数据结构第六章树和二叉树(2)
数据结构课后习题答案及解析第六章
第六章树和二叉树(下载后用阅读版式视图或web版式可以看清)习题一、选择题1.有一“遗传”关系:设x是y的父亲,则x可以把它的属性遗传给y。
表示该遗传关系最适合的数据结构为( )。
A.向量B.树 C图 D.二叉树2.树最合适用来表示( )。
A.有序数据元素B元素之间具有分支层次关系的数据C无序数据元素 D.元素之间无联系的数据3.树B的层号表示为la,2b,3d,3e,2c,对应于下面选择的( )。
A. la (2b (3d,3e),2c)B. a(b(D,e),c)C. a(b(d,e),c)D. a(b,d(e),c)4.高度为h的完全二叉树至少有( )个结点,至多有( )个结点。
A. 2h_lB.h C.2h-1 D. 2h5.在一棵完全二叉树中,若编号为f的结点存在右孩子,则右子结点的编号为( )。
A. 2iB. 2i-lC. 2i+lD. 2i+26.一棵二叉树的广义表表示为a(b(c),d(e(,g(h)),f)),则该二叉树的高度为 ( )。
A.3B.4C.5D.67.深度为5的二叉树至多有( )个结点。
A. 31B. 32C. 16D. 108.假定在一棵二叉树中,双分支结点数为15,单分支结点数为30个,则叶子结点数为( )个。
A. 15B. 16C. 17D. 479.题图6-1中,( )是完全二叉树,( )是满二叉树。
..专业知识编辑整理..10.在题图6-2所示的二叉树中:(1)A结点是A.叶结点B根结点但不是分支结点 C根结点也是分支结点 D.分支结点但不是根结点(2)J结点是A.叶结点B.根结点但不是分支结点 C根结点也是分支结点 D.分支结点但不是根结点(3)F结点的兄弟结点是A.EB.D C.空 D.I(4)F结点的双亲结点是A.AB.BC.CD.D(5)树的深度为A.1B.2C.3D.4(6)B结点的深度为A.1B.2C.3D.4(7)A结点所在的层是A.1B.2C.3D.4..专业知识编辑整理..11.在一棵具有35个结点的完全二叉树中,该树的深度为( )。
数据结构(C语言版)严蔚敏第6章 树和二叉树
⑷ 孩子结点、双亲结点、兄弟结点
一个结点的子树的根称为该结点的孩子结点(child) 或子结点;相应地,该结点是其孩子结点的双亲结点 (parent)或父结点。
4
如图6-1(b)中结点B 、C、D是结点A的子结点,而结 点A是结点B 、C、D的父结点;类似地结点E 、F是结 点B的子结点,结点B是结点E 、F的父结点。
这是树的递归定义,即用树来定义树,而只有 一个结点的树必定仅由根组成,如图6-1(a)所示。
2
2 树的基本术语
⑴ 结点(node):一个数据元素及其若干指向其子树的分支。 ⑵ 结点的度(degree) 、树的度:结点所拥有的子树
的棵数称为结点的度。树中结点度的最大值称为树的度。
A
B
C
D
A
E
F G HI J
同一双亲结点的所有子结点互称为兄弟结点。
如图6-1(b)中结点B 、C、D是兄弟结点;结点E 、 F是兄弟结点。
⑸ 层次、堂兄弟结点
规定树中根结点的层次为1,其余结点的层次等于 其双亲结点的层次加1。
若某结点在第l(l≧1)层,则其子结点在第l+1层。
双亲结点在同一层上的所有结点互称为堂兄弟结点。 如图6-1(b)中结点E、F、G、H、I、J。
(a) 只有根结点
K
LM N
图6-1 树的示例形式
(b) 一般的树
3
如图6-1(b)中结点A的度是3 ,结点B的度是2 ,结点 M的度是0,树的度是3 。
⑶ 叶子(left)结点、非叶子结点:树中度为0的
结点称为叶子结点(或终端结点)。相对应地,度不为 0的结点称为非叶子结点(或非终端结点或分支结点)。 除根结点外,分支结点又称为内部结点。
数据结构第六章树和二叉树习题及答案
习题六树和二叉树一、单项选择题1.以下说法错误的是()A. 树形结构的特点是一个结点可以有多个直接前趋B. 线性结构中的一个结点至多只有一个直接后继C. 树形结构可以表达(组织)更复杂的数据D. 树(及一切树形结构)是一种”分支层次”结构E. 任何只含一个结点的集合是一棵树2. 下列说法中正确的是()A. 任何一棵二叉树中至少有一个结点的度为2B. 任何一棵二叉树中每个结点的度都为2C. 任何一棵二叉树中的度肯定等于2D. 任何一棵二叉树中的度可以小于23. 讨论树、森林和二叉树的关系,目的是为了()A. 借助二叉树上的运算方法去实现对树的一些运算B. 将树、森林按二叉树的存储方式进行存储C. 将树、森林转换成二叉树D. 体现一种技巧,没有什么实际意义4.树最适合用来表示()A. 有序数据元素 B .无序数据元素C.元素之间具有分支层次关系的数据 D .元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B .11 C .15 D .不确定6. 设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1, M2和M3与森林F对应的二叉树根结点的右子树上的结点个数是()。
A.M1 B .M1+M2 C .M3 D .M2+M37.一棵完全二叉树上有1001个结点,其中叶子结点的个数是()A.250 B .500 C .254 D .505 E .以上答案都不对8. 设给定权值总数有n 个,其哈夫曼树的结点总数为()A. 不确定 B . 2n C . 2n+1 D . 2n-19.二叉树的第I 层上最多含有结点数为()I I-1 I-1 IA.2IB .2I-1-1 C .2I-1D .2I-110.一棵二叉树高度为h, 所有结点的度或为0,或为2,则这棵二叉树最少有()结点A.2h B .2h-1 C .2h+1 D .h+111. 利用二叉链表存储树,则根结点的右指针是()。
数据库系统l试题库及答案 第6章 树和二叉树
第6章树和二叉树6.1知识点: 树和二叉树的基本概念一、填空题1.高度为h,度为m的树中至少有___________个结点,至多有______________个结点。
2.树的结点是由及若干指向其子树的组成;结点拥有的子树数称为;度为0的结点称为;度不为0的结点成为;树中结点的最大度数称为;树的最大层次称为_____________。
3.对于一棵具有n个结点的树,该树中所有结点的度数之和为___________。
4.如果结点A有3个兄弟结点,而且B是A的双亲,则B的度是___________。
5.二叉树是另一种树形结构,它的特点是。
6.一颗度数为k且有2k-1个结点的二叉树称为。
7.深度为k,且有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1到n的结点一一对应时,称之为。
8.一棵深度为6的满二叉树有个分支结点和个叶子。
9.一棵具有257个结点的完全二叉树,它的深度为。
10.设一棵完全二叉树具有1000个结点,则此完全二叉树有个叶子结点,有个度为2的结点,有个结点只有非空左子树,有个结点只有非空右子树。
11.由3个结点可以构成__________种形态的的二叉树,可以构成种形态的树。
12.将含有82个结点的完全二叉树从根结点开始顺序编号,根结点为第1号,其他结点自上向下,同一层自左向右连续编号。
则第40号结点的双亲结点的编号为。
13.一棵高度为5的完全二叉树中,最多包含有____________个结点。
14.一棵具有n个结点的二叉树,若它有n0个叶子结点,则该二叉树上度为1的结点n1=____________。
15.在高度为h(h>=0)的二叉树中至多可以有__________个结点,至少可以有___________个结点。
16.n个结点的二叉树最大高度是____________,最小高度是_______________。
二、选择题1.( )不含任何结点的空树()。
A.是一棵树B.是一棵二叉树C.是一棵树也是一棵二叉树D.既不是树也不是二叉树2.()一棵度为4的树中度为1、2、3、4的结点个数为4、3、2、1,则该树的结点总数为()。
第6章_数据结构习题题目及答案_树和二叉树_参考答案
一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。
【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。
【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。
本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。
虽然解法也对,但步骤多且复杂,极易出错。
6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。
【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。
6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。
【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。
若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。
6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。
计算机学科专业基础综合数据结构-树与二叉树(二)
计算机学科专业基础综合数据结构-树与二叉树(二)(总分:100.00,做题时间:90分钟)一、{{B}}单项选择题{{/B}}(总题数:44,分数:44.00)1.在下面关于树的相关概念的叙述中,正确的是______。
∙ A.只有一个结点的二叉树的度为1∙ B.二叉树的度一定为2∙ C.二叉树的左右子树可任意交换∙ D.深度为K的完全二叉树的结点个数小于或等于深度相同的满二叉树(分数:1.00)A.B.C.D. √解析:只有一个结点的二叉树的度为零。
二叉树的度可以为0、1、2;二叉树的左右子树不能任意交换。
2.已知一算术表达式的中缀形式为A+B+C-D/E,后缀形式为ABC*+DE/-,其前缀形式为______。
∙ A.-A+B*C/DE∙ B.-A+B*CD/E∙ C.-+*ABC/DE∙ D.-+A*BC/DE(分数:1.00)A.B.C.D. √解析:根据题目给出的中缀和后缀表达式可以得到其算术表达式为:(A+B*C)-D/E,前缀表达式:-+A*BC/DE。
3.算术表达式a+b*(c+d/e)转为后缀表达式后为______。
∙ A.ab+cde/*∙ B.abcde/+*+∙ C.abcde/*++∙ D.abcde*/++(分数:1.00)A.B. √C.D.解析:根据表达式a+b*(c+d/e)可知其后缀表达式为abcde/+*+。
4.某二叉树的先序遍历序列为IJKLMNO,中序遍历序列为JLKINMO,则后序遍历序列是______。
∙ A.JLKMNOI∙ B.LKNJOMI∙ C.LKJNOMI∙ D.LKNOJMI(分数:1.00)A.B.C. √D.解析:由先序和中序遍历序列确定一棵二叉树,再给出这棵二叉树的后序遍历序列。
[*] 由此图可以确认后序遍历的序列为LKJNOMI。
5.设森林F对应的二叉树为B,它有m个结点,B的根为P,P的右子树结点个数为n,森林F中第一棵树的结点个数是______。
树和叉树(数据结构)
第六章树和二叉树 6.1树(tree)的概念在日常生活中,可以见到很多情形可以归结为树结构。
如:家族谱系、行政管理机构、DOS和Windows 磁盘文件管理系统等。
我们讨论的树和自然界的树在生长方向上正好相反,它是倒长的树,即根朝上,枝干和叶子朝下。
例1:某家族谱系的一部分例2:国家行政管理机构的一部分例3:DOS和Windows磁盘文件的一部分C:\TC20VC6.0数据结构课件数据结构讲稿第一章第二章……MyTc程序Tc1Tc2……MyVc程序Vc1Vc2……树是一种层次结构,属于非线性结构。
我们学过的线性表可以灵活组织数据,但它受到线性结构的限制,表达层次结构不太方便。
6.1.1树的定义·树T是n(n≥0)个结点的有限集合。
它满足:(1)仅有一个特定的结点,称为根(root)结点;(2)其余结点分为m(m≥0)个互不相交的非空有限集合T,1,T2,……,T m,其中每个集合自身又是一棵树,称为根的子树(subtree)。
·为了表述方便,把没有结点的树称为空树。
·树的定义具有递归性:即一棵树是由根及若干棵子树构成的,而子树又是由根及若干棵子树构成的,……。
表达树的方法通常有4种:树形、凹入、集合和广义表(1) 树形表示法AB C DE F G H(2)凹入表示法ABCEFDGH(3)集合嵌套表示法A○E C○F○G D○H B(4)广义表表示法T(A(B,C(E,F),D(G,H)))6.1.3 树的基本术语为了对树的形态表述清楚和形象,通常引用树和人的特征及术语来描述。
(1)结点和树的度(degree)结点所拥有的子树的个数称为该结点的度,而树中各结点的度的最大值称为该树的度。
AB C DE F G H如:·结点B、E、F、G和H的度数是0·结点C和D的度数都是2·结点A的度数是3;显然3也是树的度数(2)叶子(leaf)结点和分支结点度为0的结点称为叶子结点(终端结点);度不为0的结点称为分支结点(非终端结点)。
第6章树和二叉树(2)培训讲学
第6章树和二叉树(2)第六章树和二叉树一、选择题1.算术表达式a+b*(c+d/e)转为后缀表达式后为()A.ab+cde/* B.abcde/+*+ C.abcde/*++ D.abcde*/++2. 设森林F对应的二叉树为B,它有m个结点,B的根为p,p的右子树结点个数为n,森林F中第一棵树的结点个数是()A.m-n B.m-n-1 C.n+1 D.条件不足,无法确定3.若度为m的哈夫曼树中,其叶结点个数为n,则非叶结点的个数为()。
A.n-1 B.⎣n/m⎦-1 C.⎡(n-1)/(m-1)⎤ D.⎡n/(m-1)⎤-1E.⎡(n+1)/(m+1)⎤-14.深度为h的满m叉树的第k层有()个结点。
(1=<k=<h)A.m k-1 B.m k-1 C.m h-1 D.m h-15. 若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则x的前驱为( )A.X的双亲B.X的右子树中最左的结点C.X的左子树中最右结点D.X的左子树中最右叶结点6. 引入二叉线索树的目的是()A.加快查找结点的前驱或后继的速度 B.为了能在二叉树中方便的进行插入与删除C.为了能方便的找到双亲 D.使二叉树的遍历结果唯一7.由3 个结点可以构造出多少种不同的二叉树?()A.2 B.3 C.4 D.58.下述编码中哪一个不是前缀码()。
A.(00,01,10,11) B.(0,1,00,11) C.(0,10,110,111)D.(1,01,000,001)二、判断题1. 给定一棵树,可以找到唯一的一棵二叉树与之对应。
2.将一棵树转成二叉树,根结点没有左子树;3. 在中序线索二叉树中,每一非空的线索均指向其祖先结点。
4. 一棵哈夫曼树的带权路径长度等于其中所有分支结点的权值之和。
5.当一棵具有n个叶子结点的二叉树的WPL值为最小时,称其树为Huffman树,且其二叉树的形状必是唯一的。
三、填空题1.一棵树T中,包括一个度为1的结点,两个度为2的结点,三个度为3的结点,四个度为4的结点和若干叶子结点,则T的叶结点数为___ ___。
《数据结构》复习题-第6章-树和二叉树
《数据结构》复习题-第6章-树和⼆叉树第六章树和⼆叉树⼀、选择题1.已知⼀算术表达式的中缀形式为 A+B*C-D/E,后缀形式为ABC*+DE/-,其前缀形式为( )A.-A+B*C/DEB. -A+B*CD/EC.-+*ABC/DED. -+A*BC/DE【北京航空航天⼤学 1999 ⼀、3 (2分)】4. 设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T中的叶⼦数为()A.5 B.6 C.7 D.8【南京理⼯⼤学 2000 ⼀、8 (1.5分)】5. 在下述结论中,正确的是()【南京理⼯⼤学 1999 ⼀、4 (1分)】①只有⼀个结点的⼆叉树的度为0; ②⼆叉树的度为2;③⼆叉树的左右⼦树可任意交换;④深度为K的完全⼆叉树的结点个数⼩于或等于深度相同的满⼆叉树。
A.①②③ B.②③④ C.②④ D.①④6. 设森林F对应的⼆叉树为B,它有m个结点,B的根为p,p的右⼦树结点个数为n,森林F中第⼀棵树的结点个数是()A.m-n B.m-n-1 C.n+1 D.条件不⾜,⽆法确定【南京理⼯⼤学2000 ⼀、17(1.5分)】8.若⼀棵⼆叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定【北京⼯商⼤学2001⼀.7(3分)】9.在⼀棵三元树中度为3的结点数为2个,度为2的结点数为1个,度为1的结点数为2个,则度为0的结点数为()个A.4 B.5 C.6 D.7 【哈尔滨⼯业⼤学 2001⼆、2 (2分)】10.设森林F中有三棵树,第⼀,第⼆,第三棵树的结点个数分别为M1,M2和M3。
与森林F对应的⼆叉树根结点的右⼦树上的结点个数是()。
【北⽅交通⼤学 2001 ⼀、16 (2分)】A.M1 B.M1+M2 C.M3 D.M2+M311.具有10个叶结点的⼆叉树中有()个度为2的结点,【北京航空航天⼤学2000 ⼀、5(2分)】A.8 B.9 C.10 D.ll16. 有关⼆叉树下列说法正确的是()【南京理⼯⼤学 2000 ⼀、11 (1.5分)】A.⼆叉树的度为2 B.⼀棵⼆叉树的度可以⼩于2 C.⼆叉树中⾄少有⼀个结点的度为2 D.⼆叉树中任何⼀个结点的度都为217.⼆叉树的第I层上最多含有结点数为()【中⼭⼤学1998⼆、7 (2分)】【北京理⼯⼤学 2001 六、5(2分)】A.2I B. 2I-1-1 C. 2I-1 D.2I -118. ⼀个具有1025个结点的⼆叉树的⾼h为()【南京理⼯⼤学 1999 ⼀、19 (2分)】A.11 B.10 C.11⾄1025之间 D.10⾄1024之间19.⼀棵⼆叉树⾼度为h,所有结点的度或为0,或为2,则这棵⼆叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+1 【南京理⼯⼤学2001⼀、11(1.5分)】22.深度为h的满m叉树的第k层有()个结点。
《数据结构——C语言描述》第6章:树
先根遍历: -+a*b–cd/ef 中根遍历: a+b*c–d–e/f 后根遍历: abcd-*+ef/-
typedef struct Node { datatype data; struct Node *Lchild; struct Node *Rchild; } BTnode,*Btree;
满二叉树:一棵深度为k且有2k-1个结 点的二叉树称为满二叉树。 完全二叉树:深度为k,有n个结点的 二叉树当且仅当其每一个结点都与深度 为k的满二叉树中编号从1至n的结点一一 对应时,称为完全二叉树。
1 2 4 8 9 10 5 11 12 6 13 14 3 7 15 4 6 2
1 3 5 7
树的度:树中最大的结点的度数即为 树的度。图6.1中的树的度为3。 结点的层次(level):从根结点算起, 根为第一层,它的孩子为第二层……。 若某结点在第l层,则其孩子结点就在 第l+1层。图6.1中,结点A的层次为1, 结点M的层次为4。 树的高度(depth):树中结点的最大层 次数。图6.1中的树的高度为4。 森林(forest):m(m≥0)棵互不相交的 树的集合。
第六章-树和二叉树
之
树 和 二 叉 树 13
1 2 3 A B C
4 5 6 7 0 D E F
8 0
9 10 0 G
¾ 二叉树顺序存储的算法描述
数 据 结 构
¾ 初始化二叉树
之
树 和 二 叉 树 14
#define Max_Size 100 typedef int TElemType; typedef TElemType SqBT[Max_Size+1]; void InitBT(SqBT bt){//设置空树 int i; for(i=1;i<=Max_Size;i++) bt[i]=0; }
数 据 结 构
之
树 和 二 叉 树 19
¾ 后序遍历顺序二叉树算法 void PostBT(SqBT bt,int i){ if(i>Max_Size||!bt[i]) return; PostBT(bt,2*i); PostBT(bt,2*i+1); printf("%3d ",bt[i]); }
数 据 结 构
之
树 和 二 叉 树 4
5. 孩子结点、双亲结点、兄弟结点、堂兄弟 结点、祖先结点、子孙结点…… 6. 结点的层次从根开始,根为第一层,根的 孩子为第二层;若某结点在第L层,则其 子树的根就在第L+1层。 7. 树的深度或高度:树中结点的最大层次。 8. 有序树:如果将树中结点的各子树看成是 从左至右有次序的;反之,则是无序树。 9. 森林:是m棵互不相交的树的集合。
数 据 结 构
之
树 和 二 叉 树 25
¾ 打印一维数组 void printSq(SqBT bt){ int i; printf("\nSeqArray:"); for(i=1;i<=Max_Size;i++) printf("%3d ",bt[i]); }
数据结构——用C语言描述(第3版)教学课件第6章 树与二叉树
6.2 二叉树 6.2.1 二叉树的定义与基本操作 6.2.2 二叉树的性质 6.2.3 二叉树的存储结构
6.2.1 二叉树的定义与基本操作 定义:我们把满足以下两个条件的树型结构叫做二 叉树(Binary Tree): (1)每个结点的度都不大于2; (2)每个结点的孩子结点次序不能任意颠倒。
有序树:在树T中,如果各子树Ti之间是有先后次序的,则称为有序树。 森林:m(m≥0)棵互不相交的树的集合。将一棵非空树的根结点删去,树就变成一 个森林;反之,给森林增加一个统一的根结点,森林就变成一棵树。
同构:对两棵树,通过对结点适当地重命名,就可以使两棵树完全相等(结点对应相 等,对应结点的相关关系也像等),则称这两棵树同构。
二叉树的基本结构由根结点、左子树和右子树组成
如图示
LChild Data RChild
Data
LChild RChild
用L、D、R分别表示遍历左子树、访问根结点、遍 历右子树,那么对二叉树的遍历顺序就可以有:
(1) 访问根,遍历左子树,遍历右子树(记做DLR)。 (2) 访问根,遍历右子树,遍历左子树(记做DRL)。 (3) 遍历左子树,访问根,遍历右子树(记做LDR)。 (4) 遍历左子树,遍历右子树,访问根 (记做LRD)。 (5) 遍历右子树,访问根,遍历左子树 (记做RDL)。 (6) 遍历右子树,遍历左子树,访问根 (记做RLD)。
(8) NextSibling(Tree,x): 树Tree存在,x是Tree中的某个结点。若x不 是其双亲的最后一个孩子结点,则返回x后面的下一个兄弟结点,否则 返回“空”。
基本操作:
(9) InsertChild(Tree,p,Child): 树Tree存在,p指向Tree 中某个结点,非空树Child与Tree不相交。将Child插入Tree中, 做p所指向结点的子树。
数据结构PPT(树和二叉树)
徽 理
第6章 树和二叉树
工
大 本章学习导读
学
树型结构是一类重要的非线性结构。它的特点是结点之
间有分支,并具有明显的层次关系的结构。树在计算机领
域中有着广泛的应用,例如在编译程序中,用树来表示源
程序的语法结构;在数据库系统中,可用树来组织信息;
在分析算法的行为时,可用树来描述其执行过程。
本章重点讨论二叉树的存储表示及其各种运算,并研究
假设对所有j, 1≤j﹤i,命题成立,即第j层上至多有2 j-1 个
结点。
由归纳假设第i-1 层上至多有 2i -2个结点。
由于二叉树的每个结点的度至多为2,故在第i层上的最大结
点数为第i-1层上的最大结点数的2倍,即2×2i -2= 2 i-1。
安
徽 理
6.2.2 二叉树的性质
工
大 学
性质2 深度为 k 的二叉树至多有 2 k-1个结点(k ≥1)。
一般树和森林与二叉树的转换关系,最后介绍树的应用实
例。
安
徽 理
6.1 树的定义和基本术语
工
大 学
❖ 什么是树?树是由 n (n ≥ 0) 个结点的有限集合。如果 n
= 0,称为空树;如果 n > 0,则
▪ 有且仅有一个特定的称之为根(Root)的结点,它只有直
接后继,但没有直接前驱;
▪ 当n > 1,除根以外的其它结点划分为 m (m >0) 个互不
相交的有限集 T1, T2 ,…, Tm,其中每个集合本身又是一棵 树,并且称为根的子树(SubTree)。
安
徽 理
树的示例
A
工
B
C
D
大
学
E
严蔚敏《结构(c语言)习题集》答案第六章树和二叉树文库
严蔚敏《数据结构(c语言版>习题集》答案第六章树和二叉树文库.txt师太,你是我心中的魔,贫僧离你越近,就离佛越远……初中的体育老师说:谁敢再穿裙子上我的课,就罚她倒立。
第六章树和二叉树6.33int Is_Descendant_C(int u,int v>//在孩子存储结构上判断u是否v的子孙,是则返回1,否则返回0{if(u==v> return 1。
else{if(L[v]>if (Is_Descendant(u,L[v]>> return 1。
if(R[v]>if (Is_Descendant(u,R[v]>> return 1。
//这是个递归算法}return 0。
}//Is_Descendant_C6.34int Is_Descendant_P(int u,int v>//在双亲存储结构上判断u是否v的子孙,是则返回1,否则返回0{for(p=u。
p!=v&&p。
p=T[p]>。
if(p==v> return 1。
else return 0。
}//Is_Descendant_P6.35这一题根本不需要写什么算法,见书后注释:两个整数的值是相等的.6.36int Bitree_Sim(Bitree B1,Bitree B2>//判断两棵树是否相似的递归算法{if(!B1&&!B2> return 1。
else if(B1&&B2&&Bitree_Sim(B1->lchild,B2->lchild>&&Bitree_Sim(B1->rchild,B2->rchild>>return 1。
else return 0。
}//Bitree_Sim6.37void PreOrder_Nonrecursive(Bitree T>//先序遍历二叉树的非递归算法{InitStack(S>。
第6章_数据结构习题题目及答案_树和二叉树_参考答案
一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。
【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。
【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。
本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。
虽然解法也对,但步骤多且复杂,极易出错。
6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。
【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。
6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。
【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。
若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。
6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。
第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
即 k-1 ≤ log2 n < k
因为 k 只能是整数,因此, k =log2n + 1
问题:
一棵含有n个结点的二叉树,可能达 到的最大深度和最小深度各是多少?
1
答:最大n,
2
最小[log2n] + 1
第六章 树和二叉树教案
二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
树是常用的数据结构
•家族 •各种组织结构 •操作系统中的文件管理 •编译原理中的源程序语法结构 •信息系统管理 •。。。。
2
6.1 树的类型定义 6.2 二叉树的类型定义
6.2.3 二叉树的存储结构 6.3 二叉树的遍历
二叉树上每个结点至多有两棵子树, 则第 i 层的结点数 = 2i-2 2 = 2i-1 。
性质 2 :
深度为 k 的二叉树上至多含 2k-1 个 结点(k≥1)。
证明:
基于上一条性质,深度为 k 的二叉
树上的结点数至多为
20+21+ +2k-1 = 2k-1 。
(等比数列求和)
k
k
(第i层的最大结点数) 2i1 2k
i 1
i 1
性质 3 :
对任何一棵二叉树,若它含有n0 个叶 子结点(0度节点)、n2 个度为 2 的结 点,则必存在关系式:n0 = n2+1。
证明:
设 二叉树上结点总数 n = n0 + n1 + n2 又 二叉树上分支总数 b = n1+2n2
而 b = n-1 = n0 + n1 + n2 - 1 由此, n0 = n2 + 1 。
第六章树与二叉树2-1遍历二叉树
?
先序序列: A, B, D, E, J, C, F, I, G 中序序列: D, B, J, E, A, F, I, C, G
先序序列: A, B, D, E, J, C, F, I, G 中序序列: D, B, J, E, A, F, I, C, G
A
D,B,J, E F,I,C,G
A B D J, E F,I,C,G
viod PreOrderTraverse(BiTree T, Status(*Visit)(TElemType e)) { if (T) { Visit(T->data); PreOrderTraverse(T->lchild, Visit); PreOrderTraverse(T->rchild, Visit); }//if }//PreOrderTraverse void leaf(BiTree T) { if(T) { if (T->lchild==NULL&&T->rchild==NULL) n=n+1; leaf(T->lchild); leaf(T->rchild); }//if }//leaf
先序序列:A
B D C
printf(C); pre(T L); pre(T R);
T
返回
二、遍历的算法描述 先序遍历 非递归算法
算法的关键:在前序遍历过某结点的整个左子树后, 如何找到该结点的右子树的根指针。 解决办法:在访问完该结点后,将该结点的指针保存 在栈中,以便以后能通过它找到该结点的右子树。 在前序遍历中,设要遍历二叉树的根指针为T,则有 两种可能: ⑴ 若T!=NULL,则表明?如何处理? ⑵ 若T=NULL,则表明?如何处理?
数据结构详细教案——树与二叉树
数据结构教案第六章树与二叉树目录6.1树的定义和基本术语 (1)6.2二叉树 (2)6.2.1 二叉树的定义 (2)6.2.2 二叉树的性质 (4)6.2.3 二叉树的存储结构 (5)6.3树和森林 (6)6.4二叉树的先|中|后序遍历算法 (7)6.5先|后|中序遍历的应用扩展 (9)6.5.1 基于先序遍历的二叉树(二叉链)的创建 (9)6.5.2 统计二叉树中叶子结点的数目 (9)6.5.3 求二叉树的高度 (10)6.5.4 释放二叉树的所有结点空间 (11)6.5.5 删除并释放二叉树中以元素值为x的结点作为根的各子树 (12)6.5.6 求位于二叉树先序序列中第k个位置的结点的值 (12)6.5.7 线索二叉树 (13)6.5.8 树和森林的遍历 (14)6.6二叉树的层次遍历 (16)6.7判断一棵二叉树是否为完全二叉树 (16)6.8哈夫曼树及其应用 (18)6.8.1 最优二叉树(哈夫曼树) (18)6.8.2 哈夫曼编码 (19)6.9遍历二叉树的非递归算法 (19)6.9.1 先序非递归算法 (19)6.9.2 中序非递归算法 (20)6.9.3 后序非递归算法 (21)第6章二叉树和树6.1 树的定义和基本术语1、树的递归定义1)结点数n=0时,是空树2)结点数n>0时有且仅有一个根结点、m个互不相交的有限结点集——m棵子树2、基本术语结点:叶子(终端结点)、根、内部结点(非终端结点、分支结点);树的规模:结点的度、树的度、结点的层次、树的高度(深度)结点间的关系:双亲(1)—孩子(m),祖先—子孙,兄弟,堂兄弟兄弟间是否存在次序:无序树、有序树去掉根结点非空树森林引入一个根结点3、树的抽象数据类型定义树特有的操作:查找:双亲、最左的孩子、右兄弟结点的度不定,给出这两种操作可以查找到一个结点的全部孩子插入、删除:孩子遍历:存在一对多的关系,给出一种有规律的方法遍历(有且仅访问一次)树中的结点ADT Tree{数据对象:D={a i | a i∈ElemSet, i=1,2,…,n, n≥0}数据关系:若D为空集,则称为空树;若D仅含一个数据元素,则R为空集,否则R={H},H是如下二元关系:(1) 在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2) 若D-{root}≠Ф,则存在D-{root}的一个划分D1, D2, …, D m (m>0)(D i 表示构成第i棵子树的结点集),对任意j≠k (1≤j, k≤m) 有D j∩D k=Ф,且对任意的i (1≤i≤m),唯一存在数据元素x i∈D i, 有<root,x i>∈H(H表示结点之间的父子关系);(3) 对应于D-{root}的划分,H-{<root, x1>,…, <root, x m>}有唯一的一个划分H1, H2, …, H m(m>0)(H i表示第i棵子树中的父子关系),对任意j≠k(1≤j,k≤m)有H j∩H k=Ф,且对任意i(1≤i≤m),H i是D i上的二元关系,(D i, {H i})是一棵符合本定义的树,称为根root的子树。
第6章树和二叉树(下)-数据结构简明教程(第2版)-微课版-李春葆-清华大学出版社
6.6
【例6.16】 已知先序序列为ABDECFG,中序序列为DBEACGF,
给出构造该二叉树的过程。
解:构造该二叉树的过程如下所示。
根:A 左先序:BDE 右先序:CFG 右中序:DBE 右中序:CGF
二
叉 树
根:B 左先序:D 右先序:E
根:C 左先序:空 右先序:FG
的
右中序:D 右中序:E
右子树中
序序列, 有n-k-1 个结点
的
构 造
若bk前面有k个结点,则左子树有k个结点,右子树有n-k-1 个结点。
可以求出左右子树的中序序列和后序序列。
这样根结点是确定的,左右子树也是确定的,则该二叉树是 确定的。
6.6
【例6.17】 已知一棵二叉树的后序遍历序列为DEBGFCA,
中序遍历序列为DBEACGF,给出构造该二叉树的过程。
间 的
以树的根结点为轴心,将整棵树顺时针转动45度,使之结
转
构层次分明。
换
【例6.18】 将图6.27(a)所示的树转换成二叉树。 解:转换的过程:
A
A
6.7
BC D
二
叉 树
EF
G
与
一棵树
树 之
A
间
的
B
转
换
E
C
相邻兄弟之间 加连线(虚线)
BC D
EF
G
删除与双亲 结点的连线
转换后的二叉树
A BC D
【例6.15】 一棵二叉树的先序遍历序列和中序遍历序列相同,
说明该二叉树的形态。
解:二叉树的先序遍历序列为NLR,中序遍历序列为LNR:
NLR = LNR
二 则L应为空(因为N为空后其L、R没有意义)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LeftChild(T,e); ( , ); 初始条件:二叉树 存在 是 中某个结点 存在, 初始条件:二叉树T存在,e是T中某个结点 操作结果:返回 的左孩子 的左孩子, 操作结果:返回e的左孩子, 无左孩子, 若e无左孩子,否则返回空 无左孩子
RightChild(T,e); ( , ); 初始条件:二叉树 存在 是 中某个结点 存在, 初始条件:二叉树T存在,e是T中某个结点 操作结果:返回 的右孩子 的右孩子, 操作结果:返回e的右孩子, 若e无右孩子,否则返回空 无右孩子, 无右孩子
◆ 但i=1时,只有一个根结点,显然, 2i-1=20=1 时 只有一个根结点,显然, 是对的
二叉树的性质
⑵ induction hypothesis(归纳法的假设) (归纳法的假设)
★ For all j,1≤j <i, The maximum number of , , nodes on level j is 2j-1.
InsertChild(T,P,LR,c); ( , , , );
初始条件:二叉树 存在 存在, 指向 中某个结点, 指向T中某个结点 初始条件:二叉树T存在,p指向 中某个结点, LR为0或1, 为 或 , 非空二叉树c与 不相交且右子树为空 非空二叉树 与T不相交且右子树为空
操作结果:根据 为 或 ,插入c为 中 所指结点的 操作结果:根据LR为0或1,插入 为T中p所指结点的 左或右子树; 所指向结点的原有左或右 左或右子树; p所指向结点的原有左或右 子树成为c的右子树 子树成为 的右子树
二叉树的性质
★ If we count the number of branches in a binary tree,we see that every node except the root has , a branch leading into it. If B is the number of branches,then n=B+1 , 再看二叉树中的分支数。除了根结点外, ◆ 再看二叉树中的分支数。除了根结点外,其余 结点都有一个分支进入, 为分支总数, 结点都有一个分支进入,设B为分支总数, 则 为分支总数 n=B+1
二叉树的性质
★ All branches stem from a node of degree one or two. Thus,B=n1+2n2,Hence,we obtain: , , n=1+n1+2n2 (**) ) 由于这些分支是由度1或 的结点射出的 的结点射出的, ◆ 由于这些分支是由度 或2的结点射出的,所有 B=n1+2n2,于是得 于是得n=1+n1+2n2
★ The maximum number of nodes in a binary tree of depth k is:
k
∑ (max imum
i =1 k i =1
number of nodes on level i )
= ∑ 2i 1 = 2 k 1
3、 性质 :For any nonempty binary tree T,if n0 、 性质3: , is the number of leaf nodes and n2 the number of nodes fo degree 2,then n0 =n2+1 ,
◆
深度为k的 个结点的二叉树, 深度为 的,有n个结点的二叉树,当且仅当其 个结点的二叉树 每一个结点都与深度为k的满二叉树编号从 至 每一个结点都与深度为 的满二叉树编号从1至 的满二叉树编号从 n的结点一一对应时,称之为完全二叉树 的结点一一对应时, 的结点一一对应时
完全二叉树的概念
★ 二叉树的特点
二叉树的性质
),and ★ Subtracting Eq.(*) from Eq.(**), ( ) ( ), rearranging terms,we get: , n0 得到 0 =n2+1
三、 满二叉树和完全二叉树
1、 满二叉树的概念 、 满二叉树的概念
1、 性质 :The maximum number of nodes on level i 、 性质1: of a binary tree is 2i-1( i≥1 ) ≥
★
在二叉树的第i层上至多有 个结点( ≥ 在二叉树的第 层上至多有2i-1个结点( i≥1 ) 层上至多有
二叉树的性质
★ The proof is by induction on i.
数据关系R: 数据关系 : // 同树的数据关系定义很类似
基本操作P: 基本操作 :
Parent(T,e); ( , ); 初始条件:二叉树 存在 是 中某个结点 存在, 初始条件:二叉树T存在,e是T中某个结点 操作结果: 是 的非根结点 则返回它的双亲, 的非根结点, 操作结果:若e是T的非根结点,则返回它的双亲, 否则返回空
★
Relation between number of leaf nodes and number of nodes of degree 2.
★
对任何一棵二叉树T,如果其终端结点数为 对任何一棵二叉树 ,如果其终端结点数为n0, 度为2的结点数为 2,则n0 =n2+1 度为 的结点数为n 的结点数为
二叉树的定义
它或为空树( ◆ 它或为空树(n=0), 或由一个根结点和两棵 ) 分别称为根的左子树和右子树的, 分别称为根的左子树和右子树的,互不相交的 二叉树组成
特别注意: ◆ 特别注意:二叉树不是树的特殊情况
b
b
两棵不同的二叉树
二叉树的定义
★ The chief characteristic of a binary tree is the stipulation that the degree of any given node must not exceed two.
第二节 二叉树
一、 二叉树的定义
1、 二叉树的定义 、
★
二叉树( 二叉树(Binary Tree) )
二叉树的定义
★ A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the left subtrees and the right subtrees. 二叉树是n( ≥ ) ◆ 二叉树是 (n≥0)个结点的有限集合
⑴ 叶子结点只可能在层次最大的两层上出现
对任一结点, ⑵ 对任一结点,若其右分支下的子孙的最大层次 为l,则其左分支下的子孙的最大层次必为 或l+1 ,则其左分支下的子孙的最大层次必为l或
3、 性质 :具有 个结点的完全二叉树的深度为 、 性质4:具有n个结点的完全二叉树的深度为 [log2n]+1
2、 性质 :The maximum number of nodes in a 、 性质2: binary tree of depth k is 2k-1( k≥1) ( ≥ )
★
深度为k的二叉树至多有 个结点( ≥ 深度为 的二叉树至多有2k-1 个结点( k≥1 ) 的二叉树至多有
二叉树的性质
二叉树的性质
★ Let n1 be the number of nodes of degree one and n the total number of nodes. Since all nodes in T are of degree at most two,we have: , n=n0+n1+n2 (*) ) 为二叉树T中度为 的结点数, 中度为1的结点数 ◆ 设n1为二叉树 中度为 的结点数,因为二叉树中 所有结点的度均小于等于2,所以其结点总数为: 所有结点的度均小于等于 ,所以其结点总数为: n=n0+n1+n2
DeleteChild(T,P,LR); ( , , );
初始条件:二叉树 存在 存在, 指向 中某个结点, 指向T中某个结点 初始条件:二叉树T存在,p指向 中某个结点, LR为0或1 为 或
操作结果:根据 为 或 ,删除p所指结点的 操作结果:根据LR为0或1,删除 所指结点的 左或右子树
3、 二叉树的 种基本形态 、 二叉树的5种基本形态
LeftSibling(T,e); ( , ); 初始条件:二叉树 存在 是 中某个结点 存在, 初始条件:二叉树T存在,e是T中某个结点 操作结果:返回 的左兄弟 的左兄弟, 操作结果:返回e的左兄弟, 无左兄弟, 若e无左兄弟,否则返回空 无左兄弟
RightSibling(T,e); ( , ); 初始条件:二叉树 存在 是 中某个结点 存在, 初始条件:二叉树T存在,e是T中某个结点 操作结果:返回 的右兄弟 的右兄弟, 操作结果:返回e的右兄弟, 若e无右兄弟,否则返回空 无右兄弟, 无右兄弟
现在假定对所有的j, ◆ 现在假定对所有的 , 1≤j <i,命题成立,即 ,命题成立, 层上至多有2 第j层上至多有 j-1个结点,那么可以证明 时 层上至多有 个结点,那么可以证明j=i时 命题也成立
二叉树的性质
⑶ induction step(归纳步骤) (归纳步骤)
★ The maximum number of nodes on level i-1 is 2i-2 by the induction hypothesis. Since each nodes in a binary tree has a maximum degree of 2, , The maximum number of nodes on level i is two times the maximum number of nodes on level i-1 or 2i-1