2019年甘肃省陇南市中考数学试卷word解析

合集下载

2019年甘肃省陇南市中考数学试卷(解析版)

2019年甘肃省陇南市中考数学试卷(解析版)

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次3109204849791803139699数频率0.5060.5070.4980.5010.49213.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+√m x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|√2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共82.0分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:√3取1.73).23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.25.如图,已知反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一象限交于A(1,x3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交一次函上的图象于点N.若PM>PN,结合函数图数y=-x+b的图象于点M,交反比例函数y=kx象直接写出a的取值范围.26.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2√3,求⊙D的半径.27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】D【解析】解:0.000000007=7×10-9;故选:D.由科学记数法知0.000000007=7×10-9;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)×180°=540°,故选:C.根据多边形内角和公式(n-2)×180°即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得2x+9≥3x+6,移项,合并得-x≥-3系数化为1,得x≤3;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.【答案】B【解析】解:-=-==.故从第②步开始出现错误.故选:B.直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC=12,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.【答案】0.5【解析】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x2-4x+5=x2-4x+4+1=(x-2)2+1,所以,y=(x-2)2+1.故答案为:y=(x-2)2+1.利用配方法整理即可得解.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).16.【答案】4-π【解析】解:如图:新的正方形的边长为1+1=2, ∴恒星的面积=2×2-π=4-π. 故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可. 本题考查了扇形面积的计算,关键是理解恒星的面积=边长为2的正方形面积-半径为1的圆的面积. 17.【答案】85或14【解析】解:①当∠A 为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A 为底角时,顶角的度数为:180°-80°-80°=20° ∴特征值k==综上所述,特征值k 为或 故答案为或可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A 的底数,要进行判断是底角或顶角,以免造成答案的遗漏. 18.【答案】13a +21b【解析】解:由题意知第7个数是5a+8b ,第8个数是8a+13b ,第9个数是13a+21b , 故答案为:13a+21b .由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案. 本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.19.【答案】解:(-2)2-|√2-2|-2cos45°+(3-π)0, =4-(2-√2)-2×√22+1,=4-2+√2-√2+1, =3. 【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.【答案】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得:{12x +20y =14412y+20x=112, 解得:{y =6x=2,答:中性笔和笔记本的单价分别是2元、6元. 【解析】根据对话分别利用总钱数得出等式求出答案.此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键. 21.【答案】25π【解析】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB==5,∴S圆O=π•52=25π.故答案为25π.(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF 是矩形, ∴CE =FH ,在Rt △ACE 中,∵AC =40cm ,∠A =60°,∴CE =AC •sin60°=34.6(cm ), ∴FH =CE =34.6(cm ) ∵DH =49.6cm ,∴DF =DH -FH =49.6-34.6=15(cm ), 在Rt △CDF 中,sin ∠DCF =DF CD =1530=12, ∴∠DCF =30°,∴此时台灯光线为最佳. 【解析】如图,作CE ⊥AB 于E ,DH ⊥AB 于H ,CF ⊥DH 于F .解直角三角形求出∠DCF 即可判断.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C .“园艺小清新之旅”的概率是14; (2)画树状图分析如下: 共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为416=14. 【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,∴其中位数c==78,八年级成绩的众数d=81,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25.【答案】解:(1)∵反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一象限x交于A(1,3),B(3,1)两点,∴3=k,3=-1+b,1∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=3,y=-x+4;x(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)利用待定系数法即可求得;(2)根据图象可解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.26.【答案】(1)证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°-60°-30°=90°,∴AC是⊙D的切线;(2)解:连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED-∠C=30°,∴∠EAC=∠C,∴AE=CE=2√3,∴⊙D的半径AD=2√3.【解析】(1)连接AD,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°-60°-30°=90°,于是得到AC是⊙D的切线;(2)连接AE,推出△ADE是等边三角形,得到AE=DE,∠AED=60°,求得∠EAC=∠AED-∠C=30°,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,如图所示:则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,∴△EB 1C 1是等腰直角三角形,∴∠B 1EC 1=∠B 1C 1E =45°,∵N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点,∴∠M 1C 1N 1=90°+45°=135°,∴∠B 1C 1E +∠M 1C 1N 1=180°,∴E 、C 1、N 1,三点共线,在△A 1B 1M 1和△EB 1M 1中,{A 1B 1=EB 1∠A 1B 1M 1=∠EB 1M 1B 1M 1=B 1M 1,∴△A 1B 1M 1≌△EB 1M 1(SAS ),∴A 1M 1=EM 1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A 1M 1N 1=180°-90°=90°.【解析】延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1,得出△EB 1C 1是等腰直角三角形,由等腰直角三角形的性质得出∠B 1EC 1=∠B 1C 1E=45°,证出∠B 1C 1E+∠M 1C 1N 1=180°,得出E 、C 1、N 1,三点共线,由SAS 证明△A 1B 1M 1≌△EB 1M 1得出A 1M 1=EM 1,∠1=∠2,得出EM 1=M 1N 1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论. 此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.28.【答案】解:(1)由二次函数交点式表达式得:y =a (x +3)(x -4)=a (x 2-x -12), 即:-12a =4,解得:a =-13,则抛物线的表达式为y =-13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(-3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =4√2,∠OAB =∠OBA =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =-x +4…①,同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为M (-32,4),过点M 与CA 垂直直线的表达式中的k 值为-34,同理可得过点M 与直线AC 垂直直线的表达式为:y =-34x +78…②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7-n ,由勾股定理得:(7-n )2+n 2=25,解得:n =3或4(舍去4),故点Q (1,3);②当AC =CQ 时,如图1,CQ =5,则BQ =BC -CQ =4√2-5,则QM =MB =8−5√22,故点Q (5√22,8−5√22);③当CQ =AQ 时, 联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22);(3)设点P (m ,-13m 2+13m +4),则点Q (m ,-m +4),∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN ,PN =PQ sin ∠PQN =√22(-13m 2+13m +4+m -4)=-√26m 2+7√26m ,∵-√26<0,∴PN 有最大值,当m =72时,PN 的最大值为:49√224.【解析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ 、AC=CQ 、CQ=AQ 三种情况,分别求解即可;(3)由PN=PQsin ∠PQN=(-m 2+m+4+m-4)即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019年甘肃省陇南市数学中考真题含答案解析

2019年甘肃省陇南市数学中考真题含答案解析

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为( )A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是( )A. 0B. 1C. 2D. 33.下列整数中,与10最接近的整数是( )A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( )A. 7×10―7B. 0.7×10―8C. 7×10―8D. 7×10―95.如图,将图形用放大镜放大,应该属于( )A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是( )A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是( )A. x≤3B. x≤―3C. x≥3D. x≥―38.下面的计算过程中,从哪一步开始出现错误( )A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则∠ASB的度数是( )A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为( )A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次数3109204849791803139699频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为______(精确到0.1).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+m x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共82.0分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:3取1.73).23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.(k≠0)的图象与一次函数y=-x+b的图象在第一象限交于25.如图,已知反比例函数y=kxA(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式。

2019甘肃省陇南市中考数学试卷(解析版)-真题卷

2019甘肃省陇南市中考数学试卷(解析版)-真题卷

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次3109204849791803139699数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为(精确到).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+√m x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|√2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共82.0分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:√3取1.73).23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.(k≠0)的图象与一次函数y=-x+b的图象在第一象限交25.如图,已知反比例函数y=kx于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交上的图象于点N.若PM>PN,一次函数y=-x+b的图象于点M,交反比例函数y=kx结合函数图象直接写出a的取值范围.26.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2√3,求⊙D的半径.27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】D【解析】解:0.000000007=7×10-9;故选:D.由科学记数法知0.000000007=7×10-9;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)×180°=540°,故选:C.根据多边形内角和公式(n-2)×180°即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得2x+9≥3x+6,移项,合并得-x≥-3系数化为1,得x≤3;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.【答案】B【解析】解:-=-==.故从第②步开始出现错误.故选:B.直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC=12,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.【答案】0.5【解析】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x2-4x+5=x2-4x+4+1=(x-2)2+1,所以,y=(x-2)2+1.故答案为:y=(x-2)2+1.利用配方法整理即可得解.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).16.【答案】4-π【解析】解:如图:新的正方形的边长为1+1=2,∴恒星的面积=2×2-π=4-π. 故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可.本题考查了扇形面积的计算,关键是理解恒星的面积=边长为2的正方形面积-半径为1的圆的面积.17.【答案】85或14 【解析】 解:①当∠A 为顶角时,等腰三角形两底角的度数为:=50°∴特征值k== ②当∠A 为底角时,顶角的度数为:180°-80°-80°=20° ∴特征值k==综上所述,特征值k 为或故答案为或可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A 的底数,要进行判断是底角或顶角,以免造成答案的遗漏.18.【答案】13a +21b【解析】解:由题意知第7个数是5a+8b ,第8个数是8a+13b ,第9个数是13a+21b , 故答案为:13a+21b .由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案. 本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.19.【答案】解:(-2)2-|√2-2|-2cos45°+(3-π)0, =4-(2-√2)-2×√22+1, =4-2+√2-√2+1,=3.【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.【答案】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得: {12x +20y =14412y+20x=112,解得:{y =6x=2,答:中性笔和笔记本的单价分别是2元、6元.【解析】根据对话分别利用总钱数得出等式求出答案.此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键. 21.【答案】25π【解析】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB==5,∴S圆O=π•52=25π.故答案为25π.(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF是矩形,∴CE=FH,在Rt△ACE中,∵AC=40cm,∠A=60°,∴CE=AC•sin60°=34.6(cm),∴FH =CE =34.6(cm )∵DH =49.6cm ,∴DF =DH -FH =49.6-34.6=15(cm ),在Rt △CDF 中,sin ∠DCF =DF CD =1530=12,∴∠DCF =30°,∴此时台灯光线为最佳.【解析】如图,作CE ⊥AB 于E ,DH ⊥AB 于H ,CF ⊥DH 于F .解直角三角形求出∠DCF 即可判断.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同, ∴在四条线路中,李欣选择线路C .“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为416=14. 【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,∴其中位数c==78,八年级成绩的众数d=81,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25.【答案】解:(1)∵反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一x象限交于A(1,3),B(3,1)两点,∴3=k,3=-1+b,1∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=3,y=-x+4;x(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)利用待定系数法即可求得;(2)根据图象可解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.26.【答案】(1)证明:连接AD ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵AD =BD ,∴∠BAD =∠B =30°,∴∠ADC =60°,∴∠DAC =180°-60°-30°=90°,∴AC 是⊙D 的切线;(2)解:连接AE ,∵AD =DE ,∠ADE =60°,∴△ADE 是等边三角形,∴AE =DE ,∠AED =60°,∴∠EAC =∠AED -∠C =30°,∴∠EAC =∠C ,∴AE =CE =2√3,∴⊙D 的半径AD =2√3.【解析】(1)连接AD ,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°-60°-30°=90°,于是得到AC 是⊙D 的切线;(2)连接AE ,推出△ADE 是等边三角形,得到AE=DE ,∠AED=60°,求得∠EAC=∠AED-∠C=30°,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,如图所示:则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1, ∴△EB 1C 1是等腰直角三角形,∴∠B 1EC 1=∠B 1C 1E =45°,∵N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点,∴∠M 1C 1N 1=90°+45°=135°,∴∠B 1C 1E +∠M 1C 1N 1=180°,∴E 、C 1、N 1,三点共线,在△A 1B 1M 1和△EB 1M 1中,{A 1B 1=EB 1∠A 1B 1M 1=∠EB 1M 1B 1M 1=B 1M 1,∴△A 1B 1M 1≌△EB 1M 1(SAS ),∴A 1M 1=EM 1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A 1M 1N 1=180°-90°=90°.【解析】延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1,得出△EB 1C 1是等腰直角三角形,由等腰直角三角形的性质得出∠B 1EC 1=∠B 1C 1E=45°,证出∠B 1C 1E+∠M 1C 1N 1=180°,得出E 、C 1、N 1,三点共线,由SAS 证明△A 1B 1M 1≌△EB 1M 1得出A 1M 1=EM 1,∠1=∠2,得出EM 1=M 1N 1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论. 此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.28.【答案】解:(1)由二次函数交点式表达式得:y =a (x +3)(x -4)=a (x 2-x -12),即:-12a =4,解得:a =-13,则抛物线的表达式为y =-13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(-3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =4√2,∠OAB =∠OBA =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =-x +4…①,同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为M (-32,4),过点M 与CA 垂直直线的表达式中的k 值为-34, 同理可得过点M 与直线AC 垂直直线的表达式为:y =-34x +78…②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7-n ,由勾股定理得:(7-n )2+n 2=25,解得:n =3或4(舍去4),故点Q (1,3);②当AC =CQ 时,如图1, CQ =5,则BQ =BC -CQ =4√2-5, 则QM =MB =8−5√22, 故点Q (5√22,8−5√22); ③当CQ =AQ 时,联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22); (3)设点P (m ,-13m 2+13m +4),则点Q (m ,-m +4),∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN , PN =PQ sin ∠PQN =√22(-13m 2+13m +4+m -4)=-√26m 2+7√26m , ∵-√26<0,∴PN 有最大值, 当m =72时,PN 的最大值为:49√224.【解析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ 、AC=CQ 、CQ=AQ 三种情况,分别求解即可;(3)由PN=PQsin ∠PQN=(-m 2+m+4+m-4)即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019甘肃省陇南市中考数学试卷(解析版)

2019甘肃省陇南市中考数学试卷(解析版)

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次3109204849791803139699数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为(精确到).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+√m x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|√2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共82.0分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:√3取1.73).23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.(k≠0)的图象与一次函数y=-x+b的图象在第一象限交25.如图,已知反比例函数y=kx于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交上的图象于点N.若PM>PN,一次函数y=-x+b的图象于点M,交反比例函数y=kx结合函数图象直接写出a的取值范围.26.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2√3,求⊙D的半径.27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】D【解析】解:0.000000007=7×10-9;故选:D.由科学记数法知0.000000007=7×10-9;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)×180°=540°,故选:C.根据多边形内角和公式(n-2)×180°即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得2x+9≥3x+6,移项,合并得-x≥-3系数化为1,得x≤3;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.【答案】B【解析】解:-=-==.故从第②步开始出现错误.故选:B.直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC=12,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.【答案】0.5【解析】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x2-4x+5=x2-4x+4+1=(x-2)2+1,所以,y=(x-2)2+1.故答案为:y=(x-2)2+1.利用配方法整理即可得解.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).16.【答案】4-π【解析】解:如图:新的正方形的边长为1+1=2,∴恒星的面积=2×2-π=4-π. 故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可.本题考查了扇形面积的计算,关键是理解恒星的面积=边长为2的正方形面积-半径为1的圆的面积.17.【答案】85或14 【解析】 解:①当∠A 为顶角时,等腰三角形两底角的度数为:=50°∴特征值k== ②当∠A 为底角时,顶角的度数为:180°-80°-80°=20° ∴特征值k==综上所述,特征值k 为或故答案为或可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A 的底数,要进行判断是底角或顶角,以免造成答案的遗漏.18.【答案】13a +21b【解析】解:由题意知第7个数是5a+8b ,第8个数是8a+13b ,第9个数是13a+21b , 故答案为:13a+21b .由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案. 本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.19.【答案】解:(-2)2-|√2-2|-2cos45°+(3-π)0, =4-(2-√2)-2×√22+1, =4-2+√2-√2+1,=3.【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.【答案】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得: {12x +20y =14412y+20x=112,解得:{y =6x=2,答:中性笔和笔记本的单价分别是2元、6元.【解析】根据对话分别利用总钱数得出等式求出答案.此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键. 21.【答案】25π【解析】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB==5,∴S圆O=π•52=25π.故答案为25π.(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF是矩形,∴CE=FH,在Rt△ACE中,∵AC=40cm,∠A=60°,∴CE=AC•sin60°=34.6(cm),∴FH =CE =34.6(cm )∵DH =49.6cm ,∴DF =DH -FH =49.6-34.6=15(cm ),在Rt △CDF 中,sin ∠DCF =DF CD =1530=12,∴∠DCF =30°,∴此时台灯光线为最佳.【解析】如图,作CE ⊥AB 于E ,DH ⊥AB 于H ,CF ⊥DH 于F .解直角三角形求出∠DCF 即可判断.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同, ∴在四条线路中,李欣选择线路C .“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为416=14. 【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,∴其中位数c==78,八年级成绩的众数d=81,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25.【答案】解:(1)∵反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一x象限交于A(1,3),B(3,1)两点,∴3=k,3=-1+b,1∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=3,y=-x+4;x(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)利用待定系数法即可求得;(2)根据图象可解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.26.【答案】(1)证明:连接AD ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵AD =BD ,∴∠BAD =∠B =30°,∴∠ADC =60°,∴∠DAC =180°-60°-30°=90°,∴AC 是⊙D 的切线;(2)解:连接AE ,∵AD =DE ,∠ADE =60°,∴△ADE 是等边三角形,∴AE =DE ,∠AED =60°,∴∠EAC =∠AED -∠C =30°,∴∠EAC =∠C ,∴AE =CE =2√3,∴⊙D 的半径AD =2√3.【解析】(1)连接AD ,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°-60°-30°=90°,于是得到AC 是⊙D 的切线;(2)连接AE ,推出△ADE 是等边三角形,得到AE=DE ,∠AED=60°,求得∠EAC=∠AED-∠C=30°,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,如图所示:则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1, ∴△EB 1C 1是等腰直角三角形,∴∠B 1EC 1=∠B 1C 1E =45°,∵N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点,∴∠M 1C 1N 1=90°+45°=135°,∴∠B 1C 1E +∠M 1C 1N 1=180°,∴E 、C 1、N 1,三点共线,在△A 1B 1M 1和△EB 1M 1中,{A 1B 1=EB 1∠A 1B 1M 1=∠EB 1M 1B 1M 1=B 1M 1,∴△A 1B 1M 1≌△EB 1M 1(SAS ),∴A 1M 1=EM 1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A 1M 1N 1=180°-90°=90°.【解析】延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1,得出△EB 1C 1是等腰直角三角形,由等腰直角三角形的性质得出∠B 1EC 1=∠B 1C 1E=45°,证出∠B 1C 1E+∠M 1C 1N 1=180°,得出E 、C 1、N 1,三点共线,由SAS 证明△A 1B 1M 1≌△EB 1M 1得出A 1M 1=EM 1,∠1=∠2,得出EM 1=M 1N 1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论. 此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.28.【答案】解:(1)由二次函数交点式表达式得:y =a (x +3)(x -4)=a (x 2-x -12),即:-12a =4,解得:a =-13,则抛物线的表达式为y =-13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(-3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =4√2,∠OAB =∠OBA =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =-x +4…①,同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为M (-32,4),过点M 与CA 垂直直线的表达式中的k 值为-34, 同理可得过点M 与直线AC 垂直直线的表达式为:y =-34x +78…②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7-n ,由勾股定理得:(7-n )2+n 2=25,解得:n =3或4(舍去4),故点Q (1,3);②当AC =CQ 时,如图1, CQ =5,则BQ =BC -CQ =4√2-5, 则QM =MB =8−5√22, 故点Q (5√22,8−5√22); ③当CQ =AQ 时,联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22); (3)设点P (m ,-13m 2+13m +4),则点Q (m ,-m +4),∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN , PN =PQ sin ∠PQN =√22(-13m 2+13m +4+m -4)=-√26m 2+7√26m , ∵-√26<0,∴PN 有最大值, 当m =72时,PN 的最大值为:49√224.【解析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ 、AC=CQ 、CQ=AQ 三种情况,分别求解即可;(3)由PN=PQsin ∠PQN=(-m 2+m+4+m-4)即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019甘肃省陇南市中考数学试卷含答案解析

2019甘肃省陇南市中考数学试卷含答案解析
第 页,共 24页
23. 2019 年中国北京世界园艺博览会(以下简称“世园会”)于 4 月 29 日 至 10 月 7 日在北京延庆区举行.世园会为满足大家的游览需求,倾情打 造了 4 条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱 我家,爱园艺”、C.“园艺小清新之旅”和 D.“快速车览之旅”.李 欣和张帆都计划暑假去世园会,他们各自在这 4 条线路中任意选择一条 线路游览,每条线路被选择的可能性相同. (1)李欣选择线路 C.“园艺小清新之旅”的概率是多少? (2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的 概率.
第 1页,共 24页
答案和解析 1.【答案】C 【解析】 解:A、该几何体为四棱柱,不符合题意; B、该几何体为四棱锥,不符合题意; C、该几何体为三棱柱,符合题意; D、该几何体为圆柱,不符合题意. 故选:C. 分别判断各个几何体的形状,然后确定正确的选项即可. 考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大. 2.【答案】D 【解析】 解:∵数轴的单位长度为 1,如果点 A 表示的数是-1, ∴点 B 表示的数是:3. 故选:D. 直接利用数轴结合 A,B 点位置进而得出答案. 此题主要考查了实数轴,正确应用数形结合分析是解题关键. 3.【答案】A 【解析】 解:∵32=9,42=16, ∴3< <4, 10 与 9 的距离小于 16 与 10 的距离, ∴与 最接近的是 3. 故选:A. 由于 9<10<16,于是 < < ,10 与 9 的距离小于 16 与 10 的距离, 可得答案. 本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题. 4.【答案】D 【解析】 解:0.000000007=7×10-9; 故选:D. 由科学记数法知 0.000000007=7×10-9;

2019甘肃省陇南市中考数学试卷word解析

2019甘肃省陇南市中考数学试卷word解析

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数6140 4040 10000 36000 80640出现“正面朝上”的次数3109 2048 4979 18031 39699频率0.506 0.507 0.498 0.501 0.492请根据以上数据,估计硬币出现“正面朝上”的概率为______(精确到0.1).12.因式分解:xy2-4x=______.13.关于x的一元二次方程x2+√m x+1=0有两个相等的实数根,则m的取值为______.14.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.15.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.16.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.17.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)18.计算:(-2)2-|√2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共82.0分)19.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?20.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.21.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:√3取1.73).22.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级0 1 0 a7 1八年级 1 0 0 7 b 2分析数据:平均数众数中位数七年级78 75 c八年级78 d80.5应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.如图,已知反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第x一象限交于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一上的图象于象限内交一次函数y=-x+b的图象于点M,交反比例函数y=kx 点N.若PM>PN,结合函数图象直接写出a的取值范围.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A 和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2√3,求⊙D的半径.23.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.4.【答案】D【解析】解:0.000000007=7×10-9;故选:D.由科学记数法知0.000000007=7×10-9;5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)×180°=540°,故选:C.根据多边形内角和公式(n-2)×180°即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得2x+9≥3x+6,移项,合并得-x≥-3 系数化为1,得x≤3;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.8.【答案】B【解析】解:-=-==.故从第②步开始出现错误.故选:B.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P 点到达B点时,△AOP面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC=12,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.12.【答案】0.5【解析】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4 要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x2-4x+5=x2-4x+4+1=(x-2)2+1,所以,y=(x-2)2+1.故答案为:y=(x-2)2+1.利用配方法整理即可得解.16.【答案】4-π【解析】解:如图:新的正方形的边长为1+1=2,∴恒星的面积=2×2-π=4-π.故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可.17.【答案】85或14【解析】解: ①当∠A 为顶角时,等腰三角形两底角的度数为:=50° ∴特征值k==②当∠A 为底角时,顶角的度数为:180°-80°-80°=20°∴特征值k== 综上所述,特征值k 为或故答案为或18.【答案】13a +21b 【解析】解:由题意知第7个数是5a+8b ,第8个数是8a+13b ,第9个数是13a+21b , 故答案为:13a+21b .由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案.19.【答案】解:(-2)2-|√2-2|-2cos45°+(3-π)0,=4-(2-√2)-2×√22+1, =4-2+√2-√2+1,=3.【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可. 20.【答案】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得: {12x +20y =14412y+20x=112,解得:{y =6x=2,答:中性笔和笔记本的单价分别是2元、6元.21.【答案】25π【解析】解:(1)如图⊙O 即为所求.(2)设线段BC 的垂直平分线交BC 于点E .由题意OE=4,BE=EC=3, 在Rt △OBE 中,OB==5,∴S 圆O =π•52=25π.故答案为25π.(1)作线段AB ,BC 的垂直平分线,两线交于点O ,以O 为圆心,OB 为半径作⊙O ,⊙O 即为所求.(2)在Rt △OBE 中,利用勾股定理求出OB 即可解决问题.22.【答案】解:如图,作CE ⊥AB 于E ,DH ⊥AB 于H ,CF ⊥DH 于F .∵∠CEH =∠CFH =∠FHE =90°,∴四边形CEHF 是矩形,∴CE =FH , 在Rt △ACE 中,∵AC =40cm ,∠A =60°,∴CE =AC •sin60°=34.6(cm ), ∴FH =CE =34.6(cm )∵DH =49.6cm ,∴DF =DH -FH =49.6-34.6=15(cm ), 在Rt △CDF 中,sin ∠DCF =DF CD =1530=12,∴∠DCF =30°,∴此时台灯光线为最佳.【解析】如图,作CE ⊥AB 于E ,DH ⊥AB 于H ,CF ⊥DH 于F .解直角三角形求出∠DCF 即可判断.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同, ∴在四条线路中,李欣选择线路C .“园艺小清新之旅”的概率是14; (2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为416=14.【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,∴其中位数c==78,八年级成绩的众数d=81,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体25.【答案】解:(1)∵反比例函数y=k(k≠0)的图象与一次函数y=-x+b的x,3=-1+b,∴k=3,图象在第一象限交于A(1,3),B(3,1)两点,∴3=k1b=4,∴反比例函数和一次函数的表达式分别为y=3,y=-x+4;x(2)由图象可得:当1<a<3时,PM>PN.26.【答案】(1)证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°-60°-30°=90°,∴AC是⊙D的切线;(2)解:连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED-∠C=30°,∴∠EAC=∠C,∴AE=CE=2√3,∴⊙D的半径AD=2√3.【解析】(1)连接AD,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°-60°-30°=90°,于是得到AC是⊙D的切线;(2)连接AE,推出△ADE是等边三角形,得到AE=DE,∠AED=60°,求得∠EAC=∠AED-∠C=30°,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,如图所示:则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M1C1N1=90°+45°=135°,∴∠B1C1E+∠M1C1N1=180°,∴E、C1、N1,三点共线,在△A1B1M1和△EB1M1中,{A1B1=EB1∠A1B1M1=∠EB1M1B1M1=B1M1,∴△A1B1M1≌△EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A1M1N1=180°-90°=90°.【解析】延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,得出△EB1C1是等腰直角三角形,由等腰直角三角形的性质得出∠B1EC1=∠B1C1E=45°,证出∠B1C1E+∠M1C1N1=180°,得出E、C1、N1,三点共线,由SAS证明△A1B1M1≌△EB1M1得出A1M1=EM1,∠1=∠2,得出EM1=M1N1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论.28.【答案】解:(1)由二次函数交点式表达式得:y=a(x+3)(x-4)=a(x2-x-12),即:-12a =4,解得:a =-13, 则抛物线的表达式为y =-13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(-3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =4√2,∠OAB =∠OBA =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =-x +4…①, 同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为M (-32,4),过点M 与CA 垂直直线的表达式中的k 值为-34,同理可得过点M 与直线AC 垂直直线的表达式为:y =-34x +78…②, ①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7-n ,由勾股定理得:(7-n )2+n 2=25,解得:n =3或4(舍去4),故点Q (1,3); ②当AC =CQ 时,如图1,CQ =5,则BQ =BC -CQ =4√2-5,则QM =MB =8−5√22,故点Q (5√22,8−5√22); ③当CQ =AQ 时,联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22); (3)设点P (m ,-13m 2+13m +4),则点Q (m ,-m +4),∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN , PN =PQ sin ∠PQN =√22(-13m 2+13m +4+m -4)=-√26m 2+7√26m ,∵-√26<0,∴PN 有最大值,当m =72时,PN 的最大值为:49√224.【解析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ、AC=CQ、CQ=AQ三种情况,分别求解即可;(3)由PN=PQsin∠PQN=(-m2+m+4+m-4)即可求解.。

2019年甘肃省中考数学试卷(word版,含答案解析)

2019年甘肃省中考数学试卷(word版,含答案解析)

2019年甘肃省中考数学试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列四个图案中,是中心对称图形的是()A. B. C. D.2.在0,2,−3,−1这四个数中,最小的数是()2A. 0B. 2C. −3D. −123.使得式子x有意义的x的取值范围是()√4−xA. x≥4B. x>4C. x≤4D. x<44.计算(−2a)2⋅a4的结果是()A. −4a6B. 4a6C. −2a6D. −4a85.如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是()A. 48°B. 78°C. 92°D. 102°6.已知点P(m+2,2m−4)在x轴上,则点P的坐标是()A. (4,0)B. (0,4)C. (−4,0)D. (0,−4)7.若一元二次方程x2−2kx+k2=0的一根为x=−1,则k的值为()A. −1B. 0C. 1或−1D. 2或08.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A. 54°B. 64°C. 27°D. 37°9.甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是()参加人数平均数中位数方差甲459493 5.3乙459495 4.8A. 甲、乙两班的平均水平相同B. 甲、乙两班竞赛成绩的众数相同C. 甲班的成绩比乙班的成绩稳定D. 甲班成绩优异的人数比乙班多10.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A. ①②③B. ①②④C. ②③④D. ③④⑤二、填空题(本大题共8小题,共24.0分)11.分解因式:x3y−4xy=______.12.不等式组{2−x≥02x>x−1的最小整数解是______.13.分式方程3x+1=5x+2的解为______.14.在△ABC中∠C=90°,tanA=√33,则cosB=______.15.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的表面积为______.16.如图,在Rt△ABC中,∠C=90°,AC=BC=2,点D是AB的中点,以A、B为圆心,AD、BD长为半径画弧,分别交AC、BC于点E、F,则图中阴影部分的面积为______.17.如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为______.18. 如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n 幅图中有2019个菱形,则n =______.三、计算题(本大题共1小题,共4.0分)19. 计算:(−12)−2+(2019−π)0−√33tan60°−|−3|.四、解答题(本大题共9小题,共62.0分)20. 如图,在△ABC 中,点P 是AC 上一点,连接BP ,求作一点M ,使得点M 到AB 和AC 两边的距离相等,并且到点B 和点P 的距离相等.(不写作法,保留作图痕迹)21. 中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?22. 为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯宽度的范围是260mm ~300mm 含(300mm),高度的范围是120mm ~150mm(含150mm).如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB ,CD 分别垂直平分踏步EF ,GH ,各踏步互相平行,AB =CD ,AC =900mm,∠ACD=65°,试问该中学楼梯踏步的宽度和高度是否符合规定.(结果精确到1mm,参考数据:sin65°≈0.906,cos65°≈0.423)23.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2−5x+6=0的解时,则小明获胜;若m,n都不是方程x2−5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?24.良好的饮食对学生的身体、智力发育和健康起到了极其重要的作用,荤菜中蛋白质、钙、磷及脂溶性维生素优于素食,而素食中不饱和脂肪酸、维生素和纤维素又优于荤食,只有荤食与素食适当搭配,才能强化初中生的身体素质.某校为了了解学生的体质健康状况,以便食堂为学生提供合理膳食,对本校七年级、八年级学生的体质健康状况进行了调查,过程如下:收集数据:从七、八年级两个年级中各抽取15名学生,进行了体质健康测试,测试成绩(百分制)如下:七年级:74,81,75,76,70,75,75,79,81,70,74,80,91,69,82八年级:81,94,83,77,83,80,81,70,81,73,78,82,80,70,50整理数据:80906080及格,60分以下为不及格)分析数据:得出结论:(1)根据上述数据,将表格补充完整;(2)可以推断出______年级学生的体质健康状况更好一些,并说明理由;(3)若七年级共有300名学生,请估计七年级体质健康成绩优秀的学生人数.25.如图,一次函数y=kx+b的图象与反比例函数y=m的图象相交于A(−1,n)、xB(2,−1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=m上的两点,当x1<x2<0时,比较y2x与y1的大小关系.26.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.27.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.28.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.答案和解析1.【答案】A【解析】解:A.此图案是中心对称图形,符合题意;B.此图案不是中心对称图形,不合题意;C.此图案不是中心对称图形,不合题意;D.此图案不是中心对称图形,不合题意;故选:A.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】C【解析】解:根据实数比较大小的方法,可得<0<2,−3<−12所以最小的数是−3.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.【答案】D【解析】【分析】此题主要考查了二次根式有意义的条件及分式有意义的条件,正确把握定义是解题关键.直接利用二次根式有意义的条件及分式有意义的条件分析得出答案.【解答】解:使得式子有意义,则:4−x≥0,且4−x≠0,√4−x解得:x<4,即x的取值范围是:x<4.故选D.4.【答案】B【解析】解:(−2a)2⋅a4=4a2⋅a4=4a6.故选:B.直接利用积的乘方运算法则化简,再利用同底数幂的乘法运算法则计算得出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.5.【答案】D【解析】解:∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°,∴∠2=∠3=180°−48°−30°=102°.故选:D.直接利用已知角的度数结合平行线的性质得出答案.此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.6.【答案】A【解析】解:∵点P(m+2,2m−4)在x轴上,∴2m−4=0,解得:m=2,∴m+2=4,则点P的坐标是:(4,0).故选:A.直接利用关于x轴上点的坐标特点得出m的值,进而得出答案.此题主要考查了点的坐标,正确得出m的值是解题关键.7.【答案】A【解析】解:把x=−1代入方程得:1+2k+k2=0,解得:k=−1,故选:A.把x=−1代入方程计算即可求出k的值.此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.【答案】C【解析】【分析】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.【解答】解:∵∠AOC=126°,∴∠BOC=180°−∠AOC=54°,∵∠CDB=1∠BOC=27°.2故选:C.9.【答案】A【解析】【分析】本题考查了平均数,众数,中位数,方差;正确的理解题意是解题的关键.由两个班的平均数相同得出选项A正确;由众数的定义无法得出选项B,即B不正确;由方差的性质得出选项C不正确;由两个班的中位数得出选项D不正确;即可得出结论.【解答】解:A、甲、乙两班的平均水平相同;A正确;B、题干所给的信息无法得到甲、乙两班竞赛成绩的众数相同;B不正确;C、甲班的方差大于乙班的方差,所以乙班的成绩比甲班的成绩稳定;C不正确;D、乙班的中位数等于95大于甲班的中位数,甲班成绩优异的人数比乙班少;D不正确;故选A.10.【答案】C【解析】【分析】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.根据二次函数的图象与性质即可求出答案. 【解答】解:①由图象可知:a >0,c <0, ∴ac <0,故①错误; ②由于对称轴可知:−b2a <1,∴2a +b >0,故②正确;③由于抛物线与x 轴有两个交点, ∴△=b 2−4ac >0,故③正确;④由图象可知:x =1时,y =a +b +c <0, 故④正确;⑤当x >−b2a 时,y 随着x 的增大而增大,故⑤错误; 故选:C .11.【答案】xy(x +2)(x −2)【解析】解:x 3y −4xy , =xy(x 2−4),=xy(x +2)(x −2).先提取公因式xy ,再利用平方差公式对因式x 2−4进行分解.本题是考查学生对分解因式的掌握情况.因式分解有两步,第一步提取公因式xy ,第二步再利用平方差公式对因式x 2−4进行分解,得到结果xy(x +2)(x −2),在作答试题时,许多学生分解不到位,提取公因式不完全,或者只提取了公因式. 12.【答案】0【解析】解:不等式组整理得:{x ≤2x >−1,∴不等式组的解集为−1<x ≤2, 则最小的整数解为0, 故答案为:0求出不等式组的解集,确定出最小整数解即可.此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13.【答案】12【解析】解:去分母得:3x +6=5x +5, 解得:x =12,经检验x =12是分式方程的解. 故答案为:12.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.【答案】12【解析】解:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,tanA=√33,设a=√3x,b=3x,则c=2√3x,∴cosB=ac =12.故答案为:12.本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.此题考查的知识点是特殊角的三角函数值,关键明确求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.15.【答案】(18+2√3)cm2【解析】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为√3cm,三棱柱的高为3,所以,其表面积为3×2×3+2×12×2×√3=18+2√3(cm2).故答案为(18+2√3)cm2.由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.16.【答案】【解析】解:在Rt△ABC中,∵∠ACB=90°,CA=CB=2,∴AB=2√2,∠A=∠B=45°,∵D是AB的中点,∴AD=DB=√2,,故答案为:.根据S阴影=S△ABC−2⋅S扇形ADE,计算即可.本题考查扇形的面积,等腰直角三角形的性质等知识,解题的关键是学会用分割法求面积,属于中考常考题型.17.【答案】103【解析】【分析】本题考查了矩形的性质,翻折问题,熟练掌握矩形的性质以及勾股定理是解题的关键.设CE=x,则BE=6−x由折叠性质可知,EF=CE=x,DF=CD=AB=10,所以AF=8,BF=AB−AF=10−8=2,在Rt△BEF中利用勾股定理列式求出x的值即可求解.【解答】解:设CE=x,则BE=6−x由折叠性质可知,EF=CE=x,DF=CD=AB=10,在Rt△DAF中,AD=6,DF=10,由勾股定理得AF=8,∴BF=AB−AF=10−8=2,在Rt△BEF中,BE2+BF2=EF2,即(6−x)2+22=x2,,解得x=103.故答案为10318.【答案】1010【解析】解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2−1=3个.第3幅图中有2×3−1=5个.第4幅图中有2×4−1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n−1)个.当图中有2019个菱形时,2n−1=2019,n=1010,故答案为:1010.根据题意分析可得:第1幅图中有1个,第2幅图中有2×2−1=3个,第3幅图中有2×3−1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.19.【答案】解:原式=4+1−√3×√3−3,3=1.【解析】本题涉及零指数幂、负整数指数幂、绝对值、特殊角的三角函数值等4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:如图,点M即为所求.【解析】根据角平分线的作法、线段垂直平分线的作法作图即可.本题考查的是复杂作图、角平分线的性质、线段垂直平分线的性质,掌握基本尺规作图的一般步骤是解题的关键.21.【答案】解:设共有x人,根据题意得:x3+2=x−92,去分母得:2x+12=3x−27,解得:x=39,∴39−92=15,答:共有39人,15辆车.【解析】本题考查了一元一次方程的应用,弄清题意是解决本题的关键.设共有x人,根据题意列出方程,求出方程的解即可得到结果.22.【答案】解:连接BD,作DM⊥AB于点M,∵AB=CD,AB,CD分别垂直平分踏步EF,GH,∴AB//CD,AB=CD,∴四边形ABCD是平行四边形,∴∠C=∠ABD,AC=BD,∵∠C=65°,AC=900,∴∠ABD=65°,BD=900,∴BM=BD⋅cos65°=900×0.423≈381,DM=BD⋅sin65°=900×0.906≈815,∵381÷3=127,120<127<150,∴该中学楼梯踏步的高度符合规定,∵815÷3≈272,260<272<300,∴该中学楼梯踏步的宽度符合规定,由上可得,该中学楼梯踏步的宽度和高度都符合规定.【解析】根据题意,作出合适的辅助线,然后根据锐角三角函数即可求得BM和DM的长,然后计算出该中学楼梯踏步的宽度和高度,再与规定的比较大小,即可解答本题.本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.23.【答案】解:(1)树状图如图所示:(2)方程x2−5x+6=0的解为x=2或者3,若m,n都是方程x2−5x+6=0的解时,则m=2,n=2,或m=3,n=3,或m=2,n=3,或m=3,n=2若m,n都不是方程x2−5x+6=0的解时,则m=1,n=4,或m=4,n=4;由树状图得:共有12个等可能的结果,m,n都是方程x2−5x+6=0的解的结果有4个,m,n都不是方程x2−5x+6=0的解的结果有2个,小明获胜的概率为412=13,小利获胜的概率为212=16,∴小明获胜的概率大.【解析】本题考查了列表法与树状图法、一元二次方程的解法以及概率公式;画出树状图是解题的关键.(1)首先根据题意画出树状图,然后由树状图可得所有可能的结果;(2)画树状图展示所有12种等可能的结果数,找出m ,n 都是方程x 2−5x +6=0的解和m ,n 都不是方程x 2−5x +6=0的解的结果数,然后根据概率公式求解. 24.【答案】(1)76.8 81;(2) 八;(3)若七年级共有300名学生,则七年级体质健康成绩优秀的学生人数=300×115=20(人).【解析】解:(1)七年级的平均数为115(74+81+75+76+70+75+75+79+81+70+74+80+91+69+82)=76.8,八年级的众数为81;故答案为:76.8;81;(2)八年级学生的体质健康状况更好一些;理由如下:八年级学生的平均数、中位数以及众数均高于七年级,说明八年级学生的体质健康情况更好一些;故答案为:八;(3)见答案.【分析】(1)由平均数和众数的定义即可得出结果;(2)从平均数、中位数以及众数的角度分析,即可得到哪个年级学生的体质健康情况更好一些;(3)由七年级总人数乘以优秀人数所占比例,即可得出结果.本题主要考查了统计表,众数,中位数以及方差的综合运用,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据. 25.【答案】解:(1)∵反比例函数y =m x 经过点B(2,−1),∴m =−2,∵点A(−1,n)在y =−2x 上,∴n =2,∴A(−1,2),把A ,B 坐标代入y =kx +b ,则有{−k +b =22k +b =−1, 解得{k =−1b =1, ∴一次函数的解析式为y =−x +1,反比例函数的解析式为y =−2x .(2)∵直线y =−x +1交y 轴于C ,∴C(0,1),∵D ,C 关于x 轴对称,∴D(0,−1),∵B(2,−1)∴BD//x 轴,∴S△ABD=1×2×3=3.2(3)∵M(x1,y1)、N(x2,y2)是反比例函数y=−2上的两点,且x1<x2<0,此时y随xx的增大而增大,∴y1<y2.【解析】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题,学会利用反比例函数的性质,比较函数值的大小.(1)利用待定系数法即可解决求问题.(2)先求出C点,再根据对称性求出点D坐标,发现BD//x轴,利用三角形的面积公式计算即可.(3)利用反比例函数图象的性质即可解决问题.26.【答案】解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,AH=AB.∴Rt△AFH中,BF=12【解析】(1)依据正方形的性质以及垂线的定义,即可得到∠ADG=∠C=90°,AD=DC,∠DAG=∠CDE,即可得出△ADG≌△DCE;(2)延长DE交AB的延长线于H,根据△DCE≌△HBE,即可得出B是AH的中点,进而得到AB=FB.本题主要考查了正方形的性质、全等三角形的判定与性质及直角三角形斜边上中线的性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.27.【答案】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)解:连接CD.∵∠ADE=∠A,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =5,∴AC =2DE =10,在Rt △ADC 中,DC =6,设BD =x ,在Rt △BDC 中,BC 2=x 2+62,在Rt △ABC 中,BC 2=(x +8)2−102, ∴x 2+62=(x +8)2−102,解得x =92,∴BC =√62+(92)2=152.【解析】(1)只要证明∠A +∠B =90°,∠ADE +∠B =90°即可解决问题;(2)首先证明AC =2DE =10,在Rt △ADC 中,DC =6,设BD =x ,在Rt △BDC 中,BC 2=x 2+62,在Rt △ABC 中,BC 2=(x +8)2−102,可得x 2+62=(x +8)2−102,解方程即可解决问题.本题考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.【答案】解:(1)用交点式函数表达式得:y =(x −1)(x −3)=x 2−4x +3; 故二次函数表达式为:y =x 2−4x +3;(2)①当AB 为平行四边形一条边时,如图1,则AB =PE =2,则点P 坐标为(4,3),当点P 在对称轴左侧时,即点C 的位置,点A 、B 、P 、F 为顶点的四边形为平行四边形, 故:点P(4,3)或(0,3);②当AB 是四边形的对角线时,如图2,AB 中点坐标为(2,0)设点P 的横坐标为m ,点F 的横坐标为2,其中点坐标为:m+22,即:m+22=2,解得:m =2,故点P(2,−1);故:点P(4,3)或(0,3)或(2,−1); (3)直线BC 的表达式为:y =−x +3,设点E 坐标为(x,x 2−4x +3),则点D(x,−x +3),S 四边形AEBD =12AB(y D −y E )=−x +3−x 2+4x −3=−x 2+3x , ∵−1<0,故四边形AEBD 面积有最大值,当x =32,其最大值为94,此时点E(32,−34).【解析】(1)用交点式函数表达式,即可求解;(2)分当AB 为平行四边形一条边、对角线,两种情况,分别求解即可;(3)利用S 四边形AEBD =12AB(y D −y E ),即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019甘肃省陇南市中考数学试卷(解析版)

2019甘肃省陇南市中考数学试卷(解析版)

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次3109204849791803139699数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为______(精确到0.1).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+√m x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|√2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共82.0分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:√3取1.73).23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.25.如图,已知反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一象限交x于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交上的图象于点N.若PM>PN,一次函数y=-x+b的图象于点M,交反比例函数y=kx结合函数图象直接写出a的取值范围.26.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2√3,求⊙D的半径.27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】D【解析】解:0.000000007=7×10-9;故选:D.由科学记数法知0.000000007=7×10-9;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)×180°=540°,故选:C.根据多边形内角和公式(n-2)×180°即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得2x+9≥3x+6,移项,合并得-x≥-3系数化为1,得x≤3;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.【答案】B【解析】解:-=-==.故从第②步开始出现错误.故选:B.直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC=12,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.【答案】0.5【解析】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x 2-4x+5=x 2-4x+4+1=(x-2)2+1, 所以,y=(x-2)2+1. 故答案为:y=(x-2)2+1. 利用配方法整理即可得解.本题考查了二次函数的解析式有三种形式: (1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数); (2)顶点式:y=a (x-h )2+k ;(3)交点式(与x 轴):y=a (x-x 1)(x-x 2). 16.【答案】4-π【解析】解:如图:新的正方形的边长为1+1=2, ∴恒星的面积=2×2-π=4-π. 故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可.本题考查了扇形面积的计算,关键是理解恒星的面积=边长为2的正方形面积-半径为1的圆的面积. 17.【答案】85或14【解析】解:①当∠A 为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°-80°-80°=20°∴特征值k==综上所述,特征值k为或故答案为或可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的底数,要进行判断是底角或顶角,以免造成答案的遗漏.18.【答案】13a+21b【解析】解:由题意知第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b,故答案为:13a+21b.由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案.本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.19.【答案】解:(-2)2-|√2-2|-2cos45°+(3-π)0,+1,=4-(2-√2)-2×√22=4-2+√2-√2+1,=3.【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.【答案】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得:{12x +20y =14412y+20x=112, 解得:{y =6x=2,答:中性笔和笔记本的单价分别是2元、6元. 【解析】根据对话分别利用总钱数得出等式求出答案.此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键. 21.【答案】25π【解析】解:(1)如图⊙O 即为所求.(2)设线段BC 的垂直平分线交BC 于点E . 由题意OE=4,BE=EC=3, 在Rt △OBE 中,OB==5,∴S 圆O =π•52=25π. 故答案为25π.(1)作线段AB ,BC 的垂直平分线,两线交于点O ,以O 为圆心,OB 为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF是矩形,∴CE=FH,在Rt△ACE中,∵AC=40cm,∠A=60°,∴CE=AC•sin60°=34.6(cm),∴FH=CE=34.6(cm)∵DH=49.6cm,∴DF=DH-FH=49.6-34.6=15(cm),在Rt△CDF中,sin∠DCF=DFCD =1530=12,∴∠DCF=30°,∴此时台灯光线为最佳.【解析】如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.解直角三角形求出∠DCF 即可判断.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C.“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种, ∴李欣和张帆恰好选择同一线路游览的概率为416=14. 【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94, ∴其中位数c==78,八年级成绩的众数d=81, 故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数, ∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25.【答案】解:(1)∵反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一x象限交于A(1,3),B(3,1)两点,∴3=k,3=-1+b,1∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=3,y=-x+4;x(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)利用待定系数法即可求得;(2)根据图象可解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.26.【答案】(1)证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°-60°-30°=90°,∴AC是⊙D的切线;(2)解:连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED-∠C=30°,∴∠EAC=∠C,∴AE=CE=2√3,∴⊙D 的半径AD =2√3.【解析】(1)连接AD ,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°-60°-30°=90°,于是得到AC 是⊙D 的切线;(2)连接AE ,推出△ADE 是等边三角形,得到AE=DE ,∠AED=60°,求得∠EAC=∠AED-∠C=30°,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,如图所示:则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1, ∴△EB 1C 1是等腰直角三角形,∴∠B 1EC 1=∠B 1C 1E =45°,∵N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点,∴∠M 1C 1N 1=90°+45°=135°,∴∠B 1C 1E +∠M 1C 1N 1=180°,∴E 、C 1、N 1,三点共线,在△A 1B 1M 1和△EB 1M 1中,{A 1B 1=EB 1∠A 1B 1M 1=∠EB 1M 1B 1M 1=B 1M 1,∴△A 1B 1M 1≌△EB 1M 1(SAS ),∴A 1M 1=EM 1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A 1M 1N 1=180°-90°=90°.【解析】延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1,得出△EB 1C 1是等腰直角三角形,由等腰直角三角形的性质得出∠B 1EC 1=∠B 1C 1E=45°,证出∠B 1C 1E+∠M 1C 1N 1=180°,得出E 、C 1、N 1,三点共线,由SAS 证明△A 1B 1M 1≌△EB 1M 1得出A 1M 1=EM 1,∠1=∠2,得出EM 1=M 1N 1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论. 此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.28.【答案】解:(1)由二次函数交点式表达式得:y =a (x +3)(x -4)=a (x 2-x -12),即:-12a =4,解得:a =-13,则抛物线的表达式为y =-13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(-3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =4√2,∠OAB =∠OBA =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =-x +4…①,同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为M (-32,4),过点M 与CA 垂直直线的表达式中的k 值为-34, 同理可得过点M 与直线AC 垂直直线的表达式为:y =-34x +78…②,①当AC =AQ 时,如图1,则AC =AQ =5, 设:QM =MB =n ,则AM =7-n , 由勾股定理得:(7-n )2+n 2=25,解得:n =3或4(舍去4),故点Q (1,3);②当AC =CQ 时,如图1,CQ =5,则BQ =BC -CQ =4√2-5,则QM =MB =8−5√22, 故点Q (5√22,8−5√22); ③当CQ =AQ 时,联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22); (3)设点P (m ,-13m 2+13m +4),则点Q (m ,-m +4),∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN , PN =PQ sin ∠PQN =√22(-13m 2+13m +4+m -4)=-√26m 2+7√26m , ∵-√26<0,∴PN 有最大值, 当m =72时,PN 的最大值为:49√224.【解析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ 、AC=CQ 、CQ=AQ 三种情况,分别求解即可;(3)由PN=PQsin ∠PQN=(-m 2+m+4+m-4)即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019甘肃省陇南市中考数学试卷(解析版)[真题]

2019甘肃省陇南市中考数学试卷(解析版)[真题]

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次3109204849791803139699数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为(精确到).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+√m x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|√2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共82.0分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:√3取1.73).23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.(k≠0)的图象与一次函数y=-x+b的图象在第一象限交25.如图,已知反比例函数y=kx于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交上的图象于点N.若PM>PN,一次函数y=-x+b的图象于点M,交反比例函数y=kx结合函数图象直接写出a的取值范围.26.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2√3,求⊙D的半径.27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】D【解析】解:0.000000007=7×10-9;故选:D.由科学记数法知0.000000007=7×10-9;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)×180°=540°,故选:C.根据多边形内角和公式(n-2)×180°即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得2x+9≥3x+6,移项,合并得-x≥-3系数化为1,得x≤3;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.【答案】B【解析】解:-=-==.故从第②步开始出现错误.故选:B.直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC=12,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.【答案】0.5【解析】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x2-4x+5=x2-4x+4+1=(x-2)2+1,所以,y=(x-2)2+1.故答案为:y=(x-2)2+1.利用配方法整理即可得解.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).16.【答案】4-π【解析】解:如图:新的正方形的边长为1+1=2,∴恒星的面积=2×2-π=4-π. 故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可.本题考查了扇形面积的计算,关键是理解恒星的面积=边长为2的正方形面积-半径为1的圆的面积.17.【答案】85或14 【解析】 解:①当∠A 为顶角时,等腰三角形两底角的度数为:=50°∴特征值k== ②当∠A 为底角时,顶角的度数为:180°-80°-80°=20° ∴特征值k==综上所述,特征值k 为或故答案为或可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A 的底数,要进行判断是底角或顶角,以免造成答案的遗漏.18.【答案】13a +21b【解析】解:由题意知第7个数是5a+8b ,第8个数是8a+13b ,第9个数是13a+21b , 故答案为:13a+21b .由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案. 本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.19.【答案】解:(-2)2-|√2-2|-2cos45°+(3-π)0, =4-(2-√2)-2×√22+1, =4-2+√2-√2+1,=3.【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.【答案】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得: {12x +20y =14412y+20x=112,解得:{y =6x=2,答:中性笔和笔记本的单价分别是2元、6元.【解析】根据对话分别利用总钱数得出等式求出答案.此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键. 21.【答案】25π【解析】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB==5,∴S圆O=π•52=25π.故答案为25π.(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF是矩形,∴CE=FH,在Rt△ACE中,∵AC=40cm,∠A=60°,∴CE=AC•sin60°=34.6(cm),∴FH =CE =34.6(cm )∵DH =49.6cm ,∴DF =DH -FH =49.6-34.6=15(cm ),在Rt △CDF 中,sin ∠DCF =DF CD =1530=12,∴∠DCF =30°,∴此时台灯光线为最佳.【解析】如图,作CE ⊥AB 于E ,DH ⊥AB 于H ,CF ⊥DH 于F .解直角三角形求出∠DCF 即可判断.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同, ∴在四条线路中,李欣选择线路C .“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为416=14. 【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,∴其中位数c==78,八年级成绩的众数d=81,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25.【答案】解:(1)∵反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一x象限交于A(1,3),B(3,1)两点,∴3=k,3=-1+b,1∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=3,y=-x+4;x(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)利用待定系数法即可求得;(2)根据图象可解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.26.【答案】(1)证明:连接AD ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵AD =BD ,∴∠BAD =∠B =30°,∴∠ADC =60°,∴∠DAC =180°-60°-30°=90°,∴AC 是⊙D 的切线;(2)解:连接AE ,∵AD =DE ,∠ADE =60°,∴△ADE 是等边三角形,∴AE =DE ,∠AED =60°,∴∠EAC =∠AED -∠C =30°,∴∠EAC =∠C ,∴AE =CE =2√3,∴⊙D 的半径AD =2√3.【解析】(1)连接AD ,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°-60°-30°=90°,于是得到AC 是⊙D 的切线;(2)连接AE ,推出△ADE 是等边三角形,得到AE=DE ,∠AED=60°,求得∠EAC=∠AED-∠C=30°,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,如图所示:则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1, ∴△EB 1C 1是等腰直角三角形,∴∠B 1EC 1=∠B 1C 1E =45°,∵N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点,∴∠M 1C 1N 1=90°+45°=135°,∴∠B 1C 1E +∠M 1C 1N 1=180°,∴E 、C 1、N 1,三点共线,在△A 1B 1M 1和△EB 1M 1中,{A 1B 1=EB 1∠A 1B 1M 1=∠EB 1M 1B 1M 1=B 1M 1,∴△A 1B 1M 1≌△EB 1M 1(SAS ),∴A 1M 1=EM 1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A 1M 1N 1=180°-90°=90°.【解析】延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1,得出△EB 1C 1是等腰直角三角形,由等腰直角三角形的性质得出∠B 1EC 1=∠B 1C 1E=45°,证出∠B 1C 1E+∠M 1C 1N 1=180°,得出E 、C 1、N 1,三点共线,由SAS 证明△A 1B 1M 1≌△EB 1M 1得出A 1M 1=EM 1,∠1=∠2,得出EM 1=M 1N 1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论. 此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.28.【答案】解:(1)由二次函数交点式表达式得:y =a (x +3)(x -4)=a (x 2-x -12),即:-12a =4,解得:a =-13,则抛物线的表达式为y =-13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(-3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =4√2,∠OAB =∠OBA =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =-x +4…①,同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为M (-32,4),过点M 与CA 垂直直线的表达式中的k 值为-34, 同理可得过点M 与直线AC 垂直直线的表达式为:y =-34x +78…②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7-n ,由勾股定理得:(7-n )2+n 2=25,解得:n =3或4(舍去4),故点Q (1,3);②当AC =CQ 时,如图1, CQ =5,则BQ =BC -CQ =4√2-5, 则QM =MB =8−5√22, 故点Q (5√22,8−5√22); ③当CQ =AQ 时,联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22); (3)设点P (m ,-13m 2+13m +4),则点Q (m ,-m +4),∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN , PN =PQ sin ∠PQN =√22(-13m 2+13m +4+m -4)=-√26m 2+7√26m , ∵-√26<0,∴PN 有最大值, 当m =72时,PN 的最大值为:49√224.【解析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ 、AC=CQ 、CQ=AQ 三种情况,分别求解即可;(3)由PN=PQsin ∠PQN=(-m 2+m+4+m-4)即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

甘肃省陇南市中考数学真题试题(含解析)-人教版初中九年级全册数学试题

甘肃省陇南市中考数学真题试题(含解析)-人教版初中九年级全册数学试题

2019年某某省陇南市中考数学试卷注:请使用office word软件打开,wps word会导致公式错乱一、选择题(本大题共10小题,共分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是米.数据用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数6140 4040 10000 36000 80640出现“正面朝上”的次3109 2048 4979 18031 39699数频率请根据以上数据,估计硬币出现“正面朝上”的概率为______(精确到).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+√x x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共分)19.计算:(-2)2-|√2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C 上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:√3取).23.2019年中国世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和X帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和X帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:90≤x≤10 40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤890 七年级0 1 0 a7 1八年级 1 0 0 7 b 2分析数据:平均数 众数 中位数 七年级78 75 c 八年级 78 d应用数据:(1)由上表填空:a =______,b =______,c =______,d =______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.25. 如图,已知反比例函数y =xx (k ≠0)的图象与一次函数y =-x +b 的图象在第一象限交于A (1,3),B (3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P (a ,0)(a >0),过点P 作平行于y 轴的直线,在第一象限内交一次函数y =-x +b 的图象于点M ,交反比例函数y =x x 上的图象于点N .若PM >PN ,结合函数图象直接写出a 的取值X 围.26. 如图,在△ABC 中,AB =AC ,∠BAC =120°,点D 在BC 边上,⊙D 经过点A 和点B 且与BC 边相交于点E .(1)求证:AC 是⊙D 的切线;(2)若CE =2√3,求⊙D 的半径.27. 阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC 中,M 是BC 边上一点(不含端点B ,C ),N 是△ABC 的外角∠ACH 的平分线上一点,且AM =MN .求证:∠AMN =60°.点拨:如图②,作∠CBE =60°,BE 与NC 的延长线相交于点E ,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】D【解析】解:0.000000007=7×10-9;故选:D.由科学记数法知0.000000007=7×10-9;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)×180°=540°,故选:C.根据多边形内角和公式(n-2)×180°即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得2x+9≥3x+6,移项,合并得-x≥-3 系数化为1,得x≤3;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.【答案】B【解析】解:-=-==.故从第②步开始出现错误.故选:B.直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P 点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC=12,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P 点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.【答案】【解析】解:因为表中硬币出现“正面朝上”的频率在左右波动,所以估计硬币出现“正面朝上”的概率为.故答案为.由于表中硬币出现“正面朝上”的频率在左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x2-4x+5=x2-4x+4+1=(x-2)2+1,所以,y=(x-2)2+1.故答案为:y=(x-2)2+1.利用配方法整理即可得解.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数);(2)顶点式:y=a (x-h )2+k ;(3)交点式(与x 轴):y=a (x-x 1)(x-x 2).16.【答案】4-π【解析】 解:如图:新的正方形的边长为1+1=2,∴恒星的面积=2×2-π=4-π.故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可.本题考查了扇形面积的计算,关键是理解恒星的面积=边长为2的正方形面积-半径为1的圆的面积.17.【答案】85或14【解析】解:①当∠A 为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A 为底角时,顶角的度数为:180°-80°-80°=20°∴特征值k==综上所述,特征值k 为或故答案为或可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A 的底数,要进行判断是底角或顶角,以免造成答案的遗漏.18.【答案】13a +21b 【解析】解:由题意知第7个数是5a+8b ,第8个数是8a+13b ,第9个数是13a+21b ,故答案为:13a+21b .由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案.本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.19.【答案】解:(-2)2-|√2-2|-2cos45°+(3-π)0,=4-(2-√2)-2×√22+1,=4-2+√2-√2+1,=3.【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.【答案】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得:{12x +20x =14412x +20x =112,解得:{x =6x =2,答:中性笔和笔记本的单价分别是2元、6元.【解析】根据对话分别利用总钱数得出等式求出答案.此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.21.【答案】25π【解析】 解:(1)如图⊙O 即为所求.(2)设线段BC 的垂直平分线交BC 于点E .由题意OE=4,BE=EC=3,在Rt △OBE 中,OB==5,∴S 圆O =π•52=25π.故答案为25π.(1)作线段AB ,BC 的垂直平分线,两线交于点O ,以O 为圆心,OB 为半径作⊙O ,⊙O 即为所求.(2)在Rt △OBE 中,利用勾股定理求出OB 即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,作CE ⊥AB 于E ,DH ⊥AB 于H ,CF ⊥DH 于F .∵∠CEH =∠CFH =∠FHE =90°,∴四边形CEHF 是矩形,∴CE =FH ,在Rt △ACE 中,∵AC =40cm ,∠A =60°,∴CE =AC •(cm ),∴FH =CE (cm )∵DHcm ,∴DF =DH -FH =49.6-34.6=15(cm ),在Rt △CDF 中,sin ∠DCF =xx xx =1530=12,∴∠DCF =30°,∴此时台灯光线为最佳.【解析】如图,作CE ⊥AB 于E ,DH ⊥AB 于H ,CF ⊥DH 于F .解直角三角形求出∠DCF 即可判断.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C .“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和X 帆恰好选择同一线路游览的结果有4种,∴李欣和X 帆恰好选择同一线路游览的概率为416=14.【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和X 帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,∴其中位数c==78,八年级成绩的众数d=81,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25.【答案】解:(1)∵反比例函数y =xx (k ≠0)的图象与一次函数y =-x +b 的图象在第一象限交于A (1,3),B (3,1)两点,∴3=x 1,3=-1+b ,∴k =3,b =4,∴反比例函数和一次函数的表达式分别为y =3x ,y =-x +4;(2)由图象可得:当1<a <3时,PM >PN .【解析】(1)利用待定系数法即可求得;(2)根据图象可解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.26.【答案】(1)证明:连接AD ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵AD =BD ,∴∠BAD =∠B =30°,∴∠ADC =60°,∴∠DAC =180°-60°-30°=90°,∴AC 是⊙D 的切线;(2)解:连接AE ,∵AD =DE ,∠ADE =60°,∴△ADE 是等边三角形,∴AE =DE ,∠AED =60°,∴∠EAC =∠AED -∠C =30°,∴∠EAC =∠C ,∴AE =CE =2√3,∴⊙D 的半径AD =2√3.【解析】(1)连接AD ,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°-60°-30°=90°,于是得到AC 是⊙D 的切线;(2)连接AE ,推出△ADE 是等边三角形,得到AE=DE ,∠AED=60°,求得∠EAC=∠AED-∠C=30°,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,如图所示:则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1,∴△EB 1C 1是等腰直角三角形,∴∠B 1EC 1=∠B 1C 1E =45°,∵N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点,∴∠M 1C 1N 1=90°+45°=135°,∴∠B 1C 1E +∠M 1C 1N 1=180°,∴E 、C 1、N 1,三点共线,在△A 1B 1M 1和△EB 1M 1中,{x 1x 1=xx 1∠x 1x 1x 1=∠xx 1x 1x 1x 1=x 1x 1,∴△A 1B 1M 1≌△EB 1M 1(SAS ),∴A 1M 1=EM 1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A 1M 1N 1=180°-90°=90°.【解析】延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1,得出△EB 1C 1是等腰直角三角形,由等腰直角三角形的性质得出∠B 1EC 1=∠B 1C 1E=45°,证出∠B 1C 1E+∠M 1C 1N 1=180°,得出E 、C 1、N 1,三点共线,由SAS 证明△A 1B 1M 1≌△EB 1M 1得出A 1M 1=EM 1,∠1=∠2,得出EM 1=M 1N 1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论.此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.28.【答案】解:(1)由二次函数交点式表达式得:y =a (x +3)(x -4)=a (x 2-x -12),即:-12a =4,解得:a =-13,则抛物线的表达式为y =-13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(-3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =4√2,∠OAB =∠OBA =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =-x +4…①,同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为M (-32,4),过点M 与CA 垂直直线的表达式中的k 值为-34,同理可得过点M 与直线AC 垂直直线的表达式为:y =-34x +78…②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7-n ,由勾股定理得:(7-n )2+n 2=25,解得:n =3或4(舍去4),故点Q (1,3);②当AC =CQ 时,如图1,CQ =5,则BQ =BC -CQ =4√2-5,则QM =MB =8−5√22,故点Q (5√22,8−5√22);③当CQ =AQ 时,联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22);(3)设点P (m ,-13m 2+13m +4),则点Q (m ,-m +4),∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN ,PN =PQ sin ∠PQN =√22(-13m 2+13m +4+m -4)=-√26m 2+7√26m ,∵-√26<0,∴PN 有最大值,当m =72时,PN 的最大值为:49√224.【解析】 (1)由二次函数交点式表达式,即可求解;(2)分AC=AQ 、AC=CQ 、CQ=AQ 三种情况,分别求解即可;(3)由PN=PQsin ∠PQN=(-m 2+m+4+m-4)即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019年甘肃省陇南市中考数学试卷含答案解析

2019年甘肃省陇南市中考数学试卷含答案解析

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次3109204849791803139699数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为______(精确到0.1).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+√m x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|√2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共82.0分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:√3取1.73).23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.(k≠0)的图象与一次函数y=-x+b的图象在第一象限交25.如图,已知反比例函数y=kx于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交上的图象于点N.若PM>PN,一次函数y=-x+b的图象于点M,交反比例函数y=kx结合函数图象直接写出a的取值范围.26.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2√3,求⊙D的半径.27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】D【解析】解:0.000000007=7×10-9;故选:D.由科学记数法知0.000000007=7×10-9;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)×180°=540°,故选:C.根据多边形内角和公式(n-2)×180°即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得2x+9≥3x+6,移项,合并得-x≥-3系数化为1,得x≤3;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.【答案】B【解析】解:-=-==.故从第②步开始出现错误.故选:B.直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC=12,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.【答案】0.5【解析】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x 2-4x+5=x 2-4x+4+1=(x-2)2+1,所以,y=(x-2)2+1.故答案为:y=(x-2)2+1.利用配方法整理即可得解.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数);(2)顶点式:y=a (x-h )2+k ;(3)交点式(与x 轴):y=a (x-x 1)(x-x 2).16.【答案】4-π【解析】解:如图:新的正方形的边长为1+1=2,∴恒星的面积=2×2-π=4-π. 故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可.本题考查了扇形面积的计算,关键是理解恒星的面积=边长为2的正方形面积-半径为1的圆的面积.17.【答案】85或14【解析】 解:①当∠A 为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°-80°-80°=20°∴特征值k==综上所述,特征值k为或故答案为或可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的底数,要进行判断是底角或顶角,以免造成答案的遗漏.18.【答案】13a+21b【解析】解:由题意知第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b,故答案为:13a+21b.由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案.本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.19.【答案】解:(-2)2-|√2-2|-2cos45°+(3-π)0,+1,=4-(2-√2)-2×√22=4-2+√2-√2+1,=3.【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.【答案】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得: {12x +20y =14412y+20x=112,解得:{y =6x=2,答:中性笔和笔记本的单价分别是2元、6元.【解析】根据对话分别利用总钱数得出等式求出答案.此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键. 21.【答案】25π【解析】解:(1)如图⊙O 即为所求.(2)设线段BC 的垂直平分线交BC 于点E .由题意OE=4,BE=EC=3,在Rt △OBE 中,OB==5,∴S 圆O =π•52=25π.故答案为25π.(1)作线段AB ,BC 的垂直平分线,两线交于点O ,以O 为圆心,OB 为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF是矩形,∴CE=FH,在Rt△ACE中,∵AC=40cm,∠A=60°,∴CE=AC•sin60°=34.6(cm),∴FH=CE=34.6(cm)∵DH=49.6cm,∴DF=DH-FH=49.6-34.6=15(cm),在Rt△CDF中,sin∠DCF=DFCD =1530=12,∴∠DCF=30°,∴此时台灯光线为最佳.【解析】如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.解直角三角形求出∠DCF 即可判断.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C.“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为416=14.【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,∴其中位数c==78,八年级成绩的众数d=81,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数, ∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25.【答案】解:(1)∵反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一x象限交于A(1,3),B(3,1)两点,∴3=k,3=-1+b,1∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=3,y=-x+4;x(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)利用待定系数法即可求得;(2)根据图象可解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.26.【答案】(1)证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°-60°-30°=90°,∴AC是⊙D的切线;(2)解:连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED-∠C=30°,∴∠EAC=∠C,∴AE=CE=2√3,∴⊙D 的半径AD =2√3.【解析】(1)连接AD ,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°-60°-30°=90°,于是得到AC 是⊙D 的切线;(2)连接AE ,推出△ADE 是等边三角形,得到AE=DE ,∠AED=60°,求得∠EAC=∠AED-∠C=30°,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,如图所示:则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1, ∴△EB 1C 1是等腰直角三角形,∴∠B 1EC 1=∠B 1C 1E =45°,∵N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点,∴∠M 1C 1N 1=90°+45°=135°,∴∠B 1C 1E +∠M 1C 1N 1=180°,∴E 、C 1、N 1,三点共线,在△A 1B 1M 1和△EB 1M 1中,{A 1B 1=EB 1∠A 1B 1M 1=∠EB 1M 1B 1M 1=B 1M 1,∴△A 1B 1M 1≌△EB 1M 1(SAS ),∴A 1M 1=EM 1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A 1M 1N 1=180°-90°=90°.【解析】延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1,得出△EB 1C 1是等腰直角三角形,由等腰直角三角形的性质得出∠B 1EC 1=∠B 1C 1E=45°,证出∠B 1C 1E+∠M 1C 1N 1=180°,得出E 、C 1、N 1,三点共线,由SAS 证明△A 1B 1M 1≌△EB 1M 1得出A 1M 1=EM 1,∠1=∠2,得出EM 1=M 1N 1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论. 此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.28.【答案】解:(1)由二次函数交点式表达式得:y =a (x +3)(x -4)=a (x 2-x -12),即:-12a =4,解得:a =-13,则抛物线的表达式为y =-13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(-3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =4√2,∠OAB =∠OBA =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =-x +4…①, 同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为M (-32,4),过点M 与CA 垂直直线的表达式中的k 值为-34, 同理可得过点M 与直线AC 垂直直线的表达式为:y =-34x +78…②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7-n ,由勾股定理得:(7-n )2+n 2=25,解得:n =3或4(舍去4),故点Q (1,3);②当AC =CQ 时,如图1,CQ =5,则BQ =BC -CQ =4√2-5, 则QM =MB =8−5√22, 故点Q (5√22,8−5√22); ③当CQ =AQ 时,联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22); (3)设点P (m ,-13m 2+13m +4),则点Q (m ,-m +4),∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN , PN =PQ sin ∠PQN =√22(-13m 2+13m +4+m -4)=-√26m 2+7√26m , ∵-√26<0,∴PN 有最大值, 当m =72时,PN 的最大值为:49√224.【解析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ 、AC=CQ 、CQ=AQ 三种情况,分别求解即可;(3)由PN=PQsin ∠PQN=(-m 2+m+4+m-4)即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019年甘肃省陇南市中考数学试题及答案全解全析

2019年甘肃省陇南市中考数学试题及答案全解全析

2019年陇南市高中阶段学校招生考试数学一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(2019甘肃陇南中考,1,3分,★☆☆)下列四个几何体中,是三棱柱的为()A B C D2. (2019甘肃陇南中考,2,3分,★☆☆)如图,数轴的单位长度为1,如果点A表示的数是﹣1,那么点B表示的数是()A.0 B.1 C.2 D.33. (2019甘肃陇南中考,3,3分,★☆☆)下列整数中,与10最接近的整数是()A.3 B.4 C.5 D.64. (2019甘肃陇南中考,4,3分,★☆☆)华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.7×10﹣7B.0.7×10﹣8C.7×10﹣8D.7×10﹣95. (2019甘肃陇南中考,5,3分,★☆☆)如图,将图形用放大镜放大,应该属于()A.平移变换B.相似变换C.旋转变换D.对称变换6. (2019甘肃陇南中考,6,3分,★☆☆)如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°7. (2019甘肃陇南中考,7,3分,★☆☆)不等式2x+9≥3(x+2)的解集是()A.x≤3B.x≤﹣3 C.x≥3D.x≥﹣38. (2019甘肃陇南中考,8,3分,★★☆)下面的计算过程中,从哪一步开始出现错误()A.①B.②C.③D.④9. (2019甘肃陇南中考,9,3分,★★☆)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则∠ASB的度数是()A.22.5°B.30°C.45°D.60°10. (2019甘肃陇南中考,10,3分,★★☆)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A.3 B.4 C.5 D.6二、填空题:本大题共8小题,每小题4分,共32分.11. (2019甘肃陇南中考,11,4分,★☆☆)中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点.12. (2019甘肃陇南中考,12,4分,★☆☆)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数6140 4040 10000 36000 80640 出现“正面朝3109 2048 4979 18031 39699 上”的次数频率0.506 0.507 0.498 0.501 0.492 请根据以上数据,估计硬币出现“正面朝上”的概率为(精确到0.1).13. (2019甘肃陇南中考,12,4分,★☆☆)因式分解:xy2﹣4x=.14. (2019甘肃陇南中考,14,4分,★☆☆)关于x的一元二次方程x2+m x+1=0有两个相等的实数根,则m的取值为.15. (2019甘肃陇南中考,15,4分,★☆☆)将二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k的形式为.16. (2019甘肃陇南中考,16,4分,★★☆)把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于.17. (2019甘肃陇南中考,17,4分,★★☆)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=18. (2019甘肃陇南中考,18,4分,★★☆)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是.三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明,证明过程或演算步骤19. (2019甘肃陇南中考,19,6分,★☆☆)计算:(﹣2)2﹣|2﹣2|﹣2cos45°+(3﹣π)0.20. (2019甘肃陇南中考,20,6分,★★☆)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21. (2019甘肃陇南中考,21,8分,★★☆)已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=.22. (2019甘肃陇南中考,22,8分,★★☆)图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:3取1.73).23. (2019甘肃陇南中考,23,10分,★★☆)2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明,证明过程或演算步骤.24. (2019甘肃陇南中考,24,8分,★★☆)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级0 1 0 a7 1八年级 1 0 0 7 b 2分析数据:平均数众数中位数七年级78 75 c八年级78 d80.5应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.25. (2019甘肃陇南中考,25,10分,★★☆)如图,已知反比例函数y=kx(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点.(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交一次函数y=﹣x+b的图象于点M,交反比例函数y=kx上的图象于点N.若PM>PN,结合函数图象直接写出a的取值范围.26. (2019甘肃陇南中考,26,10分,★★☆)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=23,求⊙D的半径.27. (2019甘肃陇南中考,27,10分,★★★)阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM =MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28. (2019甘肃陇南中考,28,12分,★★★)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?陇南市2019年高中阶段学校招生考试数学答案全解全析1.答案:C解析:A项是四棱柱,B项是四棱锥,C项是三棱柱,D项是圆柱,故选C.考查内容:认识立体图形.命题意图:本题考查对几何体的认识,难度不大.2.答案:D解析:由题意,点A右边第1个点表示原点,点B在原点右边,距离原点3个单位长度,所以点B表示的数是3.考查内容:数轴.命题意图:本题考查用数轴上的点表示有理数的能力,难度小.3.答案:A解析:∵32=9,42=16,∴32<10<42,34,又10与9的距离小于16与10的距3.考查内容:估算无理数的大小.命题意图:本题考查用夹逼法估算无理数的大小,难度不大.4.答案:D解析:7的前面有9个0(包括小数点前面那个0),所以0.000000007=7×10﹣9.考查内容:科学记数法—表示较小的数.命题意图:本题考查用科学记数法表示较小数的能力,熟练掌握科学记数法a×10n中a与n 的意义是解题的关键,难度不大.5.答案:B解析:用放大镜将图形放大,与原图形的形状相同,大小不相同,所以属于相似变换.考查内容:几何变换的类型.命题意图:本题考查应用几何变换的特征识别判断的能力,难度不大.6.答案:C解析:因为n边形的内角和是(n﹣2)×180°,所以五边形的内角和是(5﹣2)×180°=540°. 考查内容:多边形的内角与外角.命题意图:本题考查已知边数求多边形的内角和的能力,难度较小.7.答案:A解析:去括号,得2x+9≥3x+6,移项,得2x﹣3x≥6﹣9,合并同类项,得﹣x≥﹣3系数化为1,得x≤3,故选A.考查内容:一元一次不等式的解法.命题意图:本题考查正确熟练解一元一次不等式的能力,难度小.8.答案:B解析:xx y-﹣yx y+=()()()x x yx y x y+-+﹣()()()y x yx y x y--+=22()()()()x xy xy yx y x y+---+=22()()x xy xy yx y x y+-+-+=2222x yx y+-.从第②步开始出现错误.故选B.考查内容:分式的加减法.命题意图:本题考查正确熟练进行分式加减法的能力,难度中等.易错警示:在进行分式加减运算时,对于减式中分子是多项式的,要把分子部分当作一个整体,用括号括起来,然后利用去括号的法则来去括号.往往不添加括号而导致符号错误.9.答案:C解析:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的2倍,即AB=2OA,∴AB2=2OA2=OA2+OB2,∴△OAB为等腰直角三角形,且∠AOB=90°,∴∠ASB=12∠AOB=45°,故选C.考查内容:圆周角定理;勾股定理的逆定理.命题意图:本题考查利用勾股定理的逆定理识别直角三角形的能力,利用圆周角定理求圆周角的能力,难度中等.10.答案:B解析:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3,∴12AB•12BC=3,即AB•BC=12①.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7②.解①、②组成的方程组,得34ABBC=⎧⎨=⎩,,或43ABBC=⎧⎨=⎩,,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选B.考查内容:动点问题的函数图象;矩形的性质;一元二次方程的解法.命题意图:本题考查分析动点问题的函数图象的能力,分类讨论的思想,难度较大.11.答案:(﹣1,1)解析:如图建立平面直角坐标系,可得“兵”位于(﹣1,1).考查内容:坐标确定位置;点的坐标.命题意图:本题考查根据已知点的坐标建立平面直角坐标系的能力,难度不大.12.答案:0.5.解析:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.考查内容:频数(率)分布表;频率估计概率.命题意图:本题考查从频数(率)分布表识别信息的能力,考查用频率估计概率的能力,难度不大.13.答案:x(y+2)(y﹣2)解析:xy2﹣4x=x(y2﹣4)=x(y+2)(y﹣2).考查内容:因式分解的步骤.命题意图:本题考查正确熟练地进行因式分解的能力,难度不大.14.答案:4解析:因为方程x2m+1=0有两个相等的实数根,所以b2﹣4ac=0m2﹣4=0,解得m=4.考查内容:一元二次方程根的判别式.命题意图:本题考查根据一元二次方程根的情况求字母的值的能力,难度较小.15.答案:y=(x﹣2)2+1解析:y=x2﹣4x+5= x2﹣4x+4+1=(x﹣2)2+1.考查内容:二次函数y=ax2+bx+c(a≠0)的图象;配方法.命题意图:本题考查将二次函数的一般式配方成顶点式的能力,难度较小.16.答案:4﹣π解析:如图,新的正方形的边长AD=1+1=2,恒星的面积=S正方形ABCD﹣4S扇形AEF=22﹣4×2901360π⨯=4﹣π.考查内容:扇形面积的计算;图形的剪拼.菁命题意图:本题考查使用割补法求不规则图形面积的能力,难度中等.17.答案:85或14解析:分两种情况考虑,①当∠A为顶角时,等腰三角形两底角的度数为180802-=50°,所以特征值k=8050=85;②当∠A为底角时,顶角的度数为180°﹣80°×2=20°,所以特征值k=2080=14,综上所述,特征值k为85或14.考查内容:等腰三角形的性质.命题意图:本题考查利用等腰三角形的性质计算的能力,分类讨论的能力,难度中等. 18.答案:13a+21b解析:观察发现,从第3个数开始,每个数均为前两个数的和,所以第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b.考查内容:规律型:数字的变化类.菁优网版权所有命题意图:本题考查探究数字变化规律的能力,难度中等.19.解析:(﹣2)2﹣2﹣2|﹣2cos45°+(3﹣π)0=4﹣(222×22+1,=4﹣22+1=3.考查内容:实数的乘方;绝对值;特殊角的三角函数值;零指数幂.命题意图:本题考查实数的混合运算能力,难度中等.规律方法:实数运算的“三个关键”:(1)运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.(2)运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.(3)运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.20.解析:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得12201121220144y x x y +=⎧⎨+=⎩,,, 解得26.x y =⎧⎨=⎩, 答:中性笔和笔记本的单价分别是2元、6元.考查内容:二元一次方程组的应用.命题意图:本题考查列二元一次方程组解应用题的能力,难度中等.21.解析:(1)如图,⊙O 即为所求.(2)设线段BC 的垂直平分线交BC 于点E .由题意得OE =4,BE =EC =12BC=3, 在Rt △OBE 中,由勾股定理,得OB 22OE BE +2234+5,∴S 圆O =π×52=25π.考查内容:三角形的外接圆与外心;尺规作图—复杂作图;垂径定理;勾股定理.命题意图:本题考查尺规作三角形的外接圆的能力,利用垂径定理和勾股定理计算的能力,难度中等.22.解析:如图,作CE⊥AB于E,DH⊥AB交AB的延长线于H,作CF⊥DH于F.∴∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF是矩形,∴CE=FH.在Rt△ACE中,∵sin∠A=CE CA,∴CE=CA•sin∠A=40×32=203=34.6,∴FH=CE=34.6.∴DF=DH﹣FH=49.6﹣34.6=15.在Rt△CDF中,sin∠DCF=DFCD=1530=12,∴∠DCF=30°,∴此时台灯光线为最佳.考查内容:矩形的判定;解直角三角形的应用..命题意图:本题考查解直角三角形的应用能力,合理添加辅助线构造直角三角形是解决问题的关键,难度中等.23.解析:(1)在这四条线路任选一条,每条被选中的可能性相同,∴李欣选择线路C.“园艺小清新之旅”的概率是14;(2)画树状图如下:共有16种等可能发生的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为416=14. 考查内容:概率公式;列表法或树状图法求概率.命题意图:本题考查计算不确定事件概率的能力,利用列表法或树状图法分析问题的能力,难度中等偏上.24.解析:(1)11 10 78 81(2)600×2×1240+=90(人),估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有90人.(3)八年级的总体水平较好,理由如下:七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,八年级的众数大于七年级的众数,所以八年级得分高的人数相对较多,八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).考查内容:频数(率)分布表;算术平均数;众数;中位数;样本估计总体.命题意图:本题考查众数、中位数的求法,利用统计知识解决实际问题的能力,难度中等.25.解析:(1)把点A (1,3)代入y =k x (k ≠0),得3=1k ,解得k=3,所以反比例函数的解析式为y =3x.把点A (1,3)代入y =﹣x +b ,得3=﹣1+b ,解得b =4,所以一次函数的表达式为y =﹣x +4. (2)由图象可得,当1<a <3时,直线y =﹣x +b 在曲线y =k x 的上方,所以PM >PN . 考查内容:一次函数与反比例函数的交点问题;待定系数法;图象法.命题意图:本题考查用待定系数法求函数解析式的能力,用图象法解决函数问题的能力,难度中等.26.解析:(1)证明:连接AD ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =1802BAC -∠=30°. ∵AD =BD ,∴∠BAD =∠B =30°,∴∠ADC =∠BAD +∠B =60°,∴∠DAC =180°﹣∠ADC ﹣∠C =90°,∴AC是⊙D的切线;(2)连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED﹣∠C=30°,∴∠EAC=∠C,∴AE=CE=23,∴AD=AE=23,即⊙D的半径是23.考查内容:等腰三角形的性质;切线的判定;等边三角形的判定与性质.命题意图:本题考查切线的判定方法,合理添加辅助线的能力,应用等腰三角形的性质和等边三角形的判定与性质解决问题的能力,难度中等偏上.27.解析:延长A1B1至E1,使E1B1=A1B1,连接E1M1、E1C1,如图所示,则E1B1=B1C1,∠E1B1M1=∠A1B1M1=90°,∴△E1B1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E1=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠D1 C1N1=∠N1C1F=45°,∴∠M1C1N1=∠M1C1D1+∠D1 C1N1=135°,∴∠B1C1E1+∠M1C1N1=180°,∴E1、C1、N1三点共线.在△A1B1M1和△E1B1M1中,1111111111 1111A B E BA B M E B MB M B M=⎧⎪∠=∠⎨⎪=⎩,,,∴△A1B1M1≌△E1B1M1(SAS),∴A1M1=E1M1,∠1=∠2,∵A1M1=M1N1,∴E1M1=M1N1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A1M1N1=180°﹣90°=90°.考查内容:正方形的性质;等腰三角形的性质;全等三角形的判定与性质;三角形的外角性质.命题意图:本题考查正方形的性质、等腰三角形的性质、全等三角形的判定与性质和三角形的外角性质的综合应用,难度大.28.解析:(1)把A(﹣3,0),B(4,0)代入y=ax2+bx+4,得9340 16440 a ba b-+=⎧⎨++=⎩,,解得1313ab⎧=-⎪⎪⎨⎪=⎪⎩,,所以抛物线的表达式为y=﹣13x2+13x+4;(2)存在点Q,使得以A,C,Q为顶点的三角形是等腰三角形,理由如下:∵点A、B、C的坐标分别为(﹣3,0)、(4,0)、(0,4),∴OA=3,OB=4,OC=4,∴AC2=OA2+OC2=25.易求得直线BC的函数表达式为y=﹣x+4,设点Q坐标为(m,﹣m+4),则CQ2=m2+[4﹣(﹣m+4)]2=2m2,AQ2=(3+m)2+(﹣m+4)2=9+6m+m2+m2﹣8m+16=2 m2﹣2m+25.当△ACQ为等腰三角形时,分三种情况考虑:①当AC=AQ时,则AC2=AQ2,即25=2 m2﹣2m+25,解得m=1或m=0(不合题意,舍去),﹣m+4=3,所以点Q(1,3);,②当AC=CQ时,则AC2=CQ2,即25=2m2,解得m=522或m=﹣522(不合题意,舍去),﹣m+4=8522-,所以点Q(22,822-);③当CQ=AQ时,则CQ2= AQ2,即2m2=2 m2﹣2m+25,解得m=252(不合题意,舍去),综上所述,点Q的坐标为(1,3)或(22,8522-).(3)设点P(m,﹣13m2+13m+4),则点Q(m,﹣m+4),∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN,PN=PQ sin∠PQN=22(﹣13m2+13m+4+m﹣4)=﹣26m2+26m=2m﹣72)249220,∴PN有最大值,且当m =72时,PN 的最大值为24. 考查内容:待定系数法;等腰三角形的性质;勾股定理;二次函数的性质.命题意图:本题考查用待定系数法确定函数关系式的能力,利用等腰三角形的性质和勾股定理进行推理论证的能力,利用二次函数的性质确定最值的能力,分类讨论的思想,方程的思想,综合性强,难度大.。

2019年甘肃省陇南市中考数学试卷(附参考答案)

2019年甘肃省陇南市中考数学试卷(附参考答案)

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.第2页,共25页12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次3109204849791803139699数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为______(精确到0.1).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+√m x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|√2-2|-2cos45°+(3-π)0。

2019年甘肃省陇南市中考数学试卷(含答案解析)

2019年甘肃省陇南市中考数学试卷(含答案解析)

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次3109204849791803139699数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为______(精确到0.1).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+√m x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|√2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共82.0分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:√3取1.73).23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.25.如图,已知反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一象限交x于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交上的图象于点N.若PM>PN,一次函数y=-x+b的图象于点M,交反比例函数y=kx结合函数图象直接写出a的取值范围.26.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2√3,求⊙D的半径.27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】D【解析】解:0.000000007=7×10-9;故选:D.由科学记数法知0.000000007=7×10-9;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)×180°=540°,故选:C.根据多边形内角和公式(n-2)×180°即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得2x+9≥3x+6,移项,合并得-x≥-3系数化为1,得x≤3;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.【答案】B【解析】解:-=-==.故从第②步开始出现错误.故选:B.直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC=12,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.【答案】0.5【解析】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x 2-4x+5=x 2-4x+4+1=(x-2)2+1, 所以,y=(x-2)2+1. 故答案为:y=(x-2)2+1. 利用配方法整理即可得解.本题考查了二次函数的解析式有三种形式: (1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数); (2)顶点式:y=a (x-h )2+k ;(3)交点式(与x 轴):y=a (x-x 1)(x-x 2). 16.【答案】4-π【解析】解:如图:新的正方形的边长为1+1=2, ∴恒星的面积=2×2-π=4-π. 故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可.本题考查了扇形面积的计算,关键是理解恒星的面积=边长为2的正方形面积-半径为1的圆的面积. 17.【答案】85或14【解析】解:①当∠A 为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°-80°-80°=20°∴特征值k==综上所述,特征值k为或故答案为或可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的底数,要进行判断是底角或顶角,以免造成答案的遗漏.18.【答案】13a+21b【解析】解:由题意知第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b,故答案为:13a+21b.由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案.本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.19.【答案】解:(-2)2-|√2-2|-2cos45°+(3-π)0,+1,=4-(2-√2)-2×√22=4-2+√2-√2+1,=3.【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.【答案】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得:{12x +20y =14412y+20x=112, 解得:{y =6x=2,答:中性笔和笔记本的单价分别是2元、6元. 【解析】根据对话分别利用总钱数得出等式求出答案.此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键. 21.【答案】25π【解析】解:(1)如图⊙O 即为所求.(2)设线段BC 的垂直平分线交BC 于点E . 由题意OE=4,BE=EC=3, 在Rt △OBE 中,OB==5,∴S 圆O =π•52=25π. 故答案为25π.(1)作线段AB ,BC 的垂直平分线,两线交于点O ,以O 为圆心,OB 为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF是矩形,∴CE=FH,在Rt△ACE中,∵AC=40cm,∠A=60°,∴CE=AC•sin60°=34.6(cm),∴FH=CE=34.6(cm)∵DH=49.6cm,∴DF=DH-FH=49.6-34.6=15(cm),在Rt△CDF中,sin∠DCF=DFCD =1530=12,∴∠DCF=30°,∴此时台灯光线为最佳.【解析】如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.解直角三角形求出∠DCF 即可判断.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C.“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种, ∴李欣和张帆恰好选择同一线路游览的概率为416=14. 【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94, ∴其中位数c==78,八年级成绩的众数d=81, 故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数, ∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25.【答案】解:(1)∵反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一x象限交于A(1,3),B(3,1)两点,∴3=k,3=-1+b,1∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=3,y=-x+4;x(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)利用待定系数法即可求得;(2)根据图象可解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.26.【答案】(1)证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°-60°-30°=90°,∴AC是⊙D的切线;(2)解:连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED-∠C=30°,∴∠EAC=∠C,∴AE=CE=2√3,∴⊙D 的半径AD =2√3.【解析】(1)连接AD ,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°-60°-30°=90°,于是得到AC 是⊙D 的切线;(2)连接AE ,推出△ADE 是等边三角形,得到AE=DE ,∠AED=60°,求得∠EAC=∠AED-∠C=30°,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,如图所示:则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1, ∴△EB 1C 1是等腰直角三角形,∴∠B 1EC 1=∠B 1C 1E =45°,∵N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点,∴∠M 1C 1N 1=90°+45°=135°,∴∠B 1C 1E +∠M 1C 1N 1=180°,∴E 、C 1、N 1,三点共线,在△A 1B 1M 1和△EB 1M 1中,{A 1B 1=EB 1∠A 1B 1M 1=∠EB 1M 1B 1M 1=B 1M 1,∴△A 1B 1M 1≌△EB 1M 1(SAS ),∴A 1M 1=EM 1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A 1M 1N 1=180°-90°=90°.【解析】延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1,得出△EB 1C 1是等腰直角三角形,由等腰直角三角形的性质得出∠B 1EC 1=∠B 1C 1E=45°,证出∠B 1C 1E+∠M 1C 1N 1=180°,得出E 、C 1、N 1,三点共线,由SAS 证明△A 1B 1M 1≌△EB 1M 1得出A 1M 1=EM 1,∠1=∠2,得出EM 1=M 1N 1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论. 此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.28.【答案】解:(1)由二次函数交点式表达式得:y =a (x +3)(x -4)=a (x 2-x -12),即:-12a =4,解得:a =-13,则抛物线的表达式为y =-13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(-3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =4√2,∠OAB =∠OBA =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =-x +4…①,同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为M (-32,4),过点M 与CA 垂直直线的表达式中的k 值为-34, 同理可得过点M 与直线AC 垂直直线的表达式为:y =-34x +78…②,①当AC =AQ 时,如图1,则AC =AQ =5, 设:QM =MB =n ,则AM =7-n , 由勾股定理得:(7-n )2+n 2=25,解得:n =3或4(舍去4),故点Q (1,3);②当AC =CQ 时,如图1,CQ =5,则BQ =BC -CQ =4√2-5,则QM =MB =8−5√22, 故点Q (5√22,8−5√22); ③当CQ =AQ 时,联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22); (3)设点P (m ,-13m 2+13m +4),则点Q (m ,-m +4),∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN , PN =PQ sin ∠PQN =√22(-13m 2+13m +4+m -4)=-√26m 2+7√26m , ∵-√26<0,∴PN 有最大值, 当m =72时,PN 的最大值为:49√224.【解析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ 、AC=CQ 、CQ=AQ 三种情况,分别求解即可;(3)由PN=PQsin ∠PQN=(-m 2+m+4+m-4)即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019甘肃省陇南市中考数学试卷word解析

2019甘肃省陇南市中考数学试卷word解析

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30。

0分)1.下列四个几何体中,是三棱柱的为()A。

B。

C。

D。

2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A。

0B。

1C。

2D。

33.下列整数中,与√10最接近的整数是()A。

3B。

4C。

5D。

64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0。

000000007米.数据0。

000000007用科学记数法表示为()A。

7×10−7B。

0。

7×10−8C。

7×10−8D。

7×10−95.如图,将图形用放大镜放大,应该属于()A。

平移变换B。

相似变换C。

旋转变换D。

对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A。

180∘B。

360∘C。

540∘D。

720∘7.不等式2x+9≥3(x+2)的解集是()A。

x≤3B。

x≤−3C。

x≥3D。

x≥−38.下面的计算过程中,从哪一步开始出现错误()A。

①B。

②C。

③D。

④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A。

22。

5∘B。

30∘C。

45∘D。

60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A。

3B。

4C。

5D。

6二、填空题(本大题共8小题,共32。

0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次3109204849791803139699数频率0。

2019甘肃省陇南市中考数学试卷(解析版)[中考真题]

2019甘肃省陇南市中考数学试卷(解析版)[中考真题]

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次3109204849791803139699数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为(精确到).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+√m x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|√2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共82.0分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:√3取1.73).23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.(k≠0)的图象与一次函数y=-x+b的图象在第一象限交25.如图,已知反比例函数y=kx于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交上的图象于点N.若PM>PN,一次函数y=-x+b的图象于点M,交反比例函数y=kx结合函数图象直接写出a的取值范围.26.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2√3,求⊙D的半径.27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】D【解析】解:0.000000007=7×10-9;故选:D.由科学记数法知0.000000007=7×10-9;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)×180°=540°,故选:C.根据多边形内角和公式(n-2)×180°即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得2x+9≥3x+6,移项,合并得-x≥-3系数化为1,得x≤3;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.【答案】B【解析】解:-=-==.故从第②步开始出现错误.故选:B.直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC=12,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.【答案】0.5【解析】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x2-4x+5=x2-4x+4+1=(x-2)2+1,所以,y=(x-2)2+1.故答案为:y=(x-2)2+1.利用配方法整理即可得解.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).16.【答案】4-π【解析】解:如图:新的正方形的边长为1+1=2,∴恒星的面积=2×2-π=4-π. 故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可.本题考查了扇形面积的计算,关键是理解恒星的面积=边长为2的正方形面积-半径为1的圆的面积.17.【答案】85或14 【解析】 解:①当∠A 为顶角时,等腰三角形两底角的度数为:=50°∴特征值k== ②当∠A 为底角时,顶角的度数为:180°-80°-80°=20° ∴特征值k==综上所述,特征值k 为或故答案为或可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A 的底数,要进行判断是底角或顶角,以免造成答案的遗漏.18.【答案】13a +21b【解析】解:由题意知第7个数是5a+8b ,第8个数是8a+13b ,第9个数是13a+21b , 故答案为:13a+21b .由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案. 本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.19.【答案】解:(-2)2-|√2-2|-2cos45°+(3-π)0, =4-(2-√2)-2×√22+1, =4-2+√2-√2+1,=3.【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.【答案】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得: {12x +20y =14412y+20x=112,解得:{y =6x=2,答:中性笔和笔记本的单价分别是2元、6元.【解析】根据对话分别利用总钱数得出等式求出答案.此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键. 21.【答案】25π【解析】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB==5,∴S圆O=π•52=25π.故答案为25π.(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF是矩形,∴CE=FH,在Rt△ACE中,∵AC=40cm,∠A=60°,∴CE=AC•sin60°=34.6(cm),∴FH =CE =34.6(cm )∵DH =49.6cm ,∴DF =DH -FH =49.6-34.6=15(cm ),在Rt △CDF 中,sin ∠DCF =DF CD =1530=12,∴∠DCF =30°,∴此时台灯光线为最佳.【解析】如图,作CE ⊥AB 于E ,DH ⊥AB 于H ,CF ⊥DH 于F .解直角三角形求出∠DCF 即可判断.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同, ∴在四条线路中,李欣选择线路C .“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为416=14. 【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,∴其中位数c==78,八年级成绩的众数d=81,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25.【答案】解:(1)∵反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一x象限交于A(1,3),B(3,1)两点,∴3=k,3=-1+b,1∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=3,y=-x+4;x(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)利用待定系数法即可求得;(2)根据图象可解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.26.【答案】(1)证明:连接AD ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵AD =BD ,∴∠BAD =∠B =30°,∴∠ADC =60°,∴∠DAC =180°-60°-30°=90°,∴AC 是⊙D 的切线;(2)解:连接AE ,∵AD =DE ,∠ADE =60°,∴△ADE 是等边三角形,∴AE =DE ,∠AED =60°,∴∠EAC =∠AED -∠C =30°,∴∠EAC =∠C ,∴AE =CE =2√3,∴⊙D 的半径AD =2√3.【解析】(1)连接AD ,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°-60°-30°=90°,于是得到AC 是⊙D 的切线;(2)连接AE ,推出△ADE 是等边三角形,得到AE=DE ,∠AED=60°,求得∠EAC=∠AED-∠C=30°,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,如图所示:则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1, ∴△EB 1C 1是等腰直角三角形,∴∠B 1EC 1=∠B 1C 1E =45°,∵N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点,∴∠M 1C 1N 1=90°+45°=135°,∴∠B 1C 1E +∠M 1C 1N 1=180°,∴E 、C 1、N 1,三点共线,在△A 1B 1M 1和△EB 1M 1中,{A 1B 1=EB 1∠A 1B 1M 1=∠EB 1M 1B 1M 1=B 1M 1,∴△A 1B 1M 1≌△EB 1M 1(SAS ),∴A 1M 1=EM 1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A 1M 1N 1=180°-90°=90°.【解析】延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1,得出△EB 1C 1是等腰直角三角形,由等腰直角三角形的性质得出∠B 1EC 1=∠B 1C 1E=45°,证出∠B 1C 1E+∠M 1C 1N 1=180°,得出E 、C 1、N 1,三点共线,由SAS 证明△A 1B 1M 1≌△EB 1M 1得出A 1M 1=EM 1,∠1=∠2,得出EM 1=M 1N 1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论. 此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.28.【答案】解:(1)由二次函数交点式表达式得:y =a (x +3)(x -4)=a (x 2-x -12),即:-12a =4,解得:a =-13,则抛物线的表达式为y =-13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(-3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =4√2,∠OAB =∠OBA =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =-x +4…①,同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为M (-32,4),过点M 与CA 垂直直线的表达式中的k 值为-34, 同理可得过点M 与直线AC 垂直直线的表达式为:y =-34x +78…②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7-n ,由勾股定理得:(7-n )2+n 2=25,解得:n =3或4(舍去4),故点Q (1,3);②当AC =CQ 时,如图1, CQ =5,则BQ =BC -CQ =4√2-5, 则QM =MB =8−5√22, 故点Q (5√22,8−5√22); ③当CQ =AQ 时,联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22); (3)设点P (m ,-13m 2+13m +4),则点Q (m ,-m +4),∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN , PN =PQ sin ∠PQN =√22(-13m 2+13m +4+m -4)=-√26m 2+7√26m , ∵-√26<0,∴PN 有最大值, 当m =72时,PN 的最大值为:49√224.【解析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ 、AC=CQ 、CQ=AQ 三种情况,分别求解即可;(3)由PN=PQsin ∠PQN=(-m 2+m+4+m-4)即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019甘肃省陇南市中考数学试卷(解析版)(真题)

2019甘肃省陇南市中考数学试卷(解析版)(真题)

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次3109204849791803139699数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为(精确到).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+√m x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|√2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共82.0分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:√3取1.73).23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.(k≠0)的图象与一次函数y=-x+b的图象在第一象限交25.如图,已知反比例函数y=kx于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交上的图象于点N.若PM>PN,一次函数y=-x+b的图象于点M,交反比例函数y=kx结合函数图象直接写出a的取值范围.26.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2√3,求⊙D的半径.27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】D【解析】解:0.000000007=7×10-9;故选:D.由科学记数法知0.000000007=7×10-9;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)×180°=540°,故选:C.根据多边形内角和公式(n-2)×180°即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得2x+9≥3x+6,移项,合并得-x≥-3系数化为1,得x≤3;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.【答案】B【解析】解:-=-==.故从第②步开始出现错误.故选:B.直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC=12,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.【答案】0.5【解析】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x2-4x+5=x2-4x+4+1=(x-2)2+1,所以,y=(x-2)2+1.故答案为:y=(x-2)2+1.利用配方法整理即可得解.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).16.【答案】4-π【解析】解:如图:新的正方形的边长为1+1=2,∴恒星的面积=2×2-π=4-π. 故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可.本题考查了扇形面积的计算,关键是理解恒星的面积=边长为2的正方形面积-半径为1的圆的面积.17.【答案】85或14 【解析】 解:①当∠A 为顶角时,等腰三角形两底角的度数为:=50°∴特征值k== ②当∠A 为底角时,顶角的度数为:180°-80°-80°=20° ∴特征值k==综上所述,特征值k 为或故答案为或可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A 的底数,要进行判断是底角或顶角,以免造成答案的遗漏.18.【答案】13a +21b【解析】解:由题意知第7个数是5a+8b ,第8个数是8a+13b ,第9个数是13a+21b , 故答案为:13a+21b .由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案. 本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.19.【答案】解:(-2)2-|√2-2|-2cos45°+(3-π)0, =4-(2-√2)-2×√22+1, =4-2+√2-√2+1,=3.【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.【答案】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得: {12x +20y =14412y+20x=112,解得:{y =6x=2,答:中性笔和笔记本的单价分别是2元、6元.【解析】根据对话分别利用总钱数得出等式求出答案.此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键. 21.【答案】25π【解析】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB==5,∴S圆O=π•52=25π.故答案为25π.(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF是矩形,∴CE=FH,在Rt△ACE中,∵AC=40cm,∠A=60°,∴CE=AC•sin60°=34.6(cm),∴FH =CE =34.6(cm )∵DH =49.6cm ,∴DF =DH -FH =49.6-34.6=15(cm ),在Rt △CDF 中,sin ∠DCF =DF CD =1530=12,∴∠DCF =30°,∴此时台灯光线为最佳.【解析】如图,作CE ⊥AB 于E ,DH ⊥AB 于H ,CF ⊥DH 于F .解直角三角形求出∠DCF 即可判断.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同, ∴在四条线路中,李欣选择线路C .“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为416=14. 【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,∴其中位数c==78,八年级成绩的众数d=81,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25.【答案】解:(1)∵反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一x象限交于A(1,3),B(3,1)两点,∴3=k,3=-1+b,1∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=3,y=-x+4;x(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)利用待定系数法即可求得;(2)根据图象可解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.26.【答案】(1)证明:连接AD ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵AD =BD ,∴∠BAD =∠B =30°,∴∠ADC =60°,∴∠DAC =180°-60°-30°=90°,∴AC 是⊙D 的切线;(2)解:连接AE ,∵AD =DE ,∠ADE =60°,∴△ADE 是等边三角形,∴AE =DE ,∠AED =60°,∴∠EAC =∠AED -∠C =30°,∴∠EAC =∠C ,∴AE =CE =2√3,∴⊙D 的半径AD =2√3.【解析】(1)连接AD ,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°-60°-30°=90°,于是得到AC 是⊙D 的切线;(2)连接AE ,推出△ADE 是等边三角形,得到AE=DE ,∠AED=60°,求得∠EAC=∠AED-∠C=30°,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,如图所示:则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1, ∴△EB 1C 1是等腰直角三角形,∴∠B 1EC 1=∠B 1C 1E =45°,∵N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点,∴∠M 1C 1N 1=90°+45°=135°,∴∠B 1C 1E +∠M 1C 1N 1=180°,∴E 、C 1、N 1,三点共线,在△A 1B 1M 1和△EB 1M 1中,{A 1B 1=EB 1∠A 1B 1M 1=∠EB 1M 1B 1M 1=B 1M 1,∴△A 1B 1M 1≌△EB 1M 1(SAS ),∴A 1M 1=EM 1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A 1M 1N 1=180°-90°=90°.【解析】延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1,得出△EB 1C 1是等腰直角三角形,由等腰直角三角形的性质得出∠B 1EC 1=∠B 1C 1E=45°,证出∠B 1C 1E+∠M 1C 1N 1=180°,得出E 、C 1、N 1,三点共线,由SAS 证明△A 1B 1M 1≌△EB 1M 1得出A 1M 1=EM 1,∠1=∠2,得出EM 1=M 1N 1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论. 此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.28.【答案】解:(1)由二次函数交点式表达式得:y =a (x +3)(x -4)=a (x 2-x -12),即:-12a =4,解得:a =-13,则抛物线的表达式为y =-13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(-3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =4√2,∠OAB =∠OBA =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =-x +4…①,同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为M (-32,4),过点M 与CA 垂直直线的表达式中的k 值为-34, 同理可得过点M 与直线AC 垂直直线的表达式为:y =-34x +78…②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7-n ,由勾股定理得:(7-n )2+n 2=25,解得:n =3或4(舍去4),故点Q (1,3);②当AC =CQ 时,如图1, CQ =5,则BQ =BC -CQ =4√2-5, 则QM =MB =8−5√22, 故点Q (5√22,8−5√22); ③当CQ =AQ 时,联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22); (3)设点P (m ,-13m 2+13m +4),则点Q (m ,-m +4),∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN , PN =PQ sin ∠PQN =√22(-13m 2+13m +4+m -4)=-√26m 2+7√26m , ∵-√26<0,∴PN 有最大值, 当m =72时,PN 的最大值为:49√224.【解析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ 、AC=CQ 、CQ=AQ 三种情况,分别求解即可;(3)由PN=PQsin ∠PQN=(-m 2+m+4+m-4)即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019甘肃省陇南市中考数学试卷(解析版)

2019甘肃省陇南市中考数学试卷(解析版)

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次3109204849791803139699数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为(精确到).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+√m x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|√2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共82.0分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:√3取1.73).23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.(k≠0)的图象与一次函数y=-x+b的图象在第一象限交25.如图,已知反比例函数y=kx于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交上的图象于点N.若PM>PN,一次函数y=-x+b的图象于点M,交反比例函数y=kx结合函数图象直接写出a的取值范围.26.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2√3,求⊙D的半径.27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】D【解析】解:0.000000007=7×10-9;故选:D.由科学记数法知0.000000007=7×10-9;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)×180°=540°,故选:C.根据多边形内角和公式(n-2)×180°即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得2x+9≥3x+6,移项,合并得-x≥-3系数化为1,得x≤3;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.【答案】B【解析】解:-=-==.故从第②步开始出现错误.故选:B.直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC=12,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.【答案】0.5【解析】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x2-4x+5=x2-4x+4+1=(x-2)2+1,所以,y=(x-2)2+1.故答案为:y=(x-2)2+1.利用配方法整理即可得解.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).16.【答案】4-π【解析】解:如图:新的正方形的边长为1+1=2,∴恒星的面积=2×2-π=4-π. 故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可.本题考查了扇形面积的计算,关键是理解恒星的面积=边长为2的正方形面积-半径为1的圆的面积.17.【答案】85或14 【解析】 解:①当∠A 为顶角时,等腰三角形两底角的度数为:=50°∴特征值k== ②当∠A 为底角时,顶角的度数为:180°-80°-80°=20° ∴特征值k==综上所述,特征值k 为或故答案为或可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A 的底数,要进行判断是底角或顶角,以免造成答案的遗漏.18.【答案】13a +21b【解析】解:由题意知第7个数是5a+8b ,第8个数是8a+13b ,第9个数是13a+21b , 故答案为:13a+21b .由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案. 本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.19.【答案】解:(-2)2-|√2-2|-2cos45°+(3-π)0, =4-(2-√2)-2×√22+1, =4-2+√2-√2+1,=3.【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.【答案】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得: {12x +20y =14412y+20x=112,解得:{y =6x=2,答:中性笔和笔记本的单价分别是2元、6元.【解析】根据对话分别利用总钱数得出等式求出答案.此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键. 21.【答案】25π【解析】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB==5,∴S圆O=π•52=25π.故答案为25π.(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF是矩形,∴CE=FH,在Rt△ACE中,∵AC=40cm,∠A=60°,∴CE=AC•sin60°=34.6(cm),∴FH =CE =34.6(cm )∵DH =49.6cm ,∴DF =DH -FH =49.6-34.6=15(cm ),在Rt △CDF 中,sin ∠DCF =DF CD =1530=12,∴∠DCF =30°,∴此时台灯光线为最佳.【解析】如图,作CE ⊥AB 于E ,DH ⊥AB 于H ,CF ⊥DH 于F .解直角三角形求出∠DCF 即可判断.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同, ∴在四条线路中,李欣选择线路C .“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为416=14. 【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,∴其中位数c==78,八年级成绩的众数d=81,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25.【答案】解:(1)∵反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一x象限交于A(1,3),B(3,1)两点,∴3=k,3=-1+b,1∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=3,y=-x+4;x(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)利用待定系数法即可求得;(2)根据图象可解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.26.【答案】(1)证明:连接AD ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵AD =BD ,∴∠BAD =∠B =30°,∴∠ADC =60°,∴∠DAC =180°-60°-30°=90°,∴AC 是⊙D 的切线;(2)解:连接AE ,∵AD =DE ,∠ADE =60°,∴△ADE 是等边三角形,∴AE =DE ,∠AED =60°,∴∠EAC =∠AED -∠C =30°,∴∠EAC =∠C ,∴AE =CE =2√3,∴⊙D 的半径AD =2√3.【解析】(1)连接AD ,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°-60°-30°=90°,于是得到AC 是⊙D 的切线;(2)连接AE ,推出△ADE 是等边三角形,得到AE=DE ,∠AED=60°,求得∠EAC=∠AED-∠C=30°,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,如图所示:则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1, ∴△EB 1C 1是等腰直角三角形,∴∠B 1EC 1=∠B 1C 1E =45°,∵N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点,∴∠M 1C 1N 1=90°+45°=135°,∴∠B 1C 1E +∠M 1C 1N 1=180°,∴E 、C 1、N 1,三点共线,在△A 1B 1M 1和△EB 1M 1中,{A 1B 1=EB 1∠A 1B 1M 1=∠EB 1M 1B 1M 1=B 1M 1,∴△A 1B 1M 1≌△EB 1M 1(SAS ),∴A 1M 1=EM 1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A 1M 1N 1=180°-90°=90°.【解析】延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1,得出△EB 1C 1是等腰直角三角形,由等腰直角三角形的性质得出∠B 1EC 1=∠B 1C 1E=45°,证出∠B 1C 1E+∠M 1C 1N 1=180°,得出E 、C 1、N 1,三点共线,由SAS 证明△A 1B 1M 1≌△EB 1M 1得出A 1M 1=EM 1,∠1=∠2,得出EM 1=M 1N 1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论. 此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.28.【答案】解:(1)由二次函数交点式表达式得:y =a (x +3)(x -4)=a (x 2-x -12),即:-12a =4,解得:a =-13,则抛物线的表达式为y =-13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(-3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =4√2,∠OAB =∠OBA =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =-x +4…①,同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为M (-32,4),过点M 与CA 垂直直线的表达式中的k 值为-34, 同理可得过点M 与直线AC 垂直直线的表达式为:y =-34x +78…②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7-n ,由勾股定理得:(7-n )2+n 2=25,解得:n =3或4(舍去4),故点Q (1,3);②当AC =CQ 时,如图1, CQ =5,则BQ =BC -CQ =4√2-5, 则QM =MB =8−5√22, 故点Q (5√22,8−5√22); ③当CQ =AQ 时,联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22); (3)设点P (m ,-13m 2+13m +4),则点Q (m ,-m +4),∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN , PN =PQ sin ∠PQN =√22(-13m 2+13m +4+m -4)=-√26m 2+7√26m , ∵-√26<0,∴PN 有最大值, 当m =72时,PN 的最大值为:49√224.【解析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ 、AC=CQ 、CQ=AQ 三种情况,分别求解即可;(3)由PN=PQsin ∠PQN=(-m 2+m+4+m-4)即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

甘肃省陇南市2019年中考数学真题试题(含解析)

甘肃省陇南市2019年中考数学真题试题(含解析)

2019年甘肃省陇南市中考数学试卷注:请使用office word软件打开,wps word会导致公式错乱一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. B. C. D.5.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A.B.C.D.7.不等式2x+ ≥ (x+2)的解集是()A. B. C. D.8.下面的计算过程中,从哪一步开始出现错误()A. B. C. D.9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB的度数是()A.B.C.D.10.如图 ,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图 所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:请根据以上数据,估计硬币出现“正面朝上”的概率为______(精确到0.1).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A= °,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|-2|- cos °+(3-π)0四、解答题(本大题共9小题,共82.0分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图 是放置在水平面上的台灯,图 是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB= °.CD可以绕点C 上下调节一定的角度.使用发现:当CD与水平线所成的角为 °时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:取1.73).23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.25.如图,已知反比例函数y=(k≠ )的图象与一次函数y=-x+b的图象在第一象限交于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交一次函数y=-x+b的图象于点M,交反比例函数y=上的图象于点N.若PM>PN,结合函数图象直接写出a的取值范围.26.如图,在△ABC中,AB=AC,∠BAC= °,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2,求⊙D的半径.27.阅读下面的例题及点拨,并解决问题:例题:如图 ,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN= °.点拨:如图 ,作∠CBE= °,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠ = °,进一步可得∠1=∠2=∠5,又因为∠2+∠ = °,所以∠5+∠ = °,即:∠AMN= °.问题:如图 ,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1= °.28.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】D【解析】解: . = × -9;故选:D.由科学记数法知 . = × -9;本题考查科学记数法;熟练掌握科学记数法a× n中a与n的意义是解题的关键.5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)× °= °,故选:C.根据多边形内角和公式(n-2)× °即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得 x+ ≥ x+ ,移项,合并得-x≥-3系数化为1,得x≤ ;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.【答案】B【解析】解:-=-==.故从第 步开始出现错误.故选:B.直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB= °,∴∠ASB=∠AOB= °.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB= °,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3.∴AB•=3,即AB•BC= .当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC= ,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP 面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB 与BC的和为7,构造关于AB的一元二方程可求解.本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.【答案】0.5【解析】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系: 当△>0时,方程有两个不相等的实数根; 当△=0 时,方程有两个相等的实数根; 当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x2-4x+5=x2-4x+4+1=(x-2)2+1,所以,y=(x-2)2+1.故答案为:y=(x-2)2+1.利用配方法整理即可得解.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠ ,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).16.【答案】4-π【解析】解:如图:新的正方形的边长为1+1=2,∴恒星的面积= × -π=4-π.故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可.本题考查了扇形面积的计算,关键是理解恒星的面积=边长为2的正方形面积-半径为1的圆的面积.17.【答案】或【解析】解:当∠A为顶角时,等腰三角形两底角的度数为:= °∴特征值k==当∠A为底角时,顶角的度数为: °- °- °= °∴特征值k==综上所述,特征值k为或故答案为或可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的底数,要进行判断是底角或顶角,以免造成答案的遗漏.18.【答案】13a+21b【解析】解:由题意知第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b,故答案为:13a+21b.由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案.本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.19.【答案】解:(-2)2-|-2|- cos °+(3-π)0,=4-(2-)- ×+1,=4-2+-+1,=3.【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.【答案】解:设中性笔和笔记本的单价分别是x元、y元,根据题意可得:,解得:,答:中性笔和笔记本的单价分别是2元、6元.【解析】根据对话分别利用总钱数得出等式求出答案.此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.21.【答案】25π【解析】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB==5,∴S圆O=π• 2=25π.故答案为25π.(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O 即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE= °,∴四边形CEHF是矩形,∴CE=FH,在Rt△ACE中,∵AC=40cm,∠A= °,∴CE=AC•sin °= . (cm),∴FH=CE=34.6(cm)∵DH=49.6cm,∴DF=DH-FH=49.6-34.6=15(cm),在Rt△CDF中,sin∠DCF===,∴∠DCF= °,∴此时台灯光线为最佳.【解析】如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.解直角三角形求出∠DCF即可判断.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C.“园艺小清新之旅”的概率是;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为=.【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,∴其中位数c==78,八年级成绩的众数d=81,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有 ×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25.【答案】解:(1)∵反比例函数y=(k≠ )的图象与一次函数y=-x+b的图象在第一象限交于A(1,3),B(3,1)两点,∴3=,3=-1+b,∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=,y=-x+4;(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)利用待定系数法即可求得;(2)根据图象可解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.26.【答案】(1)证明:连接AD,∵AB=AC,∠BAC= °,∴∠B=∠C= °,∵AD=BD,∴∠BAD=∠B= °,∴∠ADC= °,∴∠DAC= °- °- °= °,∴AC是⊙D的切线;(2)解:连接AE,∵AD=DE,∠ADE= °,∴△ADE是等边三角形,∴AE=DE,∠AED= °,∴∠EAC=∠AED-∠C= °,∴∠EAC=∠C,∴AE=CE=2,∴⊙D的半径AD=2.【解析】(1)连接AD,根据等腰三角形的性质得到∠B=∠C= °,∠BAD=∠B= °,求得∠ADC= °,根据三角形的内角和得到∠DAC= °- °- °= °,于是得到AC是⊙D的切线;(2)连接AE,推出△ADE是等边三角形,得到AE=DE,∠AED= °,求得∠EAC=∠AED-∠C= °,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,如图所示:则EB1=B1C1,∠EB1M1中= °=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E= °,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M1C1N1= °+ °= °,∴∠B1C1E+∠M1C1N1= °,∴E、C1、N1,三点共线,在△A1B1M1和△EB1M1中,∠ ∠ ,∴△A1B1M1≌△EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4,∵∠2+∠ = °,∠4+∠ = °,∴∠1=∠2=∠5,∵∠1+∠ = °,∴∠5+∠ = °,∴∠A1M1N1= °- °= °.【解析】延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,则EB1=B1C1,∠EB1M1中= °=∠A1B1M1,得出△EB1C1是等腰直角三角形,由等腰直角三角形的性质得出∠B1EC1=∠B1C1E= °,证出∠B1C1E+∠M1C1N1= °,得出E、C1、N1,三点共线,由SAS证明△A1B1M1≌△EB1M1得出A1M1=EM1,∠1=∠2,得出EM1=M1N1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠ = °,即可得出结论.此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.28.【答案】解:(1)由二次函数交点式表达式得:y=a(x+3)(x-4)=a(x2-x-12),即:-12a=4,解得:a=-,则抛物线的表达式为y=-x2+x+4;(2)存在,理由:点A、B、C的坐标分别为(-3,0)、(4,0)、(0,4),则AC=5,AB=7,BC=4,∠OAB=∠OBA= °,将点B、C的坐标代入一次函数表达式:y=kx+b并解得:y=-x+4… ,同理可得直线AC的表达式为:y=x+4,设直线AC的中点为M(-,4),过点M与CA垂直直线的表达式中的k值为-,同理可得过点M与直线AC垂直直线的表达式为:y=-x+… ,当AC=AQ时,如图1,则AC=AQ=5,设:QM=MB=n,则AM=7-n,由勾股定理得:(7-n)2+n2=25,解得:n=3或4(舍去4),故点Q(1,3);当AC=CQ时,如图1,CQ=5,则BQ=BC-CQ=4-5,则QM=MB=,故点Q(,);当CQ=AQ时,联立 并解得:x=(舍去);故点Q的坐标为:Q(1,3)或(,);(3)设点P(m,-m2+m+4),则点Q(m,-m+4),∵OB=OC,∴∠ABC=∠OCB= °=∠PQN,PN=PQ sin∠PQN=(-m2+m+4+m-4)=-m2+m,∵-<0,∴PN有最大值,当m=时,PN的最大值为:.【解析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ、AC=CQ、CQ=AQ三种情况,分别求解即可;(3)由PN=PQsin∠PQN=(-m2+m+4+m-4)即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年甘肃省陇南市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,是三棱柱的为()A. B. C. D.2.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A. 0B. 1C. 2D. 33.下列整数中,与√10最接近的整数是()A. 3B. 4C. 5D. 64.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A. 7×10−7B. 0.7×10−8C. 7×10−8D. 7×10−95.如图,将图形用放大镜放大,应该属于()A. 平移变换B. 相似变换C. 旋转变换D. 对称变换6.如图,足球图片正中的黑色正五边形的内角和是()A. 180∘B. 360∘C. 540∘D. 720∘7.不等式2x+9≥3(x+2)的解集是()A. x≤3B. x≤−3C. x≥3D. x≥−38.下面的计算过程中,从哪一步开始出现错误()A. ①B. ②C. ③D. ④9.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的√2倍,则∠ASB的度数是()A. 22.5∘B. 30∘C. 45∘D. 60∘10.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共32.0分)11.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“兵”位于点______.12.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次3109204849791803139699数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为______(精确到0.1).13.因式分解:xy2-4x=______.14.关于x的一元二次方程x2+√m x+1=0有两个相等的实数根,则m的取值为______.15.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.16.把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于______.17.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=______.18.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是______.三、计算题(本大题共1小题,共6.0分)19.计算:(-2)2-|√2-2|-2cos45°+(3-π)0四、解答题(本大题共9小题,共82.0分)20.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.22.图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:√3取1.73).23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.24.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a=______,b=______,c=______,d=______.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.(k≠0)的图象与一次函数y=-x+b的图象在第一象限交25.如图,已知反比例函数y=kx于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交上的图象于点N.若PM>PN,一次函数y=-x+b的图象于点M,交反比例函数y=kx结合函数图象直接写出a的取值范围.26.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2√3,求⊙D的半径.27.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC 的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28.如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?答案和解析1.【答案】C【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.分别判断各个几何体的形状,然后确定正确的选项即可.考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.【答案】D【解析】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3.故选:D.直接利用数轴结合A,B点位置进而得出答案.此题主要考查了实数轴,正确应用数形结合分析是解题关键.3.【答案】A【解析】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】D【解析】解:0.000000007=7×10-9;故选:D.由科学记数法知0.000000007=7×10-9;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.5.【答案】B【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.【答案】C【解析】解:黑色正五边形的内角和为:(5-2)×180°=540°,故选:C.根据多边形内角和公式(n-2)×180°即可求出结果.本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.7.【答案】A【解析】解:去括号,得2x+9≥3x+6,移项,合并得-x≥-3系数化为1,得x≤3;故选:A.先去括号,然后移项、合并同类项,再系数化为1即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.【答案】B【解析】解:-=-==.故从第②步开始出现错误.故选:B.直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB=90°,然后根据圆周角定理确定∠ASB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7-AB,代入AB•BC=12,得AB2-7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.11.【答案】(-1,1)【解析】解:如图所示:可得原点位置,则“兵”位于(-1,1).故答案为:(-1,1).直接利用“帅”位于点(0,-2),可得原点的位置,进而得出“兵”的坐标.本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.12.【答案】0.5【解析】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x,=x(y2-4),=x(y+2)(y-2).先提取公因式x,再对余下的多项式利用平方差公式继续分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.14.【答案】4【解析】解:由题意,△=b2-4ac=()2-4=0得m=4故答案为4要使方程有两个相等的实数根,即△=b2-4ac=0,则利用根的判别式即可求得一次项的系数.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】y=(x-2)2+1【解析】解:y=x 2-4x+5=x 2-4x+4+1=(x-2)2+1,所以,y=(x-2)2+1.故答案为:y=(x-2)2+1.利用配方法整理即可得解.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数);(2)顶点式:y=a (x-h )2+k ;(3)交点式(与x 轴):y=a (x-x 1)(x-x 2).16.【答案】4-π【解析】解:如图:新的正方形的边长为1+1=2,∴恒星的面积=2×2-π=4-π. 故答案为4-π.恒星的面积=边长为2的正方形面积-半径为1的圆的面积,依此列式计算即可.本题考查了扇形面积的计算,关键是理解恒星的面积=边长为2的正方形面积-半径为1的圆的面积.17.【答案】85或14【解析】 解:①当∠A 为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°-80°-80°=20°∴特征值k==综上所述,特征值k为或故答案为或可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的底数,要进行判断是底角或顶角,以免造成答案的遗漏.18.【答案】13a+21b【解析】解:由题意知第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b,故答案为:13a+21b.由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案.本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.19.【答案】解:(-2)2-|√2-2|-2cos45°+(3-π)0,+1,=4-(2-√2)-2×√22=4-2+√2-√2+1,=3.【解析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.【答案】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得: {12x +20y =14412y+20x=112,解得:{y =6x=2,答:中性笔和笔记本的单价分别是2元、6元.【解析】根据对话分别利用总钱数得出等式求出答案.此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键. 21.【答案】25π【解析】解:(1)如图⊙O 即为所求.(2)设线段BC 的垂直平分线交BC 于点E .由题意OE=4,BE=EC=3,在Rt △OBE 中,OB==5,∴S 圆O =π•52=25π.故答案为25π.(1)作线段AB ,BC 的垂直平分线,两线交于点O ,以O 为圆心,OB 为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF是矩形,∴CE=FH,在Rt△ACE中,∵AC=40cm,∠A=60°,∴CE=AC•sin60°=34.6(cm),∴FH=CE=34.6(cm)∵DH=49.6cm,∴DF=DH-FH=49.6-34.6=15(cm),在Rt△CDF中,sin∠DCF=DFCD =1530=12,∴∠DCF=30°,∴此时台灯光线为最佳.【解析】如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.解直角三角形求出∠DCF 即可判断.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.23.【答案】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C.“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为416=14.【解析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】11 10 78 81【解析】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,∴其中位数c==78,八年级成绩的众数d=81,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数, ∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25.【答案】解:(1)∵反比例函数y=k(k≠0)的图象与一次函数y=-x+b的图象在第一x象限交于A(1,3),B(3,1)两点,∴3=k,3=-1+b,1∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=3,y=-x+4;x(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)利用待定系数法即可求得;(2)根据图象可解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.26.【答案】(1)证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°-60°-30°=90°,∴AC是⊙D的切线;(2)解:连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED-∠C=30°,∴∠EAC=∠C,∴AE=CE=2√3,∴⊙D 的半径AD =2√3.【解析】(1)连接AD ,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°-60°-30°=90°,于是得到AC 是⊙D 的切线;(2)连接AE ,推出△ADE 是等边三角形,得到AE=DE ,∠AED=60°,求得∠EAC=∠AED-∠C=30°,得到AE=CE=2,于是得到结论.本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.27.【答案】解:延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,如图所示:则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1, ∴△EB 1C 1是等腰直角三角形,∴∠B 1EC 1=∠B 1C 1E =45°,∵N 1是正方形A 1B 1C 1D 1的外角∠D 1C 1H 1的平分线上一点,∴∠M 1C 1N 1=90°+45°=135°,∴∠B 1C 1E +∠M 1C 1N 1=180°,∴E 、C 1、N 1,三点共线,在△A 1B 1M 1和△EB 1M 1中,{A 1B 1=EB 1∠A 1B 1M 1=∠EB 1M 1B 1M 1=B 1M 1,∴△A 1B 1M 1≌△EB 1M 1(SAS ),∴A 1M 1=EM 1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A 1M 1N 1=180°-90°=90°.【解析】延长A 1B 1至E ,使EB 1=A 1B 1,连接EM 1C 、EC 1,则EB 1=B 1C 1,∠EB 1M 1中=90°=∠A 1B 1M 1,得出△EB 1C 1是等腰直角三角形,由等腰直角三角形的性质得出∠B 1EC 1=∠B 1C 1E=45°,证出∠B 1C 1E+∠M 1C 1N 1=180°,得出E 、C 1、N 1,三点共线,由SAS 证明△A 1B 1M 1≌△EB 1M 1得出A 1M 1=EM 1,∠1=∠2,得出EM 1=M 1N 1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论. 此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.28.【答案】解:(1)由二次函数交点式表达式得:y =a (x +3)(x -4)=a (x 2-x -12),即:-12a =4,解得:a =-13,则抛物线的表达式为y =-13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(-3,0)、(4,0)、(0,4),则AC =5,AB =7,BC =4√2,∠OAB =∠OBA =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =-x +4…①, 同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为M (-32,4),过点M 与CA 垂直直线的表达式中的k 值为-34, 同理可得过点M 与直线AC 垂直直线的表达式为:y =-34x +78…②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7-n ,由勾股定理得:(7-n )2+n 2=25,解得:n =3或4(舍去4),故点Q (1,3);②当AC =CQ 时,如图1,CQ =5,则BQ =BC -CQ =4√2-5, 则QM =MB =8−5√22, 故点Q (5√22,8−5√22); ③当CQ =AQ 时,联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22); (3)设点P (m ,-13m 2+13m +4),则点Q (m ,-m +4),∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN , PN =PQ sin ∠PQN =√22(-13m 2+13m +4+m -4)=-√26m 2+7√26m , ∵-√26<0,∴PN 有最大值, 当m =72时,PN 的最大值为:49√224.【解析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ 、AC=CQ 、CQ=AQ 三种情况,分别求解即可;(3)由PN=PQsin ∠PQN=(-m 2+m+4+m-4)即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

相关文档
最新文档