四川省简阳市2018-2019学年八年级数学下学期期末考试试题(扫描版)
八年级下学期期末考试数学试卷含答案(共3套)
2018-2019学年度八年级下学期期末考试数学试卷第Ⅰ卷 选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是( )A .B .C .D .2.下列各式由左边到右边的变形中,属于分解因式的是( )A .()a x y ax ay -=-B .22()()a b a b a b -=+-C .243(4)3x x x x -+=-+D .211()a a a a +=+3. 下列实数中,能够满足不等式30x -<的正整数是( )A .-2B .3C .4D .24. 小颖一家自驾某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均车速是线路一上平均车速的1.8倍,且线路二的用时比线路一的用时少半小时,若汽车在线路一上行驶的平均速度为/xkm h ,则下面所列方程正确的是( )A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =- 5. 小贤的爸爸在钉制平行四边形框架时,采用了一种方法:如图,将两根木条AC BD 、的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是( )A .两组对边分别平行的四边形是平行四边形B .两组对角分别相等的四边形是平行四边形C .两组对边分别相等的四边形是平行四边形D .对角线互相平分的四边形是平行四边形6. 如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等C .90BOC A ∠=+∠oD .设OD m =,AE AF n +=,则12AEFS mn ∆= 7. 已知不等式组122123x a x x -≥⎧⎪+-⎨>⎪⎩的解集如图所示(原点未标出,数轴的单位长度为1),则 a 的值为( )A .4B .3C .2D .18. 已知21x y -=,2xy =,则322344x y x y xy -+的值为( )A .-2B .1C .-1D .29. 某n 边形的每个外角都等于与它相邻内角的14,则n 的值为( ) A .7 B .8 C .10 D .910. 如图,点C 是线段BE 的中点,分别以BC CE 、为边作等腰ABC ∆和等腰CDE ∆,90BAC CDE ∠=∠=o ,连接AD BD AE 、、,且BD AE 、相交于点G ,CG 交AD 于点F ,则下列说法中,不正确的是( )A .CF 是ACD ∆的中线B .四边形ABCD 是平行四边形C .AE BD = D .AG 平分CAD ∠第Ⅱ卷 非选择题(共90分)二、填空题(共5个小题,每题3分,满分15分,将答案填在答题纸上)11. 分式a a b +与22b a b-的最简公分母是 . 12. 因式分解:252x x -= .13.如图,已知一块直角三角板的直角顶点与原点O 重合,另两个顶点A ,B 的坐标分别为(1,0)-,(0,3),现将该三角板向右平移使点A 与点O 重合,得到'OCB ∆,则点B 的对应点'B 的坐标为 .14. 如图,两个完全相同的正五边形ABCDE ,AFGHM 的边DE ,MH 在同一直线上,且有一个公共顶点A ,若正五边形ABCDE 绕点A 旋转x 度与正五边形AFGHM 重合,则x 的最小值为 .15. 如图,在平行四边形ABCD 中,8AB =,12BC =,120B ∠=o ,E 是BC 的中点,点P 在平行四边形ABCD 的边上,若PBE ∆为等腰三角形,则EP 的长为 .三、解答题:本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(1)解不等式:922x x +>(2)解方程:11293331x x =+--17. 如图,在ABCD 中,点E ,F 分别在边BC ,AD 上,且DF BE =.求证:四边形AECF 是平行四边形.18. 如图,在ABC ∆中,AB AC =,36A ∠=o ,DE 是AC 的垂直平分线.(1)求证:BCD ∆是等腰三角形.(2)若BCD ∆的周长是a ,BC b =,求ACD ∆的周长.(用含a ,b 的代数式表示)19. 在如图所示的网格上按要求画出图形,并回答问题.(1)将ABC ∆平移,使得点A 平移到图中点D 的位置,点B 、点C 的对应点分别为点E 、点F ,请画出DEF ∆.(2)画出ABC ∆关于点D 成中心对称的111A B C ∆.(3)DEF ∆与111A B C ∆是否关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点O .20. 数学课后,小玲和同桌小娟各自拿出自己的漂亮的正方形手帕,她们俩各有一条方格手帕和一条绣花手帕,如图,小玲说:“我的方格手帕的边长比你的方格手帕的边长大0.6cm .”小娟说:“我的绣花手帕的边长比你的绣花手帕的边长大0.6cm .”设小玲的两块手帕的面积和为1S ,小娟的两块手帕的面积和为2S ,请同学们运用因式分解的方法算一算2S 与1S 的差.21. 如图1,将线段AB 平移至DC ,使点A 与点D 对应,点B 与点C 对应,连接AD 、BC .(1)填空:AB 与CD 的位置关系为 ,BC 与AD 的位置关系为 .(2)如图2,若G 、E 为射线DC 上的点,AGE GAE ∠=∠,AF 平分DAE ∠交直线CD 于F ,且30FAG ∠=o ,求B ∠的度数.22. 学校广播站要招聘一名播音员,擅长诵读的小龙想去应聘,但是不知道是否符合应聘条件,于是在微信上向好朋友亮亮倾诉,如图所示的是他们的部分对话内容,面对小龙的问题,亮亮也犯了难.(1)请聪明的你用所学的方程知识帮小龙计算一下,他是否符合学校广播站的应聘条件?(2)小龙和奶奶各读一篇文章,已知奶奶所读文章比小龙所读文章至少多了3200个字,但奶奶所用的时间是小龙的2倍,则小龙至少读了多少分钟?23. 定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=o ,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PM 与PN 的积的最大值.试卷答案一、选择题1-5: CBDAD 6-10:CADCD二、填空题11. 2()()a b a b +- 12. (52)x x - 13. 14. 14415. 6、、三、解答题16.(1)解:去分母得94x x +>移项、合并得39x ->-解得3x <所以不等式的解集为3x <(2)解:去分母得1316x =-+ 解得43x =- 经检验,43x =-是分式方程的解.17.证明:∵四边形ABCD 是平行四边形∴//AF EC ,AD BC =∵DF BE =∴AD DF BC BE -=-∴AF EC =∴四边形AECF 是平行四边形18.解:(1)∵AB AC =,36A ∠=o ∴180722AB ACB -∠∠=∠==oo∵DE 是AC 的垂直平分线∴AD DC =∴36ACD A ∠=∠=o∵CDB ∠是ADC ∆的外角∴72CDB ACD A ∠=∠+∠=o∴B CDB ∠=∠∴CB CD =∴BCD ∆是等腰三角形.(2)∵AD CD CB b ===,BCD ∆的周长是a∴AB a b =-∵AB AC =∴AC a b =-∴ACD ∆的周长AC AD CD a b b b a b =++=-++=+19.解:(1)如图,DEF ∆即为所求.(2)如图,111A B C ∆即为所求.(3)是,如图,点O 即为所求.20.解:222221(29.821.2)(29.221.8)S S -=+-+ 2222(29.821.8)(29.221.2)=---(29.821.8)(29.821.8)(29.221.2)(29.221.2)=+--+-51.6850.48=⨯-⨯(51.650.4)8=-⨯9.6=(2cm )21.解:(1)//AB CD ,//AD BC(2)∵//AB CD∴BAG G ∠=∠∵G EAG ∠=∠∴EAG BAG ∠=∠∵AF 平分DAE ∠∴FAE FAD ∠=∠∴2BAD FAG ∠=∠∵30FAG ∠=o∴60BAD ∠=o∵//BC AD∴180B BAD ∠+∠=o∴120B ∠=o22.解:(1)设小龙每分钟读x 个字,则小龙奶奶每分钟读(50)x -个字 根据题意,得1050130050x x=- 解得260x =经检验,260x =是所列方程的解,并且符合实际问题的意义.∵学校广播站招聘的条件是每分钟250-270字∴小龙符合学校广播站的应聘条件.(2)设小龙读了y 分钟,则小龙奶奶读了2y 分钟,由题意知(26050)22603200y y -⨯-≥解得20y ≥∴小龙至少读了20分钟.23.解:(1)是(2)由旋转知BAD CAE ∠=∠∵AB AC =,AD AE =∴ABD ∆≌ACE ∆(SAS )∴ABD ACE ∠=∠,BD CE = 利用三角形的中位线得12PN BD =,12PM CE =, ∴PM PN =由中位线定理可得//PM CE ,//PN BD∴DPM DCE ∠=∠,PNC DBC ∠=∠∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠∴MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠ BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠∵90BAC ∠=o∴90ACB ABC ∠+∠=o∴90MPN ∠=o∴PM 与PN 为“等垂线段”(3)PM 与PN 的积的最大值为49. 提示:12PM PN BD ==∴BD 最大时,PM 与PN 的积最大∴点D 在BA 的延长线上∴14BD AB AD =+=∴7PM =∴249PM PN PM •==八年级下学期期末考试数学试卷时量110分钟满分 120分一、选择题(每题3分,共36分)1.二次函数y=2(x-3)2-4的顶点为()A.(3,-4)B.(-3,4)C.(3,4)D.(-3,-4)2.若平行四边形中两个内角的度数比为 1:2,则其中较小的内角的度数为()A. 90° B.60° C.120° D.45°3.某中学足球队9名队员的年龄情况如下:年龄(单位:岁)14 15 16 17人数 1 4 2 2则该队队员年龄的众数和中位数分别是()A.15,15B.15,16C.15,17D.16,154.直线y=-3x+2不经过的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形6、解方程x2+4x+1=0时,经过配方得到()A. (x+2)2=5B. (x-2)2=5C.(x-2)2=3D.(x+2)2=37.一元二次方程x2+x-2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.一次函数y=-x+6的图象上有两点A(-1,1y),B(2,2y),则1y与2y的大小关系是()A.1y=2yB. 1y>2yC.1y<2yD.1y≥2y9、将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2B.y=(x+1)2+2C. y=(x-1)2-2D. y=(x+1)2-210、某商品原售价289元,经过连续两次降价后售价为256元, 设平均每次降价的百分率为x ,则下面所列方程中正确的是( )A. 289(1-x)2=256B. 256(1-x)2=289 C. 289(1-2x)=256 D. 256(1-2x)=28911、如图,在矩形ABCD 中,有以下结论:①△AOB 是等腰三角形;②ABO ADO S S △△=;③AC =BD ;④AC ⊥BD ;⑤当∠ABD =45°时,矩形ABCD 会变成正方形.正确结论的个数是( )A.2B.3C.4D.512、二次函数y=ax 2+bx+c 的图象如图所示,则下列关系式不正确的是( )A. a<0B. abc>0C. a+b+c=0D. b 2-4ac>0二、填空题(每题3分,共24分)13、已知函数y =2x +m -1是正比例函数,则m =___________.14、方程x2=x的解是___________.15、已知关于x的方程x2-3x+m=0的一个根是1,则一个根为________.16、甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如下表所示:则在这四个选手中,成绩最稳定的是。
2018-2019学年度下学期初二年级期末考试数学试题
2018---2019学年度第下学期期末质量监测初二数学试题考生注意:1、考试时间为120分钟 2、全卷共三道大题,总分120分题 号 一二三总 分核分人得 分题所给出的四个选项中,只有一项是符合题目要求的.) 1. 在下列各数π3,0,2.0&,722,Λ1010010001.6,11131,27,3.14,中无理数的个数是 ( ) A . 4 B . 3 C . 2 D . 1 2.-8的立方根是( ) A.2± B.2 C . -2 D .243.如果03)4(2=-+-+y x y x ,那么y x -2的值为( ) A.-3 B .3 C .-1 D .1 4. 点A (3,y 1,),B (-2,y 2)都在直线32+-=x y 上,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 2>y 1 C .y 1=y 2 D .不能确定 5. 如图1,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与 A 点重合,则EB 的长是( ).A .3B .4C .6D .56. 如图2,△ABC 中∠ACB =90°,且CD ∥AB ,∠B =60°,则∠1等于( )A . 30°B . 40°C . 50°D . 60°(图1) (图2) (图3)7.一根竹竿竖直插到水池中离岸边1.5m 远的水底,竹竿高出水面0.5m ,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为( ) A .2m B .2.5cm C .2.25m D .3m8. 如果直线y =2x +m 与两坐标轴围成的三角形面积等于m ,则m 的值是( )A .±3B .3C .±4D .49.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是( )A .将原图向左平移两个单位B .关于原点对称C .将原图向右平移两个单位D .关于y 轴对称10.一次函数y =-bx -k 的图象如下,则y =kx+b 的图象大致位置是( )二、填空题(本大题共10小题,每小题3分,共30分)11. 写出一个解是⎩⎨⎧==21y x 的二元一次方程组 .12. 如果x<-2 ,2)2(+x = 13.若|a ﹣3|+b 2﹣2b +1=0,则a +b = .14.如果某公司一销售人员的个人月收入与其每月的销售量成一次函数(如图3所示),那么此销售人员的销售量在4千件时的月收入是 元。
2018-2019学年八年级下期末数学试卷及答案
2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。
2018-2019学年八年级下期末数学试卷2(含答案解析)
2018-2019学年八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣22.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65 4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.109.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.810.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是.12.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD 的面积和对角线长.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试8085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是.24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣2【解答】解:由题意得:a+2≥0,解得:a≥﹣2,故选:B.2.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65【解答】解:由表可知1.75m出现次数最多,有4次,所以众数为1.75m,这15个数据最中间的数据是第8个,即1.70m,所以中位数为1.70m,故选:A.4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位【解答】解:要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象向上平移5个单位,故选:C.5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角【解答】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角.故选:D.6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)【解答】解:在y=3x﹣2中,∵k=3>0,∴y随x的增大而增大;∵b=﹣2<0,∴函数与y轴相交于负半轴,∴可知函数过第一、三、四象限;∵当x=﹣2时,y=﹣8,所以与x轴交于(﹣2,0)错误,∵当y=﹣2时,x=0,所以与y轴交于(0,﹣2)正确,故选:C.8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.10【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴AC==10,∴BO=AC=5.故选:A.9.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:A.10.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6【解答】解:联立两函数的解析式,得:,解得;即两函数图象交点为(﹣3,﹣2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而增大;因此当x=5时,m值最大,即m=6.故选:D.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是5.【解答】解:=5,故答案为:512.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=8.【解答】解:根据勾股定理得:a2+b2=c2,∵a=6,c=10,∴b===8,故答案为8.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD﹣AE=BC﹣AB=5﹣3=2.故答案为2.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为y=2x﹣7.【解答】解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,∴平行四边形OABC的对称中心D(4,1),设直线QD的解析式为y=kx+b,∴,∴,∴该直线的函数表达式为y=2x﹣7,故答案为:y=2x﹣7.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为87°.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠DAE=∠AEB,∵∠EAB=∠EAD,∴∠EAB=∠AEB,∴BA=BE,∵AB=AE,∴AB=BE=AE,∴∠B=∠BAE=∠AEB=60°,∴∠EAD=∠CDA=60°,∵EA=AB,CD=AB,∴EA=CD,∵AD=DA,∴∠AED≌△DCA,∴∠AED=∠DCA,∵AB∥CD,∴∠ACD=∠BAC=60°+27°=87°,∴∠AED=87°.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.【解答】解:∵AB∥CD,CD=BC=AB,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∴B、D关于AC对称,连接BE交AC于H′,连接DH′,此时DH′+EH′的值最小,最小值=BE,作AM⊥EC于M,EN⊥BA交BA的延长线于N.∵四边形ABCD是菱形,∴AD∥BC,∴∠ADM=∠BCD=30°,∵AD=2,∴AM=AD=1,∵∠AEC=45°,∴AM=EM=1,∵AM⊥CE,EN⊥BN,CE∥NB,∴∠AME=∠N=∠MAN=90°,∴四边形AMEN是矩形,∴AN=EM=AM=EN=1,在Rt△BNE中,BE===,故答案为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)【解答】解:原式=42﹣()2=16﹣7=9.18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD的面积和对角线长.【解答】解:连接BD.∵ABCD为正方形,∴∠A=∠C=90°.在Rt△BCE中,BC=.在Rt△ABD中,BD=.∴正方形ABCD的面积=.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【解答】解:(1)∵一次函数图象过原点,∴,解得:m=3(2)∵一次函数的图象经过第二、三、四象限,∴,∴1<m<3.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试908085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.【解答】解:(1)观察图象1可知:A的面试成绩为90分.故答案为90.条形图如图所示:(2)A的得票数:300×35%=105(人)B的得票数:300×40%=120(人)C的得票数:300×25%=75(人);(3)A的成绩:=93B的成绩:=96.5C的成绩:=83.5,故B学生成绩最高,能当选学生会主席.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.【解答】解:(1)∵A(0,3)、点B(3,0),∴直线AB的解析式为y=﹣x+3,由,解得,∴P(﹣3,6).(2)设Q(m,0),由题意:•|m﹣3|•6=6,解得m=5或1,∴Q(1,0)或(5,0).(3)当直线y=﹣2x+m经过点O时,m=0,当直线y=﹣2x+m经过点B时,m=6,∴若直线y=﹣2x+m与△AOB三条边只有两个公共点,则有0<m<6.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.【解答】解:(1)设每件A商品的单价是x元,每件B商品的单价是y元,由题意得,解得.答:A商品、B商品的单价分别是50元、40元;(2)当0<x≤10时,y=50x;当x>10时,y=10×50+(x﹣10)×50×0.6=30x+200;(3)设购进A商品a件(a>10),则B商品消费40a元;当40a=30a+200,则a=20所以当购进商品正好20件,选择购其中一种即可;当40a>30a+200,则a>20所以当购进商品超过20件,选择购A种商品省钱;当40a<30a+200,则a<20所以当购进商品少于20件,选择购B种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是MN=(BM+ND).【解答】证明:(1)延长NO交BM交点为F,如图∵四边形ABCD是菱形∴AC⊥BD,BO=DO∵DN⊥MN,BM⊥MN∴BM∥DN∴∠DBM=∠BDN,且BO=DO,∠BOF=∠DON∴△BOF≌△DON∴NO=FO,∵BM⊥MN,NO=FO∴MO=NO=FO(2)如图:延长MO交ND的延长线于F∵BM⊥PC,DN⊥PC∴BM∥DN∴∠F=∠BMO∵BO=OD,∠F=∠BMO,∠BOM=∠FOD ∴△BOM≌△FOD∴MO=FO∵FN⊥MN,OF=OM∴NO=OM=OF(3)如图:∵∠BAD=120°,四边形ABCD是菱形,∴∠ABC=60°,AC⊥BD∵∠OBC=30°∵BM⊥PC,AC⊥BD∴B,M,C,O四点共圆∴∠FMN=∠OBC=30°∵FN⊥MN∴MN=FN=(BM+DN)答案为MN=(BM+FN)24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.【解答】解:(1)▱A′B′CD如图所示,A′(2,2t).(2)∵C′(6,t),A(2,0),=12t﹣×2×2t﹣×6×t﹣×4×t=9.∵S△OA′C∴t=.(3)∵D(0,t),B(6,0),∴直线BD的解析式为y=﹣x+t,∴线BD沿x轴的方向平移m个单位长度的解析式为y=﹣x+(6+m),把点A(2,2t)代入得到,2t=﹣+t+,解得m=8.。
[精品]2018-2019学年度八年级(下)期末数学试卷及解析(十二)-打印版-
2018-2019学年度八年级(下)期末数学试卷(十二)班级 姓名 一、选择题(本题共12个小题,每小题2分,共24分)1.的值等于( )A.4B.±4C.±2D.22.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ) A.3,4,5 B.7,24,25 C.1,,D.2,3,43.某班为筹备毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,最终确定买什么水果,则最值得关注的调查数据是( )A.中位数B.平均数C.众数D.方差4.下列二次根式中,最简二次根式是( ) A.B.C.D.5.如果代数式有意义,那么x 的取值范围是( )A.x ≥0B.x ≠1C.x >0D.x ≥0且x ≠16.如图,四边形ABCD 的对角线交于O,下列哪组条件不能判断ABCD 是平行四边形( ) A.OA=OC,OB=OD B.AB=CD,AO=COC.AD ∥BC,AD=BCD.∠BAD=∠BCD,AB ∥CD7.下列计算正确的是( )A.﹣=B.3+=4C.÷=6 D.×(﹣)=38.如图,数轴上的点A 所表示的数为x,则x 的值为( )A.B.+1 C.﹣1 D.1﹣9.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为( ) A.3.5,3B.3,4C.3,3.5D.4,310.如图,在菱形ABCD 中,BE ⊥AD 于E,BF ⊥CD 于F,且AE=DE,则∠EBF 的度数是( ) A.75° B.60° C.50° D.45°11.对于一次函数y=﹣2x +4,下列结论错误的是( ) A.若两点A(x 1,y 1),B(x 2,y 2)在该函数图象上,且x 1<x 2,则y 1>y 2 B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x 的图象D.函数的图象与x 轴的交点坐标是(0,4)12.甲、乙两车从A 城出发前往B 城,在整个行驶过程中,汽车离开A 城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有( )①甲车的速度为50km/h ②乙车用了3h 到达B 城③甲车出发4h 时,乙车追上甲车 ④乙车出发后经过1h 或3h 两车相距50km. A.1个 B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)13.某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:甲=1.69m,乙=1.69m,s =0.0006,s =0.0315,则这两名运动员中的 的成绩更稳定.14.对于正比例函数y=mx |m |﹣1,若y 的值随x 的值增大而减小,则m 的值为 . 15. 小明在七年级第二学期的数学成绩如表,如果按如图显示的权重要求,那么小明该 学期的总评得分为 .16.菱形ABCD 的边AB 为5,对角线AC 为8,则菱形ABCD 的面积为 .17.如图,函数y=ax ﹣1的图象过点(1,2),则不等式ax ﹣1>2的解集是 .18.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8,在OC 边上取一点D,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,则D 点的坐标是 .三、解答题(本大题共7小题,共58分) 19.(1)计算:﹣(﹣2)+(﹣1)0﹣()﹣1 +(2)比较与0.5的大小.20.已知x=2﹣,y=2+,求代数式的值:(1)x 2+2xy +y 2; (2)x 2﹣y 2.第6题图第8题图第10题图第16题图第17题图第18题图21.在一次课外实践活动中,同学们要知道校园内A,B 两处的距离,但无法直接测得.已知校园内A 、B 、C 三点形成的三角形如图所示,现测得AC=6m,BC=14m,∠CAB=120°,请计算A,B 两处之间的距离.22.某厂生产A,B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B 产品单价变化统计表并求得了A 产品三次单价的平均数和方差:=5.9,s A 2= [(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1) 在折线图中画出B 产品的 单价变化的情况;(2)求B 产品三次单价的方差;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m%(m >0),但调价 后不能超过4元/件,并且使得A 产品这四次单价的 中位数是B 产品四次单价中位数的2倍少1,求m 的值.23.如图,函数y=﹣2x +3与y=﹣x +m 的图象交于P(n,﹣2). (1)求出m 、n 的值; (2)求出△ABP 的面积.24. 已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E,使CE=CG,连接BG 并延长交DE 于F. (1)求证:△BCG ≌△DCE ;(2)将△DCE 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由.25.某超市经销A 、B 两种商品,A 种商品每件进价20元,售价30元;B 种商品每件进价35元,售价48元. (1)该超市准备用800元去购进A 、B 两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大?(其中B 种商品不少于7件)(2)在“五•一”期间,该商场对A 、B 两种商品进行优惠促销活动:促销活动期间小颖去该超市购买A 种商品,小华去该超市购买B 种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?2018-2019学年度八年级(下)期末数学试卷(十二)参考答案与试题解析一、选择题(本题共12个小题,每小题2分,共24分) 1.的值等于( ) A.4 B.±4 C.±2 D.2 【考点】22:算术平方根.【分析】直接利用算术平方根的定义求出即可. 【解答】解:=2.故选:D.2.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ) A.3,4,5 B.7,24,25C.1,,D.2,3,4【考点】KS :勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【解答】解:A 、∵32+42=25=52,∴能够成直角三角形,故本选项不符合题意; B 、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意; C 、∵12+()2=3=2,∴能够成直角三角形,故本选项不符合题意;D 、∵22+32=13≠(4)2,∴不能够成直角三角形,故本选项符合题意.故选D.3.某班为筹备毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,最终确定买什么水果,则最值得关注的调查数据是( ) A.中位数B.平均数C.众数D.方差【考点】WA :统计量的选择.【分析】班长最值得关注的应该是哪种水果爱吃的人数最多,即众数.【解答】解:由于众数是数据中出现次数最多的数,故班长最值得关注的应该是统计调查数据的众数.故选C.4.下列二次根式中,最简二次根式是( ) A.B. C. D.【考点】74:最简二次根式.【分析】A 选项的被开方数中,含有能开得尽方的因式a 2;B 、C 选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.D 选项的被开方数是个平方差公式,它的每一个因式的指数都是1,所以D 选项符合最简二次根式的要求.【解答】解:因为:A 、=|a |;B 、=;C 、=;所以,这三个选项都可化简,不是最简二次根式. 故本题选D.5.如果代数式有意义,那么x 的取值范围是( )A.x ≥0B.x ≠1C.x >0D.x ≥0且x ≠1【考点】62:分式有意义的条件;72:二次根式有意义的条件. 【分析】代数式有意义的条件为:x ﹣1≠0,x ≥0.即可求得x 的范围.【解答】解:根据题意得:x ≥0且x ﹣1≠0. 解得:x ≥0且x ≠1.故选:D.6.如图,四边形ABCD 的对角线交于点O,下列哪组条件不能判断四边形ABCD 是平行四边形( )A.OA=OC,OB=OD B .AB=CD,AO=CO C.AD ∥BC,AD=BCD.∠BAD=∠BCD,AB ∥CD【考点】L6:平行四边形的判定.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A 、根据对角线互相平分,可得四边形是平行四边形,可以证明四边形ABCD 是平行四边形,故本选项错误;B 、AB=CD,AO=CO 不能证明四边形ABCD 是平行四边形,故本选项正确;C 、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD 是平行四边形,故本选项错误;D 、根据AB ∥CD 可得:∠ABC +∠BCD=180°,∠BAD +∠ADC=180°,又由∠BAD=∠BCD 可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定,故本选项错误; 故选:B.7.下列计算正确的是( ) A.﹣=B.3+=4C.÷=6 D.×(﹣)=3【考点】79:二次根式的混合运算.【分析】对每一个选项先把各二次根式化为最简二次根式,再进行计算. 【解答】解:A.﹣不能计算,故A 选项错误; B.3+=4,故B 选项正确; C.÷=3÷=,故C 选项错误;D.×(﹣)=﹣3,故D 选项错误;故选B.8.如图,数轴上的点A 所表示的数为x,则x 的值为( )A. B. +1 C.﹣1 D.1﹣【考点】29:实数与数轴.【分析】由题意,利用勾股定理求出点A 到﹣1的距离,即可确定出点A 表示的数x. 【解答】解:根据题意得:x=﹣1=﹣1,故选C9.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为( )A.3.5,3B.3,4C.3,3.5D.4,3【考点】W4:中位数;W1:算术平均数.【分析】根据题意可知x=2,然后根据平均数、中位数的定义求解即可. 【解答】解:∵这组数据的众数是2, ∴x=2,将数据从小到大排列为:2,2,2,4,4,7, 则平均数=(2+2+2+4+4+7)÷6=3.5, 中位数为:3.故选:A.10.如图,在菱形ABCD 中,BE ⊥AD 于E,BF ⊥CD 于F,且AE=DE,则∠EBF 的度数是( )A.75°B.60°C.50°D.45°【考点】L8:菱形的性质.【分析】连结BD,如图,先利用线段垂直平分线的性质得到BA=BD,再根据菱形的性质得AB=AD,AB ∥CD,则可判断△ABD 为等边三角形得到∠A=60°,再计算出∠ADC=120°,然后利用四边形内角和可计算出∠EBF 的度数. 【解答】解:连结BD,如图, ∵BE ⊥AD,AE=DE, ∴BA=BD,∵四边形ABCD 为菱形, ∴AB=AD,AB ∥CD, ∴AB=AD=BD,∴△ABD 为等边三角形, ∴∠A=60°, ∵AB ∥CD, ∴∠ADC=120°, ∵BF ⊥CD,∴∠EBF=360°﹣120°﹣90°﹣90°=60°. 故选B.11.对于一次函数y=﹣2x+4,下列结论错误的是()A.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1>y2B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)【考点】F5:一次函数的性质.【分析】根据一次函数的性质对各选项进行判断.【解答】解:A、若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1>y2,所以A选项的说法正确;B、函数的图象经过第一、二、四象限,不经过第三象限,所以B选项的说法正确;C、函数的图象向下平移4个单位长度得y=﹣2x的图象,所以C选项的说法正确;D、函数的图象与y轴的交点坐标是(0,4),所以D选项的说法错误.故选D.12.甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ②乙车用了3h到达B城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.A.1个B.2个C.3个D.4个【考点】FH:一次函数的应用.【分析】根据路程、时间和速度之间的关系判断出①正确;根据函数图象上的数据得出乙车到达B城用的时间,判断出②正确;根据甲的速度和走的时间得出甲车出发4h时走的总路程,再根据乙的总路程和所走的总时间求出乙的速度,再乘以2小时,求出甲车出发4h时,乙走的总路程,从而判断出③正确;再根据速度×时间=总路程,即可判断出乙车出发后经过1h或3h,两车相距的距离,从而判断出④正确.【解答】解:①甲车的速度为=50km/h,故本选项正确;②乙车到达B城用的时间为:5﹣2=3h,故本选项正确;③甲车出发4h,所走路程是:50×4=200(km),甲车出发4h时,乙走的路程是:×2=200(km),则乙车追上甲车,故本选项正确;④当乙车出发1h时,两车相距:50×3﹣100=50(km),当乙车出发3h时,两车相距:100×3﹣50×5=50(km),故本选项正确;故选D.二、填空题(本大题共6小题,每小题3分,共18分)13.某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:甲=1.69m,乙=1.69m,s=0.0006,s=0.0315,则这两名运动员中的甲的成绩更稳定.【考点】W7:方差.【分析】根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【解答】解:∵S2甲=0.0006,S2乙=0.0315,∴S2甲<S2乙,∴这两名运动员中甲的成绩更稳定.故答案为:甲.14.对于正比例函数y=mx|m|﹣1,若y的值随x的值增大而减小,则m的值为﹣2.【考点】F6:正比例函数的性质.【分析】根据正比例函数的意义,可得答案.【解答】解:∵y的值随x的值增大而减小,∴m<0,∵正比例函数y=mx|m|﹣1,∴|m|﹣1=1,∴m=﹣2,故答案为:﹣215.小明在七年级第二学期的数学成绩如表,如果按如图显示的权重要求,那么小明该学期的总评得分为 87 .【考点】W2:加权平均数.【分析】根据平时,期中以及期末的成绩乘以各自的百分比,结果相加即可得到总得分. 【解答】解:根据题意得:90×10%+90×30%+85×60%=9+27+51=87(分), 则小明该学期的总评得分为87,故答案为:87.16.菱形ABCD 的边AB 为5,对角线AC 为8,则菱形ABCD 的面积为 24 .【考点】L8:菱形的性质.【分析】连接BD,交AC 于O,根据菱形的两条对角线互相垂直且平分可得AO=CO=AC=4,BO=DO,CA ⊥BD,然后利用勾股定理计算出BO 的长,进而可得BD 长,再利用菱形的面积公式进行计算即可.【解答】解:连接BD,交AC 于O, ∵四边形ABCD 是菱形,∴AO=CO=AC=4,BO=DO,CA ⊥BD,∵AB=5, ∴BO==3,∴BD=6,∴菱形ABCD 的面积为:6×8=24,故答案为:24.17.如图,函数y=ax ﹣1的图象过点(1,2),则不等式ax ﹣1>2的解集是 x >1 .【考点】FD :一次函数与一元一次不等式.【分析】根据已知图象过点(1,2),根据图象的性质即可得出y=ax ﹣1>2的x 的范围是x >1,即可得出答案.【解答】解:方法一∵把(1,2)代入y=ax ﹣1得:2=a ﹣1, 解得:a=3, ∴y=3x ﹣1>2,解得:x >1,方法二:根据图象可知:y=ax ﹣1>2的x 的范围是x >1, 即不等式ax ﹣1>2的解集是x >1,故答案为:x>1.18.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8,在OC 边上取一点D,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,则D 点的坐标是 (0,5) .【考点】PB :翻折变换(折叠问题);D5:坐标与图形性质;LB :矩形的性质.【分析】先由矩形的性质得到AB=OC=8,BC=OA=10,再根据折叠的性质得AE=AO=10,DE=DO,在Rt△ABE中,利用勾股定理可计算出BE=6,则CE=BC﹣BE=4,设OD=x,则DE=x,DC=8﹣x,在Rt △CDE中根据勾股定理有x2=(8﹣x)2+42,解方程求出x,即可确定D点坐标.【解答】解:∵四边形ABCD为矩形,∴AB=OC=8,BC=OA=10,∵纸片沿AD翻折,使点O落在BC边上的点E处,∴AE=AO=10,DE=DO,在Rt△ABE中,AB=8,AE=10,∴BE==6,∴CE=BC﹣BE=4,设OD=x,则DE=x,DC=8﹣x,在Rt△CDE中,∵DE2=CD2+CE2,∴x2=(8﹣x)2+42,∴x=5,∴D点坐标为(0,5).故答案为(0,5).三、解答题(本大题共7小题,共58分)19.(1)计算:﹣(﹣2)+(﹣1)0﹣()﹣1+(2)比较与0.5的大小.【考点】2C:实数的运算;2A:实数大小比较;6E:零指数幂;6F:负整数指数幂.【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)应用放缩法,比较与0.5的大小即可.【解答】解:(1)﹣(﹣2)+(﹣1)0﹣()﹣1+=3+2+1﹣3+3=6(2)∵>==0.5,∴>0.5.20.已知x=2﹣,y=2+,求代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.【考点】76:分母有理化.【分析】(1)直接利用完全平方公式分解因式进而代入计算得出答案;(2)直接利用平方差公式分解因式进而代入计算得出答案.【解答】解:(1)x2+2xy+y2=(x+y)2=[(2﹣)+(2+)]2=42=16;(2)x2﹣y2=(x+y)(x﹣y)=(2﹣+2+)(2﹣﹣2﹣)=4×(﹣2)=﹣8.21.在一次课外实践活动中,同学们要知道校园内A,B两处的距离,但无法直接测得.已知校园内A、B、C三点形成的三角形如图所示,现测得AC=6m,BC=14m,∠CAB=120°,请计算A,B两处之间的距离.【考点】KU:勾股定理的应用.【分析】过C作CH⊥AB于H构造直角三角形,在两个直角三角形中分别求得BH、AH,相减即可求得AB的长.【解答】解:过C作CH⊥AB于H,∵∠CAB=120°,∴∠CAH=60°,∵AC=6,∴AH=3,HC=,在Rt△BCH中,∵BC=14,HC=,∴BH=∴AB=BH﹣AH=13﹣3=10即A,B两处之间的距离为10米.22.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表=5.9,s A2= [(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)在折线图中画出B产品的单价变化的情况;(2)求B产品三次单价的方差;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),但调价后不能超过4元/件,并且使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.【考点】VD:折线统计图;W2:加权平均数;W4:中位数;W7:方差.【分析】(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.【解答】解:(1)如图2所示:(2)=(3.5+4+3)=3.5,S==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m>0,∴第四次单价大于3,∵第四次单价小于4,∴×2﹣1=,∴m=25.23.如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2).(1)求出m、n的值;(2)求出△ABP的面积.【考点】FF:两条直线相交或平行问题.【分析】(1)先把P(n,﹣2)代入y=﹣2x+3即可得到n的值,从而得到P点坐标为(,﹣2),然后把P点坐标代入y=﹣x+m可计算出m的值;(2)解方程确定A,B点坐标,然后根据三角形面积公式求解.【解答】解:(1)∵y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2).∴﹣2=﹣2n+3,∴n=,∴P(,﹣2),∴﹣2=﹣×+m,∴m=﹣;(2)∵在y=﹣2x+3中,令x=0,得y=3,∴A(0,3),∵在y=﹣x﹣中,令x=0,得y=﹣,∴B(0,﹣),∴AB=,∴△ABP的面积=×=.24.已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.【考点】L6:平行四边形的判定;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】(1)由正方形ABCD,得BC=CD,∠BCD=∠DCE=90°,又CG=CE,所以△BCG≌△DCE(SAS).(2)由(1)得BG=DE,又由旋转的性质知AE′=CE=CG,所以BE′=DG,从而证得四边形E′BGD为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°.∵∠BCD+∠DCE=180°,∴∠BCD=∠DCE=90°.又∵CG=CE,∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′.∵CE=CG,∴CG=AE′.∵四边形ABCD是正方形,∴BE′∥DG,AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.25.某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大?(其中B种商品不少于7件)(2)在“五•一”期间,该商场对A、B两种商品进行如下优惠促销活动:B种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?【考点】FH:一次函数的应用.【分析】利润=(售价﹣进价)×件数,总价=A进价×A件数+B进价×B件数,可得到一个一次函数,再由一次函数的性质,可得出y和w的值.所购件数=总价÷售价.小华的付款不是48的整数倍,则说明,他享受了优惠,应该是打八折.【解答】解:(1)设购进A、B两种商品分别为x件、y件,所获利润w元则:,解之得,∵w是y的一次函数,随y的增大而减少,又∵y是大于等于7的整数,且x也为整数,∴当y=8时,w最大,此时x=26所以购进A商品26件,购进B商品8件才能使超市经销这两种商品所获利润最大;(2)∵300×0.8=240,210<240,∴小颖去该超市购买A种商品:210÷30=7(件)又268.8不是48的整数倍∴小华去该超市购买B种商品:268.8÷0.8÷48=7(件)小明一次去购买小颖和小华购买的同样多的商品:7×30+7×48=546>400小明付款为:546×0.7=382.2(元)答:小明付款382.2元.。
2018-2019学年下学期人教版八年级期末考试数学试题(含答案)
2018-2019学年八年级下学期期末考试数学试题一、选择题(本大题共10小题,共20.0分)1.若分式的值为零,则x的值为()A. B. C. 2 D. 32.若y2-4y+m=(y-2)2,则m的值为()A. B. C. 2 D. 43.不等式组的解集为()A. B. C. D.4.如图所示,△ABC的边AC的垂直平分线DE交边AB于点D,交边AC于点E,若∠A=50°,则∠BDC的度数为()A. 50B.C.D.5.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A. B. C. D.6.如图,在△ABC中,∠ACB=90°,点D,E,F分别是边AB,BC,CA的中点,若EF=3,则CD的长是()A. 3B. 2C.D. 17.如图,EF过▱ABCD的对角线的交点O,交AD于点E,交BC于点F.若▱ABCD的周长为10,OE=1,线则四边形EFCD的周长为()A. 8B. 7C. 6D. 58.如图所示,甲、乙是两张画有图形的透明胶片,把其中一张通过平移、旋转后与另一张重合,形成的图形不可能是()A. B. C. D.9.如图,AD是△ABC的角平分线,DE,DF分别是△ABD,△ACD的高,连接EF,交AD于点O,则下面四个结论:①OA=OD;②AD EF;③当AE=6时,四边形AEDF的面积为36;④AE2+DF2=AF2+DE2.其中正确的是()A. ②③B. ②④C. ①③④D. ②③④10.如图,在△AOB中,已知∠AOB=90°,AO=3,BO=4.将△AOB绕顶点O按顺时针方向旋转α(0°<α<90°)到△A1OB1处,此时线段OB1与边AB的交点为点D,则在旋转过程中,线段B1D长的最大值为()A.B. 5C.D.二、填空题(本大题共6小题,共12.0分)11.▱ABCD的边AB=6,则边CD的长为______.12.因式分解:1-9b2=______.13.一个凸多边形的内角和是其外角和的2倍,则这个多边形是______边形.14.如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE CD于点E,GF BC于点F,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F,若小敏行走的路程为310m,小聪行走的路程为460m,则AB 长为______m.15.若关于x的分式方程+=4的解为正数,则a的取值范围为______.16.如图,点D在△ABC的边AB上,连接CD,若△ACD为等腰三角形,∠BCD=∠A=48°,则∠ACB的度数为______.三、计算题(本大题共3小题,共24.0分)17.计算:(m+2-)•18.定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2.(1)(-2018)⊕(-2019)=______;(2)若(-3p+5)⊕8=8,求p的负整数值.19.某超市在2016年和2017年都销售一种礼盒.2016年,该超市用3500元购进了这种礼盒且全部售完;2017年,这种礼盒的进价比2016年下降了11元/盒,该超市用2400元购进了与2016年相同数量的这种礼盒也全部售完,这两年该礼盒的售价均为60元/盒.(1)2016年这种礼盒的进价是多少元盒?(2)求这两年销售该种礼盒的总利润为多少?四、解答题(本大题共6小题,共44.0分)20.解不等式:4x+5>2(x+1)21.如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在下面每个图形中,选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形.22.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,已知DE∥BC,∠ADE=∠EFC.求证:四边形BDEF是平行四边形.23.若一个长方形的面积S=x3+2x2+x(x>0),且一条边a=(x+1)2,求另一条边b的长.24.如图,在矩形ABCD中,AB=6,BC=4,动点P在边AB上,连接CP,将△CPB沿CP所在的直线翻折得到△CPE,延长PE交CD的延长线于点F.(1)求证:FC=FP;(2)当BP=1时,求DF的长.上一点,过点E作ED AC于点D,过点D作DF BC于点F.①若AE=7,求BF的长;②连接EF,若EF AB,求AE的长;(2)已知正方形ABCD的边长为10,点E是边AB上一点,过点E作∠AEF=60°交边AD于点F,再过点F作∠DFG=60°交边CD于点G,继续过点G作∠CGH=60°交边BC于点H,连接EH,若∠BHE=60°,请直接写出AE的长.答案和解析1.【答案】D【解析】解:由题意得:x-3=0,且2x+3≠0解得:x=3,故选:D.根据分式值为零的条件可得x-3=0,且2x+3≠0,再解即可.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.2.【答案】D【解析】解:y2-4y+m=(y-2)2=y2-4y+4,则m=4.故选:D.直接利用完全平方公式将原式变形进而得出答案.此题主要考查了完全平方公式,正确记忆公式是解题关键.3.【答案】C【解析】解:解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选:C.先求出每个不等式的解集,再求出每个解集的公共部分即可.本题考查了解一元一次不等式组的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.4.【答案】B【解析】解:∵△ABC的边AC的垂直平分线DE交边AB于点D,交边AC于点E,∴AD=DC,∴∠A=∠ACD,∵∠A=50°,∴∠ACD=50°,∴∠BDC=∠A+∠ACD=50°+50°=100°,故选:B.根据线段垂直平分线的性质得出AD=DC,推出∠A=∠ACD=50°,根据三角形外角的性质得出即可.本题考查了等腰三角形的性质、线段垂直平分线的性质、三角形外角的性质等知识点,能根据线段垂直平分线的性质得出AD=DC是解此题的关键.5.【答案】C【解析】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.根据平行四边形的性质.菱形的判定方法即可一一判断.本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.6.【答案】A【解析】解:∵点D,E,F分别是边AB,BC,CA的中点,EF=3,∴AB=6,∵在△ABC中,∠ACB=90°,CD是斜边的中线,∴CD=3,故选:A.根据三角形的中位线定理得出AB,再利用直角三角形斜边上的中线等于斜边的一半求得CD的长即可.本题考查了直角三角形的性质以及三角形的中位线定理,求得AB的长是本题的关键.7.【答案】B【解析】解:∵四边形ABCD是平行四边形,周长为10,∴AB=CD,BC=AD,OA=OC,AD∥BC,∴CD+AD=5,∠OAE=∠OCF,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴OE=OF=1,AE=CF,则EFCD的周长=ED+CD+CF+EF=(DE+CF)+CD+EF=AD+CD+EF=5+2=7.故选:B.先利用平行四边形的性质求出AB=CD,BC=AD,AD+CD=5,可利用全等的性质得到△AEO≌△CFO,求出OE=OF=1,即可求出四边形的周长.本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.8.【答案】B【解析】解:把甲平移,使甲乙的中心重合可得到A选项中的图形;把甲绕其中心逆时针旋转90度后平移,使甲乙的中心重合可得到C选项中的图形;把甲绕其中心旋转180度后平移,使甲乙的中心重合可得到D选项中的图形.故选:B.把乙图形不变,然后旋转甲,再进行平移可对各选项进行判断.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平移的性质.9.【答案】B【解析】解:根据已知条件不能推出OA=OD,∴①错误;∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD EF,∴②正确;当AE=6时,∵无法知道DE的长,∴四边形AEDF的面积不能确定,故③错误,∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正确;∴②④正确,故选:B.根据角平分线性质求出DE=DF,证△AED≌△AFD,推出AE=AF,再一一判断即可.本题考查了全等三角形的性质和判定,正方形的判定,角平分线性质的应用,能求出Rt△AED≌Rt△AFD是解此题的关键.10.【答案】D【解析】解:因为OB1的长度是定值,所以当OD最短即可OD AB时,B1D长的取最大值.∵如图,在△AOB中,已知∠AOB=90°,AO=3,BO=4,∴AB===5,则OA•OB=AB•OD,OD===.由旋转的性质知:OB1=OB=4,∴B1D=OB1-OD=4-=.即线段B1D长的最大值为.故选:D.因为OB1的长度是定值,所以当OD最短即可OD AB时,B1D长的取最大值,所以利用等面积法求得OD的长度即可.考查了旋转的性质和勾股定理,根据题意得到“当OD AB时,B1D长的取最大值”是解题的难点.11.【答案】6【解析】解:∵四边形ABCD是平行四边形,∴AB=CD=6,故答案为:6.根据平行四边形的性质:对边相等解答即可.本题考查了平行四边形的性质,熟记平行四边形的各种性质是解题的关键.12.【答案】(1+3b)(1-3b)【解析】解:原式=(1+3b)(1-3b).故答案为:(1+3b)(1-3b).直接利用平方差公式分解因式得出答案.此题主要考查了平方差公式分解因式,熟练应用公式是解题关键.13.【答案】6【解析】解:设多边形边数为n.则360°×2=(n-2)•180°,解得n=6.故答案为:6.多边形的外角和是360度,多边形的内角和是它的外角和的2倍,则多边形的内角和是720度,根据多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.本题主要考查了多边形内角和公式及外角的特征,求多边形的边数,可以转化为方程的问题来解决.14.【答案】150【解析】解:连接GC,如下图∵四边形ABCD为正方形于是可得:AD=CD,∠ADG=∠CDG=45°,DG=DG∴△ADG≌△CDG(SAS)∴AG=GC而GE CD,GF BC∴四边形GECF是矩形∴GC=EF∴AG=EF又∵GE CD,∠BDC=45°∴△DEG是等腰直角三角形,即GE=DE若设小敏行走的路程为m,小聪行走的路程为n,则m=BA+AG+GE,n=BA+AD+DE+EF=2BA+DE+EF由AG=EF,GE=DE∴n-m=(2BA+DE+EF)-(BA+AG+GE)=AB即AB=n-m=460-310=150故答案为150.设小敏行走的路程为m,小聪行走的路程为n,则m=BA+AG+GE,n=BA+AD+DE+EF.可连接GC,通过证明△ADG≌△CDG,可得AG=GC=EF,而DE=GE,于是可得AB=n-m,即可得AB的长度.本题考查了正方形与矩形的性质,能准确发现小敏与小聪的路程差的意义是解决问题的关键.15.【答案】a<6且a≠2【解析】解:方程两边同乘(x-1)得:2-a=4(x-1),解得:x=,∵x>0且x-1≠0,∴,解得:a<6且a≠2,故答案为:a<6且a≠2.方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a的式子,解为正数且最简公分母不为零,得到关于a的一元一次不等式,解之即可.本题考查分式方程的解和解一元一次不等式,根据不等量关系列出一元一次不等式是解题的关键.16.【答案】114°或96°【解析】解:当AC=AD时,∠ACD=∠ADC=(180°-∠A)=66°,∴∠ACB=∠ACD+∠BCD=114°;当DA=DC时,∠ACD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°;当CA=CD时,∠ADC=∠A=48°,∵∠ADC=∠BCD+∠B,∴∠ADC>∠BCD=48°,∴该情况不合适,舍去.故答案为:114°或96°.分AC=AD、DA=DC、CA=CD(当CA=CD时,利用三角形的外角性质找出该情况不符合题意)三种情况考虑,根据等腰三角形的性质结合三角形内角和定理,可求出∠ACD的度数,再利用∠ACB=∠ACD+∠BCD即可求出结论.本题考查了等腰三角形的性质、三角形内角和定理以及三角形的外角性质,分AC=AD、DA=DC、CA=CD三种情况考虑是解题的关键.17.【答案】解:原式=(-)•=•=-2(m+3)=-2m-6.【解析】先计算括号内分式的减法,再计算乘法即可得.本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.18.【答案】-2018【解析】解:(1)∵-2018>-2019,∴(-2018)⊕(-2019)=-2018,故答案为:-2018;(2)∵(-3p+5)⊕8=8,∴-3p+5≤8,解得:p≥-1,∴p的负整数值为-1.(1)根据定义运算可得.(2)先根据题中所给的条件得出关于p的不等式,求出p的取值范围即可.本题考查的是解一元一次不等式,根据题意得出关于p的不等式是解答此题的关键.19.【答案】解:(1)设2016年这种礼盒的进价为x元/盒根据题意得:解得:x=35经检验x=35是分式方程的解答2016年这种礼盒的进价是35元/盒(2)购买盒数:这两年销售该种礼盒的总利润为:100×(60-35)+100×[60-(35-11)]=2500+3600=6100答总利润为6100元.【解析】(1)设2016年这种礼盒的进价为x元/盒,根据该超市用2400元购进了与2016年相同数量的这种礼盒,列出分式方程,解之并检验,可得结论.(2)根据总利润=2014年利润+2016年利润,列出式子计算可得.本题考查了一元二次方程的应用以及分式方程的应用,解题的关键是找准等量关系,列出分式方程.20.【答案】解:4x+5>2x+2,4x-2x>2-5,2x>-3,x>-.【解析】依次去括号、移项、合并同类项即可得.本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的基本步骤.21.【答案】解:(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示;【解析】根据中心对称图形,画出所有可能的图形即可.本题考查中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】证明:∵DE∥BC,∴∠ADE=∠B,∵∠ADE=∠EFC,∴∠EFC=∠B,∴EF∥AB,∴四边形BDEF是平行四边形.【解析】想办法证明EF∥AB即可解决问题;本题考查平行四边形的判定、平行线的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【答案】解:∵S=x(x2+2x+1)=x(x+1)2∴另一条边b的长为:x(x+1)2÷(x+1)2=x,故另一边为x【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.【答案】解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FCP=∠BPC.由翻折的性质可知:∠FCP=∠EPC,∴∠BPC=∠EPC,∴FC=FP.(2)∵四边形ABCD是矩形,∴CD=AB=6.由翻折的性质可得到CE=BC=,EP=BP=1,∠CEP=∠CBP=∠CEF=90°.设DF=x,则CF=CD+DF=6+x,EF=FP-EP=6+x-1=5+x.在Rt△CEF中,由勾股定理得:CE2+EF2=CF2,即42+(5+x)2=(6+x)2,解得:x=,∴DF=.【解析】(1)首先依据平行线的性质和翻折的性质证明∠BPC=∠EPC,然后依据等角对等边的性质进行证明即可;(2)设DF=x,则CF=6+x,EF=5+x,然后在Rt△CEF中,依据勾股定理列方程求解即可.本题主要考查的是翻折的性质、勾股定理的应用,熟练掌握相关知识是解题的关键.25.【答案】解:(1)①∵△ABC是等边三角形∴AB=AC=BC=10,∠A=60°=∠B=∠C且DE AC,DF BC∴∠AED=∠FDC=30°∵AE=7,DE AC,∠EAD=30°∴AD=,∴CD=且DF BC,∠CDF=30°∴CF=∴BF=②如图1连接EF∵EF AB,ED AC,DF BC,∠A=∠B=∠C=60°∴∠AED=∠CDF=∠EFB=30°,∴∠EDF=∠DFE=∠DEF=60°∴△DEF是等边三角形,∴DE=DF=EF且∠A=∠B=∠C,∠AED=∠CDF=∠EFB=30°∴△ADE≌△BEF≌△DCF∴AD=CF=BE,AE=BF=CD∵∠EFB=30°,EF AB∴BF=2BE即AE=2BE∵AE+BE=10∴BE=,AE=(2)∵ABCD为正方形∴∠A=∠B=∠C=∠D=90°,AB=AD=CD=BC∵∠AEF=∠DFG=∠HGC=∠EHB=60°∴∠GHC=∠BEH=∠AFE=∠FGD=30°,BE=BH,AF=AE ∴∠FEH=∠EHG=∠HGF=∠EFG=90°∴EFGH是矩形∴EH=FG,EF=HG,∵∠A=∠C=90°,EF=HG,∠AEF=∠HGC=60°∴△AEF≌△HGC∴AE=CG,AF=CH同理可得AF=CH设AE=a,∴AF=a,∴∴BH=10-a,∵BE=BH=10-3a,∵AE+BE=10∴10a-3a+a=10∴a=5-5∴AE=5-5【解析】(1)①根据直角三角形中,30°所对的直角边是斜边的一半,可依次求AD,FC的长,则BF的长可求②先证△EDF是等边三角形,再证△ADE≌△BEF≌△DFC,可得AE=BF=CD,BE=CF=AD,即可求AE的长(2)先证EFGH是矩形,可得EF=HG,EH=FG,根据三角函数可求AF= AE,BE=BH,即可求AE的长度.本题考查了等边三角形的性质和判定,正方形的性质,锐角三角函数,关键是灵活运用这些性质解决问题.。
2018至2019第二学期八年级数学试卷(含答案)
图3 2018—2019学年度第二学期期末教学质量检测试卷 八年级 数学(总分:100分 作答时间:100分钟)一、选择题(本题共10小题,每小题3分,共30分. 在每小题给出的四个选项中只有一项是符合要求的。
)1、下列式子中,是最简二次根式的是( )A. 21B. 313C. 51 D.8 2、已知一个直角三角形的两边长分别为3和5,则第三边的长是( ) A.5 B.4 C. 34 D.4或343.如图1,在□ABCD 中,O 是对角线AC ,BD 的交点,下列结论中错误的是( )A. AB ∥CDB.AB=CDC. AC=BDD.OA=OC4、如图2,函数3221+=-=ax y x y 与的图像相交于点 A (m ,2),则关于x 的不等式32+>-ax x 的解集是( )A.x>2B. x<2C.x>-1D.x<-15、在某次义务植树活动中,10名同学植树的棵数如图3所示.若他们植树的棵树的平均数是a 棵,中位数是b 棵,众数是c 棵,则下列结论中正确的是( )A. a=bB. b>aC. b=cD. c>b6、如图4,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,∠ACD=3∠AB 上的中点,则∠ECD 的度数是( )A. 30°B. 45°C. 50°D.55°7、小李与小陆从A 地出发,骑自行车沿同一条路行驶到B 地.他们离出发地的距离s(km)和行驶时间t(h)之间的函数关系如图5所示.根据图中提供的信息,有下列说法:①他们都行驶了20km;②小陆全程共用了1.5h ;③小李与小陆相遇后,小李的速度小于小陆的速度;④小李在途中停留了0.5h.其中正确的说法有几个( )A.1个B. 2个C. 3个D. 4个8、如图6,E 是边长为4的正方形ABCD 的对角线BD 上一点,且BE=BC.P 为CE 上任意一图2 图1 图4点,PQ ⊥BC 于点Q ,PR ⊥BD 于点R.则PQ+PR 的值是( )A.22B. 2C. 32D.389、如图7,已知等腰△ABC 的底边BC=20,D 是腰AB 上一点,且CD=16,BD=12.则△ABC的周长是( )A. 56B. 40C. 3153 D. 5347 10、如图8,在锐角△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∥BC ,设MN交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,有下列四个结论:①OE=OF ;②CE=CF ;③若CE=12,CF=5,则OC 的长为6;④当AO=CO 时,四边形AECF 是矩形.其中正确的有( )A. ①②B. ①④C. ①③④D.②③④二、填空题(本题共8小题,每小题3分,共24分)11、在函数72-=x y 中,自变量x 的取值范围是_______________.12、若0131=-++b a ,则___________20182017=+b a13、已知点A (2,0),B (0,2),C (-1,m )在同一条直线上,则m 的值为_____________14、甲、乙、丙、丁四位同学最近5次数学考试成绩的平均分分别是80、85、85、80,方差分别是42、42、54、59.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加即将举行的数学竞赛,那么应该选________.15、如图9,在△ABC 中,D ,E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,点G是CE 的中点,CF=2,则BC=___________.16、将矩形纸片ABCD 按图10的方式折叠,得到菱形AECF ,若AB=3,则BC 的长为_____.17、如图11,在平面直角坐标系中,有点A (1,6),B (5,0).点C 是y 轴上的一个动点.当△ABC 的周长最小时,点C 的坐标为____________.图5 图6 图8 图11 图9 图10 图718、 图12是一个“羊头”图案.其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②’……若正方形①的边长为64cm,则正方形⑦的边长为___________cm 。
2018-2019学年度八年级(下)期末数学试卷
E D C BA八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1、若不等式1)1(->-a x a 的解集是1<x ,则a 的取值范围是( ) A 、1≤a B 、 1>a C 、1<a D 、0<a2、下列多项式能因式分解的是( )A 、x 2-yB 、x 2+1C 、x 2+xy +y 2D 、x 2-4x +43、若4x ²+mxy+9y ²是一个完全平方式,则m= A 、6 B 、12 C 、±6 D 、±124、要使分式242--x x 为零,那么x 的值是 A 、-2B 、2C 、±2D 、05、分式222b ab a a +-,22ba b-,2222b ab a b ++的最简公分母是( ) A 、(a ²-2ab+b ²)(a ²-b ²)(a ²+2ab+b ²) B 、(a+b )²(a -b )²C 、(a+b )²(a-b )²(a ²-b ²)D 、44b a - A7、如图2,∠1=∠B ,AD=5㎝,AB=10㎝,则AC=DA 、 50㎝B 、2㎝C 、25㎝D 、52㎝ B C8、下列化简正确的是( )A 、b a b a b a +=++22B 、1-=+--b a b aC 、1-=---ba ba D 、b a b a b a -=--22 9、如果三角形三个外角度数之比是3:4:5,则此三角形一定是( ) A 、 锐角三角形 B 、 直角三角形 C 、 钝角三角形 D 、 不能确定10、把一箱苹果分给几个学生,若每人分4个,则剩下3个,若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生的人数为 ( ) A 、3人 B 、4人 C 、5人 D 、6人11、如图,AB ∥CD ,︒=∠120ABE ,︒=∠110CDE ,则BED ∠的度数为………………………………( ) (A )︒110 (B )︒120 (C )︒130 (D )︒14012、 如图,E D C B A ∠+∠+∠+∠+∠等于………………………………………( )(A )︒180 (B )︒360 (C )︒540 (D )︒720A BCD 1234(第11题)E DCBA(第12题)(第13题)F EDC B A13、已知如图,一张矩形报纸ABCD 的长acm AB =,宽bcm BC =,E 、F 分别为AB 、CD 的中点。
2018-2019学年度八年级下期末数学试卷及答案
八年级下期 末 考 试 数 学 试 卷本试卷满分为100分,考试时间为90分钟.一、选择题(本大题共16个小题;1~6小题,每小题2分,7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将对应题目的答案标号填在下表中)1.不等式组⎩⎨x ≤1x >-1的解集是A .x >-1B .x ≤1C .x <-1D .-1<x ≤12.下列分解因式正确的是A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)23.若分式3xx -1有意义,则x 应满足 A .x =0B .x ≠0C .x =1D .x ≠14.如图,△ABC中,D ,E 分别是边AB ,AC 的中点.若DE =2,则BC =A .2B .3C .4D .55.方程x (x -2)+x -2=0的解是A .2B .-2,1C .-1D .2,-16.一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等...的实数根,则b 2-4ac 满足的条件是 A .b 2-4ac =0B .b 2-4ac >0C .b 2-4ac <0D .b 2-4ac ≥07.分式方程xx -3=x +1x -1的解为( )A .1B .-1C .-2D .-38.如图,直线l 经过第二、三、四象限,l 的解析式是y =(m -2)x +n ,则m 的取值范围在数轴上表示为9.如图所示,DE 是线段AB 的垂直平分线,下列结论一定成立的是A .ED =CDB .∠DAC =∠BC .∠C >2∠BD .∠B +∠ADE =90°10.如图,在平行四边形中,阴影部分的面积与平行四边形面积之比为 A .12B .23C .13D .无法确定11.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是 A .-3,2 B .3,-2 C .2,-3 D.2,3 12.通过尺规作图作一个角的平分线的的理论依据是A .SASB .SSSC .ASAD .AAS13.据调查,某市的2012年房价均价为7600/m 2,2014年同期将达到8200/m 2,假设这两年该市房价的平均增长率为x ,根据题意,所列方程为A .7600(1+x %)2=8200B .7600(1-x %)2=8200C .7600(1+x )2=8200D .7600(1-x )2=8200A .2mm 2-1B .-2mm 2-1C .-2m 2-1D .2m 2-115.如图,在矩形ABCD 中,AD =2AB ,点M 、N 分别在边AD 、BC 是,连接BM 、DN ,若四边形MBND 是菱形,则AMMD等于 ( )A .38B .23C .35D .458题 9题 10题 15题 16.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为( ) A .54cm 2B .58cm 2 C .516cm 2D .532cm 2二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)17.一个多边形的每个内角均为108°,则这个多边形是_____边形.18.已知函数f (x )=3x 2+1,那么f (2)= __________.19.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE = .20.如图,正方形ABCD 的边长为3,点E ,F 分别在边AB ,BC 上,AE =BF =1,小球P 从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P 第一次碰到点E 时, 小球P 与正方形的边碰撞的次数为 .三、解答题(共5个题,共46分.解答应写出文字说明、证明过程或演算步骤)10分,其中第(1)(2)小题每题3分,第(3)题4分)(3(1)解不等式组:并写出该不等式组的整数解23(本小题满分9分)如图,△ABC 中,AB =AC ,∠BAC =40°,将△ABC 绕点A 按逆时针方向旋转100°得到△ADE ,连接BD ,CE 交于点F .(1)求证:△ABD ≌△ACE ; (2)求∠ACE 的度数;(3)请直接写出四边形ABFE 是哪种特殊的四边形. 24(本小题满分10分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元. (1)求a 、b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?,(a>b),且满足a=5b+m,b=4m.请直接写出矩形是几阶参考答案一、选择题DDDCA DBCCB二、填空11.012.2.5 10-613.59°,对顶角相等 14.8 15.相等,同角的余角相等 16.m 2-9n 217.1218.40°19.T =30+7t 20.PN 边或QM 边 三、解答题 21.(1)-278··········································································································· 5分(2)-6m 2+m +2 ································································································ 5分 (3)4mn ············································································································ 5分 (4)-xy当x =10,y =-125时原式=25······································································································· 5分 22.答案略 ············································································································ 8分23.证明:如图 ∵DF ∥AC ∴∠C =∠CEF ∵∠C =∠D∴∠D =∠CEF∴BD ∥CE ··································································································· 6分FEDCBA24.··························· 10分25.(1)m-n;(2)方法1:(m+n)2;方法2:(m-n)2+4mn;(3)(m+n)2=(m-n)2+4mn(4)∵(a+b)2=(a-b)2-4ab∴49=(a-b)2-20∴(a-b)2=69 ························································································ 8分。
2018-2019学年八年级下期末数学试卷含答案解析
2018-2019学年八年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,34.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.36.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠57.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.810.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=4811.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.1812.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.当x时,有意义.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=cm.16.直线y=﹣3x+5向下平移6个单位得到直线.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.20.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式的概念即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(B)原式=4,故B不是最简二次根式;(C)原式=,故C不是最简二次根式;故选(D)2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分【考点】LB:矩形的性质;L5:平行四边形的性质.【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,3【考点】KS:勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、32+42=52,能构成直角三角形,故符合题意;C、52+62≠72,不能构成直角三角形,故不符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选B.4.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定【考点】W7:方差;W1:算术平均数.【分析】方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,据此判断即可.【解答】解:∵1.5<2,∴S小明2<S小李2,∴成绩最稳定的是小明.故选:A.5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.3【考点】LE:正方形的性质.【分析】根据正方形的面积=对角线的乘积的一半.【解答】解:因为正方形的对角线互相垂直且相等,所以正方形的面积=对角线的乘积的一半=×6×6=18,故选C.6.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠5【考点】E4:函数自变量的取值范围.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣5≠0,解得x≥1且x≠5,故选:D.7.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F5:一次函数的性质.【分析】利用一次函数的性质求解.【解答】解:∵k=3>0,b=5>0,∴一次函数y=3x+5的图象经过第一、二、三象限.故选D.8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC【考点】L6:平行四边形的判定.【分析】A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.8【考点】LB:矩形的性质.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选B.10.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=48【考点】L8:菱形的性质.【分析】画出几何图形,利用菱形的面积等于对角线乘积的一半即可得到此菱形的面积,根据菱形的性质得AC⊥BD,AO=OC=4,OB=OD=3,然后根据勾股定理计算AB即可.【解答】解:如图,菱形ABCD的对角线AC=8,BD=6,菱形的面积=•AC•BD=×8×6=24,∵四边形ABCD为菱形,∴AC⊥BD,AO=OC=4,OB=OD=3,在Rt△AOB中,AB===5,即菱形的边长为5.∴a=5,S=24,故选A.11.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.18【考点】KP:直角三角形斜边上的中线;KH:等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.12.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.【考点】E6:函数的图象.【分析】在江边休息10分钟后,应是一段平行与x轴的线段,B是10分钟,而A是20分钟,依此即可作出判断.【解答】解:根据题意,从20分钟到30分钟在江边休息,离家距离没有变化,是一条平行于x轴的线段.故选B.二、填空题(共6小题,每小题3分,满分18分)13.当x≥2时,有意义.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得3x﹣6≥0,再解不等式即可.【解答】解:由题意得:3x﹣6≥0,解得:x≥2,故答案为:≥2.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是2.【考点】W7:方差;W1:算术平均数.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=2cm.【考点】L5:平行四边形的性质.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=4cm,∵BC=AD=6cm,∴EC=BC﹣BE=2cm,故答案为:2.16.直线y=﹣3x+5向下平移6个单位得到直线y=﹣3x﹣1.【考点】F9:一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,y=﹣3x+5向下平移6个单位,所得直线解析式是:y=﹣3x+5﹣6,即y=﹣3x﹣1.故答案为:y=﹣3x﹣1.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为5.【考点】KQ:勾股定理;KP:直角三角形斜边上的中线.【分析】根据勾股定理求得斜边的长,从而不难求得斜边上和中线的长.【解答】解:∵直角三角形两条直角边分别是6、8,∴斜边长为10,∴斜边上的中线长为5.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是m <8.【考点】F5:一次函数的性质.【分析】先根据一次函数的增减性判断出(m﹣8)的符号,再求出m的取值范围即可.【解答】解:∵一次函数y=(m﹣8)x+5中,若y的值随x值的增大而减小,∴m﹣8<0,∴m<8.故答案为:m<8.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017=3﹣2﹣×1﹣1=﹣﹣1=﹣120.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE ≌△CDF即可推出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?【考点】VC:条形统计图;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)用2册的人数除以其所占百分比可得;(2)总人数减去其余各项目人数可得答案;(3)根据中位数和众数定义求解可得.【解答】解:(1)15÷30%=50,答:该班有学生50人;(2)捐4册的人数为50﹣(10+15+7+5)=13,补全图形如下:(3)八(1)班全体同学所捐图书的中位数=3(本),众数为2本.22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.【考点】L8:菱形的性质;JA:平行线的性质.【分析】(1)猜想:四边形CEDO是矩形;(2)根据平行四边形的判定推出四边形是平行四边形,根据菱形性质求出∠DOC=90°,根据矩形的判定推出即可;【解答】(1)解:猜想:四边形CEDO是矩形.(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?【考点】FH:一次函数的应用.【分析】把x=60,y=5代入里待定系数法求解即可得到解析式,再把x=84代入求解即可;令y=0,即可求得旅客最多可免费携带30千克行李.【解答】解:(1)将x=60,y=5代入了y=kx﹣5中,解得,∴一次函数的表达式为,将x=84代入中,解得y=9,∴京京该交行李费9元;(2)令y=0,即,解得,解得x=30,∴旅客最多可免费携带30千克行李.答:京京该交行李费9元,旅客最多可免费携带30千克行李.24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.【考点】FH:一次函数的应用.【分析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解.=60(千米/时).【解答】解:(1)根据图象信息:货车的速度V货=∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5).。
北师大版2018-2019学年四川省成都市简阳市八年级(下)期末数学试卷解析版
2018-2019学年四川省成都市简阳市八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣1B.x<﹣1C.x=﹣1D.x≠﹣12.(3分)如图,在△ABC中,D为AC的中点且DE∥AB,AF平分∠CAB,交DE于点F.若DF=3,则AC的长为()A.B.3C.6D.93.(3分)不等式组的解集是()A.﹣3<x≤2B.﹣3≤x<2C.x≥2D.x<﹣34.(3分)已知直角三角形中30°角所对的直角边长是2厘米,则斜边的长是()A.2厘米B.4厘米C.6厘米D.8厘米5.(3分)下列语句:(1)可以把半径相等的两个圆中的一个看成是由另一个平移得到的;(2)可以把两个全等图形中的一个看成是由另一个平移得到的;(3)经过旋转,对应线段平行且相等;(4)中心对称图形上每一对对应点所连成的线段都被对称中心平分.其中正确的有()A.一个B.两个C.三个D.四个6.(3分)一个五边形有三个内角是直角,另两个内角都等于n,则n的值是()A.30°B.120°C.135°D.108°7.(3分)小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个8.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3B.1﹣2(x﹣1)=3C.1﹣2x﹣2=﹣3D.1﹣2x+2=39.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12B.6C.D.10.(3分)定义一种对正整数n的“F”运算:①当n是奇数时,F(n)=3n+1;②当n是偶数时,F(n)=(其中k是使得为奇数的正整数)……,两种运算交替重复进行.例如,取n=24,则:243105……若n=13,则第2019次“F运算”的结果是()A.1B.4C.2019D.42019二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)因式分解:3x2﹣12x=.12.(4分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.13.(4分)已知:函数y1=2x﹣1,y2=﹣x+3,若x<,则y1y2(填“>”或=或“<”)14.(4分)在四边形ABCD中,∠A=∠C,要使四边形ABCD为平行四边形,则应添加的条件是.(添加一个条件即可).三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(10分)(1)解不等式组(2)已知x﹣=2,求x2+的值.16.(8分)如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.17.(8分)已知关于x的分式方程=1的解是负数,求m的取值范围.18.(8分)如图点D在等边三角形ABC的边BC上,将△ABD绕点A旋转,使得旋转后点B的对应点为点C,点D的对应点为点E,请完成下列问题:(1)画出旋转后的图形;(2)判断AB与CE的位置关系并说明理由.19.(10分)新世纪广场进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商场又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商场销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商场共赢利多少元?20.(10分)已知,如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,交BE于点G,求证:AF=DE.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)若数a使关于x的不等式组有且只有四个整数解,a的取值范围是.22.(4分)当x=时,代数式x2﹣2x+3取得最小值.23.(4分)已知:如图,在△ABC中,AB=AC,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点,连接BE,则∠CBE=.24.(4分)有甲、乙两张纸条,甲纸条的宽度是乙纸条的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD,则AB与BC的数量关系为.25.(4分)已知Rt△ABC中,∠C=90°,AC=BC,直线m经过点C,分别过点A,B作直线m的垂线,垂足分别为点E,F,若AE=3,AC=5,则线段EF的长为.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)已知:等腰三角形ABC的一个角∠B=α,求其余两角∠A与∠C的度数.27.(10分)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.28.(12分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接P A、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.2018-2019学年四川省成都市简阳市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.【解答】解:若分式在实数范围内有意义,则x+1≠0,解得:x≠﹣1.故选:D.2.【解答】解:如图,∵D、E分别为AC、BC的中点,∴DE∥AB,∴∠2=∠3,又∵AF平分∠CAB,∠1=∠3,∴∠1=∠2,∴AD=DF=3,∴AC=2AD=6.故选:C.3.【解答】解:∵解不等式①得:x≤2,解不等式②得:x>﹣3,∴不等式组的解集是﹣3<x≤2,故选:A.4.【解答】解:∵直角三角形中30°角所对的直角边长是2厘米,∴斜边的长是4厘米.故选:B.5.【解答】解:(1)可以把半径相等的两个圆中的一个看成是由另一个平移得到的,故正确;(2)全等三角形仅仅是反映了两个三角形的形状和大小关系,而平移既需要两个三角形全等,还需要两个三角形有一种特殊的位置关系,故错误;(3)经过旋转,对应线段相等,故错误;(4)中心对称图形上每一对对应点所连成的线段都被对称中心平分,故正确.故选:B.6.【解答】解:依题意有3×90+2n=(5﹣2)•180,解得n=135.故选:C.7.【解答】解:如图所示:正方形ABCD可以向上、下、向右以及沿AC所在直线,沿BD所在直线平移,所组成的两个正方形组成轴对称图形.故选:C.8.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选:A.9.【解答】解:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°﹣60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6,故选:D.10.【解答】解:当n=13时,第1次“F”运算为:3×13+1=40,第2次“F”运算为:=5,第3次“F”运算为:3×5+1=16,第4次“F”运算为:=1,第5次“F”运算为:1×3+1=4,第6次“F”运算为:=1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2019次是奇数,因此最后结果是4.∴第2019次“F”运算的结果是4,故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:3x2﹣12x=3x(x﹣4).故答案为:3x(x﹣4).12.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:5513.【解答】解:联立y1=2x﹣1,y2=﹣x+3,解得,所以当x<时,y1<y2故答案为:<.14.【解答】解:①添加∠B=∠D,∵∠A=∠C,∠B=∠D,∴四边形ABCD为平行四边形;②添加AD∥BC,∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD为平行四边形.故答案为:此题答案不唯一:如∠B=∠D或AD∥BC或AB∥CD等.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1),解①得:x<﹣1,解②得:x<﹣10,故不等式组的解集为:x<﹣10;(2)∵x﹣=2,∴(x﹣)2=4,∴x2+﹣2=4,∴x2+=6.16.【解答】证明:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°.在△ABD和△ACE中,,∴△ABD≌△ACE(AAS).∴BD=CE.17.【解答】解:分式方程=1,去分母得:m﹣2=x+1,解得:x=m﹣3,由分式方程的解为负数,得到m﹣3<0且m﹣3≠﹣1,解得:m<3且m≠2.18.【解答】解:(1)如图,△ACE为所作;(2)AB∥CE.理由如下:∵△ABC为等边三角形,∴∠B=∠ACB=60°,∵△ABD绕点A旋转得到△ACE,∴∠ACE=∠B=60°,∴∠BCE=120°,∴∠B+∠BCE=180°,∴AB∥CE.19.【解答】解:设商场第一次购进x件衬衫,则第二次购进2x件,根据题意得:.160000=176000﹣8x解这个方程得:x=2000.经检验:x=2000是原方程的根.∴2x=4000商场利润:(2000+4000﹣150)×58+58×0.8×150﹣80000﹣176000=90260(元).答:在这两笔生意中,商场共盈利90260元.20.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,同理可得:DF=CD,∴AE=DF,即AF+EF=DE+EF,∴AF=DE.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:解不等式<,得:x<5,解不等式5x﹣2≥x+2a,得:x≥,∵关于x的不等式组有且只有四个整数解,∴0<≤1,∴﹣1<a≤1,故答案为:﹣1<a≤1.22.【解答】解:x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2,则当x=1时,代数式x2﹣2x+3取得最小值,最小值是2,故答案为:1.23.【解答】解:∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=30°,∵等腰△ABC中,AB=AC,∠A=30°,∴∠ABC=∠C==75°,∴∠CBE=∠ABC﹣∠ABE=45°.故答案为;45°.24.【解答】解:过A作AE⊥BC于E、作AF⊥CD于F,∵甲纸条的宽度是乙纸条宽的2倍,∴AE=2AF,∵纸条的两边互相平行,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,AD=BC,∵∠AEB=∠AFD=90°,∴△ABE∽△ADF,∴,即.故答案为:AB=2BC25.【解答】解:分两种情况:①如图1所示:∵∠ACB=90°,∴∠1+∠2=90°,∵BF⊥m,∴∠BFC=90°,∴∠2+∠3=90°,∴∠1=∠3,∵AE⊥m,∴∠AEC=90°,∴CE===4,在△BCF和△CAE中,,∴△BCF≌△CAE(AAS),∴CF=AE=3,∴EF=CE﹣CF=4﹣3=1;②如图2所示:∵∠ACB=90°,∴∠1+∠2=90°,∵BF⊥m,∴∠BFC=90°,∴∠2+∠3=90°,∴∠1=∠3,∵AE⊥m,∴∠AEC=90°,∴CE===4,在△BCF和△CAE中,,∴△BCF≌△CAE(AAS),∴CF=AE=3,∴EF=CE+CF=4+3=7;综上所述:线段EF的长为:1或7.故答案为:1或7.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:∵△ABC是等腰三角形,∴当∠B是底角时,∴∠A=∠B=α,∠C=180°﹣2α,当∠B是底角时,∴∠C=∠B=α,∠A=180°﹣2α,当∠B是顶角时,∴∠A=∠C=(180°﹣α)=90°﹣,综上所述,其余两角∠A与∠C的度数为180°﹣2α,α或α,180°﹣2α,或90°﹣,90°﹣.27.【解答】解:(I)当x=20时,方式一的总费用为:100+20×5=200,方式二的费用为:20×9=180,当游泳次数为x时,方式一费用为:100+5x,方式二的费用为:9x,故答案为:200,100+5x,180,9x;(II)方式一,令100+5x=270,解得:x=34,方式二、令9x=270,解得:x=30;∵34>30,∴选择方式一付费方式,他游泳的次数比较多;(III)令100+5x<9x,得x>25,令100+5x=9x,得x=25,令100+5x>9x,得x<25,∴当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,但x>25时,小明选择方式一的付费方式.28.【解答】(1)四边形APQD为平行四边形;(2)OA=OP,OA⊥OP,理由如下:∵四边形ABCD是正方形,∴AB=BC=PQ,∠ABO=∠OBQ=45°,∵OQ⊥BD,∴∠PQO=45°,∴∠ABO=∠OBQ=∠PQO=45°,∴OB=OQ,在△AOB和△OPQ中,∴△AOB≌△POQ(SAS),∴OA=OP,∠AOB=∠POQ,∴∠AOP=∠BOQ=90°,∴OA⊥OP;(3)如图,过O作OE⊥BC于E.①如图1,当P点在B点右侧时,则BQ=x+2,OE=,∴y=וx,即y=(x+1)2﹣,又∵0≤x≤2,∴当x=2时,y有最大值为2;②如图2,当P点在B点左侧时,则BQ=2﹣x,OE=,∴y=וx,即y=﹣(x﹣1)2+,又∵0≤x≤2,∴当x=1时,y有最大值为;综上所述,∴当x=2时,y有最大值为2.。
2018--2019学年度八年级下学期数学期末试题及答案
2018-2019年八年级数学(下)期末检测题考试时间:120分钟满分:120分一.选择题(每小题2分,共12分)1.若二次根式21x-有意义,则x的取值范围是()A.x≤-12B.x≥-12C.x≥12D.x≤122.已知一组从小到大的数据:0,4,x,10的中位数是5,则x=()A.5B.6C.7D.83.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0)B.(5-1,0)C.(10-1,0)D.(5,0)4、如图,已知菱形ABCD的对角线AC,BD的长分别为6㎝和8㎝,AE⊥BC于点E,则AE的长为()A.53㎝B.25㎝C.㎝D.524㎝5、某移动通讯公司提供了A,B两种方案的通讯费用y(元)与通话时间x(分)之间的关系,如图所示,则以下说法错误的是()A.若通话时间少于120分,则A方案比B方案便宜20元,B.若通话时间超过200分,则B方案比A方案便宜12元,C.若通讯费为60元,则B方案比A方案的通话时间多,D.若两种方案通信费用相差10元,则通话时间是145分或185分,6.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股元方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么()2a b+的值为()A.13B.19C.25D.169二.填空题(每小题3分,共24分)7.化简18-108的结果是8.直角三角形的两条直角边长为3和4,则该直角三角形斜边上的高为9.在平面直角坐标系中,将正比例函数y=2x的图象向上平移一个单位,那么平移后的图象不经过象限10.将一根长24㎝的筷子,置于底面直径为5㎝,高为12㎝的圆柱形水杯中(如图),设筷子露在杯子外面的长度为h㎝,则h的取值范围是11.已知一组数据10,8,9,x,5,的众数是8,那么这组数据的方差是12.如图,正方形ABCD的边长为8,M在CD上,且DM=2,P是AC上的一个动点,则PD+PM的最小值是13.如图所示,在平行四边形ABCD中,E,F为对角线BD上的两点,要使四边形AECF为平行四边形,在不连接其他线段的前提下还需要添加的一个条件是14.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF,若AB=3,则BC的长为三.解答题(每题5分,共20分)15. 22525(+)-第10题第12题第13题16、148312242÷⨯-+17、如图,有一块地,已知,AD=4m ,CD=3m ,∠ADC=90°,AB=13m ,BC=12m 。
2018-2019学年下八年级数学期末试卷
第1页 共 4页第2页 共 4页石羊镇中学2018-2019学年下学期期末考试 八年级(数学)试卷(考试时间:120分钟 满分:120分)一、 选择题:(每小题3分,共30分) 1、不等式250x +>的解集是( )A . 52x <B .52x >C .52x >-D .52x <-2、下列多项式能用完全平方公式进行分解因式的是( ) A . 21x + B .224x x ++C .221x x -+D .21x x ++3、若分式||11x x -+的值为0,则( ) A . 1x =± B .1x = C .1x =- D .0x =4、要使分式11x +有意义,则x 应满足的条件是( )A . 1-≠xB .0x ≠C .1x ≠D .1x > 5、计算:22()ab a b-的结果是( )A .aB .bC .b -D .16、如图,已知直线1y ax b =+与2y mx n =+相交于点 A (2,1-),若12y y >,则x 的取值范围是( ) A .2x <B .2x >C .1x <-D .1x >-7、.若等腰三角形的周长为10 cm ,其中一边长为2 cm ,则该等腰三角形的底边长为( ) A. 2 cm B. 4 cm C. 6 cm D. 8 cm8、下列图形中,是轴对称图形,但不是中心对称图形的是( )A.B.C.D.9、解关于x 的方程311x mx x -=--产生增根,则常数m 的值等于( ) A .2-B .1-C .1D .210、如图,在ABC △中,75CAB ∠=,在同一平面内,将ABC △绕点A 旋转到AB C ''△的位置,使得CC AB '∥,则BAB '∠=( )A .30B .35C .40D .50二、填空题:(每小题3分,共27分) 11.分解因式:142-a = . 12.如图,在△ABC 中,∠C =90°,∠CAB 的平分线AD 交BC 于点D .已知CD =3cm ,则点D 到AB 的距离是 cm .13.已知323=+-b a b a ,则=+-b a ab 3626 .14.化简:= .15.已知关于x 的不等式(1﹣a )x >2的解集为x <,则a 的取值范围是 .16.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点, 点F 是AD 的中点.若AB=8,则EF=_____.17、已知一个正多边形的一个外角为36°,则这个正多边形的边数是 18、若关于x 的分式方程的解为正实数,则实数m 的取值范围是____ .19.如图所示,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA.若PC=4, 则PD 的长是 .三、解答题:(共63分) 20.(每题5分,共10分)(1)解不等式组.(2)解方程:)2(425++=+x x x x .班级:_______________ 姓名:______________ 考号:____________ ********************************************************************************************************************************************************************************************************************************************************AB CD(第6题图)ABCB 'C '第3页 共 4页第4页 共 4页21.(7分)先化简,再求值:其中x=,y=.22.(8分)如图,已知∠BAC=60° ,∠B=80° ,DE 垂直平分AC 交BC 于点D ,交AC 于点E. (1)求∠BAD 的度数;(2)若AB=10,BC=12,求△ABD 的周长.23.(本小题满分9分)如图,在四边形ABCD 中,E ,F 是对角线AC 上的两点.已知AE =CF ,DF =BE ,DF ∥BE . (1)求证:△AFD ≌△CEB ;(2)四边形ABCD 是平行四边形吗?请说明理由.24.(本小题满分8分)某工程由甲、乙两个施工队共同完成,乙队先单独做2天后,再由两队合作10天就能完成全部工程. 已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的54,求甲、 乙两个施工队单独完成此项工程各需多少天?25.(9分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-3,5),B (-2,1),C (-1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 1的坐 标为(4,0),写出顶点A 1,B 1的坐标;(2)若△ABC 和△A 2B 2C 2关于原点O 成中心对称图形, 写出△A 2B 2C 2的各顶点的坐标;(3)将△ABC 绕着点O 按顺时针方向旋转90°得到 △A 3B 3C 3,写出△A 3B 3C 3的各顶点的坐标.26.(本小题满分12分)某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元. (1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那 么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元, 在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?ABCD EF。
四川省简阳市2018-2019学年八年级数学下学期期末考试试题(扫描版)
图2 八年级数学第1页共4页四川省简阳市2018-2019学年八年级数学下学期期末考试试题2018-2019学年度第二学期期末教学质量检测八年级数学A 卷(共100分) 第I 袅(选择题,共30分)」_r 选择题(本大题共10个小题,每小题$分,共30分』毎小题均有四个选项,其中只有 顼符合题目要歩,答案涂在答题卡上)2x 若分式二TI 在实数范围内有意义'则实数工的取值范围是()Aj>-i B^<-1 C J ^-1 DQ-J2.如图1,在AAfiC 中,Z?为皿匸的中点且DE\\AB t AF 平分ZCAB, 交DE 于点尺若DF=3,则AC 的长为() A 3扎2 B- 3 C. 6D, 94已知直轴三择形中,30°角所对的直角边长是2厘米,则斜边的长是( &下列语句;⑴ 可以把半径相等的两个圖中的一个看成是是由另一牛平移得到的;:(2>可以 把两个全尊图形中的一个看成是由另一卒平移得到的;(3)经过旋转,对应线段平行且相等:⑷中心对称图形上每一对对应点所连成的线段都披对称中心平分.其中正确的有()A. 一个B,两平C 三介D*四个氐若一个五边形有三个内角都是直角’另两个内角的度数都等于则烬等于()A. 30°B. 120°C. 135°D. 108° 工小军同学在网格纸上将某些图形进行平移操作「他发现平移前后 的两个图形所组成的图形可以是轴对称图形•如图2所示,现在他将 正方形ABCD 从当前位逍开始进行一次平移操作,平移后的正方形百 的顶点也皿咔M 的解集融DE 分别为AC.BC 的中点.A,-3<t<2C^2 Djr<-3 2 2厘米 B. 4厘米 C” 6厘米 D. &厘米平移方向有{)BAJ 个E4个 C.5个D.无数个CA B在格点上,则使平移前后的两个正方形组成轴对称图形的图2八年级数学第1页共4页八年级数学第2页共4页&解分式方程丄厂2 = 丄,去分母得()X-11—XA.1-2(X -1)=-3B.1-2(X -1)=3C ・ 1・2h3D.l -2x+2=39-如图 3,在 RtAA^C 中,乙4C8=90O ,NA=60%4C=6,将△ABC" 绕点C 按逆时针方向旋转得到AA'fi'C,此时点A 怡好在M 边 上,则点8与点〃之间的距离为()A. 12B. 6C. 6^2D. 6拆中上是使得金为奇数的正整数……,两种运算交替重复进行•例如,取“=24,则:若"13,则第2019次“F 运算”的结果是()A.lB.4C.2 019D.42019第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11.因式分^:3?-12r= ______________ .12.2018年国内航空公司规定••旅客乘机时,免费携带行李箱的长,宽,高之和不超过115 cm.某厂 家生产符合该规定的行李箱,已知行李箱的宽为20 cm,长与高的比为8 : 11,则符合此规定的行 李箱的高的董大佰为 ________________ cm.14.已知:如图4,四边形ABCD 中,AO=OC t 要使四边形ABCD 为平行四边形,需添加一个条件是: __________________ (只需填一个你认为正确的条件即可).§三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)(x-l>2x15-(本小题满分10分,每题5分)(1)解不等式组兀 -+3V-212(2)已知尢一丄=2,求X 2 + 4的值•13.已知:函数j I=2x-l, y 2 =4-x + 3,若xv —3儿(填“〉”或=或“V”)10・定义一种对正整是奇数时,")=3卄1;②当n 是偶数时,F (M )=F ① “ F ②图3 (其图4八年级数学第2页共4页图816- (本小题满分8分)已知如图5, AB = AC , BD 丄AC y CE 丄 求证:BD = CE・17-(本小题满分8分)已知关于x 的分式方程巴耳二1的解是负数'求皿的取值范围. X + 118- (木小题满分8分)如图6点D 在等边三角形ABC 的边B C 上,将 △ABD绕点A 旋转,使得旋转后点3的对应点为点C,点D 的对应点 为点E ,请完成下列问题:(1) 画出旋转后的图形;(2) 判断A 〃与CE 的位置关系并说明理由.图619.(本小题满分10分)某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫, 面市后果然供不应求.商厦又用17.6万元购进第二批这种衬衫,所购数量是第一批进量的2 倍,但单价贵了 4元.商厦销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售, 很快售完.在这两笔生意中,商廈共赢利多少元?20.(本小题满分10分)已知:如图7,衽口ABCD 中,ZABC 的平分线交AD 于点E, ZBCD 的平分线交于点F,交 BE 于点G ・求证:AF = DEB 卷(共50分)四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)'r X-l <1+X21•若数a 使关于x 的不等式组{丁 ~3~有且只有四个整数解,a 的取值范围 22.当兀二 _________ 时,代数式X 2-2X + 3取得最小值.23.如图& 在等腰三角形ABC 中,AB=AC, ZA=30°. 交AC 于点连接BE 则ZCBE 等于 _____________________________ •线段AB 的垂直平分线交AB 于点》图10八年级数学第4页共4页24. 有甲、乙两张纸条,甲纸条的宽度是乙纸条的2倍,•如图9,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD 则与BC 的数量关系为 ________________ .25. 已知Rt^ABC 中,ZC=90°, AC=BC,直线加经过点C,分别过点A, B 作直线龙的垂线,垂足分别为点E, F,若AE=3, AC=5,则线段EF 的长为 ___________________ . 五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26. (本小题满分8分)已知:等腰三角形肋C 的一个角求其余两角ZA 与ZB 的度 数. 27. (本小题满分10分)某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会 员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费 9元.设小明计划今年夏季游泳次数为X (X 为正整数). ⑴根据题童,填写下表:(2) 若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多? (3) 当x>20时,小明选择哪种付费方式更合算?并说明理由.28.(本小题满分12分)如图10/D 是正方形ABCD 的对角线〃C=2.边BC 在其所左的直线上平 移,将通过平移得到的线段记为PQ,连接丹1、QQ,并过点Q 作Q 。
2018-2019学度度初二下年末检测数学试卷.doc.doc
2018-2019学度度初二下年末检测数学试卷【一】选择题〔每题3分,共18分〕 1、在代数式x 1、21、212+x 、πxy3、y x +3、11++m a 中,分式有〔〕A 、2个B 、3个C 、4个D 、5个2、在反比例函数y=x2的图象上的一个点的坐标是〔〕A 、〔2,1〕B 、〔-2,1〕C 、〔2、21〕D 、〔21,2〕3、如图,四边形ABCD 是平行四边形,以下结论中不正确的选项是〔〕A 、当AB=BC 时,它是菱形B 、当AC ⊥BD 时,它是菱形C 、当∠ABC=90°时,它是矩形D、当AC =BD 时,它是正方形4、以下每组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是〔〕 A 、3、4、5B 、6、8、10C 、3、2、5D 、5、12、135、数据-3、-2、1、3、6、x 、5的中位数是1,那么这组数据的众数是〔〕 A 、2B 、1C 、10D 、6、如图,在周长为20cm 的ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD ,交AD 于点E ,那么△ABE 的周长为〔〕 A 、4cmB 、6cmC 、8cmD 、10cm 【二】填空题〔每题3分,共24分〕7、将0、000702用科学记数法表示,结果为。
8、一组数据-1,0,3,5,x 的极差是7,那么x 的值可能有个。
9、在ABCD 中,AB ,BC ,CD ,的三条边的长度分别是〔x-2〕cm ,〔x+3〕cm ,8cm ,那么ABCD 的周长为cm 。
10、假设矩形一个内角的平分线分它的长边为两部分,长分别为2和3。
那么该矩形的面积为。
11、甲、乙两人5次射击命中的环数如下:甲:7、9、8、6、10乙:7、8、9、8、8那么这两人5次射击命中的环数的平均数x 甲=x 乙=8。
方差S 2甲S 2乙。
〔填“>”、“<”或“=”〕12、假设菱形一条对角线长是另一条对角线长的2倍,且菱形的面积为16cm 2,那么菱形的周长为cm 。