网络技术:二层、三层交换机和四层交换机的区别

合集下载

二层交换机三层交换机和路由器的基本工作原理和三者之间的主要区别

二层交换机三层交换机和路由器的基本工作原理和三者之间的主要区别

二层交换机三层交换机和路由器的基本工作原理和三者

之间的主要区别

一、二层交换机的工作原理:

二层交换机主要工作在OSI模型的第二层,即数据链路层。它通过学习和转发MAC地址来实现数据的转发和交换。具体来说,二层交换机在接收到一个数据包时,会查看该数据包中的目标MAC地址,并根据这个地址决定将数据包转发到哪个端口。当目标MAC地址不在交换机的MAC地址表中时,交换机会广播该数据包到所有其他端口,以便获取目标地址对应端口的MAC地址,并将其保存到MAC地址表中。当下次再收到到达同一目标地址的数据包时,交换机就会直接将其转发到相应的端口,提高了数据传输的效率。

二、三层交换机的工作原理:

三层交换机在二层交换机的基础上增加了路由功能,它能够根据IP 地址对数据进行转发。三层交换机工作在OSI模型的第三层(网络层)。在接收到一个数据包时,三层交换机会查看该数据包中的目标IP地址,并通过内置的路由表来判断将数据包转发到哪个端口。如果目标地址不在路由表中,三层交换机会将数据包广播到所有其他端口,以便获取下一条跳转路径的信息。当下次再收到到达同一目标地址的数据包时,三层交换机会直接根据路由表将其转发到相应的端口。

三、路由器的工作原理:

路由器是连接不同网络的设备,主要工作在OSI模型的第三层(网络层)。路由器通过查看数据包中的目标IP地址,并与自己的路由表进行

匹配,来决定将数据包转发到哪个网络。路由器还可以根据网络状况和路由协议进行动态路由的调整,以保证数据包能够通过最佳路径进行传输。主要区别:

1.工作层次差异:二层交换机主要工作在数据链路层,通过学习和转发MAC地址实现数据转发;三层交换机在二层交换机的基础上增加路由功能,能够根据IP地址对数据进行转发;而路由器工作在网络层,通过查看数据包中的目标IP地址并与路由表匹配决定转发路径。三者在工作层次上存在差异。

三层交换机和二层交换机区别

三层交换机和二层交换机区别

三层交换机和二层交换机区别

二层交换机

二层交换机是数据链路层设备,由于它工作于OSI模型的第2层,可别数据包中的MAC地址信息,根据MAC 地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。

三层交换机

三层交换机工作于OSI模型的第三层(网络层),简单地说,三层交换技术就是:二层交换技术+三层转发技术。它解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。

二层交换机和三层交换机的不同之处

功能:二层交换机基于MAC地址访问,只做数据的转发,并且不能配置IP地址,而三层交换机将二层交换技术和三层转发功能结合在一起,可配置不同vlan的IP地址;

应用:二层交换机主要用于网络接入层和汇聚层,而三层交换机主要用于网络核心层;

协议:二层交换机支持物理层和数据链路层协议,如以太网交换机、二层交换机,而三层交换机支持物理层、数据链路层及网络层协议。

二层交换机是否可代替三层交换机?

二层交换机可以满足接入层的应用需求,并且成本也比较低,但是更智能的三层交换机能够使网络在不损失带宽的情况下进行分段和控制,多应用于——

多部门的企业公司

比如多部门多业务办公的企业,可使用三层交换机可以让不同部门使用不同的IP地址段、设置不同上网权限,使其相互不受影响;

网络高要求场所

三层交换机可通过划分广播域,将整体网络划分为独立的二层网络,不同二层网络之间可以通过三层交换机的

ACL控制网络访问权限,从而保证网络的安全性。

总得来说,三层交换机可通过隔离二层网络,保证整体网络稳定性和安全性,尤其是在数据包的高速转发上,是二层交换机不可匹敌的,而且核心骨干网最好用上三层交换机,否则整个网络成千上万台的计算机都在一个子网中,不仅毫无安全可言,也会因为无法分割广播域而无法隔离广播风暴。

二层交换机与三层交换机区别详解!

二层交换机与三层交换机区别详解!

二层交换机与三层交换机区别详解!

第二层交换机和第三层交换机的区别。

1、二层交换机工作于OSI模型的第2层(数据链路层),故而称为二层交换机。

2、二层交换技术的发展已经比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。

3、三层交换机就是具有部分路由器功能的交换机,三层交换机的最重要目的是加快大型局域网内部的数据交换,所具有的路由功能也是为这目的服务的,能够做到一次路由,多次转发。

4、对于数据包转发等规律性的过程由硬件高速实现,而像路由信息更新、路由表维护、路由计算、路由确定等功能,由软件实现。三

层交换技术就是二层交换技术+三层转发技术。

5、传统交换技术是在OSI网络标准模型第二层--数据链路层进行操作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发,既可实现网络路由功能,又可根据不同网络状况做到最优网络性能。

二层交换机和三层交换机区别

二层交换机和三层交换机区别

一、bai指代不同

1、两层交换机:工作于OSI模型的第2层(du数据链路层),zhi 故而称为二层交换机。dao

2、三层交换机:具有部分路由器功能的交换机,工作在OSI网络标准模型的第三层。

二、功能不同

1、两层交换机:属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。

2、三层交换机:是加快大型局域网内部的数据交换,所具有的路由功能也是为这目的服务的,能够做到一次路由,多次转发。

三、特点不同

1、两层交换机:二层交换机有N个端口,每个端口的带宽是M,交

换机总线带宽超过N×M,那么这交换机就可以实现线速交换。

2、三层交换机:对于数据包转发等规律性的过程由硬件高速实现,而像路由信息更新、路由表维护、路由计算、路由确定等功能,由软件实现。

二层交换机用于小型的局域网络。这个就不用多言了,在小型局域网中,广播包影响不大

,二层交换机的快速交换功能、多个接入端口和低谦价格为小型网络用户提供了很完善的

解决方案。

路由器的优点在于接口类型丰富,支持的三层功能强大,路由能力强大,适合用于大型的

网络间的路由,它的优势在于选择最佳路由,负荷分担,链路备份及和其他网络进行路由

信息的交换等等路由器所具有功能。

三层交换机和二层交换机区别

三层交换机和二层交换机区别

二层交换机工作于OSI模型的数据链路层,故而称为二层交换机。二层交换技术发展比较成熟,属数据链路层设备,可识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。

三层交换(也称多层交换技术,或IP交换技术)。传统的交换技术是在OSI网络标准模型中的第二层——数据链路层进行操作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发。简单地说,三层交换技术就是:二层交换技术+三层转发技术。三层交换机就是具有部分路由器功能的交换机

交换机的三层概念和四层技术

交换机的三层概念和四层技术

交换机的三层概念和四层技术

网络设备都对应工作在OSI模型的一定层次上,工作的层次越高,说明其设备的技术性更高,性能也越好,档次也就越高。根据工作的协议层,交换机可分二层交换机、三层交换机和四层交换机。

1.二层交换机

二层交换机是最早的交换技术产品,由于它所负担的工作相对简单,处于交换网络的数据链路层,所以只需提供基本的二层数据转发功能即可。二层交换机一般只应用于网络的接入层次。目前桌面型交换机一般都属于这一类型。

二层交换机能够识别数据包中的MAC地址信息,然后根据MAC地址进行数据包的转发,并将这些MAC地址与对应的端口记录在内部的地址列表中。

2.三层交换机

三层交换技术又称为多层交换技术、IP交换技术等,三层交换技术在网络层实现了数据包的高速转发。它检查数据包信息,并根据网络层目标地址(IP地址)转发数据包。

三层交换机实际上是将传统交换机与路由器结合起来的网络设备,它既可以完成传统交换机的端口交换功能,又可完成部分路由功能。当网络规模较大时,可以根据特殊应用需求划分为小的独立的VLAN网段,以减小广播风暴所造成的影响。通常这类交换机采用模块化结构,以适应灵活配置的需要。

在实际应用中,各个VLAN之间采用三层交换技术互相通信。它解决了局域网中网段划分之后,各网段必须依赖第三层路由设备进行管理的局面,解决了路由器传输速率低、结构复杂所造成的网络瓶颈问题。

3.四层交换机

四层交换机工作于OSI参考模型的第四层,即传输层。四层交换机在决定传输时不仅仅依据MAC地址(数据链路层信息)或源/目标IP地址(网络层信息),它可以直接面对网络中的具体应用,通过分析数据包中的TCP/UDP(传输层信息)应用端口号,四层交换机可以做出向何处转发数据流的智能决定。

2、3、4层交换机的特点及优势[资料]

2、3、4层交换机的特点及优势[资料]

二层、三层、四层交换机的特点及优势

二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。具体的工作流程如下:

(1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;

(2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;

(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;

(4)如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。

不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。

从二层交换机的工作原理可以推知以下三点:

(1)由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速

交换;

(2)学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;

(3)还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。由于各个厂家采用ASIC不同,直接影响产品性能。

三层交换机与二层交换机的区别

三层交换机与二层交换机的区别

三层交换机与二层交换机的区别

三层交换机与二层交换机的区别

三层交换机就是具有部分路由器功能的交换机,三层交换机的最重要目的是加快大型局域网内部的数据交换,所具有的路由功能也是为这目的服务的,能够做到一次路由,多次转发。下面是小编为大家整理的三层交换机与二层交换机的区别,仅供参考,欢迎阅读。

三层交换机与二层交换机的区别

三层交换机的优点在于接口类型丰富,支持的三层功能强大,路由能力强大,适合用于大型的网络间的路由,它的优势在于选择最佳路由,负荷分担,链路备份及和其他网络进行路由信息的交换等等路由器所具有功能。

二层交换机

二层交换机用于小型的局域网络。这个就不用多言了,在小型局域网中,广播包影响不大,二层交换机的快速交换功能、多个接入端口和低谦价格为小型网络用户提供了很完善的解决方案。

三层交换机

三层交换机的`最重要的功能是加快大型局域网络内部的数据的快速转发,加入路由功能也是为这个目的服务的。如果把大型网络按照部门,地域等等因素划分成一个个小局域网,这将导致大量的网际互访,单纯的使用二层交换机不能实现网际互访;如单纯的使用路由器,由于接口数量有限和路由转发速度慢,将限制网络的速度和网络规模,采用具有路由功能的快速转发的三层交换机就成为首选。

一般来说,在内网数据流量大,要求快速转发响应的网络中,如全部由三层交换机来做这个工作,会造成三层交换机负担过重,响应速度受影响,将网间的路由交由路由器去完成,充分发挥不同设备的优点,不失为一种好的组网策略,当然,前提是客户的腰包很鼓,不然就退而求其次,让三层交换机也兼为网际互连。

带你识别二三四层交换机

带你识别二三四层交换机

带你识别二三四层交换机

交换机是我们组网所必需的设备之一,通过交换机来连接各个局域网,交换机在网络建设中,发挥着越来越重要的作用。不过在购买交换机的时候,会提到交换机会为二层、三层和四层的说法,他们之间有什么区别吗?他们又是怎么样来工作的呢?下面笔者就带领大家来区分二层、三层和四层交换机,看一下他们之间究竟有什么区别。

一、二层交换机

二层交换机发展到现在,其技术已经比较成熟,二层交换机属于数据链路层的设备,它能够识别出数据包中的MAC地址信息,根据MAC地址进行转发。当交换机从某个端口收到一个数据包的时候,它首先读取数据包中的源MAC地址,这样能够确定出源MAC地址的机器连接到了交换机的哪个端口上,然后再读取数据包中的目的MAC地址,并在地址表中查找相应的端口,如果地址表中能够找到与目的MAC地址相对应的商品,那么交换机就会把数据包直接复制到这个口上,完成数据转发的任务。如果在地址表中找不到相对应的端口,就会把数据包广播到交换机的所有端口,当发现目的机器对源机器有回应的时候,交换机就会学习目的MAC地址与哪个端口对应,并对其进行记录,以方便下次传送数据的时候,不再对所有的端口进行广播。通过不断的循环上面的过程,对于全网的MAC地址信息就都可以学习到,所以二层交换机就是这样来建立与维护它自己的地址表的。

二层交换机主要用于小型的局域网中,在网络中广播包的影响不大,通过二层交换机的快速交换功能,多个接入端口与低廉的价格为小型网络用户提供了一个很完善的解决方案。二、三层交换机

三层交换是相对于传统的交换概念而提出的,传统的交换技术是在OSI网络标准模型中的数据链路层进行操作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发,简单的说三层交换机就是在二层交换机的基础上采用了三层转发技术,从而解决了局域

三层交换机和二层交换机区别

三层交换机和二层交换机区别

网络技术随着应用需求的发展而不断发展。在1980年代初,当第一代LAN技术开始应用于企业内部网络时,当时的应用主要限于主机连接,文件和打印共享,以及10Mbit / s的信道共享。多个用户可以满足要求。

随着网络规模的扩大,在线用户越来越多。特别是,用户的应用程序已转向客户端/服务器,高流量的应用程序,Intranet Web访问和实时视听服务。那时,网络系统不再有效,这表明HUB是基于共享媒体的通信设备,并且是第一层设备。用户数据的冲突检测和错误重传大大降低了传输效率。网桥可以最大程度地减少网络段,减少冲突域并优化LAN性能。它是第二层设备,可以识别MAC地址并在LAN 之间智能转发信息。

但是,它对高级协议(第3层交换技术以上)透明,并且不能有效地防止广播风暴。路由器在子网之间的互连,安全控制,广播风暴限制等方面起着关键作用,但是其复杂的算法和低数据吞吐量使其成为网络的瓶颈。

意识到上述问题,该行业开始于HUB和Bridge,它们直接面向用户并可以独立形成LAN,并彻底改变了网络技术。最大的变化是在新一代网络系统集成中将HUB替换为局域网交换机,以提高网络性能。

在1990年代初期的网络系统集成模式中,引入了大量的局域网交换机。局域网交换机是第二层网络设备,它可以了解第二层网络协议,例如MAC地址。三层交换技术在操作过程中不断收集数据以构建自己的地址表。该表非常简单,主要指示在哪个端口上找到了MAC地址,因此,当交换机接收到数据包时,它将检查数据包的目标MAC 地址,并检查其自己的地址表以决定要发送哪个端口。与HUB不同,任何发送方数据都将出现在HUB的所有端口上(无论您是否需要)。

2、3、4层交换机的特点及优势

2、3、4层交换机的特点及优势

二层、三层、四层交换机的特点及优势

二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。具体的工作流程如下:

(1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;

(2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;

(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;

(4)如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。

不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。

从二层交换机的工作原理可以推知以下三点:

(1)由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换;

(2)学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;

(3)还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。由于各个厂家采用ASIC不同,直接影响产品性能。

层级交换机的解释及对比

层级交换机的解释及对比

二层:

二层交换机用于小型的局域网络。二层交换机的快速交换功能、多个接入端口和低谦价格为小型网络用户提供了很完善的解决方案。二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。

三层交换技术:

三层交换机的最重要的功能是加快大型局域网络内部的数据的快速转发,加入路由功能也是为这个目的服务的。如果把大型网络按照部门,地域等等因素划分成一个个小局域网,这将导致大量的网际互访,单纯的使用二层交换机不能实现网际互访;如单纯的使用路由器,由于接口数量有限和路由转发速度慢,将限制网络的速度和网络规模,采用具有路由功能的快速转发的三层交换机就成为首选。

三层交换机是为IP设计的,接口类型简单,拥有很强二层包处理能力,所以适用于

大型局域网,为了减小广播风暴的危害,必须把大型局域网按功能或地域等因素划他成一个一个的小局域网,也就是一个一个的小网段,这样必然导致不同网段之间存在大量的互访,单纯使用二层交换机没办法实现网间的互访,而单纯使用路由器,则由于端口数量有限,路由速度较慢,而限制了网络的规模和访问速度,所以这种环境下,由二层交换技术和路由技术有机结合而成的三层交换机就最为适合。

四层:

依据TCP/UDP(第四层) 应用端口号。第四层交换功能就象是虚IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。

二三层交换机的区别

二三层交换机的区别

二层交换机和三层交换机的区别

一、交换机的工作原理

交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。同时将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发,这一过程称为泛洪(flood)。

二、二层交换机和三层交换机的区别

(1)二层交换技术从网桥发展到VLAN(虚拟局域网),在局域网建设和改造中得到了广泛的应用。第二层交换技术是工作在OSI七层网络模型中的第二层,即数据链路层。它按照所接收到数据包的目的MAC地址来进行转发,对于网络层或者高层协议来说是透明的。它不处理网络层的IP地址,不处理高层协议的诸如TCP、UDP的端口地址,它只需要数据包的物理地址即MAC地址,数据交换是靠硬件来实现的,其速度相当快,这是二层交换的一个显著的优点。但是,它不能处理不同IP子网之间的数据交换。传统的路由器可以处理大量的跨越IP子网的数据包,但是它的转发效率比二层低,因此要想利用二层转发效率高这一优点,又要处理三层IP数据包,三层交换技术就诞生了。

(2)三层交换技术的工作原理:第三层交换工作在OSI七层网络模型中的第三层即网络层,是利用第三层协议中的IP包的包头信息来对后续数据业务流进行标记,具有同一标记的业务流的后续报文被交换

到第二层数据链路层,从而打通源IP地址和目的IP地址之间的一条通路。这条通路经过第二层链路层。有了这条通路,三层交换机就没有必要每次将接收到的数据包进行拆包来判断路由,而是直接将数据包进行转发,将数据流进行交换。

2、3、4层交换机的特点及优势

2、3、4层交换机的特点及优势

二层、三层、四层交换机的特点及优势

二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。具体的工作流程如下:

(1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;

(2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;

(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;

(4)如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。

不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。

从二层交换机的工作原理可以推知以下三点:

(1)由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速

交换;

(2)学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;

(3)还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。由于各个厂家采用ASIC不同,直接影响产品性能。

2、3、4层交换机的特点及优势

2、3、4层交换机的特点及优势

二层、三层、四层交换机的特点及优势

二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。具体的工作流程如下:

(1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;

(2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;

(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;

(4)如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。

不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。

从二层交换机的工作原理可以推知以下三点:

(1)由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速

交换;

(2)学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;

(3)还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。由于各个厂家采用ASIC不同,直接影响产品性能。

二三四层交换机的区别

二三四层交换机的区别

二层交换机、三层交换机、四层交换机的区别

二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。具体的工作流程如下:

(1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;

(2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;

(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;

(4)如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。

不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。

从二层交换机的工作原理可以推知以下三点:

(1)由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换;

(2)学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;

(3)还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。由于各个厂家采用ASIC不同,直接影响产品性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

网络技术:二层、三层交换机和四层交换机的区别

二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC 地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。具体的工作流程如下:

(1) 当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道

源MAC地址的机器是连在哪个端口上的;>

(2) 再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;

(3) 如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;

(4) 如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应

时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。

不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。

从二层交换机的工作原理可以推知以下三点:

(1) 由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,

如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换;

(2) 学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;

(3) 还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Applicati

on specific Integrated Circuit)芯片,因此转发速度可以做到非常快。由于各个厂家采用ASIC不同,直接影响产品性能。

以上三点也是评判二三层交换机性能优劣的主要技术参数,这一点请大家在考虑设备选型时注意比较。

路由技术

路由器工作在OSI模型的第三层---网络层操作,其工作模式与二层交换相似,但路由器工作在第三层,这个区别决定了路由和交换在传递包时使用不同的控制信息,实现功能的方式就不同。工作原理是在路由器的内部也有一个表,这个表所标示的是如果要去某一个地方,下一步应该向那里走,如果能从路由表中找到数据包下一步往那里走,把链路层信息加上转发出去;如果不能知道下一步走向那里,则将此包丢弃,然后返回一个信息交给源地址。

路由技术实质上来说不过两种功能:决定最优路由和转发数据包。路由表中写入各种信息,由路由算法计算出到达目的地址的最佳路径,然后由相对简单直接的转发机制发送数据包。接受数据的下一台路由器依照相同的工作方式继续转发,依次类推,直到数据包到达目的路由器。

而路由表的维护,也有两种不同的方式。一种是路由信息的更新,将部分或者全部的路由信息公布出去,路由器通过互相学习路由信息,就掌握了全网的拓扑结构,这一类的路由协议称为距离矢量路由协议;另一种是路由器将自己的链路状态信息进行广播,通过互相学习掌握全网的路由信息,进而计算出最佳的转发路径,这类路由协议称为链路状态路由协议。

由于路由器需要做大量的路径计算工作,一般处理器的工作能力直接决定其性能的优劣。当然这一判断还是对中低端路由器而言,因为高端路由器往往采用分布式处理系统体系设计。

三层交换技术

近年来的对三层技术的宣传,耳朵都能起茧子,到处都在喊三层技术,有人说这是个非常新的技术,也有人说,三层交换嘛,不就是路由器和二层交换机的堆叠,也没有什么新的玩意,事实果真如此吗?下面先来通过一个简单的网络来看看三层交换机的工作过程。

组网比较简单

使用IP的设备A------------------------三层交换机------------------------使用IP的设备B

比如A要给B发送数据,已知目的IP,那么A就用子网掩码取得网络地址,判断目的IP是否与自己在同一网段。如果在同一网段,但不知道转发数据所需的MAC地址,A就发送一个ARP请求,B返回其MAC地址,A用此MAC封装数据包并发送给交换机,交换机起用二层交换模块,查找MAC地址表,将数据包转发到相应的端口。

如果目的IP地址显示不是同一网段的,那么A要实现和B的通讯,在流缓存条目中没有对应MAC地址条目,就将第一个正常数据包发送向一个缺省网关,这个缺省网关一般在操作系统中已经设好,对应第三层路由模块,所以可见对于不是同一子网的数据,最先在M AC表中放的是缺省网关的MAC地址;然后就由三层模块接收到此数据包,查询路由表以确

定到达B的路由,将构造一个新的帧头,其中以缺省网关的MAC地址为源MAC地址,以主机B的MAC地址为目的MAC地址。通过一定的识别触发机制,确立主机A与B的MA C地址及转发端口的对应关系,并记录进流缓存条目表,以后的A到B的数据,就直接交由二层交换模块完成。这就通常所说的一次路由多次转发。

以上就是三层交换机工作过程的简单概括,可以看出三层交换的特点:

由硬件结合实现数据的高速转发。

这就不是简单的二层交换机和路由器的叠加,三层路由模块直接叠加在二层交换的高速背板总线上,突破了传统路由器的接口速率限制,速率可达几十Gbit/s。算上背板带宽,这些是三层交换机性能的两个重要参数。

简洁的路由软件使路由过程简化。

大部分的数据转发,除了必要的路由选择交由路由软件处理,都是又二层模块高速转发,路由软件大多都是经过处理的高效优化软件,并不是简单照搬路由器中的软件。

结论

二层交换机用于小型的局域网络。这个就不用多言了,在小型局域网中,广播包影响不大,二层交换机的快速交换功能、多个接入端口和低谦价格为小型网络用户提供了很完善的解决方案。

路由器的优点在于接口类型丰富,支持的三层功能强大,路由能力强大,适合用于大型的网络间的路由,它的优势在于选择最佳路由,负荷分担,链路备份及和其他网络进行路由信息的交换等等路由器所具有功能。

相关文档
最新文档