加速度相同时,速度v A>v B【解析】在此运动过程中,整体看,AB一块向右做匀加速直线运动,但分隔开看,A、B是先相互靠近后又远离,在相互靠近的过程中,v A>v B,靠到最近时,v A=v B,以后又要分离,即a A<a B,才会使v A<v B,它们再相互远离,故A、B错误.因为在上述过程中,a A逐渐减小,a B逐渐增加,当靠到最近时,有v A=v B.a A <a B.所以a A=a B时,v A>v B,故C错误,D正确.【答案】D5.如图1-9-7所示,在粗糙斜面顶端固定轻弹簧的一端,另一端挂一物体,物体在A点处于平衡状态.现用平行于斜面向下的力拉物体,第一次直接拉到B点;第二次将物体先拉到C点,再回到B点,在这两次过程中有:图1-9-7①重力势能的改变量相等②弹性势能的改变量相等③摩擦力对物体做的功相等④弹簧弹力对物体做的功相等以上正确的是 A.①②③ B.①②④ C.①③④ D.②③④ 【解析】 将物体直接由A 拉到B ,与先拉到C 点再回到B 不同之处是所走路程不同,相同之处是初末位置都相同.而重力、弹簧弹力做功只与初末位置有关与路径无关,只有摩擦力做功与路径有关.故①②④说法正确,说法③错误,故答案为B.【答案】 B6.如图1-9-8所示,在一个足够大的光滑平面内,两个质量相同的木块中间用一轻质弹簧相连,开始时弹簧处于原长,两木块都静止,若瞬间给木块A 一个向右的冲量作用后,A 、B 两物体开始运动,在它们的整个运动过程中,以下说法中错误..的是图1-9-8A.在任意时刻A 、B 两木块的加速度大小均相等B.弹簧压缩到最短时系统的总动能最小C.弹簧恢复到原长时A 、B 两木块的速度相同D.弹簧伸长到原长时B 木块的动量与开始时A 木块的动量相同【解析】 A 、B 两物体质量相同,在任一时刻弹簧对它们的作用力大小相等,加速度大小相等,A 、B 相互作用过程中机械能保持不变(等于开始时A 的动能),弹簧压缩到最短时,弹性势能最大,系统的总动能最小,当弹簧的压缩量最大、弹簧的伸长量最大时,A 、B 两木块的速度相同,故C 错.当弹簧伸长到原长时,由系统的动量守恒和机械能守恒,可解得B 的速度等于开始时A 的速度,故B 的动量等于开始时A 的动量,D 对.【答案】 C7.如图1-9-9所示,劲度系数为k 的轻弹簧的一端固定于O 点,另一端连着质量为m 的小球,今用手托着小球使弹簧处于原长,第一次手缓慢地向下移动,最后手脱离小球时小球静止,在此过程中,手对小球做功大小为W ;第二次在弹簧处于原长时,让手突然离开小球,当小球通过上次的静止位置时,其动能为______.图1-9-9【解析】 第一次运动,由动能定理得: W G -W 弹-W =0第二次运动,由动能定理得:0k -=-E W W G 弹两次运动中:W G =W G ′,W 弹=W 弹′ 故E k =W . 【答案】 W8.如图1-9-10所示,一长L =4.8 m 的轻车厢静止于光滑水平轨道上,固定于车厢地板上的击发器A 自车厢中部以v 0=2 m/s 的速度(对地)将质量为m 1=1 kg 的物体沿车厢内光滑地板弹出,与另一质量m 2=1 kg的物体碰撞并粘合在一起,此时m 2恰好与一端固定于车厢上的水平放置的弹簧接触,弹簧长度l =0.3 m ,车厢和击发器的总质量为M =2 kg ,则相互作用过程中弹簧具有的最大弹性势能E pm =______.图1-9-10【解析】 击发器弹出m 1的过程中,总动量守恒,取v 0方向为正向,则m 1v 0-Mv =0所以v =m/s 1m/s 22101=⨯=⋅v M m m 1与m 2碰撞中总动量守恒.则m 1v 0=(m 1+m 2)·v 所以v =1112101+=+m m v m ×2 m/s=1 m/sm 1、m 2整体压缩弹簧到最短的过程中,设共同运动的速度是v ′,m 1、m 2及车厢整体动量守恒,机械能守恒.则有:21(m 1+m 2)v 2+21Mv 2=E pm +21(m 1+m 2+M )v ′2 ①取v 方向为正,则:(m 1+m 2)v -Mv =(m 1+m 2+M )v ′②由①②得:v ′=0. E pm =21(m 1+m 2)v 2+21Mv 2=21×2×12 J+21×2×12 J=2 J【答案】 2 J9.如图1-9-11所示,轻弹簧的两端与两物块(质量分别为m 1、m 2)连在一起,m 1=1 kg,m 2=2 kg ,将m 1、m 2放在光滑的水平面上,弹簧自然伸长时,m 1静止在A 点,m 2靠墙,现用水平力F 推m 1使弹簧压缩一段距离后静止,此过程中力F 做功为4.5 J.当F 撤去后,求:图1-9-11(1)m 1在运动过程中的最大速度. (2)m 2在运动过程中的最大速度.(3)m 1在越过A 点后速度最小时弹簧的弹性势能.【解析】 (1)压缩弹簧的过程中外力做的功,即增加的弹性势能. 由题意知:E pm =4.5 Jm 1在弹开的过程中,回到A 点时动能最大,最大速度为v 1,此过程中机械能守恒,则 E pm =21m 1v 12 所以v 1=15.4221pm ⨯=m E m/s=3 m/s(2)以后弹簧被拉长,m 2开始向右加速,m 1开始减速,当弹簧再次恢复原长时,m 2速度最大设为v 2,此过程中m 1、m 2总动量守恒,总机械能守恒,则有:m 1v 1′+m 2v 2=m 1v 1 ①21m 1v ′21+21m 2v 22=21m 1v 12 ②①②两式联立可得:v 2=32v 1=2 m/s(3)m 1越过A 点后,一直减速当弹簧再次被压缩到最短时,设m 1、m 2有共同速度v ″,即为m 1的最小速度.此过程m 1、m 2及弹簧总动量守恒,总机械能守恒.则有:m 1v 1=(m 1+m 2)v ″ ③21m 1v 12=21(m 1+m 2)v ″2+E pm ′ ④③④联立:v ″=1 m/sE pm ′=21m 1v 12-21(m 1+m 2)v ″2 =21×1×32 J-21×(1+2)×12 J=3 J【答案】 (1)3 m/s (2)2 m/s (3)E pm ′=3 J10.如图1-9-12所示,质量M =4 kg 的木滑板B 静止放在光滑水平面上.滑板右端固定着一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,这段滑板与木块A 之间的动摩擦因数μ=0.2;而弹簧自由端C 到弹簧固定端D 所对应的滑板表面是光滑的.可视为质点的小木块A 质量m =1 kg ,原来静止于滑板的左端.当滑板B 受水平向左的恒力F =14 N 作用时间t 后撤去,这时木块A 恰好到达弹簧的自由端C 处.假设A 、B 间的最大静摩擦力跟滑动摩擦力相等.g 取10 m/s 2,试求:图1-9-12(1)水平恒力F 的作用时间t .(2)木块A 压缩弹簧过程中弹簧的最大弹性势能.【解析】 (1)在F 作用的过程中,B 除受F 作用外,还受A 对B 的滑动摩擦力F f 1作用,A 受B 对A 的滑动摩擦力F f 2作用如图所示,且F f 1与F f 2大小相等方向相反.由牛顿第二定律得: 对A :μmg =ma A 得a A =μg=2 m/s 2. 对B :F -μmg =Ma B 得a B =41012.014⨯⨯-=-M mg F μ m/s 2=3 m/s 2. 由运动学公式有:s A =21a A t 2 s B =21a B t 2又s B -s A =L 所以21(a B -a A )t 2=L解得t =235.022-⨯=-A B a a L s=1 s(2)由(1)得v A =a A t =2 m/s ,v B =a B t =3 m/s.木块压缩弹簧的过程中,A 、B 及弹簧的总机械能守恒.总动量守恒,弹簧压缩到最短时,二者速度相等,弹性势能最大,则有:21mv A 2+21Mv B 2=21(m +M )v 2+E pm mv A +Mv B =(m +M )v 联立解得:v =2.8 m/sE pm =21mv A 2+21Mv B 2-21(m +M )v 2 =21×1×22+21×4×32-21×(1+4)×2.82 J=20 J-19.6 J =0.4 J【答案】 (1)1 s (2)0.4 J 教学参考链接由于本专题中题目所讨论的问题,一般多涉及物体受力、运动、做功、物体动量及能量发生变化等多个知识点,综合性较强,物理过程较多且复杂,物理情景较为隐蔽,特别是弹力为变力,中学物理中又未给出弹力做功和弹性势能的计算方法,更增加了该部分题目的难度.所以对此类问题的处理关键是紧紧抓住弹簧受力特点,建立清晰的物理图景:物体各做什么性质的运动,各过程中能量的转化方向,物体最终所处的运动状态,物体各运动过程所遵守的规律等,再注意弹簧处于最长和最短状态时物体运动的特点,就可以化整为零,化难为易.如本专题例1侧重于物体与弹簧栓接与不栓接两种情况下物理情景不同的分析,例2紧紧抓住系统受力特点进行讨论,例3更充分利用了弹簧问题中一般情况下所遵守的动量守恒和机械能守恒特点,使问题顺利解决.三个例题难度虽不太大,但抓住了弹簧问题的特点,介绍了处理弹簧问题的一般方法.再复杂的弹簧问题,也只能是上述过程的综合或重复,处理方法也只是增加一些类似方程而已.。
高一物理弹簧临界问题
高一物理弹簧临界问题
高一物理弹簧的临界问题是一个涉及动力学和弹力学的复杂问题。
以下是解决此类问题的一般步骤:
1. 分析物体的受力情况:对于与弹簧相连的物体,我们需要分析其受到的重力、弹力和其他可能的力。
2. 确定临界条件:弹簧的临界状态通常发生在其形变量最大或最小的时候。
这些临界状态可能是物体速度为零、加速度为零、弹簧伸长量或压缩量最大等。
3. 运用动力学方程:根据牛顿第二定律,结合物体在临界点的速度和加速度信息,可以建立动力学方程。
4. 求解方程:解方程以找到物体的速度、加速度、弹簧的形变量等。
5. 考虑能量守恒:在某些情况下,弹簧的弹力可能会引起其他形式的能量变化,如动能和势能的相互转化。
在这种情况下,需要使用能量守恒定律来解决问题。
6. 分析多过程问题:对于涉及物体与弹簧相互作用的多过程问题,需要仔细分析每个过程中的受力情况和运动状态,并找出临界条件。
7. 总结答案:根据以上步骤,可以总结出物体与弹簧相互作用时的运动规律和临界条件,从而得出最终答案。
解决此类问题需要深入理解牛顿运动定律、能量守恒定律和胡克定律的应用,并且能够灵活运用这些知识来分析复杂的物理情景。
如有需要,可以查阅相关资料或咨询物理老师。
高中物理难点之弹簧问题的分析
高中物理难点之弹簧问题的分析
作者:何兆训
来源:《读与写·下旬刊》2018年第10期
中图分类号:G633.7 文献标识码:B文章编号:1672-1578(2018)30-0182-01
有关弹簧的题目在高考中几乎年年出现,弹簧问题是高中物理问题中的一个难点,难就难在弹簧弹力是变力,会发生形变——伸长或压缩。
学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型,学生很难找到弹簧的形变量,对解决弹簧问题思路不清、效率低下、错误率较高。
处理弹簧问题如果分“两步走”思路清晰,可以更快速、更准确、更简单的解决弹簧问题。
何为“两步走”?我们要对弹簧问题有一个清晰的认识,弹簧问题一般分两个过程,一个是弹簧发生变化前,一个是弹簧发生变化后,我们就对变化前列式,对变化后列式即可解决问题。
第一步,弹簧发生变化前,由题目的已知条件判断弹簧是伸长的还是压缩的,伸长的设伸长量,压缩的设压缩量,由胡克定律F=kx写出弹簧的弹力。
第二步,弹簧发生变化后,由题目的已知条件判断弹簧是伸长的还是压缩的,伸长的设伸长量,压缩的设压缩量,由胡克定律F=kx写出弹簧的弹力。
下面举例说明:
从以上两例中我们可以看出弹簧试题的确是培养、训练学生物理思维和反映、开发学生的学习潜能的优秀试题。
弹簧与相连物体构成的系统所表现出来的运动状态的变化,是学生充分运用物理概念和规律(牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律)巧妙解决物理问题、施展自身才华的广阔空间,当然也是区分学生能力强弱、拉大差距、选拔人才的一种常规题型。
因此,弹簧试题也就成为高考物理的一种重要题型。
而且,弹簧试题也就成为高考物理题中一类独具特色的考题。
初中物理弹簧规律总结归纳
初中物理弹簧规律总结归纳弹簧作为物理学中常见的弹性体,具有重要的研究价值和实际应用。
在初中物理学习中,学生将接触到一些与弹簧相关的基本概念和实验。
本文将对初中物理中弹簧的规律进行总结归纳,帮助读者更好地理解和应用这些知识。
一、弹簧的基本概念弹簧是一种具有弹性变形性质的物体,能够在外力作用下发生形变,并在外力撤销后恢复到原始状态。
弹簧的形状多种多样,常见的有螺旋形弹簧和压缩形弹簧。
在初中物理学习中,我们主要研究的是螺旋形弹簧。
二、胡克定律胡克定律是描述一维弹簧的力学性质的基本定律。
根据胡克定律,当弹簧发生弹性形变时,其弹力与形变量成正比。
数学表达式为:F = kx其中,F为弹簧的弹力,k为弹簧的弹性系数,x为弹簧的形变量。
三、弹簧势能当弹簧发生形变时,会储存弹性势能。
弹簧势能的大小与弹簧的形变量以及弹簧的弹性系数有关。
根据弹簧的势能公式,可以计算弹簧的势能:E_e = 1/2 kx^2其中,E_e为弹簧的弹性势能,k为弹簧的弹性系数,x为弹簧的形变量。
四、弹簧的应用1. 弹簧秤弹簧秤是利用弹簧的弹性变形来测量物体的重力或者质量的仪器。
其原理基于胡克定律,通过测量弹簧的伸长量来推算物体的重力或质量。
2. 振动系统弹簧在挂在竖直方向上时,可以作为振动系统的重要组成部分。
当弹簧受到外力作用使其发生形变后,会产生回复力。
这种回复力与形变量成正比,使得振动系统得以回复到平衡位置并继续振动。
3. 缓冲系统在一些机械装置中,弹簧可以用作缓冲系统,用于吸收冲击力或减少震动。
当外力作用在弹簧上时,弹簧可以吸收一部分的能量,并通过形变进行储存或转化,从而起到缓冲作用。
五、弹簧的特点和注意事项1. 弹簧在受力作用下发生形变,形变量与外力成正比。
2. 弹簧的弹性系数决定了弹簧的刚度,刚度越大,弹簧越难发生形变。
3. 弹簧的形变量和弹性势能大小与弹簧的弹性系数有关。
4. 在使用弹簧时要注意不要超过其弹性极限,以免引起弹簧破裂或失去弹性。
高中物理弹簧问题(2021年整理)
高中物理弹簧问题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理弹簧问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理弹簧问题(word版可编辑修改)的全部内容。
弹簧问题轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。
无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理弹簧问题分析的思维起点由于弹簧与其相连接的物体构成的系统的运动状态具有很强的综合性和隐蔽性;由于弹簧与其相连接的物体相互作用时涉及到的物理概念和物理规律较多,因而多年来,弹簧试题深受高考命题专家们物理教师的青睐,在物理高考中弹簧问题频频出现已见怪不怪了。
弹簧问题不仅能考查学生分析物理过程,理清物理思路,建立物理图景的能力,而且对考查学生知识综合能力和知识迁移能力,培养学生物理思维品质和挖掘学生学习潜能也具有积极意义。
因此,弹簧问题也就成为高考命题专家每年命题的重点、难点和热点。
与弹簧相连接的物理问题表现的形式固然很多,但总是有规律可循,有方法可依,存在基于弹簧特性分析问题的思维起点。
一、以弹簧遵循的胡克定律为分析问题的思维起点弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即或。
显然,弹簧的长度发生变化的时候,胡克定律首先成了弹簧问题分析的思维起点。
例1 劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。
解析物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。
由匀变速直线运动公式及牛顿定律得:①②③解以上三式得:。
显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。
二、以弹簧的伸缩性质为分析问题的思维起点弹簧能承受拉伸的力,也能承受压缩的力。
在分析有关弹簧问题时,分析弹簧承受的是拉力还是压力成了弹簧问题分析的思维起点。
例2如图1所示,小圆环重固定的大环半径为R,轻弹簧原长为L(L<2R),其劲度系数为k,接触光滑,求小环静止时。
弹簧与竖直方向的夹角。
解析以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。
若弹簧处于压缩状态,小球受到斜向下的弹力,则N的方向无论是指向大环的圆心还是背向大环的圆心,小环都不能平衡。
因此,弹簧对小环的弹力F一定斜向上,大环施加的弹力刀必须背向圆心,受力情况如图2所示。
根据几何知识,“同弧所对的圆心角是圆周角的二倍”,即弹簧拉力N的作用线在重力mg和大环弹力N的角分线上。
所以另外,根据胡可定律:解以上式得:即只有正确分析出弹簧处于伸长状态,因而判断出弹力的方向成了解决问题的思维起点。
三、以弹簧隐藏的隐含条件为分析问题的思维起点很多由弹簧设计的物理问题,在其运动的过程中隐含着已知条件,只有充分利用这一隐含的条件才能有效的解决问题。
因此挖掘弹簧问题中的隐含条件成了弹簧问题分析的思维起点。
例3已知弹簧劲度系数为k,物块重为m,弹簧立在水平桌面上,下端固定,上端固定一轻质盘,物块放于盘中,如图3所示。
现给物块一向下的压力F,当物块静止时,撤去外力。
在运动过程中,物块正好不离开盘,求:(1)给物块所受的向下的压力F。
(2)在运动过程中盘对物块的最大作用力。
解析(1)由于物块正好不离开盘,可知物块振动到最高点时,弹簧正好处在原长位置,所以有:由对称性,物块在最低点时的加速度也为a,因为盘的质量不计,由牛顿第二定律得:物块被压到最低点静止时有:由以上三式得:(2)在最低点时盘对物块的支持力最大,此时有:,解得。
显然,挖掘出“物块正好不离开盘”隐含的物理意义成了能否有效迅速解决问题的关键所在。
四、以弹簧特有的惰性特性为分析问题的思维起点由于弹簧的特殊结构。
弹簧的弹力是渐变的,而不是突变的,弹力的变化需要一定的“时间”。
有时充分利用弹簧的这一“惰性”是解决问题的先决条件。
因此分析弹簧问题时利用弹簧的惰性自然成了分析弹簧问题的思维起点。
例4质量为m的小球,在不可伸长的绳AC和轻质弹簧BC作用下静止,如图4所示。
且AC=BC,,求突然在球附近剪断弹簧或绳子时,小球的加速度分别是多少?解析刚剪断弹簧的瞬间,小球受重力mg和绳的拉力T,其速度为零,故小球沿绳的方向加速度为零,仅有切向加速度且为,绳的拉力由原来的突变为;而剪断绳的瞬间,由于弹簧的拉力不可突变,仍保持原来的大小和方向,故小球受到的合力与原来绳子的拉力大小相等,方向相反,加速度为,方向沿AC向下。
五、以弹簧振子的对称性质为分析问题的思维起点很多弹簧在运动时做简谐运动,而简谐运动是有对称性的。
弹簧振动的对称性也可以做为解决弹簧问题的思维起点。
例5如图5所示,一质量为M的塑料球形容器,在A处与水平面接触。
它的内部有一直立的轻弹簧。
弹簧下端固定于容器内部底部,上端系一带正电、质量为m的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度。
在振动过程中球形容器对桌面的最小压力为0,求小球振动的最大加速度和容器对桌面的最大压力。
解析因为弹簧正好在原长时,小球恰好速度最大所以有:小球在最高点时容器对桌面的压力最小,有:此时小球受力如图6所示,所受合力为由以上三式得小球的加速度。
显然,在最低点容器对桌面的压力最大,由振动的对称性可知小球在最低点和最高点有相同的加速度,所以。
解以上式子得:所以容器对桌面的压力对称性是解决物理问题的有效资源,要充分利用。
弹簧做简谐运动的时候具有对称性,而这种对称性往往成为解题的有效手段。
六、以弹簧的弹力做功为分析问题的思维起点弹簧发生变形时,具有一定的弹性势能。
通过弹簧弹力做功,弹性势能要发生变化,它们的关系为,它成了解决有关弹簧问题的思维起点。
例6如图7所示,密闭绝热容器内有一绝热的具有一定质的活塞,活塞的上部封闭着气体,下部为真空,活塞与器壁的摩擦忽略不计,置于真空中的轻弹簧的一端固定于容器的底部,另一端固定在活塞上,弹簧被压缩后用绳扎紧,此时弹簧的弹性势能为(弹簧处于自然长度时的弹性势能为零),现绳突然断开,弹簧推动活塞向上运动,经过多次往复运动后活塞静止,气体过到平衡态,经过此过程。
A.全部转换为气体的内能B.一部分转换成活塞的重力势能,其余部分仍为弹簧的弹性势能C.全部转换成活塞的重力势能和气体的内能D.一部分村换成活塞的重力势能,一部分转换成气体的内能,其余部分仍为弹簧的弹性势能解析断开绳子,在弹力作用下活塞上下运动,最终静止后的位置高于初始位置。
通过弹簧弹力做功,弹性势能,的能量转化有三种形式:活塞的重力势能、气体的内能及弹簧的弹性势能,故D项正确。
弹力做功和弹性势能的变化的关系是解决弹簧问题的重要线索,要引起重视。
追究弹性势能的去处往往是解决弹簧问题的思维的起点。
七、以弹簧存储的弹性势能为分析问题的思维起点弹簧存储或释放的弹性势能要转化为其他形式的能,反过来其他形式的能也可转化为弹性势能。
追究弹性势能释放和存储过程成了解决弹簧问题的思维起点。
例7在原子核物理中,研究核子与核子关系的最有效途径是“双电荷交换反应”这类反应的前半部分过程和下述力学模型类似:两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。
在它们左边有一垂直于轨道的固定档板P,右边有一小球C沿轨道以速度射向B球,如图8所示,C与B发生碰撞并立即结成一个整体D。
在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变。
然后,A球与档板P 发生碰撞,碰后A、D静止不动,A与P接触而不粘连。
过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。
(l)求弹簧长度刚被锁定后A球的速度。
(2)求在A球离开档板P之后的运动过程中,弹簧的最大弹性势能。
解析试题只是给出初始状态的示意图,而后的运动过程可分为五个阶段,分别如图9中(a)至(e)所示。
图(a)表示C、B发生碰撞结成D的瞬间;图(b)表示D、A向左运动,弹簧长度变为最短且被锁定;图(。
)表示A球和挡板P碰撞后,A、D都不动;图(d)表示解除锁定后,弹簧恢复原长瞬间;图(e)表示,A球离开挡板P后,弹簧具有最大弹性势能瞬间。
(1)设C球与B球翻结成D时,D的速度为,由动量守恒得:设此速度为当弹簧压至最短时,D与A的速度相等,设此速度为由动量守恒定律得:联立①②得:。
此间也可以用动量守恒一次求出(从接触相对静止)。
(2)设弹簧长度被锁定后,贮存在弹簧中的势能为,由能量守恒得:撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,弹性势能全部转变成D的动能,设D的速度为,则有:以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长。
设此时的速度为,由动量守恒得:当弹簧伸到最长时,其弹性势能最大,设此势能为,由能量守恒得:紧紧抓住弹性势能的存储和释放,领会题意、明察秋毫识破问题的“陷阱”,排除干扰,在头脑中建立起非常清晰的物理图景和过程,充分运用动量和动能两个守恒定律,解决问题。
总之,弹簧问题的表现形式是多种多样的,但是只要紧紧围绕弹簧与其他物理模型不同的特性、紧紧抓住弹簧与其组成的系统相连接的物理量,具体问题具体分析,就一定能找到解决弹簧问题的突破口。
通过弹簧与相连物体构成的系统所表现出来的运动状态的变化的分析,有利于考生运用物理概念和规律巧妙解决物理问题、拓展思维空间。
因此,弹簧试题也是高考物理中一类独具特色的考题。