第3章《磁场》综合能力测试A

合集下载

磁场综合能力测试

磁场综合能力测试

磁场综合能力测试1.发现通电导线周围存在磁场的科学家是 A .洛伦兹 B .库仑 C .法拉第 D .奥斯特 2.磁体之间的相互作用是通过磁场发生的。

对磁场认识正确的是 A.磁感线有可能出现相交的情况B.磁感线总是从磁体的N 极出发,到磁体的S 极终止C.某点磁场的方向与放在该点小磁针静止时N 极所指方向一致D.若在某区域内通电导线不受磁场力的作用,则该区域的磁感应强度一定为零 3.有、、、四个小磁针,分别放置在通电螺线管的附近和内部,如图所示。

小磁针的指向是正确的A .B .C .D .4.为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的,在下列 四个图中,正确表示安培假设中环形电流方向的是5.初速度为V 0的电子(重力不计),沿平行于通电长直导线的方向射出,直导线中电流方向与电子的初始运动方向如图所示,则A .电子将向右偏转,速率不变B .电子将向左偏转,速率改变C .电子将向左偏转,速率不变D .电子将向右偏转,速率改变 6.如图所示为一“滤速器”装置的示意图,a 、b 为水平放置的平行金属板,一束具有各种不同速率的电子 沿水平方向经小孔O 进入a 、b 两板之间.为了选取具有某种特定速率的电子,可在a 、b 间加上电压, 并沿垂直于纸面的方向加一匀强磁场,使所选电子仍 能够沿水平直线OO ′运动,由O ′射出.不计重力 作用.可能达到上述目的办法是A .使a 板电势高于b 板,磁场方向垂直纸面向里B .使a 板电势低于b 板,磁场方向垂直纸面向里C .使a 板电势高于b 板,磁场方向垂直纸面向外D .使a 板电势低于b 板,磁场方向垂直纸面向外7.如图,长为2l 的直导线折成边长相等,夹角为60o的V 形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B ,当在该导线中通以电 流强度为I 的电流时,该V 形通电导线受到的安培力大小为 A .0 B. 0.5B Il C. B Il D. 2B Il8.如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、 磁感应强度为B 的匀强磁场中。

人教版高中物理选修31第三章磁场综合测试题及详解

人教版高中物理选修31第三章磁场综合测试题及详解

高中物理学习资料金戈铁骑整理制作第三章磁场综合测试题答案及详解本卷分第 Ⅰ卷 ()和第 Ⅱ 卷 (非 )两部分. 分100 分,90 分 .第Ⅰ卷(共 40 分)一、 (共 10 小 ,每小4 分,共 40 分,在每小 出的四个 中,有的小只有一个 吻合 目要求,有些小 有多个 吻合 目要求,全部 的得 4 分,不全的得 2 分,有 或不答的得0 分 )1. 答案: ABDA 、D 中 均与磁解析: 只有当通 和磁 平行 ,才不受安培力的作用,而垂直, B 中 与磁 方向 角60°,因此受安培力的作用,故正确 A 、B 、 D.2. 答案: D解析: 因 小球静止,因此不受磁 力的作用. 3.答案: A解析:用双 成的螺 管, 双 中的 流 好相反, 其在周 空 生的磁 相互抵消,因此螺 管内部磁感 度 零.4.答案: C解析:通 后, 簧的每一个圈都相当一个 形 流, 且各 圈都通以相同方向的 流,依照同向 流相互吸引, 簧收 ,下端走开水 面,使 路断开, 路断开后, 簧中的 流消失, 磁 作用失去, 簧在 力和自己重力作用下下落,于是 路又接通, 簧又收 ⋯⋯ 这样周而复始,形成 簧上下跳 .正确答案C.5.答案: A解析: 离 越 磁感 度越小, 子的 道半径越大. 6. 答案: A解析: 由于 m 甲∶ m 乙 =4∶ 1,q 甲∶ q 乙 = 2∶ 1,v 甲 ∶ v 乙= 1∶1,故 R 甲 ∶ R 乙 = 2∶ 1.由于 粒子只受洛 力的作用, 而洛 力充当粒子做 周运 的向心力, 由左手定 判 断,甲、乙所受洛 力方向相反, 可判断, A 正确.7.答案: ABD解析: 当磁 方向垂直斜面向下 ,据平衡条件知在沿斜面方向上mgsin30 =°BIL 因此 B =mg,因此 A 正确;2IL当磁场方向竖直向下时, 由左手定则知安培力应水平向左, 直导体受力以以下图. 由平衡条件知在沿斜面方向上mgsin30 =°BIL cos30 ° 因此 B =mg,应选项 B 正确;3IL若磁感觉强度垂直斜面向上, 由左手定则知安培力应沿斜面向下,这样直导体不能能静止在斜面上,因此选项 C 不正确;若 B 水平向左,由左手定则知,安培力方向应竖直向上,mg 此时若满足 BIL = mg ,即 B = IL ,则直导体仍可静止在斜面上,因此D 选项正确. 8. 答案: ACDT =2πm ,依照粒子的比荷大小可知: T 1= T 2<T 3,故 A 解析: 各粒子做圆周运动的周期qB 正确;由于 r 1>r 2 >r 3 结合 r =mv及粒子比荷关系可知 v 1>v 2>v 3,故 B 错误;粒子运动的向心 qB 加速度 a =qvB,结合各粒子的比荷关系及v 1>v 2>v 3 可得: a 1>a 2>a 3,故 C 正确;由图可知,m粒子运动到 MN 时所对应的圆心角的大小关系为 θ1<θ2<θ3,而 T 1= T 2,因此 t 1<t 2,由 T 2<T 3,且 θ ,可知 t ,故 D 正确.2<θ32<t 39.答案: ABD解析: 带负电小球由槽口下滑到 P 点的过程中,磁场力不做功,支持力不做功,只有重力做功.小球在 P 点受磁场力方向竖直向上.依照机械能守恒mgR = 12mv 2v = 2gR2在 P 点 N +Bqv -mg =mvRN =3mg - qB 2gRM 对地面压力 N ′ = Mg + N = (M + 3m) g -qB 2gR当 qB 2gR = 2mg 时 N ′ = (M + m)g 当 qB 2gR = 3mg 时 N ′ = Mg 选项 A 、B 、D 正确. 10.答案: CD解析: 在 A 图中刚进入复合场时,带电小球碰到方向向左的电场力、向右的洛伦兹力、竖直向下的重力,在重力的作用下,小球的速度要变大,洛伦兹力也会变大,因此水平方向受力不能能总是平衡, A 选项错误; B 图中小球要碰到向下的重力、向上的电场力、 向外的洛伦兹力, 小球要向外偏转, 不能能沿直线经过复合场, B 选项错误; C 图中小球碰到向下的重力、 向右的洛伦兹力、 沿电场方向的电场力, 若三力的合力恰好为 零,则小球将沿直线匀速经过复合场, C 正确; D 图中小球只碰到竖直向下的重力和竖直向 上的电场力能够沿直线经过复合场, D 正确.第Ⅱ卷(非选择题共 60 分)二、填空题 (共 4 小题,每题 5 分,共 20 分.把答案直接填在横线上 )11.答案:由安培定则判断答案以以下图所示.12.答案:竖直向下垂直纸面向里E 2gh gB2πE2h 22gh+ 3gπgB13.答案:解析:金属杆偏离竖直方向后受力以以下图,杆受重力mg,绳子拉力 F 和安培力 F 安的作用,由平衡条件可得:Fsin30 =°BIL ①Fcos30 °= mg②①②联立,得 mgtan30 °= BIL∴ B=mgtan30 °=IL14.答案:速度,荷质比解析:由直线运动可得: qE = qBv进而可知: v=E,可得速度相同,再由在后边只有m相同.B磁场空间内半径相同,可得q三、论述·计算题 (共 5小题,共 40分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能够得分,有数值计算的题,答案中必定明确写出数值和单位) 15.答案: 11V解析: ab 棒碰到的安培力:F=BIL =因此 I=2AI 总=3AR·R abE= I 总 (r +R+R ab)= 11V.16.答案: P=BIa解析:将原图的立体图改画成从正面看的侧视图,以以下图,依照左手定则判断出电流受力方向向右.F F BIh BIF=BIh , P=S=ah=ah=a议论:本题的物理情况是:当电流I 经过金属液体沿图中方向向上时,电流碰到磁场的作用力,这个磁场力即为驱动液态金属流动的动力,由于这个驱动力而使金属液体沿流动方向产生压强.17.答案: (1)轨迹图见解析2L2mU(2)(L2+d2)q解析: (1)作粒子经电场和磁场中的轨迹图,如图(2)设粒子在 M、 N 两板间经电场加速后获得的速度为v,由动能定理得:qU=1m v2①2粒子进入磁场后做匀速圆周运动,设其半径为r,则:2vqvB= m②r由几何关系得: r2= (r- L)2+ d2③联立求解①②③ 式得:磁感觉强度 B=2L2mU22q. (L+ d )18.答案: (1)6×10-3J解析: (1)从 M→ N 过程,只有重力和摩擦力做功.刚走开N 点时有Eq=Bqv4即 v=E/B= m/s= 2m/s.212依照动能定理 mgh- W f=2mv1210-31× 1×10-32=6× 10-3因此 W f=mgh + mv =1××10×-× 2(J).22(2)从已知 P 点速度方向及受力情况解析如附图由 θ=45°可知 mg = Eqf 洛 = 2mg = Bqv p因此 v P = 2mg= 2E = 2 2m/s.Bq B依照动能定理,取 M →P 全过程有12mgH - W f - Eqs =2mv P1 2mgH - W f -2mv P求得最后结果s == 0.6m.Eq19.答案:解析: (1)设垒球在电场中运动的加速度为 a ,时间为 t 1 ,有:qE =ma1 2 h = 2at 1 d = v 0t 1代入数据得:a = 50m/s 2, t 1=3s ,5d = 2 3m =(2)垒球进入磁场时与分界面夹角为θat 1tan θ= = 3, θ= 60°进入磁场时的速度为v = v 0= 20m/scos θ设垒球在磁场中做匀速圆周运动的半径为 Rd由几何关系得: R == 4m又由 R = mv qB ,得 B = mvqR = 10T球在磁场中运动时间为:360 °- 2× 60°t 2=T360 °T =2πm ,故 t 2= 4πqB s15 运动总时间为: t = 2t 1+ t 2=。

物理粤教版选修3-1第三章磁场学力测评 含解析 精品

物理粤教版选修3-1第三章磁场学力测评 含解析 精品

学力测评一、本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分.1.下列关于磁感应强度的说法中,正确的是()A.一小段通电直导线放在磁感应强度为零的地方,受到的磁场力可能不为零B.一小段通电直导线放在磁场中某点不受磁场力的作用,则该点的磁感应强度可能不为零C.一小段通电直导线放在磁场中某点不受磁场力作用,则该点磁感应强度一定为零D.一小段通电直导线放在磁场中受到的安培力为F,通电电流为I,导线长为ΔL,则磁感应强度B的大小等于F/(IΔL)解析:没有磁场的地方,通电直导线就不会受到磁场力的作用,A错.通电直导线如果平行于磁场放置则不受磁场力的作用,所以一小段通电直导线放在磁场中某点不受磁场力的作用,并不说明该点磁感应强度为零,B对、C错.是这样定义磁感应强度的:当通电导线与磁场方向垂直时,通电导线所受的安培力F跟电流I和导线长度L的乘积IL的比值叫做磁感应强度,所以D错误.答案:B2.关于磁场和磁感线的描述,正确的说法是()A.磁感线从磁体的N极出发,终止于S极B.磁场的方向就是通电导体在磁场中某点受磁场作用力的方向C.沿磁感线方向,磁场逐渐减弱D.在磁场强的地方同一通电导体受的安培力可能比在磁场弱的地方受的安培力小解析:磁感线是为了形象描述磁场而引入的闭合曲线,没有起点和终点,所以A错.通电直导线在磁场中所受的磁场力的方向与磁场垂直,B错.磁感线的疏密表示磁场的强弱,磁感线的方向不表示磁场的强弱,故C错.通电导线在磁场中的受力不仅与磁感应强度有关,还跟导线的位置取向有关,若通电导线与磁场方向平行,则无论怎样安培力均为零,D正确.答案:D3.如图3-1所示,三根长导线通电电流大小相同,通电方向为b导线和d导线向纸里,c导线向纸外,a点为bd的中点,ac垂直于bd,且ab=ad=ac,磁场在a点处的磁感应强度的方向为()图3-1A.垂直纸面指向纸外B.垂直纸面指向纸里C.沿纸面由a指向bD.沿纸面由a指向c解析:在多个磁体存在的空间里任意一点的磁场是这些磁体在该点产生磁场的合磁场.a点是b、d两根通电直导线的对称点,b、d两通电直导线在a点产生的磁场的磁感应强度大小相等、方向相反,二者的合磁感应强度为零,则a点磁场的磁感应强度就等于c通电直导线在a点产生的磁场的磁感应强度,方向由a指向b,C正确.答案:C4.如图3-2所示,金属板abcd置于匀强磁场中,通以水平向左的恒定电流,当达到稳定状态后()图3-2A.电子向cd边偏转,使ab边电势高于cd边电势B.电子向cd边偏转,使ab边电势低于cd边电势C.电子不再发生偏转,但ab边电势高于cd边电势D.电子不再发生偏转,但ab边电势低于cd边电势解析:电流水平向左,定向移动的电子向右,金属阳离子是不能移动的,在洛伦兹力作用下电子向ab边偏转使ab边带负电,则cd边带正电,所以ab边电势低于cd边的电势,D正确.答案:D5.一带电粒子M在相互垂直的匀强电场、匀强磁场中做匀速圆周运动,匀强电场竖直向下,匀强磁场水平且垂直纸面向里,如图3-3 所示.下列说法正确的是()图3-3A.沿垂直纸面方向向里看,粒子M的绕行方向为顺时针方向B.运动过程中外力对粒子做功的代数和为零,故机械能守恒C.在粒子旋转一周的时间内重力做功为零D.沿垂直纸面方向向里看,粒子M的绕行方向既可以是顺时针也可以是逆时针方向解析:粒子能在竖直面内做匀速圆周运动,则该粒子一定带负电,且电场力和重力大小相等、方向相反,洛伦兹力提供向心力,由左手定则判断知:该粒子沿垂直纸面方向向里看,粒子M的绕行方向为顺时针方向,A正确、D错误.由于电场力参与做功,所以粒子运动过程中机械能不守恒,B错.重力做功与路径无关,只与起点和终点有关,运动一周重力做功为零,C对.答案:AC6.一束混合的离子束,先径直穿过正交匀强电、磁场,再进入一个磁场区域后分裂成几束,如图3-4所示.若粒子的重力不计,此分裂是因为()图3-4A.带电性质不同,有正离子又有负离子B.速度不同C.质量和电荷量的比值不同D.以上选项均不正确解析:能沿直线通过正交匀强电、磁场区域的粒子必须满足电场力与洛伦兹力大小相等,即Eq=Bqv ,所以所有沿直线通过该区域的粒子的速度相等,与带电粒子的电性无关.粒子进入偏转磁场后做匀速圆周运动,轨道半径为Bqm v R =,粒子束分裂成几束,说明它们的半径不同,这是因为他们的比荷不同所致,C 正确.答案:C7.如图3-5,在半径为R 的圆内有一磁感应强度为B 的向外的匀强磁场,一质量为m 、电荷量为q 的粒子(不计重力),从A 点对着圆心方向垂直射入磁场,从C 点飞出,则( )图3-5A.粒子带正电B.粒子的轨道半径为RC.A 、C 两点相距R 3D.粒子在磁场中运动的时间为πm /3Bq解析:用左手定则判断可知粒子带正电,A 对.由几何关系可得粒子轨道半径大于R ,等于R 3,B 错.由A 、C 和粒子圆轨道的圆心构成的三角形是等边三角形,所以A 、C 两点相距R 3,C 对.粒子在磁场中运动圆弧对应的圆心角为3π,运动时间为Bqm T 36π=,D 正确.答案:ACD二、本题共9小题,共72分.第8~11小题答案填写在题内横线空白处.解答题应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须写出数值和单位.8.(5分)如图3-6所示,蹄形磁铁两极间的导体棒ab ,当通有自b 向a 的电流时受到向右的安培力的作用,则磁铁的上端是______________极.如果磁铁上端是S 极,导体棒中的电流方向自a 到b ,则导体棒受到的安培力的方向向______________.图3-6解析:用左手定则判断,通电直导线处在竖直向下的磁场中,即N 极在上端;用左手定则判断,导体棒受到的安培力方向向右.答案:N 右9.(5分)如图3-7所示,在轻弹簧的下端悬挂一个边长为L 的正方形金属线框.金属线框的下边放在磁感应强度为B 的匀强磁场中,当线框中的电流为I 时,弹簧仍保持原长,线框恰好平衡.现断开电路,使线框中的电流为零,线框开始向下运动.当线框向下运动到最低点时,弹簧的弹性势能增加了E ,则线框下降的距离x=_____________.图3-7解析:通有电流I 时,线框受到的安培力大小等于其重力大小,即mg=BIL ,断开电源后,线框下落,只有重力和弹簧弹力做功,线框、弹簧、地球构成的系统机械能守恒,有:E-mgx=0,所以BILE mg E x ==.答案:E/ILB10.(5分)如图3-8所示,带电液滴从h 高处自由落下,进入一个匀强电场与匀强磁场的互相垂直的区域,磁场方向垂直纸面,电场强度为E ,磁感应强度为B.已知液滴在此区域中做匀速圆周运动,则圆周运动的半径R=______________.图3-8解析:带电液滴进入磁场就做匀速圆周运动,说明电场力与重力平衡,即Eq=mg 得gEq m =液滴自离磁场边界h 高处下落,下落过程中机械能守恒:221mv mgh =得:gh v 2=做匀速圆周运动所需要的向心力为洛伦兹力,满足:R m v Bqv 2=,即Bqm v R =联立方程①②③得:gh B E R 2=.答案:g hB E 211.(5分)正方形导线框abcd ,匝数为10匝,边长为20 cm ,在磁感应强度为0.2 T 的匀强磁场中围绕与B 方向垂直的转轴匀速转动,转速为120 r/min.当线框从平行于磁场位置开始转过90°时,线圈中磁通量的变化量是_____________Wb.解析:导线框与B 垂直时磁通量最大,当转过90°时磁通量为零,所以此过程磁通量的变化量就等于初始时刻的磁通量的值,即ΔΦ=BS=0.2×(0.2)2 Wb=0.008 Wb.答案:0.00812.(10分)如图3-9所示是一宽D=8 cm 的同时存在相互垂直的匀强电场和匀强磁场区域,一束带电粒子(重力不计)以速度v 0垂直射入时恰好不改变运动方向.若粒子射入时内有电场,可测得粒子束穿过电场时沿竖直方向向上偏了3.2 cm ;若粒子射入时只有磁场,问:图3-9(1)粒子在磁场中的运动情况如何?(2)粒子离开磁场时偏离原方向多大距离?答案:粒子在复合场中、电场中和磁场中运动情况各有不同(1)电场和磁场共存时,带电粒子做匀速直线运动,则有:Eq=qv 0B(2)只有电场时,带电粒子只受电场力,做类平抛运动,则有:水平方向x=v 0t竖直方向y=Eqt 2/2m解①②③联立的方程组代入y=0.032 m 得qB 2/mE=10.(3)只有磁场时,带电粒子只受洛伦兹力做匀速圆周运动,则有:qBv 0=mv 02/R 得:R=mE/qB 2=0.1 m带电粒子从进入磁场到出磁场过程,设粒子在磁场中偏离原方向的距离为d ,通过几何关系得R 2=D 2+(R-d)2把R=0.1 m 、D=0.08 m 代入得d=0.04 m.13.(8分)在竖直平面内半圆形光滑绝缘管处在如图3-10所示的匀强磁场中,B=1.1 T ,管道半径R=0.8 m ,其直径AOB 在竖直线上.在管口A 处以2 m/s 的水平速度射入一个小带电球,其电荷量为10-4 C ,问:图3-10(1)小球滑到B 处的速度为多大?(2)若小球从B 处滑出的瞬间,管子对它的压力恰好为零,小球质量为多少?(取g=10 m/s 2)解析:(1)小球从A 到B ,利用动能定理mg·2R=mv b 2/2-mv a 2/2得v b =6 m/s.(2)在B 点,对小球进行受力分析,由于小球做圆周运动,所以有qv B B-mg=mv b 2/R ,得m=1.2×10-5kg.答案:(1)6 m/s (2)1.2×10-5 kg14.(12分)正电子发射计算机断层(PET )是分子水平上的人体功能显像的国际领先技术,它为临床诊断和治疗提供全新的手段.图3-11(1)PET 所用回旋加速器示意如图,其中置于高真空中的金属D 形盒的半径为R ,两盒间距为d ,在左侧D 形盒圆心处放有粒子源S ,匀强磁场的磁感应强度为B ,方向如图所示.质子质量为m ,电荷量为q.设质子从粒子源S 进入加速电场时的初速度不计,质子在加速器中运动的总时间为t (其中已略去了质子在加速电场中的运动时间),质子在电场中的加速次数与回旋半周的次数相同,加速电子时的电压大小可视为不变.求此加速器所需的高频电源频率f 和加速电压U.(2)试推证当R d 时,质子在电场中加速的总时间相对于在D 形盒中回旋的总时间可忽略不计(质子在电场中运动时,不考虑磁场的影响).解析:(1)设质子加速后最大速度为v ,由牛顿第二定律有Rv m qvB 2=质子的回旋周期qB m v R T ππ22==高频电源的频率mqB T f π21==质子加速后的最大动能221mv E k =设质子在电场中加速的次数为n ,则nqU E k =又2Tn t =可解得t BR U 22π=(2)在电场中加速的总时间为vnd v nd t 221==在D 形盒中回旋的总时间为v B n t π=2故B d t t π221=1即当R d 时,t 1可忽略不计.答案:(1)t BR m qB 222ππ (2)证明略15.(11分)如图3-12所示,在足够长的竖直放置的绝缘真空管中,有一电荷量为4×10-4 C 、质量为0.1 g 的带正电的小圆柱体,恰好可在管内部自由滑动.将此管放在相互垂直的水平匀强磁场和水平匀强电场中,已知E=10 N/C ,B=5 T ,小圆柱体与管壁的动摩擦因数μ=0.2.设圆柱体在管内静止下落,图3-12(1)试说明小圆柱体运动的性质;(2)下落过程中最大和最小的加速度及与此相对应的速度大小为多少? 解析:(1)见解析(2).(2)对小圆柱体受力分析,水平方向:N +qvB =Eq ,竖直方向:mg-μN=ma当N=0时,即mg=ma ,a=g=10 m/s 2,此时qvB=Eq 得v=E/B=10/5 m/s=2 m/s.当速度继续增大时,洛伦兹力随之增大,管壁对小圆柱体的弹力要反向增大,经受力分析得水平方向:Eq+N=qvB竖直方向:mg-μN=ma当a=0时,速度达到最大值,即mg=μ(qvB -Eq)得v max =(mg+μEq)/μqB ,代入数据得v max =4.5 m/s.16.(11分)如图3-1-3所示,x 轴上方有匀强磁场B ,下方有匀强电场E.电荷量为q 、质量为m 的粒子在y 轴上,重力不计,x 轴上有一点M(L ,0),要使粒子在y 轴上由静止释放能达到M 点.问:图3-1-3(1)带电粒子应带何种电荷?释放位置离O点须满足什么条件?(2)粒子从出发点运动到M点经历的时间多长?解析:(1)带电粒子要在电场中向上加速,所以带电粒子应带负电荷.设释放点离原点距离为d,负电荷在电场中加速,由动能定理得:Eqd=mv2/2 ①负电荷在磁场中做匀速圆周运动,其运动半径为R,qvB=mv2/R ②又由题意得:2nR=L联立①②③式得d=qB2L2/8n2mE,n=1、2、3……(2)带电粒子实际运动到M点的时间有两部分组成.设粒子从出发点到原点的时间为t1,则在电场中运动的时间为t E=(2n-1)t1,由运动学方程d=Eqt12/2m联立④⑤式得t1=BL/2nE带电粒子在磁场中运动的时间t B=nπm/qB,所以带电粒子从出发点运动到M点的总时间为t=t E+t B=(2n-1)BL/2nE+nπm/qB,n=1,2,3……。

人教版高中物理选修3-1第三章《磁场》检测题(含答案)

人教版高中物理选修3-1第三章《磁场》检测题(含答案)

《磁场》检测题一、单选题1.如图所示,导线框中电流为I ,导线框垂直于磁场放置,磁感应强度为B ,AB 与CD 相距为d ,则MN 所受安培力大小为( )A .F =BIdB .F =sin BIdC .F =BId sin θD .F =BId cos θ2.如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子(正电子质量和电量与电子大小相等,电性相反)分别以相同速度沿与x 轴成60°角从原点射入磁场,则正、负电子在磁场中运动时间之比为( )A .1∶2B .2∶1C .1D .1∶13.如图,一质子以速度v 穿过互相垂直的电场和磁场区域而没有发生偏转则A .若电子以相同速度v 射入该区域,将会发生偏转B .若质子的速度v ′<v ,它将向下偏转而做类似的平抛运动C .若质子的速度v ′>v ,它将向上偏转,其运动轨迹是圆弧线D .无论何种带电粒子(不计重力),只要都以速度v 射入都不会发生偏转4.如图,半径为R 的圆形区域内有垂直于纸面的匀强磁场,半径OC 与OB 夹角为60°.一电子以速率v 从A 点沿直径AB 方向射入磁场,从C 点射出。

电子质量为m 、电荷量为e ,不计电子重力,下列说法正确的是( )A .磁场方向垂直纸面向里 B.磁感应强度大小为3eRC.电子在磁场中的运动时间为3RvD .若电子速率变为3v,仍要从C 点射出,磁感应强度大小应变为原来的3倍5.如图所示,两根长直通电导线互相平行,电流方向相同。

它们的截面处于一个等边三角形ABC 的A 和B 处,且A 、B 两点处于同一水平面上。

两通电电线在C 处的磁场的磁感应强度的值都是B ,则C 处磁场的总磁感应强度的大小和方向是( )A .B 竖直向上 B .B 水平向右 C水平向右 D竖直向上 6.如图所示,总长为L 、通有电流I 的导线,垂直磁场方向置于宽度为x 、磁感应强度为B 的匀强磁场中,则导线所受安培力大小为( )A .BILB .BIxC .BI(L -x)D .BI(L +x)7.在玻璃皿的中心放一个圆柱形电极,紧贴边缘内壁放一个圆环形电极,并把它们与电池的两极相连,然后在玻璃皿中放入导电液体,例如盐水.如果把玻璃皿放在磁场中,如图所示,通过所学的知识可知,当接通电源后从上向下看( )A .液体将顺时针旋转B .液体将逆时针旋转C .若仅调换N 、S 极位置,液体旋转方向不变D .若仅调换电源正、负极位置,液体旋转方向不变8.M 点是位于圆形匀强磁场边界的一个粒子源,可以沿纸面向磁场内各个方向射出带电荷量为q 、质量为m 、速度大小相同的粒子,如图所示。

高中物理第三章磁场章末复习课达标检测含解析粤教版3_1

高中物理第三章磁场章末复习课达标检测含解析粤教版3_1

章末复习课【知识体系】磁场错误![答案填写]错误!BS投影面积左手定则相吸相斥qvB错误!错误!主题1磁场对电流的作用——安培力1.分析在安培力作用下通电导体运动情况的一般步骤.(1)画出通电导线所在处的磁感线方向及分布情况.(2)用左手定则确定各段通电导线所受安培力.(3)据初速度方向结合牛顿定律确定导体运动情况.2.注意问题.(1)公式F=BIL中L为导线的有效长度.(2)安培力的作用点为磁场中通电导体的几何中心.(3)安培力做功:做功的结果将电能转化成其他形式的能.【典例1】如图所示,光滑导轨与水平面成α角,导轨宽L.匀强磁场磁感应强度为B.金属杆长为L,质量为m,水平放在导轨上.当回路总电流为I1时,金属杆正好能静止.则(1)这时B至少多大?B的方向如何?(2)若保持B的大小不变而将B的方向改为竖直向上,应把回路总电流I2调到多大才能使金属杆保持静止?解析:解这类题时必须先画出截面图,只有在截面图上才能正确表示各力的准确方向,从而理清各矢量方向之间的关系.(1)画出金属杆的截面图.由三角形定则得,只有当安培力方向沿导轨平面向上时安培力才最小,B也最小.根据左手定则,这时B应垂直于导轨平面向上,大小满足BI1L=mg sin α,B=错误!。

(2)当B的方向改为竖直向上时,这时安培力的方向变为水平向右,要使金属杆保持静止,应使沿导轨方向的合力为零,得BI2L cos α=mg sin α,I2=错误!.答案:(1)错误!垂直于导轨平面向上(2)错误!针对训练1。

质量为m、长度为L的导体棒MN静止于水平导轨上,通过MN的电流为I,匀强磁场的磁感应强度为B,方向与导轨平面成θ角斜向下,如图所示.求棒MN受到的支持力和摩擦力.解析:由左手定则判断安培力的方向时,要注意安培力的方向既垂直于电流方向又垂直于磁场方向,垂直于电流方向和磁场方向所决定的平面,棒MN受力分析如图所示。

由平衡条件有水平方向F f=F sin θ,竖直方向F N=F cos θ+mg.且F=BIL,从而得F f=BIL sin θ。

高中物理第三章磁场章末综合检测教科版选修3-1(2021年整理)

高中物理第三章磁场章末综合检测教科版选修3-1(2021年整理)

2018年高中物理第三章磁场章末综合检测教科版选修3-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高中物理第三章磁场章末综合检测教科版选修3-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高中物理第三章磁场章末综合检测教科版选修3-1的全部内容。

第三章磁场(时间:90分钟,满分:100分)一、选择题(本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,至少有一个选项正确.全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.(广州高二检测)下列关于磁场和磁感线的描述中正确的是()A。

磁感线可以形象地描述各点磁场的方向B。

磁感线是磁场中客观存在的线C.磁感线总是从磁铁的N极出发,到S极终止D。

实验中观察到的铁屑的分布就是磁感线解析:选A。

磁感线是为了形象描述磁场而引入的假想线,它可以描述磁场的强弱和方向,A 对,B错.磁铁的外部,磁感线从N极出发到S极,内部从S极到N极,内外部磁感线为闭合曲线,C错。

实验中观察到的铁屑的分布只是模拟磁感线的形状,不是磁感线,磁感线是看不到的,D错。

2。

如图3-8所示,带负电的金属环绕其轴OO′匀速转动时,放在环顶部的小磁针最后将()图3-8A.N极竖直向上B。

N极竖直向下C。

N极水平向左D。

小磁针在水平面内转动解析:选C.带电金属环形成逆时针电流(从右向左看),据安培定则可以确定,通过金属环轴OO′处的磁场方向水平向右,小磁针处的磁场方向水平向左,故小磁针N极最后水平指向左方,C 项正确.3.在磁感应强度为B0、方向竖直向上的匀强磁场中,水平放置一根通电长直导线,电流的方向垂直于纸面向里。

磁场综合练习题-3

磁场综合练习题-3

磁场(c ích ǎng)综合练习题-3(带*号题为超纲题)一. 选择题:1. 如图所示,直角三角形金属(j īnsh ǔ)框架abc 放在均匀(j ūnyún)磁场中,磁场平行(p íngx íng)于ab 边,bc 的长度(ch ángd ù)为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a – U c 为(A) =0,U a – U c =. (B) =0,U a – U c =. (C) =,U a – U c =221l B ω. (D) =2l B ω,U a – U c =221l B ω-. [ ] 2. 面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用Φ21表示,线圈2的电流所产生的通过线圈1的磁通用Φ12表示,则Φ21和Φ12的大小关系为:(A) Φ21 =2Φ12. (B) Φ21 >Φ12.(C) Φ21 =Φ12. (D) Φ21 =Φ12. [ ]二. 填空题:3. 如图所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中;磁感强度为B 的匀强磁场垂直于xy 平面.当aOc 以速度沿x 轴正向运动时,导线上a 、c 两点间电势差U ac =____________;当aOc 以速度v 沿y 轴正向运动时,a 、c 两点的电势相比较, 是____________点电势高.*4. 如图所示,等边三角形的金属框,边长为l ,放在均匀磁场中,ab 边平行于磁感强度B ,当金属框绕ab 边以角速度ω 转动时,bc 边上沿bc 的电动势为 _________________,ca 边上沿ca 的电动势为_________________,金属框内的总电动势为_______________.(规定电动势沿abca 绕向为正值)5. 金属杆AB 以匀速v =2 m/s 平行(p íngx íng)于长直载流导线运动,导线与AB 共面且相互垂直(chu ízh í),如图所示.已知导线载有电流I = 40 A ,则此金属杆中的感应(g ǎny ìng)电动势i =____________,电势(di ànsh ì)较高端为______.(ln2= 0.69)6. 半径(b ànj ìng)为L 的均匀导体圆盘绕通过中心O 的垂直轴转动,角速度为ω,盘面与均匀磁场B 垂直,如图.(1) 图上Oa 线段中动生电动势的方向为_________________.(2) 填写下列电势差的值(设ca 段长度为d ):U a -U O =__________________.U a -U b =__________________.U a -U c =__________________.7. 如图所示,一直角三角形abc 回路放在一磁感强度为B的均匀磁场中,磁场的方向与直角边ab 平行 ,回路绕ab边以匀角速度ω旋转 ,则ac 边中的动生电动势为__________________________,整个回路产生的动生电动势为____________________________.8. 反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为, ①, ②, ③ . ④ 试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处.(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________三. 计算题:9. 如图所示,一根(y ī ɡēn)长为L 的金属(j īnsh ǔ)细杆ab 绕竖直(sh ù zh í)轴O 1O 2以角速度ω在水平面内旋转.O 1O 2在离细杆a 端L /5处.若已知地磁场在竖直(sh ù zh í)方向的分量为B .求ab 两端(li ǎn ɡ du ān)间的电势差.*10. 在水平光滑的桌面上,有一根长为L ,质量为m 的匀质金属棒.该棒绕过棒的一端O 且垂直于桌面的轴旋转.其另一端A 在半径为L 的金属圆环上滑动,且接触良好.在棒的O 端和金属环之间接一电阻R (如图).在垂直桌面的方向加一均匀磁场.已知棒在起始时刻的角速度为ω0,在t 时刻的角速度为ω.求磁感强度B 的大小.(机械摩擦可以忽略,金属棒、金属环以及接线的电阻全部归入R ,不另计算,棒对过O 端的轴的转动惯量为.) *11. 如图所示,一长直导线中通有电流I ,有一垂直于导线、长度为l 的金属棒AB 在包含导线的平面内,以恒定的速度v 沿与棒成θ角的方向移动.开始时,棒的A 端到导线的距离为a ,求任意时刻金属棒中的动生电动势,并指出棒哪端的电势高.*12. 一无限长竖直导线上通有稳定电流I ,电流方向向上.导线旁有一与导线共面、长度为L 的金属棒,绕其一端O 在该平面内顺时针匀速转动,如图所示.转动角速度为ω,O 点到导线的垂直距离为r 0(r 0 >L ).试求金属棒转到与水平面成θ角时,棒内感应电动势的大小和方向.答案:一.选择题:1. B2. C二.填空题:3. v BL sinθ 2分a 2分4. 2分-8/Bω 2分32l0 1分5. 1.11×10-5 V 3分A端 2分6. Oa段电动势方向(fāngxiàng)由a指向(zhǐ xiànɡ)O. 1分1分0 1分1分7. 3分0 2分8. ② 1分③ 1分① 1分三.计算题:9. 解:间的动生电动势:4分b点电势(diànshì)高于O点.间的动生电动势:4分a点电势(diànshì)高于O点.∴ 2分 *10. 解:金属棒绕轴O 逆时针旋转(xu ánzhu ǎn)时,棒中的感应电动势及电流分别为3分 方向沿棒指向中心,1分 此时由于金属棒中电流的存在,棒受到磁力的作用,其大小 ① 2分f 的力矩(l ì j ǔ)方向阻碍金属棒的旋转,由刚体定轴转动定律得② 3分 ①代入②,积分(j īf ēn)得故1分 *11. 解:1分 i (指向(zh ǐ xi àn ɡ)以A 到B 为正)3分 式中: 2分A 端的(du ānd ì)电势高. 2分*12. 解:棒上线元d l 中的动生电动势为: 3分金属棒中总的感生(ɡǎn sh ēn ɡ)电动势为1分4分方向由O指向另一端. 2分内容总结。

高中物理第3章磁场章末综合测评3含解析粤教版选修3_1.doc

高中物理第3章磁场章末综合测评3含解析粤教版选修3_1.doc

磁场(时间:90分钟分值:100分)一、选择题(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~12题有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.有一导线南北方向放置,在其下方放一个小磁针.小磁针稳定后,给导线通上如图所示电流,发现小磁针的S极垂直纸面向外偏转.关于此现象下列说法正确的是( )A.没有通电时,小磁针的S极指向地磁场的南极B.通电后小磁针S极仍指向地磁场的南极C.通电导线在小磁针所在处产生的磁场方向垂直纸面向外D.通电后小磁针S极发生偏转说明通电导线周围存在磁场D [小磁针自由静止时,指向地理北极的一端是小磁针的北极,即N极,地磁场的北极在地理南极附近,小磁针的S极指向地磁场的北极,故A错误;通电后根据安培定则可知,导线在小磁针处产生的磁场方向垂直纸面向里,所以小磁针N极将偏向纸里,S极将偏向纸外,故B、C错误;通电后小磁针S极发生偏转说明通电导线周围存在磁场,即电流的磁效应,故D正确.]2.在同一平面上有a、b、c三根等间距平行放置的长直导线,依次通有电流强度大小为1 A、2 A和3 A的电流,各电流的方向如图所示,则导线b所受的合力方向是( )A.水平向左B.水平向右C.垂直纸面向外D.垂直纸面向里A [根据通有反向电流的导线相互排斥,可知b受到a的排斥力,同时受到c的排斥力;a的电流大小小于c的电流大小,则c对b的电场力大于a对b的电场力,可知导线b所受的合力方向水平向左.故A正确,B、C、D错误.]3.如图所示,竖直面内的导体框ABCD所在平面有水平方向的匀强磁场,AP⊥BC,∠B=∠C=60°,AB=CD=20 cm,BC=40 cm.若磁场的磁感应强度为0.3 T,导体框中通入图示方向的5 A电流,则该导体框受到的安培力( )A.大小为0.6 N,方向沿PA方向B.大小为0.6 N,方向沿AP方向C.大小为0.3 N,方向沿PA方向D.大小为0.3 N,方向沿BC方向C [力是矢量,三段导体在磁场中受到的安培力的合力与AD段受到的安培力是等效的,所以根据左手定则可知,导体框受到的安培力的方向垂直于AD的方向向下,即沿PA方向;AD段的长度L=BC-2BP=40 cm-2×20 cm×cos 60°=20 cm=0.2 m,安培力的大小F=BIL =0.3×5×0.2=0.3 N.故C正确,A、B、D错误.]4.某空间存在匀强磁场和匀强电场.一个带电粒子(不计重力)以一定初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是( )A.磁场和电场的方向B.磁场和电场的强弱C.粒子的电性和电量D.粒子入射时的速度C [由题可知,当带电粒子在复合场内做匀速直线运动,即Eq=qvB,则v=EB,若仅撤除电场,粒子仅在洛伦兹力作用下做匀速圆周运动,说明要满足题意,对磁场与电场的方向以及强弱程度都要有要求,但是对电性和电量无要求,根据F=qvB可知,洛伦兹力的方向与速度方向有关,故对入射时的速度也有要求,故选C.]5.如图所示,两平行光滑金属导轨固定在绝缘斜面上,导轨间距为L,劲度系数为k的轻质弹簧上端固定,下端与水平直导体棒ab相连,弹簧与导轨平面平行并与ab垂直,直导体棒垂直跨接在两导轨上,空间存在垂直导轨平面斜向上的匀强磁场.闭合开关K后,导体棒中的电流为I,导体棒平衡时,弹簧伸长量为x1;调转图中电源极性使棒中电流反向,导体棒中电流仍为I,导体棒平衡时弹簧伸长量为x2,忽略回路中电流产生的磁场,弹簧形变均在弹性限度内,则磁感应强度B的大小为( )A .k 2IL (x 2-x 1)B .k IL (x 2-x 1)C .k2IL(x 2+x 1) D .k IL(x 2+x 1)A [弹簧伸长量为x 1时,导体棒所受安培力沿斜面向上,根据平衡条件沿斜面方向有mg sin α=kx 1+BIL电流反向后,弹簧伸长量为x 2,导体棒所受安培力沿斜面向下,根据平衡条件沿斜面方向有mg sin α+BIL =kx 2联立两式得B =k2IL(x 2-x 1),选A.]6.回旋加速器是用来加速带电粒子的装置,如图所示.它的核心部分是两个D 形金属盒,两盒相距很近,分别和高频交流电源相连接,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都得到加速.两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大圆周半径时通过特殊装置被引出.如果用同一回旋加速器分别加速氚核(31H)和α粒子(42He),比较它们所加的高频交流电源的周期和获得的最大速度的大小,有( )A .加速氚核的交流电源的周期较大,氚核获得的最大速度也较大B .加速氚核的交流电源的周期较大,氚核获得的最大速度较小C .加速氚核的交流电源的周期较小,氚核获得的最大速度也较小D .加速氚核的交流电源的周期较小,氚核获得的最大速度较大B [带电粒子在磁场中运动的周期与交流电源的周期相同,根据T =2πm qB,知氚核(31H)的质量与电量的比值大于α粒子(42He)的,所以氚核在磁场中运动的周期大,则加速氚核的交流电源的周期较大,根据qvB =m v 2r 得,最大速度v =qBr m ,则最大动能E km =12mv 2=q 2B 2r22m,氚核的质量是α粒子的34倍,氚核的电量是α粒子的12倍,则氚核的最大动能是α粒子的13倍,即氚核的最大动能较小,故B 正确,A 、C 、D 错误.]7.如图是质谱仪的原理图,若速度相同的同一束粒子沿极板P 1、P 2的轴线射入电磁场区域,由小孔S 0射入右边的偏转磁场B 2中,运动轨迹如图所示,不计粒子重力.下列相关说法中正确的是( )A .该束带电粒子带负电B .速度选择器的P 1极板带负电C .在B 2磁场中运动半径越大的粒子,质量越大D .在B 2磁场中运动半径越大的粒子,比荷q /m 越小D [带电粒子在磁场中向下偏转,磁场的方向垂直纸面向外,根据左手定则知,该粒子带正电,故A 错误;在平行金属板间,根据左手定则知,带电粒子所受的洛伦兹力方向竖直向上,则电场力的方向竖直向下,知电场强度的方向竖直向下,所以速度选择器的P 1极板带正电,故B 错误;进入B 2磁场中的粒子速度是一定的,根据qvB =m v 2r 得,r =mvqB,知r 越大,荷质比qm越小,而质量m 不一定大,故C 错误,D 正确.]8.如图所示为圆柱形区域的横截面,在该区域加沿圆柱轴线方向的匀强磁场.带电粒子(不计重力)第一次以速度v 1沿截面直径入射,粒子飞出磁场区域时,速度方向偏转60°角;该带电粒子第二次以速度v 2从同一点沿同一方向入射,粒子飞出磁场区域时,速度方向偏转90°角.则带电粒子第一次和第二次在磁场中运动的( )A .半径之比为 3∶1B .速度之比为1∶ 3C .时间之比为2∶3D .时间之比为3∶2AC [设磁场半径为R ,当第一次以速度v 1沿截面直径入射时,根据几何知识可得r 1R=tan 60°,即r 1=3R .当第二次以速度v 2沿截面直径入射时,根据几何知识可得r 2=R ,则r 1r 2=31,A 正确;两次情况下都是同一个带电粒子在相同的磁感应强度下运动的,所以根据公式r =mvBq,可得v1v2=r1r2=31,B错误;因为周期T=2πmBq,与速度无关,所以运动时间之比为t1t2=60°360°T90°360°T=23,C正确,D错误.]9.如图所示的区域共有六处开口,各相邻开口之间的距离都相等,匀强磁场垂直于纸面,不同速度的粒子从开口a进入该区域,可能从b、c、d、e、f五个开口离开,粒子就如同进入“迷宫”一样,可以称作“粒子迷宫”.以下说法正确的是( )A.从d口离开的粒子不带电B.从e、f口离开的粒子带有异种电荷C.从b、c口离开的粒子运动时间相等D.从c口离开的粒子速度是从b口离开的粒子速度的2倍AD [从d口离开的粒子不偏转,所以不带电,选项A正确;根据左手定则,从e、f口离开的粒子带有同种电荷,选项B错误;从b口离开的粒子运动时间是12T,从c口离开的粒子运动时间是14T,选项C错误;从c口离开的粒子轨道半径是从b口离开的粒子轨道半径的2倍,因此速度也是2倍关系,选项D正确.]10.如图是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场.下列表述正确的是( )A.质谱仪是分析同位素的重要工具B.该速度选择器中的磁场方向垂直于纸面向里C .该速度选择器只能选出一种电性,且速度等于B E的粒子 D .打在A 1处的粒子比打在A 2处的粒子的比荷小AD [质谱仪是测量带电粒子荷质比,分析同位素的重要工具,故A 正确;带电粒子进入磁场中向左偏转,所受洛伦兹力向左,磁场的方向垂直纸面向外,根据左手定则,该粒子带正电;该粒子在速度选择器中,受到电场力方向水平向右,则洛伦兹力必须水平向左,该粒子才能通过速度选择器,根据左手定则判断磁场方向垂直纸面向外,故B 错误;根据qE =qvB知,v =E B 时粒子能通过速度选择器,故C 错误;根据qvB =m v 2r 知r =mvqB,则越靠近狭缝P ,半径越小,则比荷越大,故打在A 1处的粒子比打在A 2处的粒子比荷小,故D 正确.]11.电磁流量计是根据法拉第电磁感应定律制造的用来测量管内导电介质体积流量的感应式仪表.如图所示为电磁流量计的示意图,匀强磁场方向垂直于纸面向里,磁感应强度大小为B ;当管中的导电液体流过时,测得管壁上a 、b 两点间的电压为U ,单位时间(1 s)内流过管道横截面的液体体积为流量(m 3),己知管道直径为D ,则( )A .管中的导电液体流速为U BDB .管中的导电液体流速为BD UC .管中的导电液体流量为BD UD .管中的导电液体流量为πDU 4BAD [最终正负电荷在电场力和洛伦兹力的作用下处于平衡,有qvB =q U D ,则v =UBD,故A 正确,B 错误;流量为Q =vS =U BD ·π⎝ ⎛⎭⎪⎫D 22=πDU 4B ,故D 正确,C 错误.]12.如图所示,套在足够长的绝缘直棒上的带正电小球,其质量为m ,电荷量为q .将此棒竖直放在互相垂直的、沿水平方向的匀强电场和匀强磁场中,匀强电场的电场强度大小为E ,匀强磁场的磁感应强度为B ,小球与棒间的动摩擦因数为μ,小球由静止沿棒竖直下落,重力加速度为g ,且E <mgμq,小球带电荷量不变.下列说法正确的是( )A .小球下落过程中的加速度先增大后减小B .小球下落过程中加速度一直减小直到为0C .小球运动中的最大速度为mg μqB +E BD .小球运动中的最大速度为mg μqB -E BBD [小球下滑过程中,受到重力、摩擦力、弹力、向右的洛伦兹力、向右的电场力,开始阶段,小球向下做加速运动时,速度增大,洛伦兹力增大,小球所受的棒的弹力向左,大小为F N =qE +qvB ,F N 随着v 的增大而增大,滑动摩擦力f =μF N 也增大,小球所受的合力F 合=mg -f ,f 增大,F 合减小,加速度a 减小,当mg =f 时,a =0,速度最大,做匀速运动,由mg =f =μ(qE +qv m B )得小球运动中的最大速度为v m =mg μqB -EB,故B 、D 正确,A 、C 错误.]二、非选择题(本题共4小题,共52分)13.(8分)金属滑杆ab 连着一弹簧,水平地放置在两根互相平行的光滑金属导轨cd 、ef 上,如图所示,有一匀强磁场垂直于cd 与ef 所在的平面,磁场方向如图所示,合上开关S ,弹簧伸长2 cm ,测得电路中的电流为5 A ,已知弹簧的劲度系数为20 N/m ,ab 的长L =0.1 m .求匀强磁场的磁感应强度的大小是多少?[解析] ab 受到的安培力为:F =BIL ,根据胡克定律:f =k Δx , 由平衡条件得:BIL =k Δx , 代入数据解得:B =kΔx IL =20×0.025×0.1T =0.8 T. [答案] 0.8 T14.(12分)如图所示,粒子源能放出初速度为0、比荷均为qm=1.6×104C/kg 的带负电粒子,进入水平方向的加速电场中,加速后的粒子正好能沿圆心方向垂直进入一个半径为r =0.1 m 的圆形磁场区域,磁感应强度B =0.5 T ,在圆形磁场区域右边有一竖直屏,屏的高度为h =0.6 3 m ,屏距磁场右侧距离为L =0.2 m ,且屏中心与圆形磁场圆心位于同一水平线上.现要使进入磁场中的带电粒子能全部打在屏上,不计重力,试求加速电压的最小值.[解析] 粒子运动轨迹如图所示:根据牛顿第二定律及几何知识得tan θ2=r R =qBrmv ,故磁感应强度一定时,粒子进入磁场的速度越大,在磁场中偏转量越小.若粒子恰好不飞离屏,则加速电压有最小值,此时粒子刚好打在屏的最下端B 点,根据带电粒子在磁场中的运动特点可知,粒子偏离水平方向的夹角正切值为tan θ=h2r +L, 解得tan θ=3,粒子偏离水平方向的夹角θ=60°=π3,由几何关系可知,此时粒子在磁场中对应的轨迹半径为R =r tanθ2=310 m带电粒子在电场中加速,由动能定理得qU =12mv 2带电粒子在磁场中偏转时,洛伦兹力提供向心力,由牛顿第二定律可得qvB =mv 2R联立解得U =60 V故加速电压的最小值为60 V. [答案] 60 V15.(14分)如图甲所示,质量为m 带电量为-q 的带电粒子在t =0时刻由a 点以初速度v 0垂直进入磁场,Ⅰ区域磁场磁感应强度大小不变、方向周期性变化如图乙所示(垂直纸面向里为正方向);Ⅱ区域为匀强电场,方向向上;Ⅲ区域为匀强磁场,磁感应强度大小与Ⅰ区域相同均为B 0.粒子在Ⅰ区域内一定能完成半圆运动且每次经过mn 的时刻均为T 02整数倍,则甲 乙(1)粒子在Ⅰ区域运动的轨道半径为多少?(2)若初始位置与第四次经过mn 时的位置距离为x ,求粒子进入Ⅲ区域时速度的可能值(初始位置记为第一次经过mn ).[解析] (1)带电粒子在Ⅰ区域做匀速圆周运动,洛伦兹力提供向心力,即qv 0B 0=m v 2r解得r =mv 0qB 0⎝ ⎛⎭⎪⎫或T 0=2πr v 0,r =v 0T 02π. (2)第一种情况:粒子在Ⅲ区域运动半径R =x2qv 2B 0=m v 22R解得粒子在Ⅲ区域速度大小v 2=qB 0x2m第二种情况:粒子在Ⅲ区域运动半径R =x -4r2粒子在Ⅲ区域速度大小v 2=qB 0x2m-2v 0.[答案] (1)mv 0qB 0或v 0T 02π (2)qB 0x 2m qB 0x 2m-2v 0 16.(18分)如图所示,在y 轴左侧有一平行x 轴方向的匀强电场,电场强度E =2×103V/m ,在y 轴右侧存在垂直纸面向里的匀强磁场,第一象限内磁场的磁感应强度大小B 0=2×10-2T ,第四象限内磁场的磁感应强度大小为2B 0.现有一比荷qm=1×106C/kg 的粒子,从电场中与y轴相距10 cm 的M 点(图中未标出)由静止释放,粒子运动一段时间后从N 点进入磁场,并一直在磁场中运动且多次垂直通过x 轴,不计粒子重力,试求:(1)粒子进入磁场时的速度大小;(2)从粒子进入磁场开始计时到粒子第三次到达x 轴所经历的时间; (3)粒子轨迹第一次出现相交时所对应的交点坐标.[解析] (1)对粒子在电场中,由动能定理得Eqx =12mv 2,解得v =2Eqx m=2×104m/s.(2)粒子进入磁场做匀速圆周运动,其轨迹如图所示,根据洛伦兹力提供向心力qvB =m v 2R ,又v =2πRT得:T 1=2πm qB 0;T 2=πmqB 0所以粒子从进入磁场到第三次运动到x 轴所用的时间为t =T 14+T 22+T 12代入数值可得t =2π×10-4s.(3)设粒子轨迹第一次出现相交时的交点为P ,如图所示,三角形OPO 1为等边三角形,OP =PO 1=OO 1=R 1根据洛伦兹力提供向心力有qvB 0=m v 2R 1得R 1= 2 m根据几何关系可得,P 点坐标x =R 1cos 60°=22m y =R 1sin 60°=62m 所以P 点坐标为P ⎝⎛⎭⎪⎫22m ,62m .[答案] (1)2×104 m/s (2)2π×10-4 s (3)⎝ ⎛⎭⎪⎫22m ,62m。

第三章 磁场 同步练习(全章)

第三章 磁场 同步练习(全章)

第三章磁场同步练习第一节磁现象和磁场1.下列关于磁场的说法中正确的是()A.磁场和电场一样,是客观存在的特殊物质B.磁场是为了解释磁极间的相互作用而人为引入的C.磁极与磁极间是直接发生作用的D.磁场只有在磁极与磁极、磁极与电流发生作用时才产生2.把一个条形磁铁悬挂起来,则条形磁铁的N极应指向()A.地理正北极 B.地理正南极C.地磁北极D.地磁南极3.实验表明:磁体能吸引一元硬币,对这种现象解释正确的是()A.硬币一定是铁做的,因为磁体能吸引铁B.硬币一定是铝做的,因为磁体能吸引铝C.磁体的磁性越强,能吸引的物质种类越多D.硬币中含有磁性材料,磁化后能被吸引4.以下说法中正确的是()A.磁极与磁极间的相互作用是通过磁场产生的B.电流与电流间的相互作用是通过电场产生的C.磁体与电流间的相互作用是通过电场与磁场而共同产生的D.磁场和电场是同一种物质5.奥斯特实验说明了()A.磁场的存在B.磁场具有方向性C.通电导线周围存在磁场D.磁体间有相互作用6.如图1所示,可自由转动的小磁针上方有一根长直导线,开始时二者在纸面内平行放置。

当导线中通以如图所示电流I时,发现小磁针的N极向里,S极向外,停留在与纸面垂直的位置上。

这一现象说明()A.小磁针感知到了电流的磁场B.小磁针处磁场方向垂直纸面向里C.小磁针处磁场方向垂直纸面向外D.若把小磁针移走,该处就没有磁场了7.某同学做奥斯特实验时,把小磁针放在水平的通电直导线的下方,当通电后发现小磁针不动,稍微用手拨动一下小磁针,小磁针转动180°后静止不动。

因此可知,通电直导线产生的磁场方向是()A.自东向西B.自南向北C.自西向东D.自北向南8.地球是一个大磁体。

它的磁场分布情况与一个条形磁铁的磁场分布情况相似,以下说法正确的是()A.地磁场的方向沿地球上经线方向B.地磁场的方向是与地面平行的C.地磁场的方向是从北向南方向的D.在地磁南极上空,地磁场的方向是竖直向下的9.如果你看过中央电视台体育频道的围棋讲座就会发现,棋子在竖直放置的棋盘上可以移动,但不会掉下来。

人教版高中物理必修三《磁场 磁感线》章节测试卷(含解析)(1)

人教版高中物理必修三《磁场 磁感线》章节测试卷(含解析)(1)

磁场磁感线同步练习一、单选题1.关于分子电流,下面说法中正确的是()A. 分子电流假说最初是由法国学者法拉第提出的B. 分子电流假说揭示了磁铁的磁场与电流的磁场具有共同的本质,即磁场都是由电荷的运动形成的C. 分子电流是专指分子内部存在的环形电流D. 分子电流假说无法解释加热“去磁”现象2.如图所示,当导线中通有电流时,小磁针发生偏转.这个实验说明了()A. 通电导线周围存在磁场B. 通电导线周围存在电场C. 电流通过导线时产生焦耳热D. 电流越大,产生的磁场越强3.实验表明磁体能吸引一元硬币,对这种现象解释正确的是()A. 硬币一定是铁做的,因为磁体能吸引铁B. 硬币一定是铝做的,因为磁体能吸引铝C. 磁体的磁性越强,能吸引的物质种类越多D. 硬币中含有磁性材料,磁化后能被吸引4.如图是描述通电直导线周围的磁场磁感线分布情况,其中正确的是()A. 立体图B.C.D.5.如图所示,弹簧测力计下挂一铁球,将弹簧测力计自左向右从条形磁铁上方缓慢移动时,弹簧测力计的示数()A. 不变B. 逐渐减小C. 先减小后增大D. 先增大后减小6.如图所示,其中小磁针静止时N极正确的指向是()A. B.C. D.7.如图所示,带负电的金属环绕轴OOˈ以一定的角速度匀速旋转,从右向左看为逆时针方向,在环左侧轴线上的小磁针最后平衡的位置是()A. N极沿轴线向右B. N极沿轴线向左C. N极竖直向下D. N极竖直向上8.“司南”是我国的四大发明之一,如图所示,形似勺子,勺柄是“司南”的南极,则“司南”静止时,勺柄所指的方向是()A. 东方B. 北方C. 西方D. 南方二、多选题9.某同学身边有一个长铁条,为了检验它是否具有磁性,该同学用它的一端靠近能自由转动的小磁针.下列给出了几种可能产生的现象以及相应结论,其中正确的是()A. 若小磁针被吸引过来,则说明长铁条一定有磁性B. 若小磁针被吸引过来,则长铁条可能没有磁性C. 若小磁针被推开,则说明长铁条一定有磁性D. 若小磁针被推开,则长铁条可能没有磁性10.一放置在水平桌面上的条形磁铁,其磁感线分布如图所示。

人教版高中物理选修3-1第三章综合能力测试.docx

人教版高中物理选修3-1第三章综合能力测试.docx

高中物理学习材料第三章综合能力测试本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分,时间90分钟。

第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.如图所示,电磁炮是由电源、金属轨道、炮弹和电磁铁组成的。

当电源接通后,磁场对流过炮弹的电流产生力的作用,使炮弹获得极大的发射速度。

下列各俯视图中正确表示磁场B方向的是( )答案:B解析:要使炮弹加速,安培力方向必须向右,由左手定则判知B 中磁场方向符合要求,故B对,A、C、D错。

2.(2011·深圳模拟)如图所示为某种用来束缚原子的磁场的磁感线分布情况,以O 点为坐标原点,沿z轴正方向磁感应强度B大小的变化最有可能为( )答案:C解析:由磁感线的疏密程度表示B的大小,因沿z轴方向B先减小后增大,故最有可能的为C图。

3.(2012·南京六中高二检测)在雷雨天气时,空中有许多阴雨云都带有大量电荷,在一楼顶有一避雷针,其周围摆放一圈小磁针,当避雷针正上方的一块阴雨云对避雷针放电时,发现避雷针周围的小磁针的S极呈顺时针排列(俯视),则该块阴雨云可能带( ) A.正电荷B.负电荷C.正负电荷共存D.无法判断答案:B解析:小磁针的S极顺时针排列,说明磁场方向为逆时针,由安培定则可知,电流方向为竖直向上,即该阴雨云带负电荷,故选项B 正确。

4.(2010·黄冈高二检测)取两个完全相同的长导线,用其中一根绕成如图(a)所示的螺线管,当该螺线管中通以电流强度为I的电流时,测得螺线管内中部的磁感应强度大小为B,若将另一根长导线对折后绕成如图(b)所示的螺旋管,并通以电流强度也为I的电流时,则在螺线管内中部的磁感应强度大小为( )A.0 B.0.5BC.B D.2B答案:A解析:用双线绕成的螺丝管,双线中的电流刚好相反,其在周围空间产生的磁场相互抵消,所以螺线管内部磁感应强度为零。

人教版物理选修3-1第三章《磁场》测试题(word含答案)

人教版物理选修3-1第三章《磁场》测试题(word含答案)

作用下,粒子做匀速圆周运动,经过半个圆周后打在挡板
MN上的 A 点.测得 O、A 两点
间的距离为 L.不计粒子重力.
( 1)试判断 P、 Q间的磁场方向;
( 2)求粒子做匀速直线运动的速度大小 v;
( 3)求粒子的电荷量与质量之比
q

m
24.一个静止在磁场中的 22688R(a 镭核),发生 α 衰变后转变为氡核 (元素符号为 Rn).已
C.该磁场的磁感应强度大小为
mg q cos
mg sin
D.该电场的场强为
q
三、实验题 21 .利用通电导线在磁场中受到的安培力与磁感应强度的关系就可以测定磁感应强度的 大小.实验装置如图所示,弹簧测力计下端挂一矩形导线框,导线框接在图示电路中, 线框的短边置于蹄型磁体的 N、 S 极间磁场中的待测位置.
知衰变中释放出的 α 粒子的速度方向跟匀强磁场的磁感线方向垂直.设镭核、氡核和
α 粒子的质量一次是 m1、 m2、 m3,衰变的核能都转化为氡核和 α 粒子的动能.求 :
( 1)写出衰变方程. ( 2)氡核和 α 粒子在匀强磁场中做匀速圆周运动的轨道半径之比. ( 3)氡核的动能 EK
参考答案 1. A 2 . A 3 . B 4. B 5. A 6 . A 7 . D 8 .D 9 .A 10 . B 11 . C 12 . D 13. A 14 .A 15 . B 16. BD 17. AC 18.ACD 19. AD 20.AC
B. Bx
3kE 9LB
C. Bx
3kE
30LR
D. Bx
3kE
27LR
12.如图所示, 是磁流体发电机示意图。 平行金属板 a、b 之间有一个很强的匀强磁场,

第三章 磁场 章末检测题(人教版选修3-1)

第三章 磁场 章末检测题(人教版选修3-1)

第三章磁场单元综合评估(A卷)(本栏目内容,在学生用书中以活页形式分册装订!) 1.下列关于电场线和磁感线的说法正确的是()A.二者均为假想的线,实际上并不存在B.实验中常用铁屑来模拟磁感线形状,因此磁感线是真实存在的C.任意两条磁感线不相交,电场线也是D.磁感线是闭合曲线,电场线是不闭合的解析:两种场线均是为形象描绘场而引入的,实际上并不存在,故A对;任意两条磁感线或电场线不能相交,否则空间一点会有两个磁场或电场方向,故C对;磁体外部磁感线由N极指向S极,内部由S极指向N极,故磁感线是闭合的曲线.而电场线始于正电荷,终于负电荷,故不闭合,D对.故正确答案为ACD.答案:ACD2.关于磁通量,正确的说法有()A.磁通量不仅有大小而且有方向,是矢量B.在匀强磁场中,a线圈面积比b线圈面积大,则穿过a线圈的磁通量一定比穿过b 线圈的大C.磁通量大,磁感应强度不一定大D.把某线圈放在磁场中的M、N两点,若放在M处的磁通量比在N处的大,则M处的磁感应强度一定比N处大解析:磁通量是标量,大小与B、S及放置角度均有关,只有C项说法完全正确.答案: C3.长直导线AB附近,有一带正电的小球,用绝缘丝线悬挂在M点,当导线通以如右图所示的恒定电流时,下列说法正确的是()A.小球受磁场力作用,方向与导线AB垂直且指向纸里B.小球受磁场力作用,方向与导线AB垂直且指向纸外C.小球受磁场力作用,方向与导线AB垂直向左D.小球不受磁场力作用解析:电场对其中的静止电荷、运动电荷都产生力的作用,而磁场只对其中的运动电荷才有力的作用,且运动方向不能与磁场方向平行,所以只有D选项正确.答案: D4.下列说法中正确的是()A.运动电荷不受洛伦兹力的地方一定没有磁场B.如果把+q改为-q,且速度反向,大小不变,则洛伦兹力的大小、方向均不变C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向也一定与电荷速度方向垂直D.粒子在只受洛伦兹力作用时运动的动能不变解析:带电粒子所受洛伦兹力的大小不仅与速度的大小有关,还与速度和磁场方向间的夹角有关,A错误;由F=q v B sin θ知,q、v、B中有两项相反而其他不变时,F不变,B正确;不管速度是否与磁场方向垂直,洛伦兹力的方向始终与速度方向垂直,与磁场方向垂直,即垂直于v和B所决定的平面,但v与B不一定互相垂直,C错误;由于洛伦兹力始终与速度方向垂直,故洛伦兹力不做功,若粒子只受洛伦兹力作用,运动的动能不变,D 正确.答案:BD5.磁体之间的相互作用是通过磁场发生的.对磁场认识正确的是()A.磁感线有可能出现相交的情况B.磁感线总是由N极出发指向S极C.某点磁场的方向与放在该点小磁针静止时N极所指方向一致D.若在某区域内通电导线不受磁场力的作用,则该区域的磁感应强度一定为零解析:根据磁感线的特点:①磁感线在空间不能相交;②磁感线是闭合曲线;③磁感线的切线方向表示磁场的方向(小磁针静止时N极指向),可判断选项A、B错误,C正确.通电导线在磁场中是否受力与导线在磁场中的放置有关,故D错.答案: C6.如右图所示,直导线处于足够大的磁场中,与磁感线成θ=30°角,导线中通过的电流为I,为了增大导线所受的安培力,可采取的办法是()A.增大电流IB.增加直导线的长度C.使导线在纸面内顺时针转30°角D.使导线在纸面内逆时针转60°角解析:由公式F=ILB sin θ,A、B、D三项正确.答案:ABD7.如右图所示,是电视机中偏转线圈的示意图,圆心O处的黑点表示电子束,它由纸内向纸外而来,当线圈中通以图示方向的电流时(两线圈通过的电流相同),则电子束将()A.向左偏转B.向右偏转C.向下偏转D.向上偏转解析:偏转线圈由两个“U”形螺线管组成,由安培定则知右端都是N极,左端都是S 极,O处磁场水平向左,由左手定则可判断出电子所受的洛伦兹力向上,电子向上偏转,D 正确.答案: D8.如下图是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有强度为B 0的匀强磁场.下列表述正确的是( )A .质谱仪是分析同位素的重要工具B .速度选择器中的磁场方向垂直纸面向外C .能通过狭缝P 的带电粒子的速率等于E /BD .粒子打在胶片上的位置越靠近狭缝P ,粒子的荷质比越小解析: 粒子先在电场中加速,进入速度选择器做匀速直线运动,最后进入磁场做匀速圆周运动.在速度选择器中受力平衡:Eq =q v B 得v =E /B ,方向由左手定则可知磁场方向垂直纸面向外,B 、C 正确.进入磁场后,洛伦兹力提供向心力,q v B 0=m v 2R 得,R =m v qB 0,所以荷质比不同的粒子偏转半径不一样,所以,A 对,D 错.答案: ABC9.如右图所示,一半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,一质量为m ,电荷量为q 的正电荷(重力忽略不计)以速度v 沿正对着圆心O 的方向射入磁场,从磁场中射出时速度方向改变了θ角.磁场的磁感应强度大小为( )A.m v qR tan θ2B.m v qR cot θ2C.m v qR sin θ2D.m v qR cos θ2解析: 本题考查带电粒子在磁场中的运动.根据画轨迹、找圆心、定半径思路分析.注意两点,一是找圆心的两种方法(1)根据初末速度方向垂线的交点.(2)根据已知速度方向的垂线和弦的垂直平分线交点.二是根据洛伦兹力提供向心力和三角形边角关系,确定半径.分析可得B 选项正确.答案: B10.据报道,最近已研制出一种可以投入使用的电磁轨道炮,其原理如图所示.炮弹(可视为长方形导体)置于两固定的平行导轨之间,并与轨道壁密接.开始时炮弹在导轨的一端,通电流后炮弹会被磁场力加速,最后从位于导轨另一端的出口高速射出.设两导轨之间的距离d =0.10 m ,导轨长L =5.0 m ,炮弹质量m =0.30 kg.导轨上的电流I 的方向如图中的箭头所示.可认为,炮弹在轨道内运动时,它所在处磁场的磁感应强度始终为B =2.0 T ,方向垂直于纸面向里.若炮弹出口速度为v =2.0×103 m/s ,求通过导轨的电流I .忽略摩擦力与重力的影响.解析: 在导轨通有电流I 时,炮弹作为导体受到磁场施加的安培力为F =IdB ① 设炮弹d 加速度的大小为a ,则有F =ma ②炮弹在两导轨间做匀加速运动,因而v 2=2aL ③联立①②③式得:I =12m v 2BdL,④ 代入题给数据得I =6.0×105 A.答案: 6.0×105A11.如下图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界.现在质量为m ,电荷量为q 的带电粒子沿图示方向垂直磁场射入.要使粒子不能从边界NN ′射出,则粒子入射速率v 的最大值可能是________.解析: 题目中只给出粒子“电荷量为q ”,未说明是带哪种电荷.若带正电荷,轨迹是如右图所示上方与NN ′相切的1/4圆弧,轨道半径:R =m v Bq, 又d =R -R /2,解得v =(2+2)Bqd m若带负电荷,轨迹如图所示下方与NN ′相切的3/4圆弧,则有:d =R +R /2,解得v =(2-2)Bqd /m.所以本题正确答案为(2+2)Bqd m 或(2-2)Bqd m. 若考虑不到粒子带电性的两种可能情况,就会漏掉一个答案.答案: (2+2)Bqd m ⎣⎡⎦⎤或(2-2Bqd m ) 12.(2010·福建理综)如图所示的装置,左半部为速度选择器,右半部为匀强的偏转电场.一束同位素离子流从狭缝S 1射入速度选择器,能够沿直线通过速度选择器并从狭缝S 2射出的离子,又沿着与电场垂直的方向,立即进入场强大小为E 的偏转电场,最后打在照相底片D 上.已知同位素离子的电荷量为q (q >0),速度选择器内部存在着相互垂直的场强大小为E 0的匀强电场和磁感应强度大小为B 0的匀强磁场,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.(1)求从狭缝S 2射出的离子速度v 0的大小;(2)若打在照相底片上的离子在偏转电场中沿速度v 0方向飞行的距离为x ,求出x 与离子质量m 之间的关系式(用E 0、B 0、E 、q 、m 、L 表示).解析: (1) 能从速度选择器射出的离子满足qE 0=q v 0B O ①v 0=E 0B 0.② (2)离子进入匀强偏转电场E 后做类平抛运动,则x =v 0t ③L =12at 2④ 由牛顿第二定律得 qE =ma ⑤由②③④⑤解得 x =E 0B 02mL qE . 答案: (1)E 0B 0 (2)E 0B 02mL qE3单元综合评估(B 卷)(本栏目内容,在学生用书中以活页形式分册装订!)1.如图所示,条形磁铁竖直放置,一水平圆环从磁铁上方位置Ⅰ向下运动,到达磁铁上端位置Ⅱ,套在磁铁上到达中部Ⅲ,再到磁铁下端位置Ⅳ,再到下方Ⅴ.磁铁从Ⅰ→Ⅱ→Ⅲ→Ⅳ→Ⅴ过程中,穿过圆环的磁通量变化情况是()A.变大,变小,变大,变小B.变大,变大,变小,变小C.变大,不变,不变,变小D.变小,变小,变大,变大解析:从条形磁铁磁感线的分布情况看,穿过圆环的磁通量在位置Ⅲ处最大,所以正确答案为B.熟悉几种常见磁场的磁感线分布图,知道条形磁铁内部的磁感线方向是从S极到N极.答案: B2.如上图所示,螺线管中通有电流,如果在图中的a、b、c三个位置上各放一个小磁针,其中a在螺线管内部,则()A.放在a处的小磁针的N极向左B.放在b处的小磁针的N极向右C.放在c处的小磁针的S极向右D.放在a处的小磁针的N极向右解析:由安培定则,通电螺线管的磁场如右图所示,右端为N极,左端为S极,在a点磁场方向向右,则小磁针在a点时,N极向右,则A项错,D项对;在b点磁场方向向右,则磁针在b点时,N极向右,则B项正确;在c点,磁场方向向右,则磁针在c点时,N极向右,S极向左,则C项错.答案:BD3.如上图所示,一根有质量的金属棒MN,两端用细软导线连接后悬于a、b两点,棒的中部处于方向垂直纸面向里的匀强磁场中,棒中通有电流,方向从M流向N,此时悬线上有拉力,为了使拉力等于零,可以()A.适当减小磁感应强度B.使磁场反向C.适当增大电流D.使电流反向解析:首先对MN进行受力分析,受竖直向下的重力G,受两根软导线的竖直向上的拉力和安培力.处于平衡时:2F+BIL=mg,重力mg恒定不变,欲使拉力F减小到0,应增大安培力BIL,所以可增大磁场的磁感应强度B或增加通过金属棒中的电流I,或二者同时增大.答案: C4. 如图所示,两个完全相同的线圈套在一水平光滑绝缘圆柱上,但能自由移动,若两线圈内通以大小不等的同向电流,则它们的运动情况是()A.都绕圆柱转动B .以不等的加速度相向运动C .以相等的加速度相向运动D .以相等的加速度背向运动答案: C5. 如上图所示,竖直放置的平行板电容器,A 板接电源正极,B 板接电源负极,在电容器中加一与电场方向垂直的、水平向里的匀强磁场.一批带正电的微粒从A 板中点小孔C 射入,射入的速度大小方向各不相同,考虑微粒所受重力,微粒在平行板A 、B 间运动过程中( )A .所有微粒的动能都将增加B .所有微粒的机械能都将不变C .有的微粒可以做匀速圆周运动D .有的微粒可能做匀速直线运动答案: D6. 电子以垂直于匀强磁场的速度v ,从a 点进入长为d ,宽为L 的磁场区域,偏转后从b 点离开磁场,如上图所示,若磁场的磁感应强度为B ,那么( )A .电子在磁场中的运动时间t =d /vB .电子在磁场中的运动时间t =ab /vC .洛伦兹力对电子做的功是W =Be v 2tD .电子在b 点的速度值也为v解析: 由于电子做的是匀速圆周运动,故运动时间t =ab /v ,B 项正确;由洛伦兹力不做功可得C 错误,D 正确.答案: BD7.如下图所示,质量为m ,带电荷量为-q 的微粒以速度v 与水平方向成45°角进入匀强电场和匀强磁场,磁场方向垂直纸面向里.如果微粒做匀速直线运动,则下列说法正确的是( )A .微粒受电场力、洛伦兹力、重力三个力作用B .微粒受电场力、洛伦兹力两个力作用C .匀强电场的电场强度E =2mg qD .匀强磁场的磁感应强度B =mg q v解析:因为微粒做匀速直线运动,所以微粒所受合力为零,受力分析如图所示,微粒在重力、电场力和洛伦兹力作用下处于平衡状态,可知,qE =mg ,q v B =2mg ,得电场强度E =mg q,磁感应强度B =2mg q v,因此A 正确. 答案: A8.某电子以固定的正电荷为圆心在匀强磁场中作匀速圆周运动,磁场方向垂直于它的运动平面,电子所受正电荷的电场力恰好是磁场对它的作用力的3倍,若电子电荷量为e ,质量为m ,磁感应强度为B ,那么电子运动的可能角速度是( )A.4Be mB.3Be mC.2Be mD.Be m 解析: 电子受电场力和洛伦兹力作用而做匀速圆周运动,当两力方向相同时有:Ee+e v B =mω2r ,Ee =3Be v ,v =ωr ,联立解得ω=4Be m,故A 正确;当两力方向相反时有Ee -e v B =mω2r ,与上面后两式联立得ω=2Be m,C 正确. 答案: AC9. 如图所示,在边长为2a 的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m 、电荷量为-q 的带电粒子(重力不计)从AB 边的中点O 以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB 边的夹角为60°,若要使粒子能从AC 边穿出磁场,则匀强磁场的大小B 需满足( )A .B >3m v 3aq B .B <3m v 3aq C .B >3m v aq D .B <3m v aq解析: 粒子刚好达到C 点时,其运动轨迹与AC 相切,则粒子运动的半径为r 0=a cot30°.由r =m v qB 得,粒子要能从AC 边射出,粒子运动的半径r >r 0,解得B <3m v 3qa,选项B 正确.答案: B10. 电视机的显像管中,电子束的偏转是用磁偏转技术实现的.电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区,如右图所示.磁场方向垂直于圆面.磁场区的中心为O ,半径为r .当不加磁场时,电子束将通过O 点而打到屏幕的中心M 点.为了让电子束射到屏幕边缘P ,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B 应为多少?解析: 电子在磁场中沿圆弧ab 运动,圆心为C ,半径为R .以v表示电子进入磁场时的速度,m 、e 分别表示电子的质量和电荷量,则eU =12m v 2,e v B =m v 2R ,又有tan θ2=r R, 由以上各式解得B =1r2mU e tan θ2. 答案: 1r 2mU e tan θ2 11. 如图所示,AB 为一段光滑绝缘水平轨道,BCD 为一段光滑的圆弧轨道,半径为R ,今有一质量为m 、带电荷量为+q 的绝缘小球,以速度v 0从A 点向B 点运动,后又沿弧BC 做圆周运动,到C 点后由于v 0较小,故难运动到最高点.如果当其运动至C 点时,忽然在轨道区域加一匀强电场和匀强磁场,使其能运动到最高点,此时轨道弹力为零,且贴着轨道做匀速圆周运动,求:(1)匀强电场的方向和强度;(2)磁场的方向和磁感应强度.(3)小球到达轨道的末端点D 后,将做什么运动?解析: (1)小球到达C 点的速度为v C ,由动能定理得:-mgR =12m v C 2-12m v 02,所以v C =v 02-2gR .在C 点同时加上匀强电场E 和匀强磁场B 后,要求小球做匀速圆周运动,对轨道的压力为零,必然是洛伦兹力提供向心力,且有qE =mg ,故匀强电场的方向应为竖直向上,大小E =mg q. (2)由牛顿第二定律得:q v C B =m v C 2R ,所以B =m v C qR =m v 02-2gR qR,B 的方向应垂直于纸面向外.小球离开D 点后,由于电场力仍与重力平衡,故小球仍然会在竖直平面内做匀速圆周运动,再次回到BCD 轨道时,仍与轨道没有压力,连续做匀速圆周运动.答案: (1)匀强电场的方向竖直向上.mg q. (2)垂直于纸面向外.m v 02-2gR qR(3)仍做匀速圆周运动12. (2010·海南卷)图中左边有一对平行金属板,两板相距为d ,电压为U ,两板之间有匀强磁场,磁感应强度大小为B 0,方向与金属板面平行并垂直于纸面朝里.图中右边有一半径为R 、圆心为O 的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里.一电荷量为q 的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF 方向射入磁场区域,最后从圆形区域边界上的G 点射出.已知弧FG 所对应的圆心角为θ,不计重力.求(1)离子速度的大小;(2)离子的质量.解析: (1)由题设知,离子在平行金属板之间做匀速直线运动,它所受到的向上的磁场力和向下的电场力平衡q v B 0=qE 0①式中,v 是离子运动速度的大小,E 0是平行金属板之间的匀强电场的强度,有 E 0=U d② 由①②式得v =U B 0d.③ (2)在圆形磁场区域,离子做匀速圆周运动.由洛伦兹力公式和牛顿第二定律有q v B =m v 2r④式中,m 和r 分别是离子的质量和它做圆周运动的半径.由题设,离子从磁场边界上的点G 穿出,离子运动的圆周的圆心O ′必在过E 点垂直于EF 的直线上,且在EG 的垂直平分线上.由几何关系有r =R tan α⑤式中,α是OO ′与直径EF 的夹角.由几何关系有 2α+θ=π⑥联立③④⑤⑥式得,离子的质量为 m =qBB 0Rd U cot θ2.⑦答案: (1)U B 0d (2)qBB 0Rd U cot θ23单元综合评估(B卷)(本栏目内容,在学生用书中以活页形式分册装订!)1.如上图所示,条形磁铁竖直放置,一水平圆环从磁铁上方位置Ⅰ向下运动,到达磁铁上端位置Ⅱ,套在磁铁上到达中部Ⅲ,再到磁铁下端位置Ⅳ,再到下方Ⅴ.磁铁从Ⅰ→Ⅱ→Ⅲ→Ⅳ→Ⅴ过程中,穿过圆环的磁通量变化情况是()A.变大,变小,变大,变小B.变大,变大,变小,变小C.变大,不变,不变,变小D.变小,变小,变大,变大解析:从条形磁铁磁感线的分布情况看,穿过圆环的磁通量在位置Ⅲ处最大,所以正确答案为B.熟悉几种常见磁场的磁感线分布图,知道条形磁铁内部的磁感线方向是从S极到N极.答案: B2.如上图所示,螺线管中通有电流,如果在图中的a、b、c三个位置上各放一个小磁针,其中a在螺线管内部,则()A.放在a处的小磁针的N极向左B.放在b处的小磁针的N极向右C.放在c处的小磁针的S极向右D.放在a处的小磁针的N极向右解析:由安培定则,通电螺线管的磁场如右图所示,右端为N极,左端为S极,在a 点磁场方向向右,则小磁针在a点时,N极向右,则A项错,D项对;在b点磁场方向向右,则磁针在b点时,N极向右,则B项正确;在c点,磁场方向向右,则磁针在c点时,N极向右,S极向左,则C项错.答案:BD3.如上图所示,一根有质量的金属棒MN,两端用细软导线连接后悬于a、b两点,棒的中部处于方向垂直纸面向里的匀强磁场中,棒中通有电流,方向从M流向N,此时悬线上有拉力,为了使拉力等于零,可以()A.适当减小磁感应强度B.使磁场反向C.适当增大电流D.使电流反向解析:首先对MN进行受力分析,受竖直向下的重力G,受两根软导线的竖直向上的拉力和安培力.处于平衡时:2F+BIL=mg,重力mg恒定不变,欲使拉力F减小到0,应增大安培力BIL,所以可增大磁场的磁感应强度B或增加通过金属棒中的电流I,或二者同时增大.答案: C4. 如上图所示,两个完全相同的线圈套在一水平光滑绝缘圆柱上,但能自由移动,若两线圈内通以大小不等的同向电流,则它们的运动情况是()A.都绕圆柱转动B.以不等的加速度相向运动C.以相等的加速度相向运动D.以相等的加速度背向运动答案: C5. 如上图所示,竖直放置的平行板电容器,A板接电源正极,B板接电源负极,在电容器中加一与电场方向垂直的、水平向里的匀强磁场.一批带正电的微粒从A板中点小孔C 射入,射入的速度大小方向各不相同,考虑微粒所受重力,微粒在平行板A、B间运动过程中()A.所有微粒的动能都将增加B .所有微粒的机械能都将不变C .有的微粒可以做匀速圆周运动D .有的微粒可能做匀速直线运动 答案: D6. 电子以垂直于匀强磁场的速度v ,从a 点进入长为d ,宽为L 的磁场区域,偏转后从b 点离开磁场,如上图所示,若磁场的磁感应强度为B ,那么( )A .电子在磁场中的运动时间t =d /vB .电子在磁场中的运动时间t =ab /vC .洛伦兹力对电子做的功是W =Be v 2tD .电子在b 点的速度值也为v解析: 由于电子做的是匀速圆周运动,故运动时间t =ab /v ,B 项正确;由洛伦兹力不做功可得C 错误,D 正确.答案: BD7.如下图所示,质量为m ,带电荷量为-q 的微粒以速度v 与水平方向成45°角进入匀强电场和匀强磁场,磁场方向垂直纸面向里.如果微粒做匀速直线运动,则下列说法正确的是( )A .微粒受电场力、洛伦兹力、重力三个力作用B .微粒受电场力、洛伦兹力两个力作用C .匀强电场的电场强度E =2mgqD .匀强磁场的磁感应强度B =mgq v解析:因为微粒做匀速直线运动,所以微粒所受合力为零,受力分析如图所示,微粒在重力、电场力和洛伦兹力作用下处于平衡状态,可知,qE =mg ,q v B =2mg ,得电场强度E =mgq ,磁感应强度B =2mgq v,因此A 正确. 答案: A8.某电子以固定的正电荷为圆心在匀强磁场中作匀速圆周运动,磁场方向垂直于它的运动平面,电子所受正电荷的电场力恰好是磁场对它的作用力的3倍,若电子电荷量为e ,质量为m ,磁感应强度为B ,那么电子运动的可能角速度是( )A.4Be mB.3Be mC.2Be mD.Be m解析: 电子受电场力和洛伦兹力作用而做匀速圆周运动,当两力方向相同时有:Ee +e v B =mω2r ,Ee =3Be v ,v =ωr ,联立解得ω=4Bem ,故A 正确;当两力方向相反时有Ee-e v B =mω2r ,与上面后两式联立得ω=2Bem,C 正确.答案: AC9. 如上图所示,在边长为2a 的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m 、电荷量为-q 的带电粒子(重力不计)从AB 边的中点O 以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB 边的夹角为60°,若要使粒子能从AC 边穿出磁场,则匀强磁场的大小B 需满足( )A .B >3m v3aq B .B <3m v3aq C .B >3m vaqD .B <3m vaq解析: 粒子刚好达到C 点时,其运动轨迹与AC 相切,则粒子运动的半径为r 0=a cot30°.由r =m v qB 得,粒子要能从AC 边射出,粒子运动的半径r >r 0,解得B <3m v3qa ,选项B正确.答案: B10. 电视机的显像管中,电子束的偏转是用磁偏转技术实现的.电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区,如右图所示.磁场方向垂直于圆面.磁场区的中心为O ,半径为r .当不加磁场时,电子束将通过O 点而打到屏幕的中心M 点.为了让电子束射到屏幕边缘P ,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B 应为多少?解析: 电子在磁场中沿圆弧ab 运动,圆心为C ,半径为R .以v 表示电子进入磁场时的速度,m 、e 分别表示电子的质量和电荷量,则eU =12m v 2,e v B =m v 2R ,又有tan θ2=rR,由以上各式解得B =1r 2mU e tan θ2. 答案:1r2mU e tan θ211. 如上图所示,AB 为一段光滑绝缘水平轨道,BCD 为一段光滑的圆弧轨道,半径为R ,今有一质量为m 、带电荷量为+q 的绝缘小球,以速度v 0从A 点向B 点运动,后又沿弧BC 做圆周运动,到C 点后由于v 0较小,故难运动到最高点.如果当其运动至C 点时,忽然在轨道区域加一匀强电场和匀强磁场,使其能运动到最高点,此时轨道弹力为零,且贴着轨道做匀速圆周运动,求:(1)匀强电场的方向和强度; (2)磁场的方向和磁感应强度.(3)小球到达轨道的末端点D 后,将做什么运动?解析: (1)小球到达C 点的速度为v C ,由动能定理得:-mgR =12m v C 2-12m v 02,所以v C =v 02-2gR .在C 点同时加上匀强电场E 和匀强磁场B 后,要求小球做匀速圆周运动,对轨道的压力为零,必然是洛伦兹力提供向心力,且有qE =mg ,故匀强电场的方向应为竖直向上,大小E =mgq.(2)由牛顿第二定律得:q v C B =m v C 2R ,所以B =m v C qR =m v 02-2gRqR ,B 的方向应垂直于纸面向外.小球离开D 点后,由于电场力仍与重力平衡,故小球仍然会在竖直平面内做匀速圆周运动,再次回到BCD 轨道时,仍与轨道没有压力,连续做匀速圆周运动.答案: (1)匀强电场的方向竖直向上.mgq .(2)垂直于纸面向外. m v 02-2gRqR(3)仍做匀速圆周运动12. (2010·海南卷)图中左边有一对平行金属板,两板相距为d ,电压为U ,两板之间有匀强磁场,磁感应强度大小为B 0,方向与金属板面平行并垂直于纸面朝里.图中右边有一半径为R 、圆心为O 的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里.一电荷量为q 的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF 方向射入磁场区域,最后从圆形区域边界上的G 点射出.已知弧FG 所对应的圆心角为θ,不计重力.求(1)离子速度的大小; (2)离子的质量.解析: (1)由题设知,离子在平行金属板之间做匀速直线运动,它所受到的向上的磁场力和向下的电场力平衡q v B 0=qE 0①式中,v 是离子运动速度的大小,E 0是平行金属板之间的匀强电场的强度,有 E 0=U d ②由①②式得。

高二化学选修4:第3章综合能力测试

高二化学选修4:第3章综合能力测试

第三章综合能力测试(时间90分钟满分100分)试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,请将第Ⅰ卷正确选项填涂在答题卡上,第Ⅱ卷正确答案答在该试题相应答题位置。

可能用到的相对原子质量:H—1C—12N—14O—16 Na—23Mg—24Al—27S—32Cl—35.5Fe—56Cu—64 Ag—108第Ⅰ卷(选择题,共48分)一、选择题(本题包括16小题,每小题只有一个选项符合题意,每小题3分,共48分)1.(2011·安新中学期中)下列物质中属于电解质,但在给定条件下不能导电的是()A.液态溴化氢B.蔗糖C.铝D.稀硝酸【解析】溴化氢是电解质,但液态时不导电,A正确。

蔗糖是非电解质,Al为单质,既不是电解质,也不是非电解质,稀硝酸为混合物,能导电,但不属于电解质也不属于非电解质。

【答案】 A2.氨水中所含有的分子和离子有()①NH+4②H2O③NH3④NH3·H2O⑤H+⑥OH-A.①②③B.②③④⑤C.②③④⑤⑥D.①②③④⑤⑥【解析】NH3溶于水大部分与H2O反应生成NH3·H2O。

NH3·H2O少部分发生电离,NH3·H2O NH+4+OH-。

溶液中还存在H2O的电离平衡:H2O H++OH-。

故存在的粒子有NH3、H2O、NH3·H2O、NH+4、OH-、H+。

【答案】 D3.(2011·郑州高二期末)水是最宝贵的资源之一。

下列表述正确的是()A.4 ℃时,纯水的pH=7B.温度升高,纯水中的c(H+)增大,c(OH-)减小C.水的电离程度很小,纯水中主要存在形态是水分子D.向水中加入酸或碱,都可抑制水的电离,使水的离子积减小【解析】25℃时纯水的pH=7,A错;升温,水的电离程度增加,c(OH-)和c(H+)均增大,B错;水是弱电解质,电离的程度很小,纯水中主要存在形态是水分子,C对;水的离子积与温度有关,加入酸或碱均能抑制水的电离,但水的离子积不变,D错。

2019-2020年人教版高中物理必修3-1 第三章《磁场》测试卷

2019-2020年人教版高中物理必修3-1 第三章《磁场》测试卷

2019-2020年人教版高中物理必修3-1 第三章《磁场》测试卷第三章《磁场》测试卷一、单选题(共12小题)1.如图所示,匀强磁场中有一个电荷量为q 的正离子,自a 点沿半圆轨道运动,当它运动到b 点时,突然吸收了附近若干电子,接着沿另一半圆轨道运动到c 点,已知a 、b 、c 点在同一直线上,且ac =ab ,电子电荷量为e ,电子质量可忽略不计,则该离子吸收的电子个数为( )A .B .C .D .2.上海磁悬浮列车线的试运行,是世界上第一条投入商业运营的磁悬浮列车线.运行全程共30 km ,最高时速可达552 km ,单向运行约8 min.磁悬浮列车上装有电磁体,铁路底部则安装线圈.通过地面线圈与列车上的电磁体排斥力使列车悬浮起来.地面线圈上的极性与列车上的电磁体下极性总保持( )A . 相同B . 相反C . 不能确定D . 以上均不对3.如图所示,在MNQP 中有一垂直纸面向里的匀强磁场.质量和电荷量都相等的带电粒子a 、b 、c 以不同的速率从O 点沿垂直于PQ 的方向射入磁场,图中实线是它们的轨迹.已知O 是PQ 的中点,不计粒子重力.下列说法中正确的是( )A . 粒子a 带负电,粒子b 、c 带正电B . 射入磁场时粒子a 的速率最小C . 射出磁场时粒子b 的动能最小D . 粒子c 在磁场中运动的时间最长4.某一空间存在着强度不变、方向随时间周期变化的匀强磁场,如图甲所示,规定垂直纸面向里的磁场方向为正方向,为了使静置该磁场中的带正电的粒子能做横“∞”字曲线运动且逆时针方向通过efab (轨迹如图乙),已知磁场变化周期T 等于粒子完成一次“∞”字的时间,则可行的办法是(粒子只受磁场力作用,其他力不计)( )A . 若粒子初始位置在a 处,t =T 时给粒子一个沿切线方向水平向右的初速度B . 若粒子初始位置在f 处,t =T 时给粒子一个沿切线方向竖直向下的初速度C . 若粒子初始位置在e 处,t =T 时给粒子一个沿切线方向水平向左的初速度D . 若粒子初始位置在d 处,t =T 时给粒子一个沿切线方向竖直向上的初速度5.判断一段导线中是否有直流电流通过,手边若有几组器材,其中最为可用的是( )A . 被磁化的缝衣针及细棉线B . 带电的小纸球及细棉线C . 小灯泡及导线D . 蹄形磁铁及细棉线6.如图所示,一段长方体形导电材料,左右两侧面的边长为a 和b ,内有带电量为q 的某种自由运动电荷.导电材料置于方向垂直于其前表面向里的匀强磁场中,磁场的磁感应强度大小为B .当通以从左到右的恒定电流I 时,测得导电材料上、下表面之间的电压为U ,且上表面的电势比下表面的低.由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为( )A .,负 B .,正 C .,负 D .,正7.关于磁感线的一些说法, 不正确的是( )A . 磁感线上某点的切线方向, 就是该点的磁场方向B . 磁场中两条磁感线一定不相交C . 磁感线分布较密的地方, 磁感应强度较强D . 通电螺线管的磁感线从北极出来, 终止于南极, 是一条不闭合的曲线8.如图所示,是一个理想边界为PQ 、MN 的匀强磁场区域,磁场宽度为d ,方向垂直纸面向里.一电子从O 点沿纸面垂直PQ 以速度v 0进入磁场.若电子在磁场中运动的轨道半径为2d .O ′在MN 上,且OO ′与MN 垂直.下列判断正确的是( )A . 电子将向右偏转B . 电子打在MN 上的点与O ′点间的距离为dC . 电子打在MN 上的点与O ′点间的距离为dD . 电子在磁场中运动的时间为9.一个带电粒子,沿垂直于磁场方向,射入匀强磁场中,粒子的一段径迹如图所示,径迹上的每一小段都可以近似看成圆弧.由于带电粒子使周围的空气电离,粒子的能量逐渐减小而带电量不变.不计粒子重力,从图中情况可以确定( )A . 粒子是带正电的,它所受的洛仑兹力大小不变B . 粒子是带正电的,它是由a 点运动到b 点C . 粒子是带负电的,它所受的洛仑兹力大小逐渐增大D . 粒子是带负电的,它是由a 点运动到b 点10.长度为L 的通电导体棒,水平放在光滑绝缘斜面上,整个装置处在如图所示的匀强磁扬中,在以下四种情况下,导体棒可能静止在斜面上的是( )A .B .C .D .11.一个带电粒子在匀强磁场B 中所受的洛仑兹力F 的方向如图所示,则该粒子所带电性和运动方向可能是( )A . 粒子带负电,向下运动B . 粒子带正电,向左运动C . 粒子带负电,向上运动D . 粒子带正电,向右运动12.在隧道工程以及矿山爆破作业中,部分未发火的炸药残留在爆破孔内,很容易发生人身伤亡事故.为此,科学家制造了一种专门的磁性炸药,在磁性炸药制造过程中掺入了10%的磁性材料——钡铁氧体,然后放入磁化机磁化.使用磁性炸药一旦爆炸,即可安全消磁,而遇到不发火的情况可用磁性探测器测出未发火的炸药,已知掺入的钡铁氧体的消磁温度约为400 ℃,炸药的爆炸温度约2 240 ℃~3 100 ℃,一般炸药引爆温度最高为140 ℃左右.以上材料表明( )A . 磁性材料在低温下容易被磁化B . 磁性材料在高温下容易被磁化C.磁性材料在低温下容易被消磁D.磁性材料在高温下容易被消磁二、实验题(共3小题)13.霍尔效应是电磁基本现象之一,近期我国科学家在该领域的实验研究上取得了突破性进展.如图甲所示,在一矩形半导体薄片的P、Q间通入电流I,同时外加与薄片垂直的磁场B,在M、N 间出现电压U H,这种现象称为霍尔效应,U H称为霍尔电压,且满足U H=k,式中d为薄片的厚度,k为霍尔系数.某同学通过实验来测定该半导体薄片的霍尔系数.(1)若该半导体材料是空穴(可视为带正电粒子)导电,电流与磁场方向如图甲所示,该同学用电压表测量U H时,应将电压表的“+”接线柱与________(填“M”或“N”)端通过导线相连.(2)已知薄片厚度d=0.40 mm,该同学保持磁感应强度B=0.10 T不变,改变电流I的大小,测量相应的U H值,记录数据如下表所示.根据表中数据在图乙中画出U H-I图线,利用图线求出该材料的霍尔系数为________×10-3V·m·A-1·T-1(保留2位有效数字).(3)该同学查阅资料发现,使半导体薄片中的电流反向再次测量,取两个方向测量的平均值,可以减小霍尔系数的测量误差,为此该同学设计了如图丙所示的测量电路,S1、S2均为单刀双掷开关,虚线框内为半导体薄片(未画出).为使电流从Q端流入,P端流出,应将S1掷向________(填“a”或“b”),S2掷向________(填“c”或“d”).为了保证测量安全,该同学改进了测量电路,将一合适的定值电阻串联在电路中.在保持其它连接不变的情况下,该定值电阻应串联在相邻器件____和____(填器件代号)之间.14.霍尔效应是电磁基本现象之一,近期我国科学家在该领域的实验研究上取得了突破性进展.如图甲所示,在一矩形半导体薄片的E、F间通入电流I,同时外加与薄片垂直的磁场B,在C、D间出现电压U CD,这种现象称为霍尔效应,U CD称为霍尔电压,且满足U CD=k,式中d为薄片的厚度,k为霍尔系数,某同学通过实验来测定该半导体薄片的霍尔系数.(1)若该半导体材料是空穴(可视为带正电粒子)导电,电流与磁场方向如图所示,该同学用电压表测量U CD时,应将电压表的“+”接线柱与________(填“C”或“D”)端通过导线相连.(2)已知薄片厚度d=0.40 mm,该同学保持磁感应强度B=0.10 T不变,改变电流I的大小,测量相应的U CD值,记录数据,描点作图,画出U CD-I图线,如图乙所示,利用图线求出该材料的霍尔系数为________×10-3V·m·A-1·T-1(保留2位有效数字).15.某同学用图中所给器材进行与安培力有关的实验.两根金属导轨ab和a1b1固定在同一水平面内且相互平行,足够大的电磁铁(未画出)的N极位于两导轨的正上方,S极位于两导轨的正下方,一金属棒置于导轨上且与两导轨垂直.(1)在图中画出连线,完成实验电路.要求滑动变阻器以限流方式接入电路,且在开关闭合后,金属棒沿箭头所示的方向移动.(2)为使金属棒在离开导轨时具有更大的速度,有人提出以下建议:A.适当增加两导轨间的距离B.换一根更长的金属棒C.适当增大金属棒中的电流其中正确的是________(填入正确选项前的标号).三、计算题(共3小题)16.在磁场中放入一通电导线,导线与磁场垂直,导线长为1 cm,电流为0.5 A,所受的磁场力为5×10-4N.求:(1)该位置的磁感应强度多大?(2)若将该电流撤去,该位置的磁感应强度又是多大?(3)若将通电导线跟磁场平行放置,该通电导线所受磁场力多大?17.如图所示,一束电荷量为e的电子以垂直于磁感应强度B并垂直于磁场边界的速度v射入宽度为d的匀强磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=60°,求电子的质量和穿越磁场的时间.18.在原子反应堆中抽动液态金属导电液时,由于不允许传动机械部分与这些液体相接触,常使用一种电磁泵,如图所示是这种电磁泵的结构,将导管置于磁场中,当电流I穿过导电液体时,磁场中导电液体即被驱动,若导管的内截面积为a·h,磁场区域的宽度为l,磁感应强度为B,液态金属穿过磁场区域的电流为I,方向如图所示时,求驱动所产生的压强是多大?四、填空题(共3小题)19.如图所示,回旋加速器是用来加速带电粒子的装置,带电粒子每次通过两盒窄缝间匀强电场时做.(填“匀速”、“加速”、“圆周”)运动,带电粒子每次通过盒中的匀强磁场时做运动.(填“匀速”、“加速”、“圆周”)20.阴极射线是从阴极射线管的阴极发出的高速运动的粒子流,这些微观粒子是________.若在如图所示的阴极射线管中部加上垂直于纸面向外的磁场,阴极射线将________(填“向上”、“向下”、“向里”或“向外”)偏转.21.如图所示,质量为m,长为L,通有电流为I的导体棒ab静止在水平导轨上,水平导轨放置在竖直向上的匀强磁场中,其磁感应强度为B, ab处于静止状态,则ab受到的摩擦力大小为________,方向为________,受到的支持力为________.答案1.【答案】B2.【答案】A3.【答案】D4.【答案】A5.【答案】A6.【答案】C7.【答案】D8.【答案】D9.【答案】D10.【答案】A 11.【答案】A12.【答案】D13.【答案】(1)M(2)如图所示 1.5(1.4或 1.6)(3)b c S1E(或S2E)14.【答案】(1)C (2)1.315.【答案】(1)(2)AC16.【答案】(1)0.1 T(2)0.1 T(3)017.【答案】【解析】过M、N作入射方向和出射方向的垂线,两垂线交于O点,O点即为电子在磁场中做匀速圆周运动的圆心,过N作OM的垂线,垂足为P,如图所示.由直角三角形OPN知,电子运动的半径为r==d℃由牛顿第二定律知evB=m℃联立℃℃式解得m=电子在无界磁场中运动的周期为T=·=电子在磁场中的运动轨迹对应的圆心角为θ=60°,故电子在磁场中的运动时间为t=T=×=18.【答案】19.【答案】加速圆周20.【答案】电子向上21.【答案】BIL向右mg。

2019-2020年高二物理第三单元磁场训练卷物理(有答案)

2019-2020年高二物理第三单元磁场训练卷物理(有答案)

2019-2020年高二物理第三单元磁场训练卷物理(有答案)1 / 72019-2020学年高二上学期第三单元训练卷物 理注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单项选择题(本大题共10小题;每小题4分,共40分。

每小题给出的四个选项中只有一个选项正确)1.磁场中某区域的磁感线如图所示,则( )A .a 、b 两处的磁感应强度的大小不等,Ba >BbB .a 、b 两处的磁感应强度的大小不等,Ba <BbC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小 2.在匀强磁场中某处P 放一个长度为L =20 cm ,通电电流I =0.5 A 的直导线,测得它受到的最大磁场力F =1.0 N ,其方向竖直向上.现将该通电导线从磁场中撤走,则P 处的磁感应强度为( )A .零B .10 T ,方向竖直向上C .0.1 T ,方向竖直向下D .10 T ,方向肯定不沿竖直向上的方向3.用两根绝缘细线把两个完全相同的圆形导线环悬挂起来,让二者等高平行放置,如图所示。

当两导线环中通入方向相同的电流I1、I2时,则有( )A .两导线环相互吸引B .两导线环相互排斥C .两导线环间无相互作用力D .两导线环先吸引后排斥4.如图所示,通电螺线管ab 外部的小磁针N 极指向右方,若在螺线管内部的c 点也放进一个小磁针,则以下判断正确的是( ) A .a 端接电源正极,c 点处小磁针N 极指向左方 B .a 端接电源负极,c 点处小磁针N 极指向右方 C .a 端接电源正极,c 点处小磁针N 极指向右方 D .a 端接电源负极,c 点处小磁针N 极指向左方 5.图中a 、b 、c 为三根与纸面重直的固定长直导线,其截面位于等边三角形的三个顶点上,沿水平方向,导线中均通有大小相等的电流,方向如图所示,O 点为三角形的中心(O 到三个顶点的距离相等),则( ) A .O 点的磁感应强度为零 B .O 点的磁场方向垂直Oc 向下 C .导线a 受到的安培力方向竖直向上 D .导线b 受到的安培力方向沿bc 连线方向指向c 6.一个带电粒子在磁场力的作用下做匀速圆周运动,要想确定该带电粒子的比荷,则只需要知道( ) A .运动速度v 和磁感应强度B B .磁感应强度B 和运动周期T C .轨迹半径R 和运动速度v D .轨迹半径R 和磁感应强度B 7.如图所示,从同一粒子源O 发出的粒子以相同的速度垂直射入某磁场中,结果分成了a 、b 、c 三束,下列说法正确的是( ) A .a 粒子带正电,b 粒子不带电,c 粒子带负电 B .a 粒子带负电,b 粒子不带电,c 粒子带正电 C .qa >qc D .qa <qc 8.如图所示,匀强磁场的磁感应强度为B ,有一矩形线圈abcd ,且ab =L1,ad =L2,通有逆时针方向的电流I ,让它绕cd 边转过某一角度时,使线圈平面与磁场夹角为θ,则( ) A .穿过线圈的磁通量为Φ=BL1L2sin θ B .穿过线圈的磁通量为Φ=BL1L2cos θ C .cd 边受到的安培力为F =BIL1sin θ D .ab 边受到的安培力为F =BIL1cos θ此卷只装订不密封 班级姓名准考证号考场号座位号9.如图所示,在x 轴上方存在垂直于纸面向里且磁感应强度为B 的匀强磁场,在x 轴下方存在垂直于纸面向外且磁感应强度为12B 的匀强磁场。

第三章磁场本章综合检测2(人教版选修3-1)

第三章磁场本章综合检测2(人教版选修3-1)

第三章磁场本章综合检测2(人教版选修3-1)一、选择题(本题共io小题•在每小题给出的四个选项中,至少有一个选项符合题目要求,全选对的得8分,选对但不全的得4分,有选错的得0分)1.如图1所示,弹性线圈AB,当它通电时下面判断正确的是()图1A. 当电流从A-B时,线圈长度增加,当电流反向线圈长度减小B. 当电流从B—A时,线圈长度增加,当电流反向后线圈减小C. 不管电流方向如何,线圈长度都增加D. 不管电流方向如何,线圈长度都减小解析:根据同向电流相互吸引,D正确.答案:D2•两个电子以大小不同的初速度沿垂直于磁场的方向射入同一匀强磁场中,设n、r2为这两个电子的运动轨道半径,T1、T2是它们的运动周期,则()A.「1 =「2,= T2 B .「1=「2,T1 T2C. 「1工「2,T1 = T2 D .门工「2,T1M T2解析:电子垂直进入匀强磁场做匀速圆周运动,R=器,T=2f,可知「1工「2, T1 = T2,选C.答案:C3. 在等边三角形的三个顶点a、b、c处,各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图2•则过c点的导线所受安培力的方向为|i %答案:C 4.如图3所示,在真空中,水平导线中有恒定电流 通过,导线的正下方有一质子初速度方向与电流方向相 同,则质子可能的运动情况是(A .沿路径a 运动 B. 沿路径b 运动 C .沿路径c 运动 D .沿路径d 运动解析:由安培定则,电流在下方产生的磁场方向指向纸外,由左手定则,质 子刚进入磁场时所受洛伦兹力方向向上.则质子的轨迹必定向上弯曲,因此C 、D 必错;由于洛伦兹力方向始终与电荷运动方向垂直, 故其运动轨迹必定是曲线, 则B 正确;A 错误.答案:B 5.如图4所示,把轻质导电线圈用绝缘细线悬挂在磁 铁N 极附近,磁铁的轴线穿过线圈的圆心且垂直于线圈平 面,当线圈内通入如图方向的电流后,贝U 线圈( )A .向左运动B .向右运动C.静止不动 D .无法确定解析:等效法.把通电线圈等效成小磁针.由安培定则,线圈等效成小磁针 后,S NA •与ab 边平行,竖直向上B •与ab 边平行,竖直向上C .与ab 边垂直,指向左边D .与ab 边垂直,指向右边上右图4左端是S极,右端是N极,异名磁极相吸引,线圈向左运动.答案:A6•来自宇宙的带有正、负电荷的粒子流,沿与地球表面垂直的方向射向赤 道上空的某一点,则这些粒子在进入地球周围的空间时,下列说法正确的为 ()A •正离子将相对于预定地点向东偏转 B. 负离子将相对于预定地点向东偏转 C. 正离子将相对于预定地点向西偏转 D. 负离子将相对于预定地点向西偏转解析:离子射向地球的情况如下图所示,根据左手定则正离子将向东偏转, 负离子将向西偏转,故选 A 、D.子在磁场中做匀速圆周运动有:X 二囂,整理得:x 2二qpU ,答案:B8•某专家设计了一种新型电磁船,它不需螺旋桨推进器,航行时平稳而无 声,时速可达100英里.这种船的船体上安装一组强大的超导线圈, 在两侧船舷 装上一对电池,导电的海水在磁场力作用下即会推动船舶前进. 如图6所示是超答案:AD7•如图5所示,一个静止的质量为m 、带电荷量为q 的 粒子(不计重力),经电压U 加速后垂直进入磁感应强度为 B 的匀强磁感中,粒子打至 P 点,设0P = x ,能够正确反应x与U 之间的函数关系的是解析:带电粒子在电场中做加速运动, qU = gmv 2,带电粒故B 正确.赤道)图50 0U由动能定理D导电磁船的简化原理图,AB 和CD 是与电池相连的 导体,磁场由超导线圈产生•以下说法正确的是()A. 船体向左运动B. 船体向右运动C. 无法断疋船体向哪个方向运动D. 这种新型电磁船会由于良好的动力性能而提 咼船速 解析:本题考查通电导线在磁场中所受的安培力的应用. 方向垂直AB 方向从CD 板流向AB 板,海水所受的安培力方向水平向左,故船 体上的超导线圈所受的作用力向右,故推动船体向右运动, 度中.答案:BD9.电子以垂直于匀强磁场的速度 d ,宽为L 的磁场区域,偏转后从 7所示,若磁场的磁感应强度为 B , A. 电子在磁场中的运动时间B. 电子在磁场中的运动时间C. 洛伦兹力对电子做的功是 解析:由于电子做的是匀速圆周运动,故运动时间 洛伦兹力不做功可得C 错误,D 正确.答案:BD10. 如图8所示,两导体板水平放置,两板间电势差为U ,带电粒子以某一初速度V 。

人教版高中物理选修3-1《磁场》综合评估.doc

人教版高中物理选修3-1《磁场》综合评估.doc

高中物理学习材料桑水制作《磁场》综合评估限时:90分钟总分:100分答题表题号12345678910答案一、选择题(1-7为单选题,每小题5分;8-10为多选题,每小题6分,共53分)学生用书第109页1.下列四个实验现象中,不能表明电流能产生磁场的是( )A.甲图中,导线通电后磁针发生偏转B.乙图中,通电导线在磁场中受到力的作用C.丙图中,当电流方向相同时,导线相互靠近D.丁图中,当电流方向相反时,导线相互远离2.下列四幅图关于各物理量方向间的关系中,正确的是( )3.如图,接通电键K的瞬间,用丝线悬挂于一点、可自由转动的通电直导线AB将( )A.A端向上,B端向下,悬线张力不变B.A端向下,B端向上,悬线张力不变C.A端向纸外,B端向纸内,悬线张力变小D.A端向纸内,B端向纸外,悬线张力变大4.水平长直导线中有恒定电流I通过,导线正下方的电子初速度方向与电流方向相同,如图所示,则电子的运动情况是( ) A.沿路径Oa运动B.沿路径Ob运动C.沿路径Oc运动D.沿路径Od运动5.如图所示,带负电的金属环绕其轴OO′匀速转动时,放在环顶部的小磁针最后将( )A.N极竖直向上B.N极竖直向下C.N极水平向左D.小磁针在水平面内转动6.带电粒子以初速度v0从a点进入匀强磁场如图所示,运动中经过b点,Oa=Ob.若撤去磁场加一个与y轴平行的匀强电场,带电粒子仍以速度v0从a点进入电场,仍能通过b点,则电场强度E和磁感应强度B的比值为( )A.v0 B.1 v0C.2v0 D.v0 2《磁场》综合评估1.B 甲、丙、丁中小磁针或导线所受的磁场力都是导线中电流产生的磁场给的力,但乙中的磁场是磁铁产生的.2.B 3.D4.D 水平电流下方的磁场垂直向外,且离导线越远,磁感应强度B 越小,根据左手定则可以确定电子从开始运动向下偏转,再由r=mv qB知电子运动轨迹半径逐渐增大,故A 、B 、C 错,D 对. 5.C 带电金属环匀速转动,形成逆时针的等效电流(从右向左看),根据安培定则可以确定通过金属环轴OO ′的磁场方向水平向右,小磁针处的磁场方向水平向左,故小磁针N 极最后水平指向左方,故C 选项正确.6.C 设Oa =Ob =d ,因带电粒子在匀强磁场中做匀速圆周运动,所以圆周运动的半径正好等于d即d =mv 0qB ,得B =mv 0qd如果换成匀强电场,带电粒子做类平抛运动,那么有d =12qE m ⎝ ⎛⎭⎪⎫d v 02 得E =2mv 20qd ,所以E B=2v 0.选项C 正确.7.如图所示,真空中狭长区域内的匀强磁场的磁感应强度为B,方向垂直纸面向里,区域宽度为d,边界为CD和EF,速度为v的电子从边界CD外侧沿垂直于磁场方向射入磁场,入射方向跟CD的夹角为θ,已知电子的质量为m、带电荷量为e,为使电子能从另一边界EF射出,电子的速率应满足的条件是( )A.v>Bedm1+cosθB.v<Bedm1+cosθC.v>Bedm1+sinθD.v<Bedm1+sinθ8.如图所示,有一混合正离子束先后通过正交的电场、磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径r相同,则它们一定具有相同的( ) A.速度B.质量C.电荷量D.比荷9.如图所示,在x>0,y>0的空间有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B,现有四个质量及电荷量均相同的带电粒子,由x轴上的P点以不同的初速度平行于y轴射入此磁场,其出射方向如图所示,不计重力的影响,则( ) A.初速度最大的粒子是沿①方向射出的粒子B.初速度最大的粒子是沿②方向射出的粒子C.在磁场中运动时间最长的是沿③方向射出的粒子D.在磁场中运动时间最长的是沿④方向射出的粒子10.如图所示,在沿水平方向向里的匀强磁场中,带电小球A与B处在同一条竖直线上,其中小球B带正电荷并被固定,小球A与一水平放置的光滑绝缘板C接触而处于静止状态,若将绝缘板C沿水平方向抽去,则( )A.小球A仍可能处于静止状态B.小球A将可能沿轨迹1运动C.小球A将可能沿轨迹2运动D.小球A将可能沿轨迹3运动二、填空题(共14分)11.(4分)如图所示,铜棒ab长0.1 m,质量为6×10-2 kg,两端与长为1 m的轻铜线相连,静止于竖直平面内.整个装置处在竖直向下的匀强磁场中,磁感应强度B=0.5 T,现接通电源,使铜棒中保持有恒定电流通过,铜棒发生摆动,平衡时的偏转角为37°,则在此过程中铜棒的重力势能增加了______J;通电电流的大小为______A.(不计空气阻力,sin37°=0.6,cos37°=0.8,g=10 m/s2) 12.(6分)如图所示,有一半径为R、有明显边界的圆形匀强磁场区域,磁感应强度为B.今有一电子沿x轴正方向射入磁场,恰好沿y轴负方向射出.如果电子的比荷为em,则电子射入时的速度为________,电子通过磁场的时间为________,此过程中电子的动能增量为________.11题图12题图13题图13.(4分)如图所示的天平可用来测定磁感应强度.天平的右臂下面挂有一个矩形线圈,宽为L,共N匝,线圈的下部悬在匀强磁场中,磁场方向垂直纸面.当线圈中通有电流I(方向如图所示)时,在天平左、右两边加上质量各为m 1、m 2的砝码,天平平衡.当电流反向(大小不变)时,右边再加上质量为m 的砝码后,天平重新平衡.由此可知磁感应强度的方向垂直纸面________,大小为________.《磁场》综合评估7.A 由题意可知电子从EF 射出的临界条件为到达边界EF 时,速度与EF 平行,轨迹与EF 相切,如右图.由几何知识,得R +R cos θ=d ,R =mv 0eB 解得v 0=Bed m 1+cos θ,v >v 0 即能从EF 射出. 8.AD 离子流在区域Ⅰ中不偏转,一定是qE =qvB ,v =EB,A 正确.进入区域Ⅱ后,做匀速圆周运动的半径相同,由r =mv qB知,因v 、B 相同,所以只能是比荷相同,故D 正确,B 、C 错误.9.AD 显然图中四条圆弧中①对应的半径最大,由半径公式R=mv Bq可知,质量和电荷量相同的带电粒子在同一个磁场中做匀速圆周运动的速度越大,半径越大,A 对B 错;根据周期公式T =2πm Bq知,当圆弧对应的圆心角为θ时,带电粒子在磁场中运动的时间为t =θm Bq,圆心角越大则运动时间越长,圆心均在x 轴上,由半径大小关系可知④的圆心角为π,且最大,故在磁场中运动时间最长的是沿④方向射出的粒子,D 对C 错.10.AB 若小球所受库仑力和重力二力平衡,则撤去绝缘板后,小球仍能继续处于平衡状态,A 正确.若小球在库仑力、重力、绝缘板弹力三力作用下处于平衡状态,则撤去绝缘板后,小球所受合力向上,小球向上运动并受到向左的洛伦兹力而向左偏转,B 正确,C 、D 错误.11.0.12 9解析:ΔE p =mgL 1(1-cos37°)=6×10-2×10×1×(1-0.8) J=0.12 J以导体棒为研究对象,受力如图.受重力mg 、悬线拉力T 及安培力F ,处于平衡状态,则mg tan θ=F ,F =BIL 2得I =mg tan θBL 2=9 A 12.eBR m πm 2eB解析:如图所示电子运动的圆心为O′,由几何知识,可知电子做圆周运动的轨迹半径为R.由evB=mv2R,得v=eBRm由T=2πmeB,得电子运动时间t=T4=πm2eB.由于洛伦兹力不做功,故动能不变,动能增量ΔE k=013.向里mg 2NIL解析:因为右边再加上质量为m的砝码后,天平才能重新平衡,由此可知,开始时天平的右臂下面挂的矩形线圈受到的安培力F方向竖直向下,磁场方向垂直纸面向里.电流反向时矩形线圈受到的安培力F方向竖直向上,安培力的变化量ΔF=mg,所以有2NILB=mg,得B=mg2NIL.三、计算题(共33分)14.(8分)如图所示,两平行光滑导轨相距为20 cm,金属棒MN 的质量为10 g,电阻R=8 Ω,匀强磁场的磁感应强度B=0.8 T,方向竖直向下,电源电动势E=10 V,内阻r=1 Ω,当开关S闭合时,MN恰好平衡,求变阻器R1的取值为多少?设θ=45°.15.(9分)一个负离子,质量为m,电荷量大小为q,以速率v 垂直于屏S经小孔O射入存在着匀强磁场的真空室中,如图所示,磁感应强度B的方向与离子的运动方向垂直,并垂直纸面向里.(1)求离子进入磁场后到达屏S上时的位置与O点的距离;(2)如果离子进入磁场后经时间t到达P点,证明直线OP与离子入射方向之间的夹角θ跟t的关系是θ=qB2mt.《磁场》综合评估14.7 Ω解析:先根据左手定则判定安培力的方向,然后根据平衡条件列方程,再利用安培力公式以及闭合电路欧姆定律进行求解.金属棒平衡时的平面受力图,如图所示. 当MN 平衡时,有mg sin θ-BIL cos θ=0①由电路欧姆定律,得I =ER +R 1+r②由①②式联立并代入数据,得R 1=7 Ω. 15.(1)2mvqB(2)证明略解析:(1)离子的初速度与磁场方向垂直,在洛伦兹力作用下,做匀速圆周运动,设圆半径为r ,则根据牛顿第二定律,可得qvB =mv 2r ,得r =mv qB如图,离子回到屏S 上的位置A 与O 的距离AO =2r ,所以AO =2mvqB.(2)离子到达P 时,圆心角α=vt r因为α=2θ,所以θ=α2=vt 2r =qB 2mt16.(8分)如图所示,一个质量为m、电量为+q的带电粒子从A 孔以初速度v0垂直于AD进入磁感应强度为B的匀强磁场中,并恰好从C孔垂直于OC射入匀强电场中,电场方向跟OC平行,OC⊥AD,最后打在D点,且OD=2OC.若已知m,q,v0,B,不计重力,试求:(1)粒子运动到D点所需时间;(2)粒子抵达D点时的动能.17.(8分)如图所示的坐标系,在y轴左侧有垂直纸面、磁感应强度为B的匀强磁场.在x=L处,有一个与x轴垂直放置的屏,y 轴与屏之间有与y轴平行的匀强电场.在坐标原点O处同时释放两个均带正电荷的粒子A和B,粒子A的速度方向沿着x轴负方向,粒子B的速度方向沿着x轴正方向.已知粒子A的质量为m,带电量为q,粒子B的质量是n1m,带电量为n2q,释放瞬间两个粒子的速率满足关系式mv A =n 1mv B .若已测得粒子A 在磁场中运动的半径为r ,粒子B 击中屏的位置到x 轴的距离也等于r .粒子A 和粒子B 的重力均不计.求:(1)试在图中画出粒子A 和粒子B 的运动轨迹的示意图; (2)粒子A 和粒子B 打在屏上的位置之间的距离.《磁场》综合评估16.(1)m Bq ⎝ ⎛⎭⎪⎫π2+2 (2)mv 2解析:带电粒子垂直进入磁场,在磁场中将做匀速圆周运动,运动时间t 1=T4带电粒子在电场中做类平抛运动,在电场中运动时间t 2=OD v 0带电粒子在磁场中运动,由于洛伦兹力不做功,只有粒子在电场中运动时电场力对粒子做正功.由动能定理可求粒子抵达D 点时的动能.(1)带电粒子在磁场中运动时间t 1为t 1=T 4=πm2Bq带电粒子在电场中做类平抛运动,运动时间t 2为t 2=OD v 0=2r v 0=2mv 0Bqv 0=2m Bq所以粒子运动到D 点的时间为t =t 1+t 2=πm 2Bq +2m Bq =m Bq ⎝ ⎛⎭⎪⎫π2+2(2)电场力对带电粒子做正功.由动能定理求粒子到达D点时动能E kW=E k-12mv20,W=F电r=mar.①而r=12at22所以W=2mr2 t22②由①②式,得E k=12mv20+2mr2⎝⎛⎭⎪⎫2rv02=mv2017.(1)见解析(2)3r-r n1n2解析:(1)粒子A在磁场中做半个圆周的匀速圆周运动后进入电场做类平抛运动,设打在屏上的位置为Q点,粒子B直接在电场中做类平抛运动,设打在屏上的位置为P点,如图所示.(2)由题意,两个粒子的速率满足关系式mv A=n1mv B粒子A在磁场中做匀速圆周运动,由牛顿第二定律得,qv A B=mv2A r解得:v A=qBrm,v B=qBrn1m粒子A和粒子B做类平抛运动过程中,沿电场方向上的侧移分别为y A=12qEm⎝⎛⎭⎪⎫Lv A2,r=12n2qEn1m⎝⎛⎭⎪⎫Lv B2由以上两式解得y A=r n1n2所以,粒子A和粒子B打在屏上的位置之间的距离为Δy=2r+r-y A=3r-r n1n2。

人教版高中物理选修3-1第三章磁场 综合检测提高版(带答案)

人教版高中物理选修3-1第三章磁场 综合检测提高版(带答案)

第三章磁场综合检测1.关于磁铁磁性的起源,安培提出了分子电流假说,他是在怎样的情况下提出()A. 安培通过精密仪器观察到了分子电流B. 安培根据环形电流的磁场与磁铁的磁场相似而提出的C. 安培根据原子结构理论,进行严格推理得出的D. 安培凭空想出来的答案:B2.如图所示,一段长方体形导电材料,左、右两端面的边长都为a和b,内有带电量为q的某种自由运动电荷。

导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度大小为B。

当通以从左到右的稳恒电流I时,测得导电材料上、下表面之间的电压为U,且上表面的电势比下表面的电势低,由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为()A.IB|q|aU,负 B.IB|q|aU,正C.IB|q|bU,负 D.IB|q|bU,正答案:C3.如右图所示,两根垂直纸面平行放置的直导线a和b,通有等值电流。

在纸面上距a、b等远处有一点P,若P点合磁感应强度B的方向水平向左,则导线a、b中的电流方向是()A. a中向纸里,b中向纸外B. a中向纸外,b中向纸里C. a、b中均向纸外D. a、b中均向纸里答案:A5.如右图所示,要使线框ABCD在受到磁场力作用后,AB边向纸外转动,CD边向纸里转动,可行的方法是()A. 加方向垂直纸面向外的磁场,通以方向为A→B→C→D→A的电流B. 加方向平行纸面向上的磁场,通以方向为A→B→C→D→A的电流C. 加方向平行纸面向下的磁场,通以方向为A→B→C→D→A的电流D. 加方向垂直纸面向内的磁场,通以方向为A→D→C→B→A的电流答案:B4.物理学家法拉第在研究电磁学时,亲手做过许多实验。

如图所示的实验就是著名的电磁旋转实验。

如果载流导线附近只有磁铁的一个极,磁铁就会围绕导线旋转;反之,载流导线也会围绕单独的某一磁极旋转。

这一装置实际上就是最早的电动机。

图中A是可动磁铁,B是固定导线,C是可动导线,D是固定磁铁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章综合能力测试A本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,时间90分钟.第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.(2009·连云港模拟)如图所示,通电导线均置于匀强磁场中,其中导线受安培力作用的是()答案:ABD解析:只有当通电导线和磁场平行时,才不受安培力的作用,而A、D中导线均与磁场垂直,B中导线与磁场方向夹角为60°,因此受安培力的作用,故正确选项为A、B、D.2.在长直导线AB附近,有一带正电的小球由绝缘线悬挂在M点,如下图所示,当导线中有恒定电流通过时,下列说法中正确的是()A.小球受到垂直纸面向里的磁场力B.小球受到垂直纸面向外的磁场力C.小球受到垂直于AB向右的磁场力D.小球不受磁场力的作用答案:D解析:因为带电小球静止,所以不受磁场力的作用.3.取两个完全相同的长导线,用其中一根绕成如图(a)所示的螺线管,当该螺线管中通以电流强度为I的电流时,测得螺线管内中部的磁感应强度大小为B,若将另一根长导线对折后绕成如图(b)所示的螺旋管,并通以电流强度也为I的电流时,则在螺线管内中部的磁感应强度大小为()A.0B.0.5BC.B D.2B答案:A解析:用双线绕成的螺丝管,双线中的电流刚好相反,其在周围空间产生的磁场相互抵消,所以螺线管内部磁感应强度为零.4.把一根柔软的螺旋形弹簧竖直悬挂起来,使它下端刚好跟杯中的水银面接触,并使它组成如下图所示的电路,当开关S接通后将看到的现象是()A .弹簧向上收缩B .弹簧被拉长C .弹簧上下跳动D .弹簧仍静止不动 答案:C 解析:通电后,弹簧的每一个圈都相当一个环形电流,且各线圈都通以相同方向的电流,根据同向电流相互吸引,弹簧收缩,下端脱离水银面,使电路断开,电路断开后,弹簧中的电流消失,磁场作用失去,弹簧在弹力和自身重力作用下下落,于是电路又接通,弹簧又收缩……如此周而复始,形成弹簧上下跳动.正确答案为C.5.(2009·海门高二检测)如图所示,一水平导线通以电流I ,导线下方有一电子,初速度方向与电流平行,关于电子的运动情况,下述说法中,正确的是 ( )A .沿路径a 运动,其轨道半径越来越大B .沿路径a 运动,其轨道半径越来越小C .沿路径b 运动,其轨道半径越来越小D .沿路径b 运动,其轨道半径越来越大 答案:A解析:离导线越远磁感应强度越小,电子的轨道半径越大.6.粒子甲的质量与电荷量分别是粒子乙的4倍与2倍,两粒子均带正电,让它们从匀强磁场中同一点以大小相等、方向相反的速度开始运动.已知磁场方向垂直纸面向里,以下四个图中,能正确表示两粒子运动轨迹的是 ( )答案:A解析:由于m 甲∶m 乙=4∶1,q 甲∶q 乙=2∶1,v 甲∶v 乙=1∶1,故R 甲∶R 乙=2∶1.由于带电粒子只受洛伦兹力的作用,而洛伦兹力充当粒子做圆周运动的向心力,由左手定则判断,甲、乙所受洛伦兹力方向相反,则可判断,A 选项正确.7.如图所示,在倾角为30°的光滑斜面上,垂直纸面放一根长为L 、质量为m 的直导体,通以如图方向的恒定电流I 时,欲使导体静止在斜面上,应再外加匀强磁场,则磁感应强度B 的大小和方向可能为 ( )A .mg /2IL ,方向一定B .mg /3IL ,方向一定C .垂直于斜面向上,大小合适D .水平向左,大小合适 答案:ABD解析:当磁场方向垂直斜面向下时,据平衡条件知在沿斜面方向上 mg sin30°=BIL所以B =mg2IL,因此选项A 正确;当磁场方向竖直向下时,由左手定则知安培力应水平向左,直导体受力如图所示.由平衡条件知在沿斜面方向上mg sin30°=BIL cos30°所以B =mg3IL,故选项B 正确;若磁感应强度垂直斜面向上,由左手定则知安培力应沿斜面向下,这样直导体不可能静止在斜面上,所以选项C 不正确;若B 水平向左,由左手定则知,安培力方向应竖直向上,此时若满足BIL =mg ,即B =mgIL,则直导体仍可静止在斜面上,所以D 选项正确.8.(2009·东营模拟)如图所示,在一匀强磁场中有三个带电粒子,其中1和2为质子,3为α粒子的径迹.它们在同一平面内沿逆时针方向做匀速圆周运动,三者轨道半径r 1>r 2>r 3并相切于P 点,设T 、v 、a 、t 分别表示它们做圆周运动的周期、线速度、向心加速度以及各自从经过P 点算起到第一次通过图中虚线MN 所经历的时间,则 ( )A .T 1=T 2<T 3B .v 1=v 2>v 3C .a 1>a 2>a 3D .t 1<t 2<t 3 答案:ACD解析:各粒子做圆周运动的周期T =2πmqB,根据粒子的比荷大小可知:T 1=T 2<T 3,故A 正确;由于r 1>r 2>r 3结合r =m vqB及粒子比荷关系可知v 1>v 2>v 3,故B 错误;粒子运动的向心加速度a =q v Bmv 1>v 2>v 3可得:a 1>a 2>a 3,故C 正确;由图可知,粒子运动到MN 时所对应的圆心角的大小关系为θ1<θ2<θ3,而T 1=T 2,因此t 1<t 2,由T 2<T 3,且θ2<θ3,可知t 2<t 3,故D 正确.9.如下图所示,质量为m 的光滑小球从质量为M 的内壁为半球形的槽中静止下滑,小球带负电且电量为q 保持不变,空间有一水平方向的匀强磁场,磁感强度为B ,则小球滑到最低点P 时,M 对水平面的压力有可能是(槽保持静止) ( )A .(M +m )gB .MgC .零D .(M +3m )g -Bq 2gR 答案:ABD解析:带负电小球由槽口下滑到P 点的过程中,磁场力不做功,支持力不做功,只有重力做功.小球在P 点受磁场力方向竖直向上.根据机械能守恒mgR =12m v 2v =2gR在P 点N +Bq v -mg =m v 2RN =3mg -qB 2gRM 对地面压力N ′=Mg +N =(M +3m )g -qB 2gR 当qB 2gR =2mg 时N ′=(M +m )g 当qB 2gR =3mg 时N ′=Mg 选项A 、B 、D 正确. 10.(2009·山东淄博模拟)如图所示,两虚线之间的空间内存在着正交或平行的匀强电场E 和匀强磁场B ,有一个带正电的小球(电荷量为+q ,质量为m )从电磁复合场上方的某一高度处自由落下,那么,带电小球可能沿直线通过的电磁复合场是 ( )答案:CD解析:在A 图中刚进入复合场时,带电小球受到方向向左的电场力、向右的洛伦兹力、竖直向下的重力,在重力的作用下,小球的速度要变大,洛伦兹力也会变大,所以水平方向受力不可能总是平衡,A 选项错误;B 图中小球要受到向下的重力、向上的电场力、向外的洛伦兹力,小球要向外偏转,不可能沿直线通过复合场,B 选项错误;C 图中小球受到向下的重力、向右的洛伦兹力、沿电场方向的电场力,若三力的合力恰好为零,则小球将沿直线匀速通过复合场,C 正确;D 图中小球只受到竖直向下的重力和竖直向上的电场力可以沿直线通过复合场,D 正确.第Ⅱ卷(非选择题 共60分)二、填空题(共4小题,每小题5分,共20分.把答案直接填在横线上) 11.要绕线制成电磁铁,请在下图中画上绕线方向.答案:由安培定则判定答案如下图所示.12.如图所示,在虚线框内存在着互相垂直的匀强电场和匀强磁场,带负电液滴自由下落h 后进入方框内,恰好做匀速圆周运动,已知匀强电场强度为E ,磁感应强度为B ,则电场方向为____________,磁场方向为____________,液滴做圆周运动的半径为____________,若电磁场区域很长,液滴从开始运动到第二次离开方框区域所需时间为__________,液滴从进入电磁场到离开电磁场这一过程中的平均速度为____________.答案:竖直向下 垂直纸面向里E 2ghgB2πE gB +32h g 22ghπ13.一根长度为0.1m 的均匀金属杆,两端焊接等长的细软导线,悬挂在同一水平高度的两点上,abcd 所在的区域内有一竖直方向的匀强磁场,当ab 中通以如图所示的电流时,金属杆ab 偏离原来的位置到两根悬线和竖直方向的夹角为30°时保持平衡,如果金属杆ab 的质量为0.086kg ,其中通过的电流强度为10A.则匀强磁场的磁感应强度为______.(g 取10m/s 2)答案:0.5T解析:金属杆偏离竖直方向后受力如图所示,杆受重力mg ,绳子拉力F 和安培力F 安的作用,由平衡条件可得:F sin30°=BIL ① F cos30°=mg ②①②联立,得mg tan30°=BIL∴B =mg tan30°IL=0.5T14.一束离子能沿入射方向通过互相垂直的匀强电场和匀强磁场区域,然后进入磁感应强度为B ′的偏转磁场内做半径相同的匀速圆周运动(下图),则这束离子必定有相同的________,相同的________.答案:速度,荷质比解析:由直线运动可得:qE =qB v 进而可知:v =EB磁场空间内半径相同,可得mq相同.三、论述·计算题(共5小题,共40分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分,有数值计算的题,答案中必须明确写出数值和单位)15.(7分)轻直导线杆ab 沿垂直轨道方向放在水平平行的光滑轨道上,ab 杆所在区域充满竖直向下的匀强磁场,如图所示,磁感应强度B =0.2T ,轨道间距为10cm ,当给ab 杆施加一个大小为0.04N 、方向水平向左的力时,ab 杆恰好静止不动,已知电源内阻r =1Ω,电阻R =8Ω,ab 杆电阻为4Ω,导轨电阻不计,求电源电动势.答案:11V解析:ab 棒受到的安培力:F =BIL =0.04N 所以I =2A I 总=3AE =I 总(r +R ·R abR +R ab)=11V .16.(7分)在原子反应堆中抽动液态金属导电液,由于不允许传动的机械部分与这些液体相接触 ,常使用一种电磁泵,如图所示,这种电磁泵的结构是:将导管置于磁场中,当电流I 穿过导电液体时,磁场中导电液体即被驱动,若导管的内截面积为a ×h ,磁场区域的宽度为L ,磁感应强度为B ,液体金属穿过磁场区域的电流为I ,方向如图所示时,求驱动所产生的压强多大?答案:P =BIa解析:将原图的立体图改画成从正面看的侧视图,如图所示,根据左手定则判断出电流受力方向向右.F =BIh ,P =F S =F ah =BIh ah =BIa点评:本题的物理情景是:当电流I 通过金属液体沿图中方向向上时,电流受到磁场的作用力,这个磁场力即为驱动液态金属流动的动力,由于这个驱动力而使金属液体沿流动方向产生压强.17.(8分)(2009·汕头高二检测)质量为m ,电荷量为q 的带负电粒子自静止开始,经M 、N 板间的电场加速后,从A 点垂直于磁场边界射入宽度为d 的匀强磁场中,该粒子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.已知M 、N 两板间的电压为U ,粒子的重力不计.(1)正确画出粒子由静止开始至离开匀强磁场时的轨迹图(用直尺和圆规规范作图); (2)求匀强磁场的磁感应强度B . 答案:(1)轨迹图见解析(2)2L (L 2+d 2)2mU q解析:(1)作粒子经电场和磁场中的轨迹图,如图(2)设粒子在M 、N 两板间经电场加速后获得的速度为v ,由动能定理得:qU =12v 2①粒子进入磁场后做匀速圆周运动,设其半径为r ,则:q v B =m v 2r②由几何关系得:r 2=(r -L )2+d 2③ 联立求解①②③式得:磁感应强度B =2L (L 2+d 2)2mUq. 18.(9分)如图所示,匀强电场E =4V/m ,水平向左.匀强磁场 B =2T ,垂直纸面向里.m =1g 带正电的小物块A ,从M 点沿绝缘粗糙的竖直壁无初速下滑,它滑行0.8m 到N 点时就离开壁做曲线运动,在P 点A 瞬时受力平衡,此时其速度与水平方向成45°角.设P 与M的高度差为1.6m.(g 取10m/s 2)求:(1)A 沿壁下滑时摩擦力做的功? (2)P 与M 的水平距离? 答案:(1)6×10-3J (2)0.6m解析:(1)从M →N 过程,只有重力和摩擦力做功.刚离开N 点时有 Eq =Bq v即v =E /B =42m/s =2m/s.根据动能定理mgh -W f =12m v 2所以W f =mgh +12m v 2=1×10-3×10×0.8-12×1×10-3×22=6×10-3(J).(2)从已知P 点速度方向及受力情况分析如附图由θ=45°可知 mg =Eq f 洛=2mg =Bq v p所以v P =2mg Bq =2EB=22m/s.根据动能定理,取M →P 全过程有mgH -W f -Eqs =12m v 2P求得最后结果s =mgH -W f -12m v 2PEq=0.6m.19.(9分)(新题快递)2008年9月25日中国“神舟七号”宇宙飞船顺利升空,9月27日,中国宇航员首次实现太空出舱.下一步我国将于2015年发射空间站,设该空间站体积很大,宇航员可以在里面进行多项体育活动,一宇航员在站内玩垒球(万有引力可以忽略不计),如图所示,上半侧为匀强电场,下半侧为匀强磁场,中间为分界面,电场与分界面垂直,磁场垂直纸面向里,电场强度为E =100V/m ,宇航员位于电场一侧距分界面为h =3m 的P 点,PO 垂直于分界面,D 位于O 点右侧,垒球质量为m =0.1kg ,带电量为q =-0.05C ,该宇航员从P 点以初速度v 0=10m/s 平行于界面投出垒球,要使垒球第一次通过界面就击中D 点,且能回到P 点.求:(1)OD 之间的距离d .(2)垒球从抛出到第一次回到P 点的时间t .(计算结果保留三位有效数字) 答案:(1)3.46m (2)1.53s解析:(1)设垒球在电场中运动的加速度为a ,时间为t 1,有:qE =mah =12at 21d =v 0t 1代入数据得:a =50m/s 2,t 1=35s ,d =23m =3.46m(2)垒球进入磁场时与分界面夹角为θtan θ=at1v 0=3,θ=60°进入磁场时的速度为v =v 0cos θ=20m/s设垒球在磁场中做匀速圆周运动的半径为R由几何关系得:R =dsin θ=4m又由R =m v qB ,得B =m vqR=10T球在磁场中运动时间为:t 2=360°-2×60°360°TT =2πm qB ,故t 2=4π15s运动总时间为:t =2t 1+t 2=1.53s。

相关文档
最新文档