如何求极限

合集下载

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

求函数极限的八种方法

求函数极限的八种方法

求函数极限的八种方法
常见的求函数极限的方法有八种:
1.定义域内求函数极限:在函数的定义域内直接计算函数值,即可得到函数的极限值。

2.不存在极限:若函数在某一点的极限不存在,则在该点处函数没有极限。

3.左右极限存在且相等:若函数在某一点处的左右极限都存在且相等,则在该点处函数的
极限等于左右极限的值。

4.不等式法求极限:通过不等式将函数的上下界确定,从而确定函数的极限值。

5.函数的单调性求极限:通过函数的单调性可以确定函数在某一点处的极限值。

6.函数连续性求极限:通过函数的连续性可以确定函数在某一点处的极限值。

7.函数导数存在求极限:通过函数的导数存在性可以确定函数在某一点处的极限值。

8.无穷小量法求极限:通过考虑无穷小量对函数值的影响,可以确定函数在某一点处的极
限值。

这八种方法都可以用来求解函数的极限,但是在实际应用中,不同的方法适用于不同的情况。

例如,当函数的定义域内有足够的数据时,定义域内求函数极限是最直接的方法;如果函数在某一点处的左右极限都存在且相等,则可以直接使用左右极限的值作为函数在该点处的极限值;如果函数有明显的单调性或连续性,则可以利用这些性质来求解函数的极限;如果函数的导数存在,则可以利用导数的性质来求解函数的极限。

总之,求函数极限有许多方法,选择哪种方法取决于函数的性质和特点。

在实际应用中,应该根据函数的具体情况选择适当的方法,以得到最准确的结果。

求极限的12种方法

求极限的12种方法

求极限的方法
1、利用极限的四则运算和幂指数的运算法则
2、利用函数的连续性
3、利用变量替换
4、利用等价无穷小
5、利用洛必达法则
6、分别求左右极限
7、把数列极限转化为函数极限
8、利用夹逼定理(极限存在两定理之一)
1)利用简单的放大、缩小函数法
2)利用不等式的性质进行放大或缩小【根据定义不等式求极限】
3)对积分的极限可以利用积分的性质进行放大缩小
9、利用递归数列先证明极限的存在(常用单调数列必有界),
再利用递归关系求出极限。

10、利用定积分求和式求极限
11、利用泰勒公式
12、利用导数定义求极限
附加:
1、 利用函数极限求数列极限 Example:
(1) n n
n ln lim +∞
→ 解:记:x x
n n x n ln ln lim lim +∞→+∞→= =0。

极限的六种求法

极限的六种求法

极限的六种求法1、代入法作者:教资备考群(865061525)之管理员,—━☆知浅づ如果自变量所趋近的值,能使函数有意义,就可以直接代入函数表达式中。

注:能使函数有意义,就是这个自变量在函数的定义域内。

【例】limx→2 x2x3 + 1− 2x + 3=( )。

2解:x2 − 2x + 3 = (x − 1)+ 2 ≥ 2 ≠ 0可见该函数的定义域是x3 + 1 R,所以可以直接将8 + 1x = 2 代入x3 + 1 。

x2 − 2x + 3limx→2 x2− 2x + 3 = limx→24 − 4 + 3= 3。

2、约公因子法如果自变量所趋近的值,使得函数没有意义。

可以考虑约公因子,将其约去。

因此经常运用因式分解。

【例】limx→3x2−x− 6x−3=( ) 。

解:这里发现,该函数的定义域为{x|x ≠ 3}。

如果x → 3,会使得函数没有意义。

因此考虑约公因子。

lim x→3x2−x−6x− 3= limx→3(x− 3)(x + 2)x− 3= lim(x + 2) = 5。

x→30 ⎩ x x x3、最高次幂法当函数是分式形式,且分子、分母都是多项式时,可以使用最高次幂法求极限。

它的原理,就是分子分母同时除以自变量的最高次幂。

这样自变量趋近于无穷大时, 那些比最高次幂低的项,直接就变为 0 了。

最高次幂法也俗称抓大头。

a⎧ ,n = m , a x m + a x m−1 + ⋯ + a⎪b 0lim 0 1 m = x→∞ b 0x n + b 1x n−1 + ⋯ + b n ⎨0,n > m , ⎪∞,n < m 。

【 例 】10x 4 + 6x 3 − x 2 + 3( ) 。

1 limx→∞2x 4 − x 2 − 9x=首先,观察到函数是个分式的形式。

其次,分子跟分母的最高次幂都是 4;最后,求极限直接用最高次幂法,原式 = 10= 5。

2那么,不妨拿这个例子,验证一下最高次幂法的原理。

16种求极限的方法

16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。

求极限的方法有很多种,下面将介绍16种常见的求极限方法。

1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。

2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。

例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。

3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。

4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。

5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。

反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。

6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。

利用无穷小量和无穷大量的性质,可以简化极限的求解过程。

7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。

8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。

9.取对数法:将函数取对数后,利用对数的性质进行极限计算。

10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。

11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。

12.导数法则:利用导数的性质,对函数进行极限计算。

例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。

13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。

14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。

求极限的方法

求极限的方法

求极限的方法在数学中,求极限是一种重要的技巧,用于分析函数在某个点的行为。

下面介绍几种常见的求极限的方法。

1. 代入法:当函数在某个点处存在有限的定义时,可以直接将该点的值代入函数中得到极限值。

例如,求函数f(x) = 2x在x=3处的极限,可以将x=3代入函数中,得到f(3) = 2 * 3 = 6。

2. 因式分解法:当函数可以进行因式分解时,可以利用因式分解的性质来求解极限。

例如,求函数g(x) = (x^2 - 4)/(x - 2)在x = 2处的极限,可以先进行因式分解得到g(x) = (x + 2),然后将x = 2代入函数中,得到g(2) = 2 + 2 = 4。

3. 夹逼定理:当函数的极限难以直接求解时,可以利用夹逼定理来求解。

夹逼定理的核心思想是找到两个函数,它们的极限分别趋近于所求极限,然后利用夹逼定理来得到所求极限的值。

例如,求函数h(x) = sin(x)/x在x = 0处的极限,可以通过夹逼定理,将h(x)夹在函数i(x) = 1和函数j(x) = x之间,显然,i(x)和j(x)的极限分别为1和0,因此根据夹逼定理,h(x)的极限为1。

4. 泰勒展开法:当函数的极限无法通过以上方法求解时,可以利用泰勒展开来近似计算极限。

泰勒展开是将函数在某一点处展开成无穷项幂级数的形式,利用一定数量的项来近似原函数。

例如,求函数k(x) = e^x在x = 0处的极限,可以利用泰勒展开公式e^x = 1 + x + x^2/2! + x^3/3! + ...,将x = 0代入泰勒展开公式中,得到k(0) = e^0 = 1。

以上是几种常见的求极限的方法,根据具体问题的不同,可以选用不同的方法来求解极限。

求极限的13种方法

求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。

1.代入法:将极限中的变量代入表达式中,简化计算。

这通常适用于简单的多项式函数。

2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。

3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。

4.求导法则:使用导数的性质和规则来计算函数的极限。

这适用于涉及导数的函数。

5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。

6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。

7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。

8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。

该法则涉及对分子分母同时求导的操作。

9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。

10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。

11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。

12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。

13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。

这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。

在实际问题中,可能需要结合使用多种方法来求解复杂的极限。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧函数极限的计算是数学中常见且重要的问题,对于深入理解函数行为和解决实际问题具有重要意义。

以下是一些计算函数极限的常见方法和技巧:1. 代入法:当函数只有一个变量的时候,可以通过将变量代入函数中来计算极限。

这种方法适用于简单的函数和简单的极限问题。

2. 四则运算法则:对于复杂的函数,可以利用四则运算法则简化极限计算。

四则运算法则包括加法、减法、乘法和除法,通过对函数表达式进行合理的变形和简化,可以得到更简单的极限计算形式。

3. 夹逼定理:夹逼定理也称为挤压定理,是一种计算极限的重要方法。

当一个函数在某个点附近夹在两个已知函数之间时,可以利用这个夹逼关系来求函数的极限。

4. 分数分解法:对于含有分数的函数,可以利用分数分解法将其分解为分子和分母的极限,然后分别计算两个极限。

5. 洛必达法则:洛必达法则是计算极限的一种重要方法。

当求函数的极限遇到不确定型的形式(如0/0或∞/∞)时,可以利用洛必达法则,将函数转化为两个函数的极限比值,然后再进行计算。

6. 泰勒展开法:泰勒展开是一种将函数在某一点附近用多项式逼近的方法。

当函数在某一点处极限求解困难时,可以用泰勒级数展开来近似计算极限。

7. 对数换底法:对数换底法是计算一些特殊形式的极限的一种有效方法。

当函数中含有对数函数,并且指数不同底时,可以通过换底公式将其转化为更简单的形式。

8. 常用极限:熟记一些常用的函数极限是计算极限的一个重要技巧。

常用的函数极限包括指数函数、对数函数、三角函数等的极限,可以通过记忆和推导得到。

计算函数极限的方法和技巧很多,选择合适的方法和技巧对于解决极限问题非常重要。

需要根据具体的函数形式和问题特点选取合适的方法,并在计算中灵活应用各种技巧,从而有效地计算函数的极限。

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。

为了求出一个函数在某一点的极限,需要使用合适的方法。

下面介绍16种常用的求极限方法,以及一般题型解题思路。

一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。

例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。

二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。

例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。

三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。

如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。

例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。

四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。

例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。

五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。

根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。

高数中求极限的16种方法

高数中求极限的16种方法

千里之行,始于足下。

高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。

为了解决各种极限问题,数学家们总结出了很多方法和技巧。

以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。

2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。

3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。

4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。

5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。

6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。

7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。

8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。

9.利用积分计算:将极限式子进行积分计算,以求出极限。

10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。

第1页/共2页锲而不舍,金石可镂。

11.利用积素等价:将极限式子进行积素等价,以求出极限。

12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。

13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。

14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。

15.利用导数性质:利用函数的导数性质,对极限进行计算。

16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。

除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。

这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。

极限的求法及常见方法

极限的求法及常见方法

极限的求法及常见方法极限是微积分中的一个非常重要的概念,其广泛应用于各个领域中的数学问题,尤其在工程、物理等实际应用中,称为数学分析的基础。

求解极限的方法非常多样化,主要包括分析法、夹逼法、洛必达法、泰勒展开法等多种常见方法。

1.分析法分析法是极限求解的最常用方法之一。

常用于求有理函数和无理函数的极限。

具体方法为,将被求极限的式子分子分母进行化简,提取出其中与自变量有关的项,将无穷小量相互抵消,直到式子可以直接代入极限值求解。

例如,对于求极限lim x→0 (sin x)/x,我们可以通过分析法将其中的分母x与sin x配合得到:lim x→0 (sin x/x)×(1/1) = 1×1 = 1。

2.夹逼法夹逼法是求解极限非常常用的方法之一,适用于取值范围狭窄的函数里面,例如正弦函数和余弦函数等。

具体方法为,找到与待求极限函数类似的两个函数,一个比待求极限函数大,一个比它小,然后用这两个函数的极限值夹逼待求极限函数。

例如,对于求极限lim x→0 x sin (1/x),我们设f(x)=x,g(x)=-x,则g(x)≤x sin (1/x) ≤ f(x),取极限得到:lim x→0 g(x)=-0,lim x→0 f(x)=0,由夹逼定理可得lim x→0 x sin (1/x)=0。

3.洛必达法洛必达法是一种比较简单的求解极限的方法,主要适用于涉及两个函数除法的情况。

其基本思想是在求解极限时,将分子和分母同时对自变量求导数,然后再求导数代入极限求解。

例如,对于求极限lim x→0 (sin x/x),我们将分子和分母的导数直接代入:lim x→0 (cos x/1) = 1。

4.泰勒展开法泰勒展开法是一种比较高级的求解极限的方法,适用于一些复杂函数的极限求解。

其基本思想是通过泰勒公式将函数在某点带入到无穷阶导数公式中,得到一个无穷级数,然后通过级数求和计算待求极限值。

例如,对于求极限lim x→0 (e^x-1)/x,我们可以使用泰勒展开公式展开得到:lim x→0 [1+x/2!+x^2/3!+......]/x,将分子分母都除以x,得到lim x→0 [1/2!+x/3!+.....],代入x=0,得到极限值为1/2。

求极限的21个方法总结

求极限的21个方法总结

求极限的21个方法总结1. 直接代入法:将变量的值代入极限表达式中,计算极限的值。

2. 分子分母同除以最高次项的方法:可以使得分子和分母的最高次项的系数为1,简化计算。

3. 消去法:利用性质将某些项消去,使得表达式更容易计算。

4. 因式分解法:将极限表达式中的因式进行分解,简化计算。

5. 分数分解法:将极限表达式中的分数进行分解,简化计算。

6. 奇偶性性质:利用函数的奇偶性质,简化计算。

7. 倍角、半角、和差公式:利用三角函数的相关公式,简化计算。

8. 幂函数性质:利用幂函数的性质,简化计算。

9. 对数函数性质:利用对数函数的性质,简化计算。

10. 指数函数性质:利用指数函数的性质,简化计算。

11. 三角函数性质:利用三角函数的性质,简化计算。

12. 极坐标法:将极限表达式转化为极坐标形式,简化计算。

13. 无穷小代换法:将极限表达式中的变量代换为无穷小量,简化计算。

14. 夹逼定理:利用夹逼定理确定极限的值。

15. L'Hopital法则:当计算的极限为0/0或者∞/∞形式时,可以利用L'Hopital 法则进行计算。

16. 泰勒展开法:将极限表达式进行泰勒展开,取较低阶项进行计算。

17. 递推法:将极限表达式中的各项逐步推导出来,从而得到极限的值。

18. 积分法:将极限表达式转化为积分形式,利用积分的性质计算极限的值。

19. 微分法:将极限表达式转化为微分形式,利用微分的性质计算极限的值。

20. 反函数法:将极限表达式中的函数进行反函数变换,简化计算。

21. 几何法:利用几何图形的性质计算极限的值。

16种求极限的方法总结

16种求极限的方法总结

16种求极限的方法总结说起考研数学,你觉得最难的是哪个?据调查,数学中求极限的问题一直困扰着广大考生,2015年的考研马上就要到了,海文考研专门为大家梳理了16种求极限的方法,相信肯定对你有帮助。

解决极限的方法如下:1、等价无穷小的转化只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记(x趋近无穷的时候还原成无穷小2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。

首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。

对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x 展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

4、无穷大比上无穷大面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母看上去复杂,处理很简单!5、无穷小于有界函数无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。

高等数学求极限的14种方法

高等数学求极限的14种方法

高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。

要特别注意判定极限是否存在在:(1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。

常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(2)A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((3)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((4) 单调有界准则(5)两边夹挤准 (夹逼定理/夹逼原理)(6) 柯西收敛准则(不需要掌握)。

极限)(lim 0x f x x →存在的充分必要条件。

是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。

只能在乘除..时候使用。

例题略。

2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)它的使用有严格的使用前提。

首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。

其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。

另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。

洛必达法则分为3种情况: (1)“00”“∞∞”时候直接用 (2)“∞•0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。

求极限的方法与技巧

求极限的方法与技巧

求极限的方法与技巧求极限是微积分中的基本问题,它在解决实际问题中起着关键作用。

在高等数学中,求极限的方法有多种。

下面将介绍一些常见的求极限的方法与技巧。

一、代入法:当极限中存在一些点,可以通过直接将该点代入函数中来求得极限。

二、化简法:当题目给出的函数比较复杂时,可以通过化简来求极限。

比如,利用封闭函数性质、基本运算法则等进行化简。

三、夹逼法:夹逼法也叫夹定理法,是一种常用的求极限方法。

其基本思想是给出两个函数,找到一个中间函数,使得中间函数的极限等于极限所求的值。

通过夹定理可得:若函数f(x)、g(x)、h(x)满足f(x)≤g(x)≤h(x),当x趋于其中一值a时,f(x)和h(x)的极限都等于L,则g(x)的极限也等于L。

四、间断分解法:当函数在其中一点存在间断时,可以将函数分解开来,单独求解每一段函数的极限,然后再进行综合得出最后的极限。

五、无穷小量替换法:当给出的函数极限不好求解时,可以通过将其替换为一个相等的无穷小量来简化计算。

比如,将极限中的分子或分母替换为无穷小量,或者将函数替换为等价的无穷小量。

六、洛必达法则:洛必达法则是求解一些形如$\displaystyle\frac{0}{0}$ 或$\displaystyle\frac{\pm\infty }{\pm\infty }$型极限的常用方法。

其基本思想是将函数的极限转化为分数的形式,然后对分子和分母同时求导,最后将得到的导数值带入原函数中。

如果在求导之后依然得到一个$\displaystyle\frac{0}{0}$形式的极限,可以继续应用洛必达法则,直到得到非$\displaystyle\frac{0}{0}$形式的极限。

七、级数展开法:对于一些无穷级数的极限求解,可以通过级数展开来计算。

例如,利用泰勒级数展开,将函数展开成无穷级数的形式,然后利用级数的性质进行计算。

八、极限换元法:有时候对于一些较为复杂的函数,可以通过对变量进行换元简化问题。

求极限的几种常用方法

求极限的几种常用方法

求极限的几种常用方法求极限的几种常用方法一、约去零因子求极限例如求极限,本例中当时,,表明与1无限接近,但 ,所以这一因子可以约去。

二、分子分母同除求极限求极限型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

?三、分子(母)有理化求极限例:求极限 ??分子或分母有理化求极限,是通过有理化化去无理式。

例:求极限30sin 1tan 1lim x x x x +-+→=()x x x x x x sin 1tan 1sin tan lim30+++-→ =300sin tan lim sin 1tan 11limx x x x x x x -+++→→=41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。

四、应用两个重要极限求极限两个重要的极限在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。

例:求极限第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑,最后凑指数部分。

五、利用无穷小量的性质求极限无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。

这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。

例:求因为,,所以六、用等价无穷小量代换求极限常见等价无穷小有:当时,,,等价无穷小量代换,只能代换极限式中的因式。

此方法在各种求极限的方法中应作为首选。

例:例:求极限七、利用函数的连续性求极限这种方法适合求复合函数的极限。

如果在点处连续,而在点处连续,那么复合函数在点处连续。

也就说,极限号与可以互换顺序。

例:求令因为在点处连续所以八、用洛必达法则求极限洛必达法则只能对或型才可直接使用,其他待定型必须先化成这两种类型之一,然后再应用洛必达法则。

洛必达法则只说明当也存在等于时,那么存在且等于。

如果不存在时,并不能断定也不存在,这是不能用洛必达法则的,而须用其他方法讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档