高中数学_期末试题_新人教A版必修2

合集下载

人教A版高中数学必修二第9章章末检测(含答案)

人教A版高中数学必修二第9章章末检测(含答案)

第九章章末检测(时间:120分钟,满分150分)一、选择题(本大题共8小题,每小题5分,共40分.)1.某防疫站对学生进行身体健康调查,欲采用分层随机抽样的方法抽取样本.某中学共有学生2 000名,从中抽取了一个样本量为200的样本,其中男生103名,则该中学共有女生为( )A .1 030名B .97名C .950名D .970名【答案】D 【解析】由题意,知该中学共有女生2 000×200-103200=970(名).故选D .2.(2020年北京期末)艺术体操比赛共有7位评委分别给出某选手的原始评分,评定该选手的成绩时,从7个原始评分中去掉1个最高分、1个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,不变的数字特征是( )A .中位数B .平均数C .方差D .极差【答案】A 【解析】根据题意,从7个原始评分中去掉1个最高分、1个最低分,得到5个有效评分,与7个原始评分相比,不变的中位数.故选A .3.(2020年河北月考)已知某校高一、高二年级学生人数均为600人,参加社团的高一和高二的人数比为2∶3,现从参加社团的同学中按分层抽样的方式抽取45人,则抽取的高二学生人数为( )A .9B .18C .27D .36【答案】C 【解析】由分层抽样的性质可得,抽取的高二学生人数为45×32+3=27.故选C .4.(2020年永州月考)在样本频率分布直方图中,共有5个小长方形,已知中间小长方形的面积是其余4个小长方形面积之和的13,且中间一组的频数为10,则这个样本量是( )A .20B .30C .40D .50【答案】C 【解析】所有长方形的面积和为1,因为中间小长方形的面积是其余4个小长方形面积之和的13,所以中间的面积为14,又中间一组的频数为10,所以样本容量为10÷14=40.故选C .5.(2019年惠州期末)某地区连续六天的最低气温(单位:℃)为:9,8,7,6,5,7,则该六天最低气温的平均数和方差分别为( )A .7和53B .8和83C .7和1D .8和23【答案】A 【解析】由题意,六天最低气温的平均数x =16×(9+8+7+6+5+7)=7,方差s 2=16×[(9-7)2+(8-7)2+(7-7)2+(6-7)2+(5-7)2+(7-7)2]=53.故选A .6.假设从高一年级全体同学(500人)中随机抽出60人参加一项活动,利用随机数法抽取样本时,先将500名同学按000,001,…,499进行编号,如果从随机数表第8行第11列的数开始,按三位数连续向右读取,最先抽出的4名同学的号码是(下面摘取了此随机数表第7行和第8行)( )84421 75331 57245 50688 77047 44767 21763 35025 63016 37859 16955 56719 98105 07175 12867 35807 A .455 068 047 447 B .169 105 071 286 C .050 358 074 439 D .447 176 335 025【答案】B 【解析】由随机数表法的随机抽样的过程可知最先抽出的4名同学的号码为169,105,071,286.7.(2020年阜阳期末)某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则去年的水费开支占总开支的百分比为( )图1图2A .6.25%B .7.5%C .10.25%D .31.25%【答案】A 【解析】由拆线图知去年水、电、交通支出占总支出的百分比为20%,由条形图得去年水、电、交通支出合计为250+450+100=800(万元),其中水费支出250(万元),∴去年的水费开支占总开支的百分比为250800×20%=6.25%.故选A .8.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A .甲地:总体均值为3,中位数为4B .乙地:总体均值为1,总体方差大于0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为3【答案】D 【解析】A 中,中位数为4,可能存在大于7的数;同理,在C 中也有可能;B 中的总体方差大于0,叙述不明确,如果方差太大,也有可能存在大于7的数;D 中,因为平均数为2,根据方差公式,如果有大于7的数存在,那么方差不可能为3.故选D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.下列叙述正确的是( )A .极差与方差都反映了数据的集中程度B .方差是没有单位的统计量C .标准差比较小时,数据比较分散D .只有两个数据时,极差是标准差的2倍【答案】AD 【解析】由极差与方差的定义可知A 正确;方差是有单位的,其单位是原始数据单位的平方,B 错误;标准差较小时,数据比较集中,C 错误;只有两个数据x 1,x 2时,极差等于|x 2-x 1|,平均数为x 1+x 22,所以方差s 2=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 1-x 1+x 222+⎝ ⎛⎭⎪⎫x 2-x 1+x 222=14(x 1-x 2)2,则标准差s 2=12|x 2-x 1|,D 正确.故选AD .10.某学校为了调查学生在一周生活方面的支出情况,抽出了一个样本量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60)元的学生有60人,则下列说法正确的是( )A .样本中支出在[50,60)元的频率为0.03B .样本中支出不少于40元的人数有132C .n 的值为200D .若该校有2 000名学生,则一定有600人支出在[50,60)元【答案】BC 【解析】A 中,样本中支出在[50,60)元的频率为1-(0.01+0.024+0.036)×10=0.3,故A 错误;B 中,样本中支出不少于40元的人数有0.0360.03×60+60=132,故B 正确;C 中,n =600.3=200,故C 正确;D 中,若该校有2 000名学生,则可能有600人支出在[50,60)元,故D 错误.故选BC .11.某地某所高中2019年的高考考生人数是2016年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考升学情况,得到如下柱状图:则下列结论正确的是()A.与2016年相比,2019年一本达线人数有所增加B.与2016年相比,2019年二本达线人数增加了0.5倍C.与2016年相比,2019年艺体达线人数相同D.与2016年相比,2019年不上线的人数有所增加【答案】AD【解析】依题意,设2016年高考考生人数为x,则2019年高考考生人数为1.5x,由24%·1.5x-28%·x=8%·x>0,故选项A正确;由(40%·1.5x-32%·x)÷32%·x =0.875,故选项B不正确;由8%·1.5x-8%·x=4%·x>0,故选项C不正确;由28%·1.5x -32%·x=10%·x>0,故选项D正确.故选AD.12.给出三幅统计图如图所示:A.从折线统计图能看出世界人口的变化情况B.2050年非洲人口将达到大约15亿C .2050年亚洲人口比其他各洲人口的总和还要多D .从1957年到2050年各洲中北美洲人口增长速度最慢【答案】AC 【解析】从折线统计图能看出世界人口的变化情况,故A 正确;从条形统计图中可知2050年非洲人口大约将大于15亿,故B 错误;从扇形统计图中可知2050年亚洲人口比其他各洲人口的总和还要多,故C 正确;由题中三幅统计图并不能得出从1957年到2050年中哪个洲人口增长速度最慢,故D 错误.故选AC .三、填空题(本大题共4小题,每小题5分,共20分,请把答案填写在题中横线上) 13.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个样本量为21的样本,则抽取男运动员的人数为________.【答案】12 【解析】抽取的男运动员的人数为2148+36×48=12. 14.将样本量为100的某个样本数据拆分为10组,若前七组的频率之和为0.79,而剩下的三组的频率依次相差0.05,则剩下的三组中频率最高的一组的频率为________.【答案】0.12 【解析】设剩下的三组中频率最高的一组的频率为x ,则另两组的频率分别为x -0.05,x -0.1.因为频率总和为1,所以0.79+(x -0.05)+(x -0.1)+x =1,解得x =0.12.15.12,13,25,26,28,31,32,40的25%分位数为________.【答案】19 【解析】因为8×25%=2,8×80%=6.4,所以25%分位数为x 2+x 32=13+252=19.16.下图是根据某中学为地震灾区捐款的情况而制作的统计图,已知该校共有学生3 000人,由统计图可得该校共捐款为________元.【答案】37 770 【解析】由扇形统计图可知,该中学高一、高二、高三分别有学生960人、990人、1 050人.由条形统计图知,该中学高一、高二、高三人均捐款分别为15元、13元、10元,所以共捐款15×960+13×990+10×1 050=37 770(元).四、解答题(本大题共6小题,17题10分,其余小题为12分,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.为调查某班学生的平均身高,从50名学生中抽取110,应如何抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样?解:从50名学生中抽取110,即抽取5人,采用简单随机抽样法(抽签法或随机数法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(2020年辽宁学业考试)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图).已知上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x的值;(2)如果上学所需时间在[60,100]的学生可申请在学校住宿,请估计该校800名新生中有多少名学生可以申请住宿.解:(1)由直方图可得到20x+0.025×20+0.006 5×20+0.003×2×20=1,解得x=0.012 5.(2)由直方图可知,新生上学所需时间在[60,100]的频率为0.003×2×20=0.12,所以800×0.12=96(名).所以800名新生中估计有96名学生可以申请住宿.19.某汽车制造厂分别从A,B两种轮胎中各随机抽取了8个进行测试,列出了每一个轮胎行驶的最远里程数(单位:1 000 km):轮胎A96112971081001038698轮胎B10810194105969397106(1)分别计算(2)分别计算A,B两种轮胎行驶的最远里程的极差、方差;(3)根据以上数据,你认为哪种型号轮胎的性能更加稳定?解:(1)A 轮胎行驶的最远里程的平均数为18×(96+112+97+108+100+103+86+98)=100,中位数为12×(100+98)=99.B 轮胎行驶的最远里程的平均数为18×(108+101+94+105+96+93+97+106)=100,中位数为12×(101+97)=99.(2)A 轮胎行驶的最远里程的极差为112-86=26,方差为18×[(-4)2+122+(-3)2+82+02+32+(-14)2+(-2)2]=55.25,B 轮胎行驶的最远里程的极差为108-93=15,方差为18×[82+12+(-6)2+52+(-4)2+(-7)2+(-3)2+62]=29.5,(3)根据以上数据,A 轮胎和B 轮胎的最远行驶里程的平均数相同,但B 轮胎行驶的最远里程的极差和方差相对于A 轮胎较小,所以B 轮胎性能更加稳定.20.某幼儿园根据部分同年龄段女童的身高数据绘制了频率分布直方图,其中身高的变化范围是[96,106](单位:厘米),样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].(1)求出x 的值;(2)已知样本中身高小于100厘米的人数是36,求出总样本量N 的数值;(3)根据频率分布直方图提供的数据及(2)中的条件,求出样本中身高位于[98,104)的人数.解:(1)由题意(0.050+0.100+0.150+0.125+x )×2=1,解得x =0.075. (2)设样本中身高小于100厘米的频率为p 1,则p 1=(0.050+0.100)×2=0.300. 而p 1=36N ,∴N =36p 1=360.300=120.(3)样本中身高位于[98,104)的频率p 2=(0.100+0.150+0.125)×2=0.750,∴身高位于[98,104)的人数n =p 2N =0.750×120=90.21.为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图,解答下列问题:组号 分组 频数 频率 1 [50,60) 4 0.08 2 [60,70) 8 0.16 3 [70,80) 10 0.20 4 [80,90) 16 0.32 5 [90,100] 合计—(1)填充频率分布表中的空格;(2)如图,不具体计算频率组距,补全频率分布直方图;(3)估计这900名学生竞赛的平均成绩(结果保留整数,同一组中的数据用该组区间的中点值作代表).解:(1)40.08=50,即样本量为50.第5组的频数为50-4-8-10-16=12,从而第5组的频率为1250=0.24.又各小组频率之和为1,所以频率分布表中的四个空格应分别填12,0.24,50,1.(2)设第一个小长方形的高为h 1,第二个小长方形的高为h 2,第五个小长方形的高为h 5,则h 1h 2=48=12,h 1h 5=412=13. 补全的频率分布直方图如图所示.(3)50名学生竞赛的平均成绩为x =4×55+8×65+10×75+16×85+12×9550=79.8≈80(分).所以估计这900名学生竞赛的平均成绩约为80分.22.共享单车入驻泉州一周年以来,因其“绿色出行,低碳环保”的理念而备受人们的喜爱,值此周年之际,某机构为了了解共享单车使用者的年龄段、使用频率、满意度等三个方面的信息,在全市范围内发放5 000份调查问卷,回收到有效问卷3 125份,现从中随机抽取80份,分别对使用者的年龄段、26~35岁使用者的使用频率、26~35岁使用者的满意度进行汇总,得到如下三个表格:表(一)使用者年龄段25岁以下26岁~35岁36岁~45岁45岁以上人数2040 1010表(二)使用频率 0~6次/月7~14次/月15~22次/月23~31次/月人数510 205表(三)满意度 非常满意(9~10)满意(8~9)一般(7~8)不满意(6~7)人数1510105(1)依据上述表格完成下列三个统计图形:(2)某城区现有常住人口30万,请用样本估计总体的思想,试估计年龄在26岁~35岁之间,每月使用共享单车在7~14次的人数.解:(1)(2)由表(一)可知年龄在26岁~35岁之间的有40人,占总抽取人数的12,所以30万人口中年龄在26岁~35岁之间的约有30×12=15(万人).由表(二)可知,年龄在26岁~35岁之间每月使用共享单车在7~14次之间的有10人,占总抽取人数的14,所以年龄在26岁~35岁之间的15万人中,每月使用共享单车在7~14次之间的约有15×14=154(万人).。

人教版高中数学必修二期末测试卷及答案详解

人教版高中数学必修二期末测试卷及答案详解

人教版高中数学必修二期末检测卷一、单项选择题(本大题共8小题,共40.0分)1.如图,在正方体EFGH−E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A. 平面E1FG1与平面EGH1B. 平面FHG1与平面F1H1GC. 平面F1H1H与平面FHE1D. 平面E1HG1与平面EH1G2.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出如下命题:①若α⊥β,α∩β=m,n⊂a,n⊥m,则n⊥β;②若α⊥γ,β⊥γ,则α//β;③若α⊥β,m⊥β,m⊄α.则m//α;④若α⊥β,m//α,则m⊥β.其中正确命题的个数为()A. 1B. 2C. 3D. 43.如果直线l,m与平面α,β,γ之间满足:l=β∩γ,l//α,m⊂α和m⊥γ,那么()A. α⊥γ且l⊥mB. α⊥γ,且m//βC. m//β且l⊥mD. α//β且α⊥γ4.著名数学家华罗庚曾说过,“数无形时少直觉,形少数时难入微”,事实上,很多代数问题都可以转化为几何问题加以解决,如:√(x−a)2+(y −b)2可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=√x2+4x+20+√x2+2x+10的最小值为()A. 2√5B. 5√2C. 4D. 85.已知直线l1:ax+(a+2)y+2=0与l2:x+ay+1=0平行,则实数a的值为()A. −1或2B. 0或2C. 2D. −16.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示,则()A. b>0,d<0,a<cB. b>0,d<0,a>c1C. b <0,d >0,a >cD. b <0,d >0,a <c7. 对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0,圆C:x 2+y 2+2x =b 2−1(b >0)的位置关系是“平行相交”,则b 的取值范围为 ( )A. (√2,3√22)B. (0,√2)C. (0,3√22)D. (√2,3√22)∪(3√22,+∞) 8. 直线y =kx +3与圆(x −3)2+(y −2)2=4相交于M ,N 两点,若|MN|=2√3,则k 的值是( )A. −34B. 0C. 0或−34D. 34 二、填空题(本大题共5小题,共25.0分)9. 如图所示,在长方体ABCD −A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 .10. 过两圆x 2+y 2−2y −4=0与x 2+y 2−4x +2y =0的交点,且圆心在直线l :2x +4y −1=0上的圆的方程是_________________.11. 与直线x +y −2=0和曲线x 2+y 2−12x −12y +54=0都相切的半径最小的圆的标准方程是_____________.12. 如图所示,在棱长为2的正方体ABCD −A 1B 1C 1D 1中,A 1B 1的中点是P ,过点A 1作与截面PBC 1平行的截面,则截面的面积为 .13. 已知点M 是点P(4,5)关于直线y =3x −3的对称点,则过点M 且平行于直线y =3x −3的直线的方程是________.三、解答题(本大题共7小题,共84.0分)14. 如图,在三棱柱ABC −A 1B 1C 1中,O 为AB 的中点,CA =CB ,AB =AA 1,∠BAA 1=60∘.(1)证明:AB⊥平面A1OC;(2)若AB=CB=2,OA1⊥OC,求三棱锥A1−ABC的体积.15.已知直线m:(a−1)x+(2a+3)y−a+6=0,n:x−2y+3=0.(1)当a=0时,直线l过m与n的交点,且它在两坐标轴上的截距相反,求直线l的方程;(2)若坐标原点O到直线m的距离为√5,判断m与n的位置关系.16.求过点P(4,−1)且与直线3x−4y+6=0垂直的直线方程.317.在平面直角坐标系xOy中,O为坐标原点,点A(0,3),设圆C的半径为1,圆心C(a,b)在直线l:y=2x−4上.(1)若圆心C也在直线y=−x+5上,求圆C的方程;(2)在上述的条件下,过点A作圆C的切线,求切线的方程;(3)若圆C上存在点M,使|MA|=|MO|,求圆心C的横坐标a的取值范围.18.如图,在直三棱柱ABC−A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1//平面DEC1;(2)BE⊥C1E.19.已知ΔABC的顶点B(3,4),AB边上的高所在的直线方程为x+y−3=0,E为BC的中点,且AE所在的直线方程为x+3y−7=0.(Ⅰ)求顶点A的坐标;(Ⅱ)求过E点且在x轴、y轴上的截距相等的直线l的方程.20.已知直线l:x−ay+1=0与圆C:x2+y2−4x−2y+1=0交于A,B两点,|AB|=2√3.(1)求a的值;(2)求与直线l平行的圆C的切线方程.答案和解析1.【答案】A【解析】【分析】本题考查了线面平行的判定,面面平行的判定,属于中档题.根据几何体中的线段特征确定平行关系,再确定线面的平行关系,E1G1//面EGH1,E1F//面EGH1,即可得出确定的平行平面.【解答】解:如图:在正方体EFGH−E1F1G1H1中,连接EG,E1F,E1G1,H1E,H1G,∵EG//E1G1,EG⊂面EGH1,E1G1⊄面EGH1,∴E1G1//面EGH1,∵E1F//H1G,H1G⊂面EGH1,E1F⊄面EGH1,∴E1F//面EGH1,∵E1G1∩E1F=E1,E1G1,E1F⊂面E1FG1,∴面EGH1//面E1FG1,故选A.2.【答案】B【解析】【分析】本题以命题的真假判断为载体,考查了空间直线与平面的位置关系及平面与平面的位置关系,熟练掌握空间线面关系的几何特征及判定方法是解答的关键.根据空间线面平行和垂直的几何特征及判定方法,逐一分析四个命题的真假,最后综合讨论5结果,可得答案.【解答】解:根据面面垂直的性质,故①正确;由α⊥γ,β⊥γ,得到α//β或相交,故②错误;由α⊥β,且m⊥β,得到m与α可能平行,也可能m在平面面α内,又m⊄α,则m//α,故③正确;若α⊥β,m//α,则m与β可能平行,可能相交,也可能线在面内,故④错误;其中正确命题的个数为2.故选B.3.【答案】A【解析】【分析】本题考查空间直线与平面之间的位置关系,画出图形,帮助分析,考查逻辑思维能力和分析判断能力,属于基础题.m⊂α和m⊥γ⇒α⊥γ,l=β∩γ,l⊂γ.然后推出l⊥m,得到结果.【解答】解:∵m⊂α且m⊥γ,∴α⊥γ,∵l=β∩γ,∴l⊂γ.又∵m⊥γ,∴l⊥m,即α⊥γ且l⊥m,故选A.4.【答案】B【解析】【分析】本题考查利用函数的几何意义求函数的最值,考查两点之间的距离公式的运用,属于中档题.由题意得到f(x)的几何意义为点M(x,0)到两定点A(−2,4)与B(−1,3)的距离,即要求f(x)的最小值,可转化为求|MA|+|MB|的最小值,利用对称思想可知|MA|+|MB|=|MA′|+|MB|≥|A′B|即可求解.【解答】解:∵f(x)=√x2+4x+20+√x2+2x+10=√(x+2)2+(0−4)2+√(x+1)2+(0−3)2,∴f(x)的几何意义为点M(x,0)到两定点A(−2,4)与B(−1,3)的距离之和.设点A(−2,4)关于x轴的对称点为A′,则A′的坐标为(−2,−4).要求f(x)的最小值,可转化为求|MA|+|MB|的最小值,利用对称思想可知|MA|+|MB|=|MA′|+|MB|≥|A′B|=√(−1+2)2+(3+4)2=5√2,即f(x)=√x2+4x+20+√x2+2x+10的最小值为5√2.故选B.5.【答案】D【解析】【分析】本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题.由a·a−(a+2)=0,即a2−a−2=0,解得a.经过验证即可得出.【解答】解:由题意知a⋅a−(a+2)=0,即a2−a−2=0,解得a=2或−1.经过验证可得:a=2时两条直线重合,舍去.∴a=−1.故选D.6.【答案】C【解析】【分析】本题考查直线的一般式向斜截式转化,属于基础题.将直线转化成斜截式,根据图象得两直线斜率、截距的不等关系,解不等式即可得解.【解答】解:l1 :y=−1a x−ba,l2 : y=−1cx−dc,由图象知:①−1a >−1c>0,②−ba<0,③−dc>0,,故选C.77.【答案】D【解析】【分析】本题主要考查直线与圆的位置关系及应用,属于中档题.结合新定义,求出圆心到直线的距离,根据相离相切的条件求出b 的范围,进而求出平行相交时b 的范围.【解答】解:圆C 的标准方程为(x +1)2+y 2=b 2,由两直线平行得a(a +1)−6=0,解得a =2或a =−3.又当a =2时,直线l 1,l 2重合,应舍去,∴两平行线的方程分别为x −y −2=0和x −y +3=0.由直线x −y −2=0与圆(x +1)2+y 2=b 2相切,得b =√2=3√22; 由直线x −y +3=0与圆相切,得b =√2=√2.当两直线与圆都相离时,b <√2.∴“平行相交”时,b 满足{b >√2,b ≠3√22, ∴b 的取值范围是(√2,3√22)∪(3√22,+∞). 故选D . 8.【答案】C【解析】【分析】本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于中档题. 由点到直线距离公式可得弦心距d =√k 2+1,再由弦长,半径,弦心距之间关系列出关于k 的等式,由此解得k 的值.【解答】解:圆心(3,2)到直线y =kx +3的距离d =√k 2+1,则|MN|=2 √4−(3k+1)2k 2+1=2√3,解得k =0或k =−34. 故选C .9.【答案】√105.【解析】【分析】本题主要考查直线与平面所成的角、线面垂直的判定,属于中档题.根据正方形条件得到线线垂直,再由线面垂直得到线线垂直,进而证明线面垂直找到点C1在面BB1D1D上的射影O,即线面角∠OBC1,进一步利用锐角三角形求解.【解答】解:如图所示,在长方体ABCD−A1B1C1D1中,连接A1C1、B1D1,交于O点,连接OB,由已知四边形A1B1C1D1是正方形,∴A1C1⊥B1D1,又∵BB1⊥平面A1B1C1D1,OC1⊂平面A1B1C1D1,∴OC1⊥BB1,而BB1∩B1D1=B1,∴OC1⊥平面BB1D1D.∴OB是BC1在平面BB1D1D内的射影.∴∠C1BO是BC1与平面BB1D1D所成的角.在正方形A1B1C1D1中,OC1=12A1C1=12√22+22=√2.在矩形BB1C1C中,BC1=√BC2+CC12=√4+1=√5.9∴sin∠C1BO=OC1BC1=√2√5=√105.故答案为√105.10.【答案】x2+y2−3x+y−1=0【解析】【分析】本题考查求圆的一般方程,圆系方程及其应用,属于中档题.可设新圆方程为x2+y2−4x+2y+λ(x2+y2−2y−4)=0(λ≠−1),通过整理,不难表示出新圆的圆心坐标,接下来根据新圆的圆心在直线l上,将所得圆心坐标代入,解方程即可得解.【解答】解:设所求圆的方程为x2+y2−4x+2y+λ(x2+y2−2y−4)=0(λ≠−1).整理得x2+y2+−41+λx+2−2λ1+λy−4λ1+λ=0,所以圆心坐标为(21+λ,λ−11+λ),因为圆心在直线2x+4y=1上,故41+λ+4(λ−1)1+λ=1,解得λ=13.所以所求圆的方程为x2+y2−3x+y−1=0.故答案为x2+y2−3x+y−1=0.11.【答案】(x−2)2+(y−2)2=2【解析】【试题解析】【分析】本题考查直线与圆相切的性质的应用,求圆的标准方程,难度一般.先求出圆心C1(6,6)到直线x+y−2=0的距离为d=√2=5√2.再求过点C1且垂直于x+ y−2=0的直线y=x,所求的最小圆的圆心C2在直线y=x上,圆心C2到直线x+y−2=0的距离为5√2−3√22=√2,则圆C2的半径长为√2.设C2的坐标为(x0,x0),则00√2=√2,解得x0=2(x0=0舍去),所以圆心坐标为(2,2),即可求出所求.【解答】解:曲线化为(x−6)2+(y−6)2=18,=5√2.其圆心C1(6,6)到直线x+y−2=0的距离为d=|6+6−2|√2过点C1且垂直于x+y−2=0的直线为y−6=x−6,即y=x,所以所求的最小圆的圆心C2在直线y=x上,如图所示,=√2,圆心C2到直线x+y−2=0的距离为5√2−3√22则圆C2的半径长为√2.设C2的坐标为(x0,x0),=√2,解得x0=2(x0=0舍去),则00√2所以圆心坐标为(2,2),所以所求圆的标准方程为(x−2)2+(y−2)2=2.故答案为(x−2)2+(y−2)2=2.12.【答案】2√6【解析】【分析】本题考查截面面积的求法,解题时要认真审题,注意空间思维能力的培养,属于中档题.取AB、C1D1的中点M、N,连结A1M、MC、CN、NA1.由已知得四边形A1MCN是平行四边形,连接MN,作A1H⊥MN于H,由题意能求出截面的面积.【解答】解:分别取AB,C1D1的中点M,N,连接A1M,MC,CN,NA1,11∵A1N//PC1//MC,且A1N=PC1=MC,∴四边形A1MCN是平行四边形.又∵A1N//PC1,A1N⊄平面PBC1,PC1⊂平面PBC1,∴A1N//平面PBC1,同理可证A1M//平面PBC1,∵A1N∩A1M=A1,且A1N,A1M⊂平面A1MCN,∴平面A1MCN//平面PBC1,因此,过点A1与截面PBC1平行的截面是平行四边形A1MCN,连接MN,作A1H⊥MN于点H,∵A1M=A1N=√5,MN=2√2,∴△A1MN为等腰三角形.∴A1H=√3,∴S△A1MN =12×2√2×√3=√6.故S▱A1MCN =2S△A1MN=2√6.故答案为2√6.13.【答案】3x−y+1=0【解析】【分析】本题考查了点关于直线的对称点的求法,考查了直线方程的点斜式,是基础题.设出M的坐标,利用点到直线的距离以及两平行线间的距离公式求解.【解答】解:因为点M是点P(4,5)关于直线y=3x−3的对称点,所以两点到直线y=3x−3的距离相等,所以过点M且平行于直线y=3x−3的直线与y=3x−3之间的距离等于点P到直线y=3x−3的距离.点P(4,5)到直线3x−y−3=0距离为√12+32=√10.设过点M且与直线y=3x−3平行的直线的方程为3x−y+c=0,13所以由两平行线间的距离公式有√12+32=√10,即|c +3|=4,解得c =1或c =−7, 即所求直线的方程为3x −y −7=0或3x −y +1=0.由于点P(4,5)在直线3x −y −7=0上,故过M 点且平行于直线y =3x −3的直线方程是3x −y +1=0.14.【答案】(1)证明:∵CA =CB ,O 为AB 的中点,∴OC ⊥AB .∵AB =AA 1,∠BAA 1=60∘,∴△AA 1B 为等边三角形,∴OA 1⊥AB ,又OC ∩OA 1=O ,∴AB ⊥平面A 1OC .(2)解:∵AB =CB =2,∴△ABC 为边长是2的等边三角形,则S △ABC =12×2×√3=√3.∵OA 1⊥AB ,OA 1⊥OC ,AB ∩OC =O ,∴OA 1⊥平面ABC ,即OA 1是三棱锥A 1−ABC 的高,又OA 1=√3,∴三棱锥A 1−ABC 的体积V =13×√3×√3=1.【解析】本题考查线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)推导出CO ⊥AB ,A 1O ⊥AB ,由此能证明AB ⊥平面A 1OC .(2)推导出A 1O ⊥平面ABC ,由此能求出三棱锥A 1−ABC 的体积.15.【答案】解:(1)当a =0时,直线m:x −3y −6=0,由{x −3y −6=0x −2y +3=0,解得{x =−21y =−9, 即m 与n 的交点为(−21,−9).当直线l 过原点时,直线l 的方程为3x −7y =0; 当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入得b =−12,所以直线l 的方程为x −y +12=0.故满足条件的直线l 的方程为3x −7y =0或x −y +12=0.(2)设原点O 到直线m 的距离为d ,则d =√(a−1)2+(2a+3)2=√5,解得a =−14或a =−73,当a =−14时,直线m 的方程为x −2y −5=0,此时m//n;当a =−73时,直线m 的方程为2x +y −5=0,此时m ⊥n.【解析】本题主要考查了直线的截距式方程,两条直线平行与垂直的判定,点到直线的距离公式,属于中档题.(1)当a =0时,由题意可求出x 与y ,可求出m 与n 的交点,当直线l 过原点时,直线l 的方程为3x −7y =0,当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入即可求解.(2)求出原点O 到直线m 的距离d ,求出a ,当a =−14时,证明m//n ,当a =−73时,证明m ⊥n. 16.【答案】解:∵所求直线与直线3x −4y +6=0垂直,∴设其为4x +3y +m =0.∵该直线过点P(4,−1),∴4×4+3×(−1)+m =0,解得m =−13.故所求直线方程为4x +3y −13=0.【解析】考查对于直线方程的求解问题,利用垂直性质求解,属于基础.17.【答案】解:(1)由{y =2x −4y =−x +5 得圆心C 为(3,2),∵圆C 的半径为1,∴圆C 的方程为:(x −3)2+(y −2)2=1;(2)由题意知切线的斜率一定存在,设所求圆C 的切线方程为y =kx +3,即kx −y +3=0,∴√k 2+1=1,∴|3k +1|=√k 2+1,∴2k(4k +3)=0,∴k =0或者k =−34,∴所求圆C 的切线方程为:y =3或者y =−34x +3,即y =3或者3x +4y −12=0;(3)设M 为(x,y),由√x 2+(y −3)2=√x 2+y 215整理得直线m :y =32, ∴点M 应该既在圆C 上又在直线m 上,即:圆C 和直线m 有公共点,∴|2a −4−32|≤1,∴94≤a ≤134,终上所述,a 的取值范围为:[94,134].【解析】此题考查了圆的切线方程,点到直线的距离公式,涉及的知识有:两直线的交点坐标,直线的点斜式方程,圆的标准方程,是一道综合性较强的试题.(1)联立直线l 与直线y =−x +5,求出方程组的解得到圆心C 坐标,可得圆C 的方程;(2)根据A 坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k 的方程,求出方程的解得到k 的值,确定出切线方程即可;(3)设M(x,y),由|MA|=|MO|,利用两点间的距离公式列出关系式,整理后得到点M 的轨迹为直线y =32,由M 在圆C 上,得到圆C 与直线相交,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a 的范围.18.【答案】证明:(1)∵在直三棱柱ABC −A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,∴DE//AB ,AB//A 1B 1,∴DE//A 1B 1,∵DE ⊂平面DEC 1,A 1B 1⊄平面DEC 1,∴A 1B 1//平面DEC 1.解:(2)∵在直三棱柱ABC −A 1B 1C 1中,E 是AC 的中点,AB =BC .∴BE ⊥AA 1,BE ⊥AC ,又AA 1∩AC =A ,∴BE ⊥平面ACC 1A 1,∵C 1E ⊂平面ACC 1A 1,∴BE ⊥C 1E .【解析】(1)推导出DE//AB ,AB//A 1B 1,从而DE//A 1B 1,由此能证明A 1B 1//平面DEC 1.(2)推导出BE ⊥AA 1,BE ⊥AC ,从而BE ⊥平面ACC 1A 1,由此能证明BE ⊥C 1E .本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.【答案】解:(1)AB 边上的高所在的直线方程为x +y −3=0,∴k AB =−1−1=1. ∴直线AB 方程为:y −4=x −3,化为:x −y +1=0,联立{x −y +1=0x +3y −7=0,解得x =1,y =2.∴A(1,2).(2)设E(a,b),则C(2a −3,2b −4).联立{(2a −3)+(2b −4)−3=0a +3b −7=0,解得a =4,b =1.∴E(4,1). 由直线l 与x 轴、y 轴截距相等,①当直线l 经过原点时,设直线l 的方程为:y =kx .把E 的坐标代入可得:1=4k ,解得k =14.∴直线l 的方程为:y =14x.②当直线l 不经过原点时,设直线l 的方程为:x +y =m .把E 的坐标代入可得:m =5.∴直线l 的方程为:x +y =5.综上直线l 的方程为:x −4y =0或x +y −5=0.【解析】本题考查了直线的方程、直线的交点、相互垂直的直线斜率之间的关系、中点坐标公式、分类讨论方法,考查了推理能力与计算能力,属于基础题.(1)AB 边上的高所在的直线方程为x +y −3=0,可得k AB =1.把直线AB 方程与AE 的方程联立解得A 的坐标.(2)设E(a,b),则C(2a −3,2b −4).联立{(2a −3)+(2b −4)−3=0a +3b −7=0,解得E 坐标.由直线l 与x 轴、y 轴截距相等,对截距分类讨论即可得出.20.【答案】解:(1)∵圆C :(x −2)2+(y −1)2=4,∴圆心为(2,1),半径r =2,∴圆心到直线x −ay +1=0的距离为:d =√12+a 2=√r 2−(√3)2=√4−3=1, 解得a =43,(2)由(1)知直线l :3x −4y +3=0,因为切线与直线l 平行,所以设所求的切线方程为3x −4y +D =0.因为直线与圆相切,所以圆心到切线的距离d =√32+(−4)2=|2+D |5=2.所以D =8或D =−12.所以所求切线方程为3x −4y +8=0或3x −4y −12=0.【解析】本题主要考查了点到直线的距离公式,考查直线与圆的位置关系,属于基础题.(1)首先确定圆心和半径,然后利用点到直线的距离公式可以列出等式,由此求出a的值.(2)由(1)知直线l:3x−4y+3=0,依题意,设所求切线方程为3x−4y+D=0,则圆心到=2.求解即可得结果切线的距离d=|2+D|517。

2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)

2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)
19.已知复数z满足 , 的虚部为2,
(1)求复数z;
(2)若复数z在复平面内所对应的点位于第一象限,且复数m满足 ,求 的最大值和最小值.
20.某中学为了解大数据提供的个性化作业质量情况,随机访问50名学生,根据这50名学生对个性化作业的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间 、 、…、 、 .
【详解】
∵向量 ,
∴ ,又 ,
∴ ,
∴ .
故选:B.
6.D
【分析】
设出正六棱柱底面边长为 ,可知正六棱柱的高为 ,再通过正六棱锥与正六棱柱的侧面积之比为 可得正六棱锥的高,这样就可以得到答案.
【详解】
设正六棱柱底面边长为 ,由题意可知正六棱柱的高为 ,则可知正六棱柱的侧面积为 .
设正六棱锥的高为 ,可知正六棱锥侧面的一个三角形的边为 上的高为 ,
9.BD
【分析】
根据图表,对各项逐个分析判断即可得解.
【详解】
对A,在前四年有下降的过程,故A错误;
对B,六年的在校生总数为24037,平均值为4006以上,故B正确;
对C, ,未接受高中阶段教育的适龄青少年有468万人以上,故C错误;
对D, ,故D正确.
故选:BD
10.ABC
【分析】
对于A, ,可判断错误;对于B找出反例 不满足题意,判定错误;对于C若 ,则其不正确;对于D, ,则其虚部为0,故正确.故可得答案.
A.近六年,高中阶段在校生规模与毛入学率均持续增长
B.近六年,高中阶段在校生规模的平均值超过4000万人
C.2019年,未接受高中阶段教育的适龄青少年不足420万
D.2020年,普通高中的在校生超过2470万人
10.下列说法不正确的是()

高中数学 期末试题 新人教A版必修2

高中数学 期末试题 新人教A版必修2

卷Ⅰ(选择题,共60分)一.选择题(共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项正确.)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是 A. 30° B. 45° C. 60° D. 90°2. 若0a b <<,则下列不等式不能成立的是A. 11a b >B. 22a b >C. a b >D. 11()()22a b > 3. 两平行直线3420x y +-=与3480x y ++=之间的距离为A. 2B. 12C. 56D. 654. 设数列{}n a 的前n 项和2n S n =,则8a 的值为A . 16 B. 15 C. 49 D. 645. 用a ,,b c 表示三条不同的直线,γ表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ; ②若,,a b b c ⊥⊥则a c ⊥;③若a ∥γ,b ∥γ,则a ∥b ; ④若,a b γγ⊥⊥,则a ∥b .其中真命题的序号是A. ①②B.②③C. ①④D. ③④6. 在△ABC 中,若45,2,6A a c ∠===,则C ∠等于A. 30°B. 120°C. 60°D. 60°或120°7. 直线210mx y m -++=经过一定点,则该点的坐标是A.(-2,1)B. (2,1)C.(1,-2)D. (1,2)8. 已知M (-2,0),N (2,0), 则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是A .222=+y x B. 422=+y xC . )2(222±≠=+x y x D. )2(422±≠=+x y x9.设x,y 满足约束条件260,260,0,x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z=x+y 的最大值是A. 3B. 4C. 6D. 810. 设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是A.2X Z Y +=B.()()Y Y X Z Z X -=-C.2Y XZ =D.()()Y Y X X Z X -=-11. 已知方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围为A.2a <-或23a >B. 223a -<<C.20a -<<D. 223a -<< 12. 已知等比数列{}n a 中,各项都是正数,且1a 、123a 、22a 成等差数列,则91078a a a a ++= A .1+2 B .12- C .3+22 D .322-卷Ⅱ(非选择题 共90分)二.填空题(共4小题,每小题5分,共20分)13.在正方体ABCD-1111A B C D 中,体对角线1AC 与底面ABCD 所成角的正切值为 ; 二面角1C BD C --的正切值为 .14.在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式n a = .15.直线220x y -+=被圆22(3)(2)9x y ++-=所截得的弦长为________.16. 若一个底面是正三角形的三棱柱的正视图如图所示, 则其表面积等于 .三. 解答题(共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

人教A版高中数学必修二第六章章末检测(含答案)

人教A版高中数学必修二第六章章末检测(含答案)

第六章章末检测(时间:120分钟,满分150分)一、选择题(本大题共8小题,每小题5分,共40分) 1.已知AB →=(3,0),那么|AB →|等于( ) A .2 B .3 C .(1,2)D .5【答案】B 【解析】∵AB →=(3,0),∴|AB →|=32+02=3.故选B .2.若OA →=(-1,2),OB →=(1,-1),则AB →=( ) A .(-2,3) B .(0,1) C .(-1,2)D .(2,-3)【答案】D 【解析】OA →=(-1,2),OB →=(1,-1),所以AB →=OB →-OA →=(1+1,-1-2)=(2,-3).3.已知向量a =(3,k ),b =(2,-1),a ⊥b ,则实数k 的值为( ) A .-32B .32C .6D .2【答案】C 【解析】∵向量a =(3,k ),b =(2,-1),a ⊥b ,∴6-k =0,解得k =6.故选C .4.(2019年长沙期末)设a =⎝⎛⎭⎫sin α,33,b =⎝⎛⎭⎫cos α,13,且a ∥b ,则锐角α为( ) A .30° B .60° C .75°D .45°【答案】B 【解析】由a =⎝⎛⎭⎫sin α,33,b =⎝⎛⎭⎫cos α,13且a ∥b ,则13sin α-33cos α=0,解得tan α= 3.又α为锐角,所以α=60°.故选B .5.(2020年宜宾模拟)已知向量a =(2,m ),b =(4,-2),且(a +b )⊥(a -b ),则实数m =( )A .-4B .4C .±2D .±4【答案】D 【解析】∵(a +b )⊥(a -b ),∴(a +b )·(a -b )=a 2-b 2=4+m 2-16-4=0,解得m =±4.故选D .6.已知|a|=|b|=2,a·b =-2,若|c -a -b|=1,则|c|的取值范围为( ) A .⎣⎡⎦⎤12,32 B .⎣⎡⎦⎤12,52 C .[2,3]D .[1,3]【答案】D 【解析】∵已知|a|=|b|=2,a·b =-2,|c -a -b|=1=|c -(a +b )|≥|c|-|a +b|,∴|c|≤1+|a +b|.又|a +b|=(a +b )2=a 2+2a·b +b 2=4+2·(-2)+4=2.∴|c|≤3.再根据|c -a -b|=|c -(a +b )|≥|a +b|-|c|,可得|c|≥|a +b|-1=2-1=1,故有1≤|c|≤3.故选D .7.(2019年宝鸡期末)已知在△ABC 中,a =x ,b =2,B =30°,若三角形有两解,则x 的取值范围是( )A .x >2B .0<x <2C .2<x <3D .2<x <4【答案】D 【解析】由AC =b =2,要使三角形有两解,就是要使以C 为圆心,半径为2的圆与BA 有两个交点.当A =90°时,圆与AB 相切;当A =30°时交于B 点,也就是只有一解,∴30°<A <150°,且A ≠90°,即12<sin A <1.由正弦定理可得a sin B =b sin A ,可得a =x =b sin Asin B=4sin A .∵4sin A ∈(2,4),∴x 的取值范围是(2,4).故选D .8.若M 为△ABC 所在平面内一点,且满足(MB →-MC →)·(MB →+MC →-2MA →)=0,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形【答案】A 【解析】设BC 的中点为D ,则MB →+MC →-2MA →=2MD →-2MA →=2AD →.∵满足(MB →-MC →)·(MB →+MC →-2MA →)=0,∴CB →·2AD →=0.∴CB →⊥AD →.∴△ABC 的形状是等腰三角形.故选A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.以下关于正弦定理或其变形正确的有( ) A .在△ABC 中,a ∶b ∶c =sin A ∶sin B ∶sin C B .在△ABC 中,若sin 2A =sin 2B ,则a =bC .在△ABC 中,“A >B ”是“sin A >sin B ”的充要条件D .在△ABC 中,asin A =b +c sin B +sin C【答案】ACD 【解析】对于A ,由正弦定理,a sin A =b sin B =csin C =2R ,可得a ∶b ∶c=2R sin A ∶2R sin B ∶2R sin C =sin A ∶sin B ∶sin C ,故正确;对于B ,由sin 2A =sin 2B ,可得A =B 或2A +2B =π,即A =B 或A +B =π2,∴a =b 或a 2+b 2=c 2,故B 错误;对于C ,在△ABC 中,由正弦定理可得sin A >sin B ⇔a >b ⇔A >B ,因此A >B 是sin A >sin B 的充要条件,正确;对于D ,由正弦定理a sin A =b sin B =csin C =2R ,可得右边=b +c sin B +sin C =2R sin B +2R sin Csin B +sin C=2R =左边,故正确.故选ACD .10.对于△ABC ,有如下命题,其中正确的有( ) A .若sin 2A =sin 2B ,则△ABC 为等腰三角形 B .若sin A =cos B ,则△ABC 为直角三角形C .若sin 2A +sin 2B +cos 2C <1,则△ABC 为钝角三角形D .若AB =3,AC =1,B =30°,则△ABC 的面积为32或34【答案】CD 【解析】对于A ,sin 2A =sin 2B ,∴A =B ⇒△ABC 是等腰三角形,或2A +2B =π⇒A +B =π2,即△ABC 是直角三角形,故A 不对;对于B ,由sin A =cos B ,∴A -B=π2或A +B =π2,△ABC 不一定是直角三角形;对于C ,sin 2A +sin 2B <1-cos 2C =sin 2C ,∴a 2+b 2<c 2,则△ABC 为钝角三角形,C 正确;对于D ,由正弦定理,得sin C =c ·sin B b =32,而c >b ,∴C =60°或C =120°,则A =90°或A =30°,则S △ABC =12bc sin A =32或34.D 正确.故选CD .11.对于任意的平面向量a ,b ,c ,下列说法错误的是( ) A .若a ∥b 且b ∥c ,则a ∥cB .(a +b )·c =a·c +b·cC .若a·b =a·c ,且a ≠0,则b =cD .(a·b )·c =a·(b·c )【答案】ACD 【解析】a ∥b 且b ∥c ,当b 为零向量时,则a 与c 不一定共线,即A 错误;由向量数量积的分配律得(a +b )·c =a·c +b·c ,即B 正确;因为a·b =a·c ,则a·(b -c )=0,又a ≠0,则b =c 或a ⊥(b -c ),即C 错误;取a ,b ,c 为非零向量,且a 与b 垂直,b 与c 不垂直,则(a·b )·c =0,a·(b·c )≠0,即D 错误.故选ACD .12.已知e 1,e 2是两个单位向量,λ∈R 时,|e 1+λe 2|的最小值为32,则下列结论正确的是( )A .e 1,e 2的夹角是π3B .e 1,e 2的夹角是π3或2π3C .|e 1+e 2|=1或 3D .|e 1+e 2|=1或32【答案】BC 【解析】∵e 1,e 2是两个单位向量,且|e 1+λe 2|的最小值为32,∴(e 1+λe 2)2的最小值为34.设e 1,e 2的夹角为θ,(e 1+λe 2)2=λ2+2λcos θ+1=(λ+cos θ)2+1-cos 2θ,∴1-cos 2θ=34,则e 1与e 2的夹角为π3或2π3.∴|e 1+e 2|2=1或3,则|e 1+e 2|=1或 3.故选BC .三、填空题(本大题共4小题,每小题5分,共20分,请把答案填写在题中横线上) 13.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b的值为________.【答案】12 【解析】AB →=(a -2,-2),AC →=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12.14.在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.【答案】311 【解析】AB →·AC →=3×2×cos 60°=3,AD →=AB →+BD →=AB →+23BC →=AB →+23(AC→-AB →)=13AB →+23AC →,则AD →·AE →=⎝ ⎛⎭⎪⎫13AB→+23AC →·(λAC →-AB →)=λ3×3+2λ3×4-13×9-23×3=-4⇒λ=311.15.(2020年绵阳模拟)2019年10月1日,在庆祝中华人民共和国成立70周年阅兵中,由我国自主研制的军用飞机和军用无人机等参阅航空装备分秒不差飞越天安门,状军威,振民心,令世人瞩目.飞行员高超的飞行技术离不开艰苦的训练和科学的数据分析.一次飞行训练中,地面观测站观测到一架参阅直升机以722千米/小时的速度在同一高度向正东飞行,如图,第一次观测到该飞机在北偏西60°的方向上,1分钟后第二次观测到该飞机在北偏东75°的方向上,仰角为30°,则直升机飞行的高度为________千米(结果保留根号).【答案】235 【解析】由题设条件可得线AC 平行于东西方向,∠ABD =60°,∠CBD=75°,AC =72260,∴∠ABC =135°,∠BAC =30°.在△ABC 中,BC sin ∠BAC =AC sin ∠ABC ⇒BCsin 30°=652sin 135°⇒BC =652×1222=65.在直角△BCE 中,tan ∠CBE =CE BC =h BC ⇒h =BC ·tan ∠CBE =65×tan 30°=235(km). 16.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(a +2c )cos B +b cos A =0,b =3,△ABC 的周长为3+23,则△ABC 的面积是________.【答案】334 【解析】已知(a +2c )cos B +b cos A =0,则(sin A +2sin C )cos B +sin B cosA =0,整理得sin A cosB +cos A ·sin B +2sinC cos B =0,解得cos B =-12.由于0<B <π,所以B =2π3.因为△ABC 的周长为3+23,则a +b +c =3+23,由于b =3,则a +c =2 3.由于b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac ·cos B ,解得ac =3.故S △ABC =12ac sin B =334.四、解答题(本大题共6小题,17题10分,其余小题为12分,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.已知AB →=(-1,3),BC →=(3,m ),CD →=(1,n ),且AD →∥BC →. (1)求实数n 的值;(2)若AC →⊥BD →,求实数m 的值.解:因为AB →=(-1,3),BC →=(3,m ),CD →=(1,n ), 所以AD →=AB →+BC →+CD →=(3,3+m +n ).(1)因为AD →∥BC →,所以AD →=λBC →,即⎩⎪⎨⎪⎧3=3λ,3+m +n =λm ,解得n =-3.(2)因为AC →=AB →+BC →=(2,3+m ),BD →=BC →+CD →=(4,m -3),又AC →⊥BD →,所以AC →·BD →=0,即8+(3+m )(m -3)=0,解得m =±1.18.已知非零向量a ,b 满足|a|=1,且(a -b )·(a +b )=34.(1)求|b |;(2)当a·b =-14时,求向量a 与a +2b 的夹角θ的值.解:(1)根据条件,(a -b )·(a +b )=a 2-b 2=1-b 2=34,∴b 2=14.|b|=12.(2)∵a·b =-14,∴a·(a +2b )=a 2+2a·b =1-12=12,|a +2b|=(a +2b )2=1-1+1=1.cos θ=a·(a +2b )|a||a +2b |=121×1=12.θ∈[0,π],∴θ=π3.19.在锐角△ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,已知b sin A =a sin ⎝⎛⎭⎫B +π3. (1)求角B 的大小; (2)求ca的取值范围.解:(1)∵b sin A =a sin ⎝⎛⎭⎫B +π3, ∴sin B sin A =sin A ⎝⎛⎭⎫12sin B +32cos B .又sin A ≠0,化为12sin B -32cos B =0,∴tan B = 3.又B ∈(0,π),解得B =π3.(2)由(1)可得A +C =π-B =2π3,又△ABC 为锐角三角形,∴0<C =2π3-A <π2,0<A <π2.∴π6<A <π2.∴c a =sin Csin A=sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =32tan A +12∈⎝⎛⎭⎫12,2.∴ca的取值范围是⎝⎛⎭⎫12,2. 20.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE →=23AD →,AB →=a ,AC →=b .(1)用a ,b 表示向量AD →,AE →,AF →,BE →,BF →; (2)求证:B ,E ,F 三点共线.(1)解:延长AD 到G ,使AD →=12AG →,连接BG ,CG ,得到平行四边形ABGC ,所以AG →=a +b ,AD →=12AG →=12(a +b ),AE →=23AD →=13(a +b ),AF →=12AC →=12b ,BE →=AE →-AB →=13(a +b )-a=13(b -2a ),BF →=AF →-AB →=12b -a =12(b -2a ). (2)证明:由(1)可知BE →=23BF →,又因为BE →,BF →有公共点B ,所以B ,E ,F 三点共线.21.(2020年绵阳模拟)已知△ABC 中三个内角A ,B ,C 满足2cos B =sin(A +C )+1. (1)求sin B ;(2)若C -A =π2,b 是角B 的对边,b =3,求△ABC 的面积.解:(1)∵2cos B =sin(A +C )+1,sin(A +C )=sin B ,∴2cos B =sin B +1.又sin 2B +cos 2B =1,化为3sin 2B +2sin B -1=0,结合1>sin B >0,解得sin B =13.(2)C -A =π2,又A +B +C =π,可得2A =π2-B ,C 为钝角.∴sin 2A =cos B .又b =3,∴a sin A =c sin C =313=3 3.∴a =33sin A ,c =33sin C .∵B 为锐角,∴cos B =223.∴△ABC 的面积S =12ac sin B =12×33sin A ×33sin C ×13=92sin A ·sin ⎝⎛⎭⎫π2+A =92sin A cos A =94sin 2A =94cos B =94×223=322.∴△ABC 的面积为322. 22.(2020年哈尔滨月考)已知函数f (x )=32sin x cos x -14cos 2x -14. (1)求函数f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =855,D 为边AB 上一点,CD =2,B 为锐角,且f (B )=0,求∠BDC 的正弦值.解:(1)f (x )=32sin x cos x -14cos 2x -14=34sin 2x -14cos 2x -14=12sin ⎝⎛⎭⎫2x -π6-14,要求函数f (x )的单调递减区间,令2x -π6∈⎣⎡⎦⎤2k π+π2,2k π+3π2(k ∈Z ),得x ∈⎣⎡⎦⎤k π+π3,k π+5π6(k ∈Z ),所以函数的单调递减区间为⎣⎡⎦⎤π3+k π,5π6+k π(k ∈Z ). (2)由于f (B )=0,即12sin ⎝⎛⎭⎫2B -π6-14=0,解得B =π6或π2(舍去),由B =π6,在△BCD 中,CD sin π6=BCsin ∠BDC ,所以sin ∠BDC =8552·12=255.。

人教版高中数学必修二期末测试题(附参考答案)

人教版高中数学必修二期末测试题(附参考答案)

高一数学必修二期末测试题考试时间:90分钟试卷满分:100分一、选择题1.点(1,-1)到直线x -y +1=0的距离是().A .21B .23C .22D .2232.过点(1,0)且与直线x -2y -2=0平行的直线方程是().A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=03.下列直线中与直线2x +y +1=0垂直的一条是().A .2x ―y ―1=0B .x -2y +1=0C .x +2y +1=0D .x +21y -1=04.已知圆的方程为x 2+y 2-2x +6y +8=0,那么通过圆心的一条直线方程是().A .2x -y -1=0B .2x +y +1=0C .2x -y +1=0D .2x +y -1=05.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为().A .三棱台、三棱柱、圆锥、圆台B .三棱台、三棱锥、圆锥、圆台C .三棱柱、四棱锥、圆锥、圆台D .三棱柱、三棱台、圆锥、圆台6.直线3x +4y -5=0与圆2x 2+2y 2―4x ―2y +1=0的位置关系是().A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心7.过点P (a ,5)作圆(x +2)2+(y -1)2=4的切线,切线长为32,则a 等于().A .-1B .-2C .-3D .0(4)(3)(1)(2)8.圆A :x 2+y 2+4x +2y +1=0与圆B :x 2+y 2―2x ―6y +1=0的位置关系是().A .相交B .相离C .相切D .内含9.已知点A (2,3,5),B (-2,1,3),则|AB |=().A .6B .26C .2D .2210.如果一个正四面体的体积为9dm 3,则其表面积S 的值为().A .183dm 2B .18dm 2C .123dm 2D .12dm 211.如图,长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2,AD =1,E ,F ,G 分别是DD 1,AB ,CC 1的中点,则异面直线A 1E 与GF 所成角余弦值是().A .515B .22C .510D .012.正六棱锥底面边长为a ,体积为23a 3,则侧棱与底面所成的角为().A .30°B .45°C .60°D .75°13.直角梯形的一个内角为45°,下底长为上底长的23,此梯形绕下底所在直线旋转一周所成的旋转体表面积为(5+2)π,则旋转体的体积为().A .2πB .32+ 4πC .32+ 5πD .37π14.在棱长均为2的正四棱锥P -ABCD 中,点E 为PC 的中点,则下列命题正确的是().A .BE ∥平面PAD ,且BE 到平面PAD 的距离为3B .BE ∥平面PAD ,且BE 到平面PAD 的距离为362C .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角大于30°D .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角小于30°PABCDE (第14题)(第11题)二、填空题15.在y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是______________.16.若圆B :x 2+y 2+b =0与圆C :x 2+y 2-6x +8y +16=0没有公共点,则b 的取值范围是________________.17.已知△P 1P 2P 3的三顶点坐标分别为P 1(1,2),P 2(4,3)和P 3(3,-1),则这个三角形的最大边边长是__________,最小边边长是_________.18.已知三条直线ax +2y +8=0,4x +3y =10和2x -y =10中没有任何两条平行,但它们不能构成三角形的三边,则实数a 的值为____________.19.若圆C :x 2+y 2-4x +2y +m =0与y 轴交于A ,B 两点,且∠ACB =90º,则实数m 的值为__________.三、解答题20.求斜率为43,且与坐标轴所围成的三角形的面积是6的直线方程.21.如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为26.(1)求侧面PAD 与底面ABCD 所成的二面角的大小;(2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值;(3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由.22.求半径为4,与圆x 2+y 2―4x ―2y ―4=0相切,且和直线y =0相切的圆的方程.(第21题)DBACOEP参考答案一、选择题1.D 2.A 3.B 4.B 5.C 6.D7.B8.C9.B10.A11.D12.B13.D14.D二、填空题15.y =3x -6或y =―3x ―6.16.-4<b <0或b <-64.17.17,10.18.-1.19.-3.三、解答题20.解:设所求直线的方程为y =43x +b ,令x =0,得y =b ;令y =0,得x =-34b ,由已知,得21 34 - ⎪⎭⎫⎝⎛b b ·=6,即32b 2=6,解得b =±3.故所求的直线方程是y =43x ±3,即3x -4y ±12=0.21.解:(1)取AD 中点M ,连接MO ,PM ,依条件可知AD ⊥MO ,AD ⊥PO ,则∠PMO 为所求二面角P -AD -O 的平面角.∵PO ⊥面ABCD ,∴∠PAO 为侧棱PA 与底面ABCD 所成的角.∴tan ∠PAO =26.设AB =a ,AO =22a ,∴PO =AO ·tan ∠POA =23a ,tan ∠PMO =MOPO=3.∴∠PMO =60°.MDBACO EP(第21题(1))(2)连接AE ,OE ,∵OE ∥PD ,∴∠OEA 为异面直线PD 与AE 所成的角.∵AO ⊥BD ,AO ⊥PO ,∴AO ⊥平面PBD .又OE 平面PBD ,∴AO ⊥OE .∵OE =21PD =2122 + DO PO =45a ,∴tan ∠AEO =EOAO=5102.(3)延长MO 交BC 于N ,取PN 中点G ,连BG ,EG ,MG .∵BC ⊥MN ,BC ⊥PN ,∴BC ⊥平面PMN .∴平面PMN ⊥平面PBC .又PM =PN ,∠PMN =60°,∴△PMN 为正三角形.∴MG ⊥PN .又平面PMN ∩平面PBC =PN ,∴MG ⊥平面PBC .取AM 中点F ,∵EG ∥MF ,∴MF =21MA =EG ,∴EF ∥MG .∴EF ⊥平面PBC .点F 为AD 的四等分点.22.解:由题意,所求圆与直线y =0相切,且半径为4,则圆心坐标为O 1(a ,4),O 1(a ,-4).又已知圆x 2+y 2―4x ―2y ―4=0的圆心为O 2(2,1),半径为3,①若两圆内切,则|O 1O 2|=4-3=1.即(a -2)2+(4-1)2=12,或(a -2)2+(-4-1)2=12.显然两方程都无解.②若两圆外切,则|O 1O 2|=4+3=7.即(a -2)2+(4-1)2=72,或(a -2)2+(-4-1)2=72.解得a =2±210,或a =2±26.∴所求圆的方程为(x ―2―210)2+(y -4)2=16或(x -2+210)2+(y -4)2=16;或(x ―2―26)2+(y +4)2=16或(x ―2+26)2+(y +4)2=16.MDBAC OEP(第21题(2))MDBACO EPN G F(第21题(3))。

高中数学章末检测新人教A版选择性必修第二册

高中数学章末检测新人教A版选择性必修第二册

第四章章末检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021年郑州模拟)已知数列1,3,5,7,…,2n -1,若35是这个数列的第n 项,则n =( )A .20B .21C .22D .23【答案】D 【解析】由2n -1=35=45,得2n -1=45,即2n =46,解得n =23. 2.已知3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,则等差数列的公差为( )A .4或-2B .-4或2C .4D .-4【答案】C 【解析】∵3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,∴(a+2)2=3(b +4),2(a +1)=1+b +1,联立解得⎩⎪⎨⎪⎧a =-2,b =-4或⎩⎪⎨⎪⎧a =4,b =8.当⎩⎪⎨⎪⎧a =-2,b =-4时,a +2=0与3,a +2,b +4成等比数列矛盾,应舍去;当⎩⎪⎨⎪⎧a =4,b =8时,等差数列的公差为(a +1)-1=a =4.3.用数学归纳法证明1+12+14+…+12n -1>12764(n ∈N *)成立,某初始值至少应取( )A .7B .8C .9D .10【答案】B 【解析】1+12+14+…+12n -1=1-12n1-12>12764,整理得2n>128,解得n >7,所以初始值至少应取8.4.公差不为0的等差数列{a n },其前23项和等于其前10项和,a 8+a k =0,则正整数k =( )A .24B .25C .26D .27【答案】C 【解析】由题意设等差数列{a n }的公差为d ,d ≠0,∵其前23项和等于其前10项和,∴23a 1+23×222d =10a 1+10×92d ,变形可得13(a 1+16d )=0,∴a 17=a 1+16d =0.由等差数列的性质可得a 8+a 26=2a 17=0,∴k =26.5.(2021年长春模拟)已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 2=2,S 6-S 4=6a 4,则a 5=( )A .10B .16C .24D .32【答案】B 【解析】设公比为q (q >0),S 6-S 4=a 5+a 6=6a 4.因为a 2=2,所以2q 3+2q 4=12q 2,即q 2+q -6=0,解得q =2,则a 5=2×23=16.6.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=( ) A .54 B .45 C .36D .27【答案】A 【解析】∵2a 8=a 5+a 11,2a 8=6+a 11,∴a 5=6,∴S 9=9a 5=54.7.已知各项都为正数的等比数列{a n }中,a 2a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n+2>19的最大正整数n 的值为( ) A .3 B .4 C .5D .6【答案】B 【解析】∵a 2a 4=4,a n >0,∴a 3=2,∴a 1+a 2=12,∴⎩⎪⎨⎪⎧a 1+a 1q =12,a 1q 2=2,消去a 1,得1+q q 2=6.∵q >0,∴q =12,∴a 1=8,∴a n =8×⎝ ⎛⎭⎪⎫12n -1=24-n ,∴不等式a n a n +1a n +2>19化为29-3n>19,当n =4时,29-3×4=18>19,当n =5时,29-3×5=164<19,∴最大正整数n =4. 8.已知各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足n (n +1)S 2n +(n 2+n -1)S n-1=0(n ∈N *),则S 1+S 2+…+S 2021=( )A .12021B .12022C .20202021D .20212022【答案】D 【解析】∵n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),∴(S n +1)[n (n +1)S n-1]=0.又∵S n >0,∴n (n +1)S n -1=0,∴S n =1n (n +1)=1n -1n +1,∴S 1+S 2+…+S 2021=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12021-12022=20212022. 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知n ∈N *,则下列表达式能作为数列0,1,0,1,0,1,0,1,…的通项公式的是( )A .a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数B .a n =1+(-1)n2C .a n =1+cos n π2D .a n =⎪⎪⎪⎪⎪⎪sinn π2 【答案】ABC 【解析】检验知A ,B ,C 都是所给数列的通项公式.10.(2022年宿迁期末)设等差数列{a n }前n 项和为S n ,公差d >0,若S 9=S 20,则下列结论中正确的有( )A .S 30=0B .当n =15时,S n 取得最小值C .a 10+a 22>0D .当S n >0时,n 的最小值为29【答案】BC 【解析】由S 9=S 20⇒9a 1+12×9×8d =20a 1+12×20×19d ⇒a 1+14d =0⇒a 15=0.因为d >0,所以有S 30=30a 1+12×30×29d =30·(-14d )+435d =15d >0,故A 不正确;因为d >0,所以该等差数列是单调递增数列,因为a 15=0,所以当n =15或n =14时,S n 取得最小值,故B 正确;因为d >0,所以该等差数列是单调递增数列,因为a 15=0,所以a 10+a 22=2a 16=2(a 15+d )=2d >0,故C 正确;因为d >0,n ∈N *,所以由S n =na 1+12n (n -1)d =n (-14d )+12n (n -1)d =12dn (n -29)>0,可得n >29,n ∈N *,因此n 的最小值为30,故D 不正确.故选BC .11.已知等比数列{a n }的公比为q ,满足a 1=1,q =2,则( )A .数列{a 2n }是等比数列B .数列⎩⎨⎧⎭⎬⎫1a n 是递增数列C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列【答案】AC 【解析】等比数列{a n }中,由a 1=1,q =2,得a n =2n -1,∴a 2n =22n -1,∴数列{a 2n }是等比数列,故A 正确;数列⎩⎨⎧⎭⎬⎫1a n 是递减数列,故B 不正确;∵log 2a n =n -1,故数列{log 2a n }是等差数列,故C 正确;数列{a n }中,S 10=1-2101-2=210-1,同理可得S 20=220-1,S 30=230-1,不成等比数列,故D 错误.12.设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并满足条件a 1>1,a 2019a 2020>1,a 2019-1a 2020-1<0,下列结论正确的是( )A .S 2019<S 2020B .a 2019a 2021-1<0C .T 2020是数列{T n }中的最大值D .数列{T n }无最大值【答案】AB 【解析】若a 2019a 2020>1,则a 1q 2018×a 1q2019=a 21q4037>1.又由a 1>1,必有q >0,则数列{a n }各项均为正值.又由a 2019-1a 2020-1<0,即(a 2019-1)(a 2020-1)<0,则有⎩⎪⎨⎪⎧a 2019<1,a 2020>1或⎩⎪⎨⎪⎧a 2019>1,a 2020<1,又由a 1>1,必有0<q <1,则有⎩⎪⎨⎪⎧a 2019>1,a 2020<1.有S 2020-S 2019=a 2020>0,即S 2019<S 2020,则A 正确;有a 2020<1,则a 2019a 2021=a 22020<1,则B 正确;⎩⎪⎨⎪⎧a 2019>1,a 2020<1,则T 2019是数列{T n }中的最大值,C ,D 错误.三、填空题:本题共4小题,每小题5分,共20分.13.若数列{a n }满足a 1=1,a n +1=2a n (n ∈N *),S n 为{a n }的前n 项和,则S 8=________. 【答案】255 【解析】由a 1=1,a n +1=2a n 知{a n }是以1为首项、2为公比的等比数列,所以S 8=a 1(1-q 8)1-q =1·(1-28)1-2=255.14.(2022年北京一模)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”,将上述问题的所有正整数答案从小到大组成一个数列{a n },则a 1=________,a n =________(注:三三数之余二是指此数被3除余2,例如“5”,五五数之余三是指此数被5除余3,例如“8”).【答案】8 15n -7 【解析】被3除余2的正整数可表示为3x +2,被5除余3的正整数可表示为5y +3,其中x ,y ∈N *,∴数列{a n }为等差数列,公差为15,首项为8,∴a 1=8,a n =8+15(n -1)=15n -7.15.(2021年淮北期末)已知数列{a n }的通项公式为a n =[lg n ]([x ]表示不超过x 的最大整数),T n 为数列{a n }的前n 项和,若存在k ∈N *满足T k =k ,则k 的值为__________.【答案】108 【解析】a n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,…k ,10k≤n <10k +1.当1≤k <10时,T k =0,显然不存在; 当10≤k <100时,T k =k -9=k ,显然不存在;当100≤k <1000时,T k =99-9+(k -99)×2=k ,解得k =108.16.(2022年武汉模拟)对任一实数序列A =(a 1,a 2,a 3,…),定义新序列△A =(a 2-a 1,a 3-a 2,a 4-a 3,…),它的第n 项为a n +1-a n .假定序列△(△A )的所有项都是1,且a 12=a 22=0,则a 2=________.【答案】100 【解析】令b n =a n +1-a n ,依题意知数列{b n }为等差数列,且公差为1,所以b n =b 1+(n -1)×1,a 1=a 1,a 2-a 1=b 1,a 3-a 2=b 2,…,a n -a n -1=b n -1,累加得a n =a 1+b 1+…+b n-1=a 1+(n -1)b 1+(n -1)(n -2)2.分别令n =12,n =22,得⎩⎪⎨⎪⎧11a 2-10a 1+55=0①,21a 2-20a 1+210=0②,①×2-②,得a 2=100. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2022年北京二模)已知数列{a n }的前n 项和为S n ,a 1=1,________.是否存在正整数k (k >1),使得a 1,a k ,S k +2成等比数列?若存在,求出k 的值;若不存在,说明理由.从①a n +1-2a n =0;②S n =S n -1+n (n ≥2);③S n =n 2这三个条件中任选一个,补充在上面问题中并作答.解:若选①a n +1-2a n =0,则a 2-2a 1=0, 说明数列{a n }是首项为1,公比为2的等比数列,∴a 1=1,a k =2k -1,S k +2=1-2k +21-2=2k +2-1.若a 1,a k ,S k +2成等比数列,则(2k -1)2=1×(2k +2-1)=2k +2-1.左边为偶数,右边为奇数,即不存在正整数k (k >1),使得a 1,a k ,S k +2成等比数列. 若选②S n =S n -1+n (n ≥2),即S n -S n -1=n ⇒a n =n (n ≥2)且a 1=1也适合此式, ∴{a n }是首项为1,公差为1的等差数列, ∴a k =k ,S k +2=(k +2)(k +3)2.若a 1,a k ,S k +2成等比数列,则k 2=1×(k +2)(k +3)2⇒k 2-5k -6=0⇒k =6(k =-1舍去),即存在正整数k =6,使得a 1,a k ,S k +2成等比数列.若选③S n =n 2,∴a n =S n -S n -1=n 2-(n -1)2=2n -1(n ≥2),且a 1=1适合上式. 若a 1,a k ,S k +2成等比数列,则(2k -1)2=1×(k +2)2⇒3k 2-8k -3=0⇒k =3⎝ ⎛⎭⎪⎫k =-13舍去,即存在正整数k =3,使得a 1,a k ,S k +2成等比数列.18.(12分)(2022年平顶山期末)在等差数列{a n }中,设前n 项和为S n ,已知a 1=2,S 4=26.(1)求{a n }的通项公式; (2)令b n =1a n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由已知得4×2+4×32d =26,解得d =3,所以a n =a 1+(n -1)d =2+3(n -1)=3n -1. (2)b n =1a n a n +1=1(3n -1)(3n +2)=13⎝ ⎛⎭⎪⎫13n -1-13n +2,所以T n =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-15+⎝ ⎛⎭⎪⎫15-18+…+⎝ ⎛⎭⎪⎫13n -1-13n +2=16-13(3n +2)=n 6n +4. 19.(12分)设a >0,函数f (x )=ax a +x,令a 1=1,a n +1=f (a n ),n ∈N *. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论.(1)解:∵a 1=1,∴a 2=f (a 1)=f (1)=a1+a,a 3=f (a 2)=a2+a,a 4=f (a 3)=a3+a,猜想a n =a(n -1)+a.(2)证明:①易知n =1时,猜想正确; ②假设n =k 时,a k =a(k -1)+a成立,则a k +1=f (a k )=a ·a k a +a k =a ·a(k -1)+a a +a (k -1)+a=a (k -1)+a +1=a [(k +1)-1]+a, ∴n =k +1时成立.由①②知,对任何n ∈N *,都有a n =a(n -1)+a.20.(12分)(2022年潍坊模拟)若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *). (1)求证:数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .(1)证明:∵S n =2a n -λ,当n =1时,得a 1=λ. 当n ≥2时,S n -1=2a n -1-λ, ∴S n -S n -1=2a n -2a n -1, 即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列, ∴a n =λ·2n -1.(2)解:∵λ=4,∴a n =4·2n -1=2n +1,∴b n =⎩⎪⎨⎪⎧2n +1,n 为奇数,n +1,n 为偶数,∴T 2n =22+3+24+5+26+7+ (22)+2n +1 =(22+24+ (22))+(3+5+…+2n +1) =4-4n ·41-4+n (3+2n +1)2=4n +1-43+n (n +2), ∴T 2n =4n +13+n 2+2n -43. 21.(12分)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和S n . 解:(1)设等比数列{a n }的公比为q . ∵a n +1+a n =9·2n -1,∴a 2+a 1=9,a 3+a 2=18, ∴q =a 3+a 2a 2+a 1=189=2. 又∵2a 1+a 1=9,∴a 1=3, ∴a n =3·2n -1,n ∈N *.(2)∵b n =na n =3n ·2n -1,∴13S n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1①, ∴23S n =1×21+2×22+…+(n -1)×2n -1+n ×2n②, ①-②,得-13S n =1+21+22+…+2n -1-n ×2n =1-2n1-2-n ×2n =(1-n )2n-1,∴S n =3(n -1)2n+3.22.(12分)数列{a n }是公比为12的等比数列且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =n λ·b n +1(λ为常数且λ≠1).(1)求数列{a n }的通项公式及λ的值; (2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.解:(1)由题意,得(1-a 2)2=a 1(1+a 3), ∴(1-a 1q )2=a 1(1+a 1q 2). ∵q =12,∴a 1=12,∴a n =⎝ ⎛⎭⎪⎫12n . ∵⎩⎪⎨⎪⎧T 1=λb 2,T 2=2λb 3,∴⎩⎪⎨⎪⎧8=λ(8+d ),16+d =2λ(8+2d ), ∴λ=12,d =8.(2)由(1)得b n =8n ,∴T n =4n (n +1), ∴1T n =14⎝ ⎛⎭⎪⎫1n -1n +1. 令C n =1T 1+1T 2+…+1T n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1,∴18≤C n <14.∵S n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-⎝ ⎛⎭⎪⎫12n , ∴12S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n ,∴14≤12S n <12, ∴C n <12S n 即1T 1+1T 2+1T 3+…+1T n <12S n .。

【新高考】高一期末检测卷1-(人教A版2019必修第二册)(解析版)

【新高考】高一期末检测卷1-(人教A版2019必修第二册)(解析版)

【新高考题型】2020-2021学年高一数学下学期期末考前冲刺刷题卷(人教A 版2019必修第二册)检测卷1一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z 满足2025(1)1z i i +⋅=-,则z 的虚部为( ) A .i B .1-C .i -D .1【答案】D 【解析】2025(1)11z i i i +⋅=-=-,()()()21121112i i iz i i i i ---∴====-++-,z i ∴=, 所以z 的虚部为1.故选:D.2.某沙漠地区经过治理,生态系统得到很大改善,野生动物有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,计划从这些地块中抽取20个作为样区,根据现有的统计资料,各地块间植物覆盖面积差异很大,为了让样本具有代表性,以获得该地区这种野生动物数量准确的估计,在下面的抽样方法中,最合理的抽样方法是( ) A .系统抽样 B .分层抽样C .简单随机抽样D .非以上三种抽样方法【答案】B【解析】因为各地块间植物覆盖面积差异很大,为了让样本具有代表性,所以可以采用分层抽样.故选:B 3.若||25,(1,2),//a b a b ==,则a 的坐标可以是( ) A .(2,4)- B .(2,4)- C .(2,4)--D .(4,2)-【答案】C=(),a x y =,因为//a b ,所以2y x =, 故选:C .4.已知向量18,2a x ⎛⎫= ⎪⎝⎭,(),1b x =,0x >,若()()2//2a b a b -+,则x 的值为( ) A .3 B .4 C .5 D .4或5【答案】B 【解析】向量1(8,)2a x =,(,1)b x =,∴12(82,2)2a b x x -=--,2(16,1)a b x x +=++(2)//(2)a b a b -+,1(82)(1)(16)(2)02x x x x ∴-+-+-=即254002x -+=,解得4x =±,又因0x >4x ∴=故选:B .5.若复数z 满足325i iz -=,则在复平面内z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】由已知得()()()352512222i i iz i i i i -===+-+-,所以12z i =-,所以在复平面内z 对应的点位于第四象限.故选:D.6.已知正四棱柱(底面为正方形且侧棱与底面垂直的棱柱)的底面边长为3,侧棱长为4,则其外接球的表面积为( ) A .25π B .34π C .68π D .100π【答案】B【解析】正四棱柱即长方体,其体对角线长为d ==因此其外接球的半径为r =,则其表面积为2=434S r ππ=,故选:B . 7.一袋中装有除颜色外完全相同的4个白球和5个黑球,从中有放回的摸球3次,每次摸一个球.用模拟实验的方法,让计算机产生1~9的随机数,若1~4代表白球,5~9代表黑球,每三个为一组,产生如下20组随机数: 917 966 191 925 271 932 735 458 569 683 431 257 393 627 556 488 812 184 537 989 则三次摸出的球中恰好有两次是白球的概率近似为( ) A .720B .310C .14D .15【答案】B【解析】20组随机数恰好有两个是1,2,3,4的有191,271,932,393,812,184共6个,因此概率为632010P ==.故选:B .8.已知在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()2b a ac =+,则sin cos cos a A b A a B-的取值范围是( )A .0,2⎛ ⎝⎭B .0,2⎛ ⎝⎭C .1,22⎛ ⎝⎭D .1,22⎛ ⎝⎭【答案】C【解析】由2()b a a c =+及余弦定理,可得2cos c a a B -=正弦定理边化角,得sin sin 2sin cos C A A B -=A B C π++=sin()sin 2sin cos B A A A B ∴+-= sin()sin B A A ∴-=ABC 是锐角三角形,B A A ∴-=,即2B A =.02B π<<,2A B ππ<+<, 那么:64A ππ<<则()2sin sin 1=sin (cos cos sin 2a A A Ab A a B B A =∈--故选:C 二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对得5分,有选错得0分,部分选对得2分. 9.下列各对事件中,为相互独立事件的是( )A .掷一枚骰子一次,事件M “出现偶数点”;事件N “出现3点或6点”B .袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M “第一次摸到白球”,事件N “第二次摸到白球”C .袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M “第一次摸到白球”,事件N “第二次摸到黑球”D .甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M “从甲组中选出1名男生”,事件N “从乙组中选出1名女生” 【答案】ABD【解析】在A 中,样本空间{}1,2,3,4,5,6Ω=,事件{}2,4,6M =,事件{}3,6N =,事件{6}MN =, ∴31()62P M ==,21()63P N ==,111()236P MN =⨯=, 即()()()P MN P M P N =,故事件M 与N 相互独立,A 正确.在B 中,根据事件的特点易知,事件M 是否发生对事件发生的概率没有影响,故M 与N 是相互独立事件,B 正确; 在C 中,由于第1次摸到球不放回,因此会对第2次摸到球的概率产生影响,因此不是相互独立事件,C 错误; 在D 中,从甲组中选出1名男生与从乙组中选出1名女生这两个事件的发生没有影响,所以它们是相互独立事件,D 正确.故选:ABD. 10.下列结论正确的有A .从装有2个红球和2个黑球的口袋内任取2个球,恰有一个黑球与至少有一个红球不是互斥事件B .在标准大气压下,水在o 4C 时结冰为随机事件C .若一组数据1,a ,2,4的众数是2,则这组数据的平均数为3D .某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为400的样本进行调查.若该校一、二、三、四年级本科生人数之比为6:5:5:4,则应从四年级中抽取80名学生 【答案】AD【解析】A.恰有一个黑球包含的事件是“一黑一红”,至少有一个红球包含的事件是“一红一黑”和“两个红球”,两个事件有公共事件,所以不是互斥事件,故A 正确;B .在标准大气压下,水在o 4C 时结冰为不可能事件,故B 不正确 C.众数是2,所以2a =,平均数1224944+++=,故C 不正确;D.由条件可知4400806554⨯=+++名学生,故D 正确.故选:AD11.(多选)某装修公司为了解客户对照明系统的需求,对照明系统的两种设计方明系统评分面达图案在稳固性、创新性、外观造型、做工用料以及成本五个方面的满意度评分进行统计,根据统计结果绘制出如图所示的雷达图,则下列说法错误的是( )A .客户对两种设计方案在外观造型上没有分歧B .客户对设计一的满意度的总得分高于设计二的满意度的总得分C .客户对设计二在创新性方面的满意度高于设计一在创新性方面的满意度D .客户对两种设计方案在稳固性和做工用料方面的满意度相同 【答案】ACD【解析】根据雷达图可列表如下:根据表格分析可得A 、C 、D 错误,选项B 正确.故选:ACD.12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,给出下列命题,其中正确的命题为( ) A .若A B C >>,则sin sin sin A B C >>; B .若40,20,25a b B ===︒,则满足条件的ABC 有两个;C .若0tan tan 1A B <<,则ABC 是钝角三角形;D .存在角A ,B ,C ,使得tan tan tan tan tan tan A B C A B C <++成立; 【答案】ABC【解析】A.若A B C >>,a b c ∴>>,由正弦定理可得:sin sin sin a b cA B C==,则sin sin sin A B C >>,所以该选项正确;B. 若40a =,20b =,25B =︒,则40sin 2540sin 3020︒<︒=,因此满足条件的ABC 有两个,所以该选项正确;C. 若0tan A <tan 1B <,则tan tan tan tan()01tan tan A BC A B A B +-=+=>-,tan 0C ∴<,(0,)C π∈,∴(,)2C ππ∈,ABC 是钝角三角形,所以该选项正确; D. 由于当2C π≠时,tan tan tan tan()1tan tan A BC A B A B+-=+=-,tan A ∴tan B tan tan tan tan C A B C =++,所以该选项不正确.故选:ABC三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.1,2,3,4,5,6,7,8,9,10的25%分位数为______,75%分位数为________,90%分位数为________. 【答案】3 8 9.5【解析】因为数据个数为10,且已经按照从小到大的顺序排列,又1025% 2.5⨯=,10757.5%⨯=,1090%9⨯=,所以该组数据的25%分位数为33x =,75%分位数为88=x ,90%分位数为9109109.522++==x x ;故答案为:3;8;9.5.14.已知复数1z i =+(i 为虚数单位)是关于x 的方程20x px q ++=(p ,q 为实数)的一个根,则p q +=_________. 【答案】0【解析】由复数1z i =+(i 为虚数单位)是关于x 的方程20x px q ++=(p ,q 为实数)的一个根 所以()()2110i p i q ++++=,即()()20p q p i +++=由复数相等可得020p q q +=⎧⎨+=⎩ ,故0p q +=,故答案为:015.暑假期间,甲外出旅游的概率是14,乙外出旅游的概率是15,假定甲乙两人的行动相互之间没有影响,则暑假期间两人中至少有一人外出旅游的概率是__________.【答案】25【解析】设“暑假期间两人中至少有一人外出旅游”为事件A ,则其对立事件A 为“暑假期间两人都未外出旅游”,则()11311455P A ⎛⎫⎛⎫=-⨯-= ⎪ ⎪⎝⎭⎝⎭,所以()()321155P A P A =-=-=.故答案为:25. 16.《九章算术》把底面为直角三角形,且侧棱垂直于底面的三梭柱称为“堑堵”,把底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”现有如图所示的“堑堵”111ABC A B C -,其中1,1AC BC AA AC ⊥==,当“阳马”即四棱锥11B A ACC -体积为13时,则“堑堵”即三棱柱111ABC A B C -的外接球的体积为_________.【解析】由已知得111111, 1.33B A ACC V BC BC -=⨯⨯⋅=∴= 将三棱柱111ABC A B C -置于长方体中,如下图所示,此时“塹堵”即三棱柱111ABC A B C -的外接球的直径为1A B ==∴三棱柱111ABC A B C -的外接球的体积为34322V π⎛⎫=⨯= ⎪ ⎪⎝⎭..四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知向量12a b ==,.(1)若a 与b 的夹角为3π,求2+a b ;(2)若+a b 与a 垂直,求a 与b 的夹角.【答案】(1)(2)23π. 【解析】 (1)cos=13a b a b π⋅=⋅,∴2222(2)44=23a b a b a a b b +=+=+⋅+.(2) )a b a +⊥(,)=0a b a ∴+⋅(,即2=1a a b =-⋅,即1a b ⋅=-,1cos =2a ba b a b⋅∴=-⋅,,又[]0a b π∈,,,所以a 与b 的夹角为23π. 18.实数m 分别取什么数值时,复数()2=+2(1)z m m m i -+-满足下列条件:(1)纯虚数;(2)对应的点在第一象限内. 【答案】(1)2-;(2)1m .【解析】(1)若z 为纯虚数,则22010m m m ⎧+-=⎨-≠⎩,解得=2m -.(2)z 对应的点为()22,1m m m +--在第一象限,则22>01>0m m m ⎧+-⎨-⎩,解得1m .19.2020年,面对突如其来的新冠肺炎疫情冲击,在党中央领导下,各地区各部门统筹疫情防控和经济社会发展取得显著成效,商业模式创新发展,消费结构升级持续发展.某主打线上零售产品的企业随机抽取了50名销售员,统计了其2020年的月均销售额(单位:万元),将数据按照[12,14),[14,16),,[22,24]分成6组,制成了如图所示的频率分布直方图.已知[14,16)组的频数比[12,14)组多4.(1)求频率分布直方图中a 和b 的值;(2)该企业为了挖掘销售员的工作潜力,对销售员实行冲刺目标管理,即给销售员确定一个具体的冲刺目标,完成这个冲刺目标,则给予额外的奖励,若公司希望恰有20%的销售人员能够获得额外奖励,求该企业应该制定的月销售冲刺目标值. 【解析】(1)由题意得(0.120.140.100.04)215025024a b b a +++++⨯=⎧⎨⨯⨯-⨯⨯=⎩,解得0.03a =,0.07b =.(2)设应该制定的月销售冲刺目标值为x 万元,则在频率分布直方图中x 右边的面积为10.80.2-=. 最后一组的面积是0.0420.08⨯=,最后两组的面积之和为0.1020.0420.28⨯+⨯=. 因为0.080.20.28<<,所以x 位于倒数第二组, 则(22)0.100.080.2x -⨯+=,解得20.8x =. 所以该企业的月销售冲刺目标值应该定为20.8万元.20.从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个? (3)在(2)中抽出的4个苹果中,任取2个,写出所有可能的结果,并求重量在[80,85)和[95,100)中各有1个的概率.【解析】(1)苹果的重量在[)90,95的频率为200.450=; (2)重量在[)80,85的有541515⨯=+(个); (3)设这4个苹果中重量在[)80,85的有1个,记为1;重量在[)90,95的有3个,分别记为2,3,4; 从中任取两个,可能的情况有:()()()()()()1,2,1,3,1,4,2,3,2,4,3,4共6种,设任取2个,重量在[)80,85和[)95,100中各有1个的事件为A ,则事件A 包含有()()()1,2,1,3,1,4共3种, 所以31()62P A ==. 21.已知四边形,2,60,30ABCD AB AD BAD BCD ==∠=∠=.现将ABD △沿BD 边折起,使得平面ABD ⊥平面BCD ,AD CD ⊥.点P 为线段的中点.请你用几何法解决下列问题:(1)求证:BP ⊥平面ACD ;(2)若M 为CD 的中点,求MP 与平面BPC 所成角的正弦值. 【解析】()1,60AB AD BAD =∠=︒,ABD ∴为等边三角形,P 为AD 中点.,BP AD ∴⊥取BD 中点E ﹐连接,AE 则AE BD ⊥,平面ABD ⊥平面,BCD 平面ABD ⋂平面,BCD BD =AE ∴⊥平面,BCD ,AE CD ∴⊥ 又,CD AD AD AE A ⊥⋂=,CD 平面,ABDBP ⊂平面,ABD ,CD BP ∴⊥又,CD AD D ⋂=且,BP AD ⊥ BP ∴⊥平面ACD .()2由()1可知CD BD ⊥,30BCD ∠=,所以4DC BC ==,作PH BD ⊥于H ,连接BM ,因为AE ⊥平面,BCD 所以PH ⊥平面,BCD 又点P 为线段的中点,所以12PH AE ==又M 为CD 的中点,所以122BCMS=⨯=1113322P BCM BCMV PH S -=⨯⨯=⨯=,在PBC 中,4,BP BC PC ==222+BC BP PC =,所以BP PC ⊥,所以122BCPS==,设点M 到面PCB 的距离为h ,P BCM M BCP V V --=,所以1132P BCM M BCP V V h --==⨯=,解得h =又2PM ==,设MP 与平面BPC 所成角为θ,所以13sin 2θ==所以MP 与平面BPC 所成角的正弦值2622.杭州市为迎接2022年亚运会,规划修建公路自行车比赛赛道,该赛道的平面示意图为如图的五边形ABCDE ,运动员的公路自行车比赛中如出现故障,可以从本队的器材车、公共器材车上或收容车上获得帮助.比赛期间,修理或更换车轮或赛车等,也可在固定修车点上进行.还需要运送一些补给物品,例如食物、饮料,工具和配件.所以项目设计需要预留出BD ,BE 为赛道内的两条服务通道(不考虑宽度),ED ,DC ,CB ,BA ,AE 为赛道,2,,8km 34BCD BAE CBD CD DE ππ∠=∠=∠===.(1)从以下两个条件中任选一个条件,求服务通道BE 的长度; ①712∠=CDE π;①3cos 5DBE ∠=(2)在(1)条件下,应该如何设计,才能使折线段赛道BAE 最长(即+BA AE 最大),最长值为多少?【解析】(1)在BCD △中,由正弦定理知sin sin BD CD BCD CBD =∠∠,2sin sin 34BD π∴=6BD =, 选∴:2,34BCD CBD ππ∠=∠=,2()()3412BDC BCD CBD πππππ∴∠=-∠+∠=-+=, 712122BDE CDE BDC πππ∴∠=∠-∠=-=, 在Rt BDE ∆中,10BE ==;若选∴,在BDE 中,由余弦定理知cos DBE ∠= 2222BD BE DE BD BE +-⋅,222368526BE BE+-∴=⨯⨯,化简得2536BE BE --1400=,解得10BE =或145-(舍负), 故服务通道BE 的长度 10BE =;(2)在ABE △中,由余弦定理知,2222cos BE BA AE BA AE BAE =+-⋅⋅∠, 22100BA AE BA AE ∴=++⋅,2()100BA AE BA AE ∴+-⋅=,即22()()1004BA AE BA AE BA AE ++-=⋅≤,当且仅当BA AE =时,等号成立,此时23()1004BA AE +=,+BA AE.。

人教a版必修2高中数学测试题全套含答案(K12教育文档)

人教a版必修2高中数学测试题全套含答案(K12教育文档)

人教a版必修2高中数学测试题全套含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教a版必修2高中数学测试题全套含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教a版必修2高中数学测试题全套含答案(word版可编辑修改)的全部内容。

(数学2必修)第一章空间几何体[基础训练A组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B。

棱锥 C.棱柱 D。

都不对2.棱长都是1的三棱锥的表面积为()。

3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是()A.25π B.50π C.125π D.都不对4.正方体的内切球和外接球的半径之比为( )AB2 C.2: D35.在△ABC中,02, 1.5,120AB BC ABC==∠=,若使绕直线BC旋转一周,则所形成的几何体的体积是( )A。

92π B.72π C.52π D。

32π视图6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱.2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。

3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。

人教A版高一数学必修第二册全册复习测试题卷含答案解析(1)

人教A版高一数学必修第二册全册复习测试题卷含答案解析(1)

高一数学必修第二册全册复习测试题卷11(共22题)一、选择题(共10题)1. △ABC 中,若 a =1,c =2,B =60∘,则 △ABC 的面积为 ( ) A . 12B . 1C .√32D . √32. 若书架中放有中文书 5 本,英文书 3 本,日文书 2 本,则抽出一本书为外文书的概率为 ( ) A . 15B . 310C . 25D . 123. 若 θ 为两个非零向量的夹角,则 θ 的取值范围为 ( ) A .(0,π) B .(0,π] C .[0,π) D .[0,π]4. 从一箱产品中随机地抽取一件,设事件 A = { 抽到一等品 },事件 B = { 抽到二等品 },事件 C = { 抽到三等品 } ,且已知 P (A )=0.65,P (B )=0.2,P (C )=0.1.则事件“抽到的是二等品或三等品”的概率为 ( ) A .0.7 B .0.65 C .0.35 D .0.35. 下列关于古典概型的说法中正确的是 ( ) ①试验中所有可能出现的样本点只有有限个; ②每个事件出现的可能性相等; ③每个样本点出现的可能性相等;④若样本点总数为 n ,随机事件 A 包含其中的 k 个样本点,则 P (A )=kn . A .②④ B .③④ C .①④ D .①③④6. 给定一组数据:102,100,103,104,101,这组数据的第 60 百分位数是 ( ) A . 102 B . 102.5 C . 103 D . 103.57. 为比较甲、乙两地某月 14 时的气温情况,随机选取该月中的 5 天,这 5 天中 14 时的气温数据(单位:∘C )如下:甲:2628293131乙:2829303132以下结论:①甲地该月 14 时的平均气温低于乙地该月 14 时的平均气温; ②甲地该月 14 时的平均气温高于乙地该月 14 时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据数据能得到的统计结论的编号为( )A.①③B.①④C.②③D.②④8.下列说法正确的是( )A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定9.用符号表示“点A在直线l上,l在平面α内”,正确的是( )A.A∈l,l∉αB.A⊂l,l⊄αC.A⊂l,l∈αD.A∈l,l⊂α10.半径为2的球的表面积为( )A.4πB.8πC.12πD.16π二、填空题(共6题)11.一家保险公司想了解汽车的挡风玻璃在一年时间里破碎的概率,公司收集了20000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率约为.12.思考辨析 判断正误.( )做100次拋硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是5110013.若空间两个角的两条边分别平行,则这两个角的大小关系是.14.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A,B对应的复数分别是z1,=.z2,则z2z115.平均数:如果n个数x1,x2,⋯,x n,那么x=叫做这n个数的平均数.16.思考辨析判断正误为了更清楚地反映学生在这学期多次考试中数学成绩情况,可以选用折线统计图.( )三、解答题(共6题)17.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.18.小明是班里的优秀学生,他的历次数学成绩是96,98,95,93,45分,最近一次考试成绩只有45分的原因是他带病参加了考试.期末评价时,怎样给小明评价(90分及90分以上为优秀,75∼90分为良好)?19.类比绝对值∣x−x0∣的几何意义,∣z−z0∣(z,z0∈C)的几何意义是什么?20.如图,在三棱锥P−ABC中,平面PAC⊥平面ABC,∠ACB=90∘,PA=AC=2BC.(1) 若PA⊥PB,求证:平面PAB⊥平面PBC;(2) 若PA与平面ABC所成角的大小为60∘,求二面角C−PB−A的余弦值.21.应用面面平行判断定理应具备哪些条件?22.如图,在四棱锥P−ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,PD=9,E为PA的中点.(1) 求证:DE∥平面BPC.(2) 在线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出此时三棱锥B−PCF的体积;若不存在,请说明理由.答案一、选择题(共10题) 1. 【答案】C【解析】由题得 △ABC 的面积 S =12AB ⋅BC ⋅sin60∘=12×2×1×√32=√32. 【知识点】三角形的面积公式2. 【答案】D【解析】在 10 本书中,中文书 5 本,外文书为 3+2=5 本,由古典概型,在其中抽出一本书为外文书的概率为 510,即 12. 【知识点】古典概型3. 【答案】D【知识点】平面向量的数量积与垂直4. 【答案】D【解析】由题意知事件 A 、 B 、 C 互为互斥事件,记事件 D =“抽到的是二等品或三等品”,则 P (D )=P (B ∪C )=P (B )+P (C )=0.2+0.1=0.3. 【知识点】事件的关系与运算5. 【答案】D【解析】②中所说的事件不一定是样本点,所以②不正确;根据古典概型的特征及计算公式可知①③④正确. 【知识点】古典概型6. 【答案】D【解析】 5×0.6=3,第 60 百分位数是第三与第四个数的平均数, 即103+1042=103.5.【知识点】样本数据的数字特征7. 【答案】B【解析】因为 x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,所以 x 甲<x 乙.又 s 甲2=9+1+0+4+45=185,s 乙2=4+1+0+1+45=2,所以 s 甲>s 乙,故由样本估计总体可知结论①④正确. 【知识点】样本数据的数字特征8. 【答案】C【解析】不可能事件的概率为 0,必然事件的概率为 1,故A 错误;频率是由试验的次数决定的,故B 错误;概率是频率的稳定值,故C 正确,D 错误. 【知识点】频率与概率9. 【答案】D【解析】点 A 在直线 l 上,表示为 A ∈l ,l 在平面 α 内,表示为 l ⊂α. 【知识点】平面的概念与基本性质10. 【答案】D【解析】因为球的半径为 r =2, 所以该球的表面积为 S =4πr 2=16π. 【知识点】球的表面积与体积二、填空题(共6题) 11. 【答案】 0.03【解析】 P =60020000=0.03.【知识点】频率与概率12. 【答案】 ×【知识点】频率与概率13. 【答案】相等或互补【知识点】直线与直线的位置关系14. 【答案】 −1−2i【解析】由题意,根据复数的表示可知z1=i,z2=2−i,所以z2z1=2−ii=(2−i)⋅(−i)i⋅(−i)=−1−2i.【知识点】复数的乘除运算、复数的几何意义15. 【答案】1n(x1+x2+⋯+x n)【知识点】样本数据的数字特征16. 【答案】√【知识点】频率分布直方图三、解答题(共6题)17. 【答案】如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.【知识点】组合体18. 【答案】小明5次考试成绩从小到大排列为45,93,95,96,98,中位数是95,应评定为“优秀”.【知识点】样本数据的数字特征19. 【答案】∣z−z0∣(z,z0∈C)的几何意义是复平面内点Z到点Z0的距离.【知识点】复数的加减运算20. 【答案】(1) 因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BC⊂平面ABC,BC⊥AC,所以BC⊥平面PAC,因为PA⊂平面PAC,所以PA⊥BC.又PA⊥PB,PB∩BC=B,所以PA⊥平面PBC,因为PA⊂平面PAB,所以平面PAB⊥平面PBC.(2) 如图,过P作PH⊥AC于点H,因为平面PAC⊥平面ABC,所以PH⊥平面ABC,所以∠PAH=60∘,不妨设PA=2,所以PH=√3,以 C 为原点,分别以 CA ,CB 所在直线为 x 轴,y 轴,以过 C 点且平行于 PH 的直线为 z 轴,建立如图所示的空间直角坐标系,则 C (0,0,0),A (2,0,0),B (0,1,0),P(1,0,√3),因此 AB⃗⃗⃗⃗⃗ =(−2,1,0),AP ⃗⃗⃗⃗⃗ =(−1,0,√3),CB ⃗⃗⃗⃗⃗ =(0,1,0),CP ⃗⃗⃗⃗⃗ =(1,0,√3). 设 n ⃗ =(x 1,y 1,z 1) 为平面 PAB 的一个法向量, 则 {n ⃗ ⋅AB⃗⃗⃗⃗⃗ =0,n ⃗ ⋅AP⃗⃗⃗⃗⃗ =0, 即 {−2x 1+y 1=0,−x 1+√3z 1=0,令 z 1=√3,可得 n ⃗ =(3,6,√3), 设 m ⃗⃗ =(x 2,y 2,z 2) 为平面 PBC 的一个法向量, 则 {m ⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =0,m ⃗⃗ ⋅CP ⃗⃗⃗⃗⃗ =0, 即 {y 2=0,x 2+√3z 2=0,令 z 2=√3,可得 m ⃗⃗ =(−3,0,√3), 所以 cos⟨m ⃗⃗ ,n ⃗ ⟩=4√3×2√3=−14, 易知二面角 C −PB −A 为锐角, 所以二面角 C −PB −A 的余弦值为 14.【知识点】平面与平面垂直关系的判定、利用向量的坐标运算解决立体几何问题、二面角21. 【答案】①平面 α 内两条相交直线 a ,b ,即 a ⊂α,b ⊂α,a ∩b =P .②两条相交直线 a ,b 都与 β 平行,即 a ∥β,b ∥β. 【知识点】平面与平面平行关系的判定22. 【答案】(1) 取 PB 的中点 M ,连接 EM ,CM ,过点 C 作 CN ⊥AB ,垂足为 N ,如图所示. 因为 CN ⊥AB ,DA ⊥AB , 所以 CN ∥DA , 又 AB ∥CD ,所以四边形 CDAN 为矩形, 所以 CN =AD =8,DC =AN =6.在 Rt △BNC 中,BN =√BC 2−CN 2=√102−82=6, 所以 AB =12.因为 E ,M 分别为 PA ,PB 的中点, 所以 EM ∥AB 且 EM =6, 又 DC ∥AB ,且 CD =6, 所以 EM ∥CD 且 EM =CD , 则四边形 CDEM 为平行四边形, 所以 DE ∥CM .因为 CM ⊂平面BPC ,DE ⊄平面BPC ,所以 DE ∥平面BPC .(2) 存在.理由如下:由题意可得 DA ,DC ,DP 两两互相垂直,故以 D 为原点,DA ,DC ,DP所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系 Dxyz . 则 D (0,0,0),B (8,12,0),C (0,6,0),所以 DB⃗⃗⃗⃗⃗⃗ =(8,12,0). 假设 AB 上存在一点 F 使 CF ⊥BD ,设点 F 坐标为 (8,t,0)(0≤t ≤12), 则 CF⃗⃗⃗⃗⃗ =(8,t −6,0), 由 CF ⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得 64+12(t −6)=12t −8=0, 所以 t =23,即 AF =23,故 BF =12−23=343.又 PD =9,所以 V 三棱锥B−PCF =V 三棱锥P−BCF =13×12×343×8×9=136.【知识点】直线与平面平行关系的判定、利用向量的坐标运算解决立体几何问题。

新人教A版高中数学必修2期末考试试卷附参考答案

新人教A版高中数学必修2期末考试试卷附参考答案

期末测试题考试时间:90分钟 试卷满分:100分、选择题点(1, - 1)到直线x — y + 1 = 0的距离是(过点(1 , 0)且与直线x — 2y — 2= 0平行的直线方程是(F 列直线中与直线 2x + y + 1 = 0垂直的一条是x — 2y + 1 = 0已知圆的方程为 x 2 + y 2 — 2x + 6y + 8 = 0,那么通过圆心的一条直线方程是(B. 2x + y + 1 = 06.直线3x + 4y — 5 = 0与圆2x 2 + 2y 2—4x —2y + 1 = 0的位置关系是 A .相离C. 相交但直线不过圆心D. 相交且直线过圆心7.过点P(a , 5)作圆(x + 2) 2+ (y — 1)2= 4的切线,切线长为2・..3,则a 等于(C .3. 21. 2. x — 2y — 1 = 0B . x — 2y + 1= 0C . 2x + y — 2 = 0 x + 2y — 1 = 03. 2x — y — 1 = 0 C . x + 2y + 1 = 0D .X + 丄 y — 1 =0 24. 2x — y — 1 = 0 C . 2x — y + 1 = 0 D . 2x + y — 1 = 05. 如图(1)、(2)、(3)、 (4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为A .三棱台、三棱柱、 圆锥、 圆台 C .三棱柱、四棱锥、 圆锥、 圆台(2)(3)B .三棱台、三棱锥、 D .三棱柱、三棱台、 圆锥、 圆锥、 圆台 圆台B .相切).b5E2RGbCAP(4)& 圆 A : X 2 + y 2+ 4x + 2y + 1 = 0 与圆 B : x 2+ y 2— 2x — 6y + 1 = 0 的位置关系是( ).p1EanqFDPwA .相交B .相离C .相切D .内含9.已知点 A(2, 3, 5) , B( — 2, 1 , 3),则 | AB| =( ).A . ,6B . 2 . 6C .2D . 2 .. 2 10 .如果一个正四面体的体积为 9 dm 3,则其表面积S 的值为().点,则异面直线 A 1E 与GF 所成角余弦值是( ).DXDiTa9E3dD 1 _______________________13 .直角梯形的一个内角为 45 °下底长为上底长的-,此梯形绕下底所在直线旋转一周所成的旋转体15 、2 c /0A .BC .D . 0525312 .正六棱锥底面边长为 a ,体积为 a ,则侧棱与底面所成的角为2( ) A . 30 ° B45 °C . 60 °D . 75 °Fa(第11题)A . 18、3dm 22B . 18 dmC . 12 3 dm 22D . 12 dm11.如图,长方体 ABCD — A 1B 1C 1D 1 中, AA 1 = AB = 2, AD = 1 , E , F , G 分别是DD 1, AB , CC 1的中JiG C2D. BE与平面PAD不平行,且BE与平面PAD所成的角小于30 °二、填空题15. __________________________________________________________________ 在y轴上的截距为—6,且与y轴相交成30。

高中数学必修二 期末测试卷02-新教材-2021学年下学期期末考试全真模拟卷(人教A2019)

高中数学必修二  期末测试卷02-新教材-2021学年下学期期末考试全真模拟卷(人教A2019)

2020-2021学年高一数学下学期期末考试全真模拟卷(二)测试时间:120分钟 测试范围:人教A2019必修第一册+第二册满分:150分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若集合{}21A x x =-≤≤,{}2log 1B x x =≤,则A B =( )A .12x xB .{}01x x <≤C .{}22x x -≤≤D .{2x x <-或}2x >【答案】C 【详解】由{}2log 1B x x =≤,得{}02B x x =<≤. 又{}21A x x =-≤≤, 所以{}22AB x x =-≤≤.故选:C . 2、复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【详解】 因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.3、某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A 【详解】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确; 新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%28%58%50%+=>,所以超过了经济收入的一半,所以D 正确;4、已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( )A .3135-B .1935-C .1735D .1935【答案】D 【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D.5、埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514- B .512- C .514+ D .512+ 【答案】C 【详解】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得154b a +=(负值舍去). 故选:C.6、已知π2tan tan()74θθ-+=,则tan θ=( )A .–2B .–1C .1D .2【答案】D 【详解】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D.7、如图是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中3sin 5BAC ∠=,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图的数学风车,若在该数学风车内随机取一点,则该点恰好取自“赵爽弦图”外面(图中阴影部分)的概率为( )A .2543B .1843C .2549D .2449【答案】D 【详解】在Rt ABC ∆中,3sin 5BAC ∠=不妨设3BC =,则5AB =,4AC =则阴影部分的面积为1434242⨯⨯⨯=;数学风车的面积为224549+=∴所求概率2449P =本题正确选项:D 8、已知ABC ∆是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 平面ABC 的距离为( )A .3B .32C .1D .32【答案】C 【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =. 设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ==.故选:C.二、多项选择题(本题共4小题,每小题5分,共16分,在每小题给出的四个选项中,不止有一项是符合题目要求的)9、下列说法正确的是( ) A .随着试验次数的增加,频率一般会越来越接近概率B .连续10次掷一枚骰子,结果都是出现1点,可以认为这枚骰子质地不均匀C .某种福利彩票的中奖概率为11000,那么买1000张这种彩票一定能中奖D .某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为不降水 【答案】AB 【详解】对于A ,试验次数越多,频率就会稳定在概率的附近,故A 正确对于B ,如果骰子均匀,则各点数应该均匀出现,所以根据结果都是出现1点可以认定这枚骰子质地不均匀,故B 正确. 对于C ,中奖概率为11000是指买一次彩票,可能中奖的概率为11000,不是指1000张这种彩票一定能中奖,故C 错误.对于D ,“明天本市降水概率为70%”指下雨的可能性为0.7,故D 错. 故选:AB .10、有以下四种说法,其中正确的有( ) A .“2x >且3y >”是“5x y +>”的充要条件B .直线l ,m ,平面α,若m α⊂,则“l α⊥”是“l m ⊥”的充分不必要条件C .“3x =”是“2230x x --=”的必要不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab =”的既不充分也不必要条件【答案】BD 【详解】对于A ,由“2x >且3y >”,根据不等式的性质可得5x y +>,充分性满足;反之,5x y +>推不出“2x >且3y >”,必要性不满足,故A 不正确; 对于B ,根据线面垂直的定义:“l α⊥”可推出“l m ⊥”,反之,由线面垂直的判定定理可知:仅“l m ⊥”,不一定得出“l α⊥”,故B 正确; 对于C ,“3x =”可得“2230x x --=”,充分性满足;反之,“2230x x --=”可得“3x =”或“1x =-”,必要性不满足, 所以“3x =”是“2230x x --=”的充分不必要条件,故C 不正确; 对于D ,若“0a ≠且0b =”可推出“0ab =”; 反之,若“0ab =”,可得“0a =”或“0b =”,所以“0a ≠”是“0ab =”的既不充分也不必要条件,故D 正确; 故选:BD11、已知函数()sin()f x x ωϕ=-(0,||2πωϕ><)的部分图象如图所示,则下列选项正确的是( )A .函数()f x 的最小正周期为3πB .5(,0)4π为函数()f x 的一个对称中心 C .1(0)2f =-D .函数()f x 向右平移2π个单位后所得函数为偶函数【答案】ACD 【分析】根据图象,先由144T ππ=-得,求ω,判断A 正确,再利用五点法定位确定ϕ得到解析式,结合利用正弦函数性质逐一判断BCD 的正误即可. 【详解】根据函数()sin(),0,||2f x x πωϕωϕ⎛⎫=-><⎪⎝⎭的部分图象,由144T ππ=-,所以3T π=,故A 正确; 由23ππω=,可得23ω=, 由点,04π⎛⎫⎪⎝⎭在函数图像上,可得2sin 034πϕ⎛⎫⨯-= ⎪⎝⎭,可得2,34k k πϕπ⨯-=∈Z ,解得,6k k πϕπ=-∈Z , 因为||2ϕπ<,可得6π=ϕ,可得2()sin 36f x x π⎛⎫=- ⎪⎝⎭,因为52523sin sin 0434632f ππππ⎛⎫⎛⎫=⨯-==≠⎪ ⎪⎝⎭⎝⎭,故B 错误; 由于1(0)sin 62f π⎛⎫=-=- ⎪⎝⎭,故C 正确; 将函数()f x 向右平移2π个单位后所得函数为2f x π⎛⎫- ⎪⎝⎭22sin cos 3263x x ππ⎡⎤⎛⎫=--=- ⎪⎢⎥⎝⎭⎣⎦为偶函数,故D正确. 故选:ACD.12、如图,棱长为1的正方体1111ABCD A B C D -中,点E 为11A B 的中点,则下列说法正确的是( )A .DE 与1CC 为异面直线B .DE 与平面11BCC B 所成角的正切值为24C .过,,D CE 三点的平面截正方体所得两部分的体积相等D .线段DE 在底面ABCD 的射影长为2【答案】ABC 【详解】由图可知:DE 与CC1为异面直线,∴A 正确;因为平面11//BCC B 平面11ADD A ,所以DE 与平面11BCC B 所成角即DE 与平面11ADD A 所成角,连接A1D ,显然,1A DE ∠是DE 与平面11ADD A 所成角.在直角三角形EA1D 中:111122tan 42A E A DE A D ∠===,∴B 正确;过D 、C 、E 三点的平面截正方体所得两部分的体积关系即为平面A1B1CD 截正方体所得两部分的体积关系,由正方体的对称性可知截得两部分几何体的体积相等,∴C 正确; 取AB 中点F ,连接EF 、DF ,∵EF //B1B 且B1B ⊥底面ABCD ,∴EF ⊥底面ABCD ,∴DF 的长为线段DE 在底面ABCD 的射影长,在直角三角形DFE 中:EF=1,DE=32,∴DF=2235122⎛⎫-= ⎪⎝⎭,∴D 错. 故选:ABC.三、填空题(本题共4小题,每小题5分,共20分)13、已知不等式220ax bx ++>的解集为{|12}x x -<<,则不等式220x bx a ++<的解集为__________________. 【答案】1{|1}?2x x -<< 【分析】 【详解】不等式220ax bx ++>的解集为{|12}x x -<<,220ax bx ∴++=的两根为1-,2,且0a <,即12b a-+=-,()212a -⨯=,解得1a =-,1b =,则不等式可化为2210x x +-<,解得112x -<<,则不等式220x bx a ++<的解集为1{|1}2x x -<<.14、在ABC ∆中,2cos ,4,33C AC BC ===,则tan B =____________.【答案】45【详解】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴= 22221145cos sin 1()tan 452999a cb B B B ac +-==∴=-=∴=15、在四边形ABCD 中,AD BC ∥,23AB =,5AD =,30A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________.【答案】1-. 【详解】建立如图所示的直角坐标系,则(23,0)B ,535(,)22D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒, 因为AE BE =,所以30BAE ABE ∠=∠=︒, 所以直线BE 的斜率为33,其方程为3(23)3y x =-,直线AE 的斜率为33-,其方程为33y x =-. 由3(23),333y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得3x =,1y =-, 所以(3,1)E -.所以35(,)(3,1)122BD AE =-=-. 16、设函数()()21ln 11f x x x =+-+,则使()()21f x f x >-成立的x 的取值范围是____________. 【答案】1(,1)3【详解】试题分析:()()21ln 11f x x x =+-+,定义域为,∵,∴函数为偶函数,当时,函数单调递增,根据偶函数性质可知:得()()21f x f x >-成立,∴,∴,∴的范围为1,13⎛⎫⎪⎝⎭故答案为A.四、解答题(17题10分,其余每题12分,共70分,解答应写出文字说明、证明过程或演算步骤,考生根据要求作答)17、成年人收缩压的正常范围是(90,140)(单位:mmHg ),未在此范围的献血志愿者不适合献血,某血站对志愿者的收缩压进行统计,随机抽取男志愿者100名、女志愿者100名,根据统计数据分别得到如下直方图:(1)根据直方图计算这200名志愿者中不适合献血的总人数; (2)估计男志愿者收缩压的中位数;(3)估计女志愿者收缩压的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)20人;(2)115mmHg ;(3)125mmHg . 【详解】解:(1)由(0.0100.01520.0200.030)101m +++⨯+⨯=得0.005m =, 故这些男志愿者中有5人不适合献血;由(0.0050.01020.0200.035)101n ++++⨯=得0.015n =, 故这些女志愿者中有15人不适合献血. 综上所述,这些志愿者中共有20人不适合献血.(2)设男志愿者收缩压的中位数为(mmHg)x ,则110120x <<.由0.015100.02010(110)0.0300.5x ⨯+⨯+-⨯=得115x =, 因此,可以估计男志愿者收缩压的中位数为115(mmHg).(3)950.051050.101150.151250.351350.201450.15125⨯+⨯+⨯+⨯+⨯+⨯=, 因此,可以估计女志愿者收缩压的平均值为125(mmHg).18、在ABC ∆中,角,,A B C 所对的边分别为,,a b c.已知5,a b c === (Ⅰ)求角C 的大小; (Ⅰ)求sin A 的值; (Ⅰ)求πsin(2)4A +的值. 【答案】(Ⅰ)4C π;(Ⅰ)sin A =(Ⅰ)sin 2426A π⎛⎫+=⎪⎝⎭. 【详解】(Ⅰ)在ABC中,由5,a b c ===222cos 22a b c C ab +-===, 又因为(0,)C π∈,所以4Cπ;(Ⅰ)在ABC 中,由4Cπ,a c ==可得sin sin a CA c===13; (Ⅰ)由a c <知角A为锐角,由sin A =,可得cos A ==进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2coscos2sin444132132A A A πππ+=+=⨯+⨯=26.19、如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析. 【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC = 所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内20、已知()22sin ,cos ,(3cos ,2),()a x x b x f x a b ===⋅. (1)求()f x 的最小正周期及单调递减区间; (2)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(1)T π=,单调递减区间为2,,63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)见解析【详解】(1)2()23sin cos 2cos f x a b x x x =⋅=+2cos 212sin 216x x x π⎛⎫=++=++ ⎪⎝⎭,∴()f x 的最小正周期22T ππ==. 由3222,262k x k k Z πππππ+++∈,得2,63k x k k Z ππππ++∈, ∴()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴72,666x πππ⎡⎤+∈⎢⎥⎣⎦, 当7266x ππ+=,即2x π=时,函数()f x 取得最小值,为72sin106π+=; 当262x ππ+=,即6x π=时,函数()f x 取得最大值,为2sin 132π+=.故函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为3,最小值为0.21、在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos cos cos A B C ++的取值范围. 【答案】(I )3B π=;(II)3]2【详解】(I)由2sin b A =结合正弦定理可得:2sin sin ,sin B A A B =∴= △ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 32A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,113sin ,2232A π⎛⎤⎛⎫++∈ ⎥ ⎪ ⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.22、有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的1.00ppm (即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出30条鱼,检验鱼体中的汞含量与其体重的比值(单位:ppm ),数据统计如下:0.07 0.24 0.39 0.54 0.61 0.66 0.73 0.82 0.82 0.820.87 0.91 0.95 0.98 0.98 1.02 1.02 1.08 1.14 1.201.20 1.26 1.29 1.31 1.37 1.40 1.44 1.58 1.62 1.68(1)求上述数据的中位数、众数、极差,并估计这批鱼该项数据的80%分位数;(2)有A ,B 两个水池,两水池之间有10个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过2条鱼.(Ⅰ)将其中汞的含量最低的2条鱼分别放入A 水池和B 水池中,若这2条鱼的游动相互独立,均有13的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;(Ⅰ)将其中汞的含量最低的2条鱼都先放入A 水池中,若这2条鱼均会独立地且等可能地从其中任意一个小孔由A 水池进入B 水池且不再游回A 水池,求这两条鱼由不同小孔进入B 水池的概率.【答案】(1)中位数为1;众数为0.82;极差为1.61;估计这批鱼该项数据的80百分位数约为1.34;(2)(Ⅰ)49;(Ⅰ)910. 【详解】解:(1)由题意知,数据的中位数为0.98 1.0212+=数据的众数为0.82数据的极差为1.680.07 1.61-=估计这批鱼该项数据的80百分位数约为1.31 1.371.342+= (2)(Ⅰ)记“两鱼最终均在A 水池”为事件A ,则212()339P A =⨯=记“两鱼最终均在B 水池”为事件B ,则212()339P B =⨯=∵事件A 与事件B 互斥,∴两条鱼最终在同一水池的概率为224()()()999P AB P A P B =+=+= (Ⅰ)记“两鱼同时从第一个小孔通过”为事件1C ,“两鱼同时从第二个小孔通过”为 事件2C ,依次类推;而两鱼的游动独立∴12111()()1010100P C P C ===⨯=记“两条鱼由不同小孔进入B 水池”为事件C ,则C 与1210...C C C 对立,又由事件1C ,事件2C ,10C 互斥∴121011()(...)1010010P C P C C C ==⨯=即12109()1(...)10P C P C C C =-=。

新高中必修二数学下期末试题(附答案)

新高中必修二数学下期末试题(附答案)

新高中必修二数学下期末试题(附答案)一、选择题1.已知向量a ,b 满足4a =,b 在a 上的投影(正射影的数量)为-2,则2a b -的最小值为( ) A .43 B .10 C .10 D .8 2.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( )A .1B .4C .1或4D .2或43.如图,在ABC 中,90BAC ︒∠=,AD 是边BC 上的高,PA ⊥平面ABC ,则图中直角三角形的个数是( )A .5B .6C .8D .104.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( ) A .3B .2C .1D .05.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 1766.若||1OA =,||3OB =0OA OB ⋅=,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOB =+(,)m n R ∈,则mn的值为( ) A .13B .3C 3D 37.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 8.设正项等差数列的前n 项和为,若,则的最小值为 A .1B .C .D .9.已知0,0a b >>,并且111,,2a b 成等差数列,则4a b +的最小值为( ) A .2B .4C .5D .910.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生11.已知二项式2(*)nx n N x ⎛-∈ ⎪⎝⎭的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为( ) A .14B .14-C .240D .240-12.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12-B .10-C .10D .12二、填空题13.已知函数()sin 03y x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,若将该函数的图像向左平移()0m m >个单位后,所得图像关于原点对称,则m 的最小值为________.14.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是___________15.等边ABC ∆的边长为2,则AB 在BC 方向上的投影为________.16.若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.17.已知圆的方程为x 2+y 2﹣6x ﹣8y =0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为18.已知a ∈R ,命题p :[]1,2x ∀∈,20x a -≥,命题q :x ∃∈R ,2220x ax a ++-=,若命题p q ∧为真命题,则实数a 的取值范围是_____.19.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______20.在△ABC 中,85a b ==,,面积为12,则cos 2C =______.三、解答题21.记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式; (2)求n S 的最大值及对应n 的大小. 22.投资商到一开发区投资72万元建起一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设表示前n 年的纯利润总和(前年总收入-前年的总支出 -投资额72万元)(Ⅰ)该厂从第几年开始盈利?(Ⅱ)该厂第几年平均纯利润达到最大?并求出年平均纯利润的最大值. 23.已知数列{}n a 满足:()*22,21,n n a S n a n N ==+∈(1)设数列{}n b 满足()11nn b n a =•+,求{}n b 的前n 项和n T :(2)证明数列{}n a 是等差数列,并求其通项公式;24.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.25.已知函数2()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 26.设函数2()cos 2sin 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 的最小正周期. (2)求函数()f x 的单调递减区间;(3)设,,A B C 为ABC 的三个内角,若1cos 3B =,124C f ⎛⎫=- ⎪⎝⎭,且C 为锐角,求sin A .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】b 在a 上的投影(正射影的数量)为2-可知||cos ,2b a b <>=-,可求出||2b ≥,求22a b -的最小值即可得出结果.【详解】因为b 在a 上的投影(正射影的数量)为2-, 所以||cos ,2b a b <>=-, 即2||cos ,b a b =-<>,而1cos ,0a b -≤<><,所以||2b ≥,因为2222222(2)44||4||||cos ,4||a b a b a a b b a a b a b b -=-=-⋅+=-<>+22=1644(2)4||484||b b -⨯⨯-+=+所以22484464a b -≥+⨯=,即28a b -≥,故选D. 【点睛】本题主要考查了向量在向量上的正射影,向量的数量积,属于难题.2.C解析:C 【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,, ∴解得28r l ==, 或44r l ==,41lrα==或, 故选C .3.C【解析】 【分析】根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形. 【详解】①PA ⊥平面ABC ,,,,PA AB PA AD PA AC PAB ∴⊥⊥⊥∴∆,,PAD PAC ∆∆都是直角三角形;②90,BAC ABC ︒∠=∴是直角三角形; ③,,AD BC ABD ACD ⊥∴∆∆是直角三角形;④由,PA BC AD BC ⊥⊥得BC ⊥平面PAD ,可知:,,BC PD PBD PCD ⊥∴∆∆也是直角三角形.综上可知:直角三角形的个数是8个,故选C .【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.4.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22,22⎛ ⎝⎭,2222⎛⎫-- ⎪ ⎪⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.5.C解析:C【分析】 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 6.B解析:B 【解析】 【分析】利用向量的数量积运算即可算出. 【详解】 解:30AOC ︒∠=3cos ,2OC OA ∴<>=3OC OA OC OA⋅∴=()32mOA nOB OA mOA nOB OA+⋅∴=+ 222232m OAnOB OAm OA mnOA OBn OB OA+⋅=+⋅+1OA =,3OB =,0OA OB ⋅=2=229m n ∴=又C 在AB 上 0m ∴>,0n > 3m n∴= 故选:B 【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.7.D【解析】f(x)的最小正周期为2π,易知A正确;f8π3⎛⎫⎪⎝⎭=cos8ππ33⎛⎫+⎪⎝⎭=cos3π=-1,为f(x)的最小值,故B正确;∵f(x+π)=cosππ3x⎛⎫++⎪⎝⎭=-cosπ3x⎛⎫+⎪⎝⎭,∴fππ6⎛⎫+⎪⎝⎭=-cosππ63⎛⎫+⎪⎝⎭=-cos2π=0,故C正确;由于f2π3⎛⎫⎪⎝⎭=cos2ππ33⎛⎫+⎪⎝⎭=cosπ=-1,为f(x)的最小值,故f(x)在,2ππ⎛⎫⎪⎝⎭上不单调,故D错误.故选D.8.D解析:D【解析】【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。

期末冲刺卷一 —2020-2021学年【新教材】人教A版(2019)高中数学必修第二册(含解析)

期末冲刺卷一 —2020-2021学年【新教材】人教A版(2019)高中数学必修第二册(含解析)

高高高高高高高高高高-高高高高高高高A高高2019高高高高高高高高高高高高高高高一、单选题1. 已知i 为虚数单位,纯虚数z 满足(z +a)i =1+i ,则实数a =( )A. −1B. 1C. 0D. 22. 如图,已知四边形ABCD 的直观图是一个边长为1的正方形,则原图形的周长为( )A. 2√2B. 6C. 8D. 4√2+23. 在△ABC 中,已知B =120°,AC =√19,AB =2,则BC =( )A. 1B. √2C. √5D. 34. 已知两个单位向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 的夹角为60°,向量m ⃗⃗⃗ =t e 1⃗⃗⃗ +2e 2⃗⃗⃗ (t <0),则( )A. |m ⃗⃗⃗ |t 的最大值为−√32 B. |m ⃗⃗⃗ |t 的最小值为−2 C. |m ⃗⃗⃗ |t 的最小值为−√32D. |m ⃗⃗⃗ |t的最大值为−2 5. 已知在正四棱柱ABCD −A 1B 1C 1D 1中,AA 1=√2AB ,M 是CC 1的中点,则( )A. 直线AM 与平面ABCD 所成角的正切值为√22B. 直线AM 与直线A 1B 1所成角的余弦值为√55C. AM ⊥A 1BD. 直线BM//平面AD 1C 16. 在△ABC 中,点D 在直线AC 上,且AD ⃗⃗⃗⃗⃗⃗ =23AC ⃗⃗⃗⃗⃗ ,点E 在直线BD 上,且BD ⃗⃗⃗⃗⃗⃗ =2DE ⃗⃗⃗⃗⃗⃗ ,若AE ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC⃗⃗⃗⃗⃗ ,则λ1+λ2=( ) A. 0B. 12C. 79D. 897. 三棱锥P −ABC 中,PA ⊥平面ABC ,∠BAC =π2,AP =3,BC =6,则三棱锥外接球的表面积为( )A. 57πB. 63πC. 45πD. 84π8. 在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是( )A. 成绩在[70,80)分的考生人数最多B. 不及格的考生人数为1000人C. 考生竞赛成绩的平均分约为70.5分D. 考生竞赛成绩的中位数为75分9. 如图,三棱柱ABC −A 1B 1C 1中,AB =4,AC =3,BC =5,AA 1=6,D 为CC 1中点,E 为BB 1上一点,BB 1⃗⃗⃗⃗⃗⃗⃗ =3BE ⃗⃗⃗⃗⃗ ,∠A 1AC =60°,M 为平面AA 1C 1C 上一点,且BM//平面ADE ,则点M 的轨迹的长度为( )A. 1B. √2C. √3D. 210. 已知函数f(x)={|log 2x|,0<x <2sin(π4x),2≤x ≤10,若存在实数x 1,x 2,x 3,x 4,满足x 1<x 2<x 3<x 4,且f(x 1)=f(x 2)=f(x 3)=f(x 4),则(x 3−2)(x 4−2)x 1x 2的取值范围是( )A. (0,12)B. (0,16)C. (9,21)D. (15,25)二、多选题11. 如图,棱长为1的正方体ABCD −A 1B 1C 1D 1中,M 为线段AB 1上的动点(含端点),则下列结论正确的是( )A. 平面BCM ⊥平面A 1AB 1B. 三棱锥B −MB 1C 体积最大值为16C. 当M 为AB 1中点时,直线B 1D 与直线CM 所成的角的余弦值为√23D. 直线CM 与A 1D 所成的角不可能是π412. 已知i 为虚数单位,以下四个说法中正确的是( )A. i +i 2+i 3+i 4=0B. 3+i >1+iC. 若z =(1+2i)2,则复平面内z −对应的点位于第四象限D. 已知复数z 满足|z −1|=|z +1|,则z 在复平面内对应的点的轨迹为直线13. 已知△ABC 三个内角A ,B ,C 的对应边分别为a ,b ,c ,且∠C =π3,c =2. ( )A. △ABC 面积的最大值为√3B. AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 的最大值为2+4√33C. cosBcosA 的取值范围为(−2,+∞)D. bcosA +acosB =√214. 已知图1中的正三棱柱ABC −A 1B 1C 1的底面边长为2,体积为2√2,去掉其侧棱,再将上底面绕上下底面的中心所在直线逆时针旋转180°后,添上侧棱,得到图2所示的几何体,则下列说法正确的是( )A. A 2B 2//平面ABCB. AB 2=2√63C. 四边形ABA 2B 2为正方形D. 正三棱柱ABC −A 1B 1C 1与几何体ABCA 2B 2C 2的外接球的体积相等三、填空题15. 已知向量a ⃗ 、b ⃗ 为单位向量,a ⃗ ⋅b ⃗ =0,若c ⃗ =3a ⃗ +4b⃗ ,则c ⃗ 与b ⃗ 所成角的余弦值为______ . 16. 已知复数z 满足z =z+10i 3i,则z 的共轭复数z −的虚部______ .17. 《九章算术》把底面为直角三角形,且侧棱垂直于底面的三棱柱称为“堑堵”,把底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”.现有如图所示的“堑堵”ABC −A 1B 1C 1,其中AC ⊥BC ,AA 1=AC =1,当“阳马”四棱锥B −A 1ACC 1体积为13时,则“堑堵”即三棱柱ABC −A 1B 1C 1的外接球的体积为______ .18. 两个正实数a ,b 满足3a +b =1,则满足1a +3b ≥m 2−m 恒成立的m 取值范围为 .19. 某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团,据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立,2020年某新生入学,假设他通过考核选拔进入该校的“篮球”,“电子竞技”,“国学”三个社团的概率依次为m ,13,n ,已知三个社团他都能进入的概率为124,至少进入一个社团的概率为34,且m >n.则m +n =____. 四、解答题20. (1)计算(1+i1−i )2021+(2−3i)(1+4i);(2)设复数z 1=2+ai ,z 2=b −4i.(其中a ,b ∈R),若z 1z 2是纯虚数,且z 1+z 2在复平面内对应的点在直线x +y −1=0上,求|z 1z 2|.21. 已知|a ⃗ |=5,|b ⃗ |=4, (1)若a ⃗ 与b ⃗ 的夹角为θ=120°.①求a ⃗ ·b ⃗ ; ②求a ⃗ 在b ⃗ 上的投影向量. (2)若a ⃗ // b ⃗ ,求a ⃗ ·b⃗ .22. 在复平面内,O 是原点,OA ⃗⃗⃗⃗⃗ ,OB⃗⃗⃗⃗⃗⃗ 对应的复数分别为2+icosx ,(2+√3sinx)+i(2+cosx),i 是虚数单位设函数f(x)=OA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ . (1)求函数f(x)的解析式;(2)若函数y =f(x)−m 在区间[0,π2]上有2个零点,求实数m 的取值范围.23. 在①m ⃗⃗⃗ =(a +b,c −a),n⃗ =(a −b,c),且m ⃗⃗⃗ ⊥n ⃗ ,②2a −c =2bcosC ,,这三个条件中任选一个补充在下面的问题中,并给出解答. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且______. (1)求角B ; (2)若b =4,求△ABC 周长的最大值.24. 已知四边形ABCD ,AB =AD =2,∠BAD =60°,∠BCD =30°.现将△ABD 沿BD边折起使得平面ABD ⊥平面BCD ,此时AD ⊥CD.点P 为线段AD 的中点. (1)求证:BP ⊥平面ACD ;(2)若M 为CD 的中点,求MP 与平面BPC 所成角的正弦值.25. 2020年初,世界各地相继爆发了“新冠肺炎”疫情,其最大特点是人传人,传播快,传播广,对人类生命形成巨大危害.而通过佩戴口罩可以防止外界的气体、飞沫进入口鼻呼吸道中,有效地降低病毒传染几率.若在某公共场合不戴口罩被感染的概率是12,戴口罩被感染的概率是110,现有在该公共场合活动的甲、乙、丙、丁、戊五人,每个人是否被感染相互独立. (1)若五人都不戴口罩,求其中恰有两人被感染的概率; (2)若五人中有3人戴口罩,求其中恰有两人被感染的概率;(3)分别计算戴口罩和不戴口罩五人全部感染“新冠肺炎”的概率,并得出你的结论.26. 如图,在多面体ABCDEF 中,平面ABCD ⊥平面CDEF ,四边形CDEF 是边长为2的正方形,四边形ABCD 是直角梯形,其中BC//AD ,BC ⊥CD ,且BC =CD =12AD .(1)证明:BE ⊥DF ;(2)求平面ABF 与平面CDEF 所成的锐二面角的余弦值.答案和解析一.单选题1.【答案】B【解析】解:设纯虚数z=bi,b∈R,则(z+a)i=1+i可化为bi2+ai=1+i,即(−b−1)+(a−1)i=0,所以a−1=0,解得a=1.故选:B.可设纯虚数z=bi,b∈R,代入方程利用复数相等求出a的值.本题考查了纯虚数的定义与复数相等的概念和应用问题,是基础题.2.【答案】C【解析】解:∵四边形ABCD的直观图是一个边长为1的正方形,∴原图形为平行四边形,一组对边长为1,另一组对边长为√(2√2)2+1=3,∴原图形的周长为2(1+3)=8.故选:C.根据四边形ABCD的直观图是一个边长为1的正方形,可得原图形为平行四边形,一组对边长为1,另一组对边长为√(2√2)2+1=3,即可求出原图形的周长.本题考查的知识点是平面图形的直观图,其中斜二测画法的规则,能够帮助我们快速的在直观图面积和原图面积之间进行转化.3.【答案】D【解析】解:设角A,B,C所对的边分别为a,b,c,结合余弦定理,可得19=a2+4−2×a×2×cos120°,即a2+2a−15=0,解得a=3(a=−5舍去),所以BC=3.故选:D.设角A,B,C所对的边分别为a,b,c,利用余弦定理得到关于a的方程,解方程即可求得a的值,从而得到BC的长度.本题考查了余弦定理,考查了方程思想,属基础题.4.【答案】A【解析】解:因为t <0,所以|m|t=√(te 1+2e 2)2t=√t2+4te 1⋅e 2+4t=√t 2+2t+4t=−√t 2+2t+4t 2=−√(2t +12)2+34,当2t =−12,即t =−4时,|m|t取得最大值,且最大值为−√32.故选:A . 利用|m|t=√(te 1+2e 2)2t=√t 2+4te 1⋅e 2+4t=√t 2+2t+4t=−√t 2+2t+4t 2=−√(2t +12)2+34,即可求解.本题考查了平面向量的模运算,考查了函数思想,属于中档题.5.【答案】C【解析】解:不妨设AB =2,对于A ,直线AM 与平面ABCD 所成角的正切值为MC AC=√22√2=12≠√22,所以A 错;对于B ,取A 1A 中点N ,连接NC 1、ND 1,因为A 1B 1//C 1D 1,AM//NC 1, 所以直线AM 与直线A 1B 1所成角的余弦值为cos∠NC 1D 1=C 1D 1NC 1=√10≠√55,所以B 错;对于C ,取C 1D 1中点P ,连接MP 、CD 1,PM//CD 1,CD 1//A 1B ,所以PM//A 1B , 连接AP 、AD 1,AD 1=√12,AP =√13,AM =√10,PM =√3, 所以AP 2=PM 2+AM 2,所以PM ⊥AM ,所以AM ⊥A 1B ,所以C 对; 对于D ,因为BM ∩平面AD 1C 1=B ,所以BM//平面AD 1C 1不成立,所以D 错. 故选:C .A 求直线AM 与平面ABCD 所成角的正切值判断;B 求AM 与直线A 1B 1所成角的余弦值判断;C 用勾股定理逆定理判断;D 直线BM 与平面AD 1C 1相交于B .本题以命题真假判断为载体,考查了异面直线成角问题,考查了直线与平面成角问题,属于中档题.6.【答案】B【解析】解:由三角形法则得:AE ⃗⃗⃗⃗⃗ =BE ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ =BE ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ,∵BE ⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =32BD ⃗⃗⃗⃗⃗⃗ =32(CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ )=32(CD ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=32[−13AC ⃗⃗⃗⃗⃗ +(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )]=AC ⃗⃗⃗⃗⃗ −32AB ⃗⃗⃗⃗⃗ , ∴AE⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −32AB ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ , ∴λ1+λ2=1−12=12, 故选:B .根据三角形法则表示出AE ⃗⃗⃗⃗⃗ 与BE ⃗⃗⃗⃗⃗ ,将BE ⃗⃗⃗⃗⃗ 代入表示出AE ⃗⃗⃗⃗⃗ ,确定出λ1与λ2的值,即可求出所求式子的值.此题考查了平面向量的基本定理及其意义,熟练掌握平面向量的数量积运算法则是解本题的关键.7.【答案】C【解析】解:如图,∵PA ⊥平面ABC ,∠BAC =π2,∴AB 、AC 、AP 两两互相垂直,把三棱锥P −ABC 变形为长方体,则长方体的外接球即三棱锥P −ABC 的外接球, 长方体的对角线长为√PA 2+AB 2+AC 2=√PA 2+BC 2=√9+36=√45, ∴三棱锥外接球的表面积为4π×(√452)2=45π.故选:C .由题意可知,AB 、AC 、AP 两两互相垂直,把三棱锥P −ABC 变形为长方体,则长方体的外接球即三棱锥P −ABC 的外接球,求出长方体的对角线长,可得外接球的半径,代入球的表面积公式得答案.本题考查多面体外接球表面积的求法,训练了分割补形法,是中档题.8.【答案】D【解析】 【分析】本题考查频率分布直方图和平均数、中位数、众数的计算,属基础题. 逐项进行分析判断即可得到答案. 【解答】解:通过频率分布直方图可看到成绩在70分∼80分的人的比重最大,所以人数也最多,所以A 正确;不及格的人数为4000×0.025×10=1000人,所以B 正确;根据公式算出平均分为0.01×10×45+0.015×10×55+0.02×10×65+0.03×10×75+0.015×10×85+0.01×10×95=70.5,故C 正确; ∵(0.01+0.015+0.02)×10=0.45<0.5,故中位数在70∼80之间,设为x ,则0.45+x ·0.03=0.5,解得x =53,故中位数是71.67,故D 错误; 故选D .9.【答案】C【解析】解:由题意得BE =2,CD =3,在CD 上取点M 1,使M 1D =2,M 1C =1,则M 1D//BE 且M 1D =BE ,所以四边形BEDM 1是平行四边形,所以BM 1//DE . 在AC 上取点M 2,使M 2A =2,M 2C =1,则CM 1M 1D=CM 2M2A=12,所以M 1M 2//AD . 又BM 1∩M 1M 2=M 1,DE ∩AD =D ,所以平面BM 1M 2//平面ADE ,所以点M 的轨迹就是线段M 1M 2, 在△CM 1M 2中,CM 1=CM 2=1,∠M 1CM 2=120°,由余弦定理得M 1M 2=√BM 12+BM 22−2BM 1⋅BM 2cos120°=√3.M 1M 2=√3, 故选:C .在CD 上取点M 1,使M 1D =2,M 1C =1,则证明BM 1//DE.在AC 上取点M 2,使M 2A =2,M 2C =1,证明面BM 1M 2//平面ADE ,推出点M 的轨迹就是线段M 1M 2,然后求解即可.本题考查空间中点、线、面的位置关系、直线与平面平行、平面与平面平行的判定定理、余弦定理,考查空间想象能力,考查直观想象、逻辑推理核心素养.10.【答案】A【解析】 【分析】作出函数f(x)的图象,由图象及对称性可得,x 1x 2=1,x 3+x 4=12,即为x 4=12−x 3,2<x 3<4,代入所求式子,运用二次函数的值域,结合单调性可得所求范围. 本题考查分段函数的运用:求取值范围,考查正弦函数的对称性和应用,以及二次函数的单调性的运用,考查运算能力,属于中档题. 【解答】解:作出函数f(x)={|log 2x|,0<x <2sin(π4x),2≤x ≤10的图象,存在实数x 1,x 2,x 3,x 4,满足x 1<x 2<x 3<x 4, 且f(x 1)=f(x 2)=f(x 3)=f(x 4), 可得−log 2x 1=log 2x 2,即有x 1x 2=1,且x 3+x 4=2×6=12,即为x 4=12−x 3,2<x 3<4, 则(x 3−2)(x 4−2)x 1x 2=(x 3−2)(x 4−2)=(x 3−2)(10−x 3)=−(x 3−6)2+16,可得在(2,4)递增, 即所求范围为(0,12). 故选A . 二.多选题11.【答案】ABC【解析】解:在正方体ABCD −A 1B 1C 1D 1中, BC ⊥面A 1AM ,BC ⊂面BCM , ∴面BCM ⊥面A 1AM , 故选项A 正确;设M 到面BB 1C 的距离为h ,V B−MB 1C =V M−B 1BC =13×12×1×1×ℎ=16ℎ,当M 点运动到线段AB 1的端点A 时,h 最大,且距离为1. ∴三棱锥B −MB 1C 的体积最大值为16, 故选项B 正确;如图,将A 1B 1延长至E ,使A 1B 1=B 1E ,连ME ,CE ,易得B 1D//CE ,∴直线CM 与直线CE 所成角即为直线B 1D 与直线CM 所成的角,即∠MCE , 易得|MC|=√62,|CE|=√3,|ME|=√102,∴cos∠MCE =|MC|2+|CE|2−|ME|22|MC|⋅|CE|=√23, 故选项C 正确;∵A 1D//B 1C ,∴直线CM 与直线B 1C 所成角就是∠MCB 1,当M 从点B 1沿着线段B 1A 向A 点运动时,∠MCB 1逐渐变大, ∴∠MCB 1max =∠ACB 1=π3>π4,故在点A 和点B 1之间,必定存在一点使得∠MCB 1=π4, 故选项D 错误. 故选:ABC .A 选项中,直接由正方体的性质证明即可;B 选项中将求体积的最大值转化为求M 到面BB 1C 的距离的最大值即可;C ,D 选项可利用平行四边形的方法,将异面直线夹角转化为求相交直线夹角即可; 本题考查了空间中面面垂直的判定,三棱锥的体积,以及异面直线所成的角,属于中档题.12.【答案】AD【解析】解:对于A ,i +i 2+i 3+i 4=i −1−i +1=0,故A 正确; 对于B ,两个虚数不能进行大小比较,故B 错误;对于C ,z =(1+2i)2=1+4i −4=−3+4i ,z −=−3−4i , 则复平面内z −对应的点的坐标为(−3,−4),位于第三象限,故C 错误;对于D ,已知复数z 满足|z −1|=|z +1|,则z 在复平面内对应的点的轨迹是以(1,0)和(−1,0)为端点的线段的垂直平分线,故D 正确. 故选:AD .利用虚数单位i 的运算性质判断A ;根据两个虚数不能进行大小比较判断B ;利用复数代数形式的乘除运算化简z 进一步求得z −的坐标判断C ;由复数模的几何意义判断D . 本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数的代数表示法及其几何意义,是基础题.13.【答案】AB【解析】解:对于A.因为∠C =π3,c =2,可得4=a 2+b 2−ab ≥2ab −ab =ab ,即ab 的最大值为4,可得△ABC 面积S =12absinC ≤12×4×√32=√3,即△ABC 面积的最大值为√3,当且仅当a =b =2时等号成立,可得A 正确; 对于B.设△ABC 的外接圆半径为R ,则2R =c sinC=4√33, 可得AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =bccosA =2bcosA =2×4√33sinBcosA =8√33sinBcosA ,因为B =2π3−A ,可得AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =8√33cosAsin(2π3−A)=8√33cosA(√32cosA +12sinA)=4cos 2A +4√33sinAcosA =2(1+cos2A)+2√33sin2A =2√33sin2A +2cos2A +2=4√33(12sin2A +√32cos2A)+2=4√33sin(2A +π3)+2.因为0<A <2π3,0<2A <4π3,所以π3<2A +π3<5π3,则当2A +π3=π2,即:A =π12时,AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 取得最大值为4√33+2,可得B 正确; 对于C .cosBcosA=cos(2π3−A)cosA=cos2π3sinA+sin 2π3cosA cosA=−12tanA +√32,而tan A 的取值范围为(0,+∞)∪(−∞,−√3),所以cosBcosA 的取值范围为(√3,+∞)∪(−∞,√32),故C 错误;D .若bcosA +acosB =√2,则可得b ⋅b 2+c 2−a 22bc+a ⋅a 2+c 2−b 22ac=√2,可得2c 2=2√2c ,解得c =√2, 由于c =2,故D 错误. 故选:AB .对于A.由已知利用余弦定理,基本不等式可求ab 的最大值,进而根据三角形的面积公式即可求解;对于B.由题意根据正弦定理,平面向量数量积的运算,三角函数恒等变换的应用可求AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =4√33sin(2A +π3)+2,进而根据正弦函数的性质即可求解;对于C.利用三角函数恒等变换的应用可得cosBcosA=−12tanA +√32,根据正切函数的性质即可求解;对于D.由已知利用余弦定理即可求解.本题主要考查了余弦定理,基本不等式,三角形的面积公式,正弦定理,平面向量数量积的运算,三角函数恒等变换的应用,正弦函数的性质,正切函数的性质等知识的综合应用,考查了转化思想和函数思想,属于中档题.14.【答案】ACD【解析】解:对于A :因旋转前后,A 1,B 1,C 1,A 2,B 2,C 2,共面,由棱柱的性质得知:平面A 2B 2C 2//平面ABC , 从而A 2B 2//平面ABC ,故A 正确;对于B :因棱柱体积V =S △ABC ⋅AA 1=√34×22⋅AA 1=2√2,解得AA 1=2√63, 设H 为B 2在平面ABC 上的射影, 如图所示:则:点H 在BO 的延长线上,且OH =OB =2√33,又B 2H =OO 2=AA 1=2√63, 从而AH =AO =BO ,所以AB 2=√B 2H 2+AH 2=2,故B 错误;对于C :因为A 2B 2//A 1B 1//AB ,且A 1B 1=A 2B 2=AB , 故四边形ABB 2A 2为平行四边形,由对称性可知:AA 2=BB 2,又AB 2=AB =2, 所以四边形ABA 2B 2为正方形,故C 正确;对于D :因旋转前后正三棱柱ABC −A 1B 1C 1与几何体ABCA 2B 2C 2的外接球都是是以OO 2为直径的球G 上,故球的体积相等,故D 正确. 故选:ACD .直接利用柱体的旋转前后的面面和线线的位置关系,柱体的体积公式,几何体和球的位置关系的应用判断A 、B 、C 、D 的结论.本题考查的知识要点:柱体的旋转前后的面面和线线的位置关系,柱体的体积公式,几何体和球的位置关系,主要考查学生的运算能力和数学思维能力,属于中档题. 三.填空题15.【答案】45【解析】解:向量a ⃗ 、b ⃗ 为单位向量,a ⃗ ⋅b ⃗ =0,若c ⃗ =3a ⃗ +4b ⃗ , 设c ⃗ 与b ⃗ 所成角为θ, 则cosθ=c⃗ ⋅b ⃗ |c ⃗ ||b ⃗ |=b ⃗ ⋅(3a ⃗ +4b⃗ )|3a ⃗ +4b⃗ ||b ⃗ |=√9+16×1=45. 故答案为:45.利用向量的数量积,转化求解向量的夹角的余弦函数值即可. 本题考查向量的数量积的求法与应用,是中档题.16.【答案】1【解析】解:z =z+10i 3i,化为:z =−10i 1−3i =−10i(1+3i)(1−3i)(1+3i)=3−i ,则z 的共轭复数z −=3+i 的虚部为1. 故答案为:1.利用复数的运算法则、虚部的定义即可得出.本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.17.【答案】√32π【解析】解:由已知可得,BC ⊥平面A 1ACC 1, 则V B−AA 1C 1C =13×1×1×BC =13, 解得BC =1.此时“塹堵”即三棱柱ABC −A 1B 1C 1的外接球的直径A 1B =√12+12+12=√3, ∴三棱柱ABC −A 1B 1C 1的外接球的体积为V =43π×(√32)3=√32π.故答案为:√32π.首先利用锥体的体积公式求出BC 长度,进一步求出球的直径,再由球的体积公式得答案.本题考查锥体的体积公式的应用,多面体外接球体积的求法,考查空间想象能力和思维能力,考查运算求解能力,是中档题.18.【答案】[−3,4]【解析】 【分析】由基本不等式和“1”的代换,可得1a +3b 的最小值,再由不等式恒成立思想可得m 2−m 小于等于最小值,解不等式可得所求范围.本题考查基本不等式的运用,以及不等式恒成立问题解法,考查运算能力,属于中档题. 【解答】解:由3a +b =1,a >0,b >0, 可得1a+3b=(3a +b)(1a+3b)=6+ba+9a b ≥6+2√b a⋅9a b=12,当且仅当a =16,b =12上式取得等号, 由题意可得m 2−m ≤1a +3b 恒成立, 即有m 2−m ≤12,解得−3≤m ≤4. 故答案为[−3,4].19.【答案】34【解析】 【分析】本题考查相互独立事件同时发生的概率以及对立事件的应用,难度一般.根据相互独立事件的概率乘法公式得到m ×13×n =124⇒m ×n =18,再利用对立事件的概率简化得到(1−m )×23×(1−n )=14⇒1−m −n +m ×n =38,进而求解即可. 【解答】解:由题知三个社团都能进入的概率为124, 即m ×13×n =124⇒m ×n =18, 又因为至少进入一个社团的概率为34, 即一个社团都没能进入的概率为1−34=14,即(1−m )×23×(1−n )=14⇒1−m −n +m ×n =38, 整理得m +n =34. 故答案为34. 四.解答题20.【答案】解:(1)∵1+i1−i =(1+i)2(1−i)(1+i)=2i 2=i ,i 4=1,∴(1+i1−i )2021=i 2021=(i 4)505⋅i =i , ∴(1+i 1−i)2021+(2−3i)(1+4i)=i +(2−3i +8i −12i 2)=14+6i …(4分) (2)z 1z 2=2+ai b −4i =(2+ai)(b +4i)b 2+16=(2b −4a)+(8+ab)i b 2+16因为z 1z 2是纯虚数,所以{2b −4a =08+ab ≠0,即b =2a ,又因为z 1+z 2=(2+b)+(a −4)i =(2+2a)+(a −4)i , 所以z 1+z 2在复平面内对应的点为(2+2a,a −4), 所以2+2a +a −4−1=0得a =1,b =2…(8分) 因为z 1z 2=(2+i)(2−4i)=8−6i , 所以|z 1z 2|=√82+(−6)2=10…(10分)【解析】(1)计算1+i1−i =(1+i)2(1−i)(1+i)=i ,根据i 4=1,可得(1+i1−i )2021,利用复数的运算法则即可得出. (2)z 1z 2=2+ai b−4i =(2+ai)(b+4i)b 2+16=(2b−4a)+(8+ab)ib 2+16,利用z 1z 2是纯虚数,可得{2b −4a =08+ab ≠0,即b =2a.根据z 1+z 2在复平面内对应的点在直线x +y −1=0上,即可得出a ,b ,进而得出|z 1z 2|.本题考查了复数的运算法则、纯虚数的定义、几何意义、模的计算公式,考查了推理能力与计算能力,属于基础题.21.【答案】解:(1)①a ⃗ ·b ⃗ =|a ⃗ ||b ⃗ |cos θ=5×4×cos 120°=−10.②a ⃗ 在b ⃗ 上的投影向量为|a ⃗ |·cos θb⃗ |b ⃗ |=5×(−12)×b⃗ 4=−58b ⃗ . (2)∵a ⃗ // b ⃗ ,∴a ⃗ 与b ⃗ 的夹角为θ=0°或θ=180°. 当θ=0°时,a ⃗ ·b ⃗ =|a ⃗ ||b ⃗ |cos 0°=20. 当θ=180°时,a ⃗ ·b ⃗ =|a ⃗ ||b⃗ |cos180°=−20.【解析】本题考查向量的夹角 、向量的数量积 、投影向量以及平面向量共线的充要条件,属于中档题.(1)①利用数量积的定义即可求解; ②利用投影向量定义即可求解;(2)a ⃗ // b ⃗ ,分a ⃗ 与b⃗ 的夹角为θ=0°或180°两种情况即可求解;22.【答案】解:(1)由题意可得,OA ⃗⃗⃗⃗⃗ =(2,cosx),OB ⃗⃗⃗⃗⃗⃗ =(2+√3sinx,2+cosx), 则AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(√3sinx,2),∴f(x)=OA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =2√3sinx +2cosx =4sin(x +π6);(2)∵f(x)在[0,π3]上递增,在[π3,π2]上递减,且函数y =f(x)−m 在区间[0,π2]上有2个零点,∴max{f(0),f(π2)}≤m <f(π3)=4, ∵max{f(0),f(π2)}=max{2,2√3}=2√3, ∴2√3≤m <4.即实数m 的取值范围是[2√3,4).【解析】(1)由已知求得AB ⃗⃗⃗⃗⃗ 的坐标,再由数量积的坐标运算及两角和的正弦求函数f(x)的解析式;(2)由f(x)在区间[0,π2]上的单调性可得最值,结合函数y =f(x)−m 在区间[0,π2]上有2个零点,即可求得实数m 的取值范围.本题考查平面向量数量积的坐标运算,考查y =Asin(ωx +φ)型函数的图象与性质,考查函数零点的判定及应用,是中档题.23.【答案】解:(1)选①,∵m⃗⃗⃗ =(a +b,c −a),n ⃗ =(a −b,c),且, ∴(a +b)(a −b)+c(c −a)=0,化简得,a 2+c 2−b 2=ac , 由余弦定理得cosB =a 2+c 2−b 22ac =ac 2ac =12,又因为0<B <π,∴B =π3.选②,根据正弦定理,由2a −c =2bcosC 得2sinA −sinC =2sinBcosC , 又因为sin A =sin (B +C)=sin Bcos C +sin Ccos B ,所以2sinCcosB =sinC , 又因为sin C ≠0,所以cosB =12,又因为B ∈(0,π),所以B =π3. 选③,由sin (B +π6)=cos B +12,得√32sin B +12cos B =cos B +12,即√32sin B −12cos B =12,所以cos (B +π3)=−12, 又因为B ∈(0,π),所以B +π3=2π3,因此B =π3. (2)由余弦定理b 2=a 2+c 2−2accosB ,得16=(a +c)2−3ac . 又∵a+c 2⩾√ac ,∴ac ⩽(a+c)24,当且仅当a =c 时等号成立,∴3ac =(a +c)2−16⩽3(a+c)24,解得,a +c ≤8,当且仅当a =c =4时,等号成立.∴a +b +c ≤8+4=12. ∴△ABC 的周长的最大值为12.【解析】本题考查了正弦定理,余弦定理及向量的数量积运算,两角和的正余弦公式,以及基本不等式的应用,考查了推理能力与计算能力,属于中档题. (1)选①,利用向量的数量积及余弦定理,可推出cos B =12,由此可求出角B 的大小;选②根据正弦定理及两角和的正弦公式求解即可;选③,利用两角和的正余弦公式可推出cos (B +π3)=−12,进而可得B 的大小;(2)由题意,利用余弦定理及基本不等式进行求解即可.24.【答案】(1)证明:因为AB =AD ,∠BAD =60°,所以△ABD 为等边三角形,因为P 为AD 的中点,所以BP ⊥AD , 取BD 的中点E ,连结AE ,则AE ⊥BD ,因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,所以AE ⊥平面BCD , 又CD ⊂平面BCD ,所以AE ⊥CD ,又因为CD ⊥AD ,AD ∩AE =A ,AE ,AD ⊂平面ABD ,所以CD ⊥平面ABD , 因为BP ⊂平面ABD ,所以CD ⊥BP , 又因为CD ∩AD =D ,CD ,AD ⊂平面ACD , 所以BP ⊥平面ACD ;(2)解:由(1)可知CD ⊥BD ,取BC 的中点F ,则EF ⊥DE ,即EA ,EF ,ED 两两垂直,以E 为坐标原点建立空间直角坐标系如图所示,则A(0,0,√3),B(0,−1,0),C(2√3,1,0),D(0,1,0),P(0,12,√32),M(√3,1,0),所以BP ⃗⃗⃗⃗⃗ =(0,32,√32),BC ⃗⃗⃗⃗⃗ =(2√3,2,0),设平面BPC 的法向量为n⃗ =(x,y,z), 则{n ⃗⋅BP ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BC ⃗⃗⃗⃗⃗ =0,即{32y +√32z =02√3x +2y =0, 令x =1,则y =−√3,z =3,故n ⃗ =(1,−√3,3),又MP ⃗⃗⃗⃗⃗⃗ =(−√3,−12,√32),所以|cos <n ⃗ ,MP ⃗⃗⃗⃗⃗⃗ >|=|n ⃗⃗ ⋅MP⃗⃗⃗⃗⃗⃗⃗ ||n ⃗⃗ ||MP⃗⃗⃗⃗⃗⃗⃗ |=√32√13=√3926, 故MP 与平面BPC 所成角的正弦值为√3926.【解析】(1)利用面面垂直的性质定理,可得AE ⊥平面BCD ,再利用线面垂直的判定定理可证明CD ⊥平面ABD ,从而得到CD ⊥BP ,再利用等边三角形的性质得到BP ⊥AD ,即可证明BP ⊥平面ACD ;(2)建立空间直角坐标系,然后求出所需点的坐标,利用待定系数法求出平面BPC 的法向量,求出直线MP 的方向向量,再由向量的夹角公式求解即可.本题考查了线面垂直的判定定理的应用和线面角的求解,涉及了面面垂直的性质定理的应用,在求解空间角的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.25.【答案】解:(1)五人都不戴口罩,恰有两人被感染的概率是P =C 52×(12)2×(1−12)3=516;(2)当被感染的两人都没有戴口罩时,概率为P 1=(12)2×(1−110)3=7294000; 当被感染的两人中,一人戴口罩,一人没有戴口罩时,概率为P 2=C 31×110×(1−110)2×C 21×12×(1−12)=2432000; 当被感染的两人都有戴口罩时,概率为P 3=C 32×(110)2×(1−110)×(1−12)2=274000, 所以五人中有3人戴口罩,其中恰有两人感染的概率是: P =P 1+P 2+P 3=7294000+2432000+274000=6212000.(3)不戴口罩时,五人全部感染的概率为(12)5=132=3.125%, 戴口罩时,五人全部感染的概率为(110)5=0.001%,通过计算可知,戴口罩时被感染的概率远远低于不戴口罩时感染的概率, 因此建议在公共场合一定要佩戴口罩.【解析】本题主要考查相互独立事件的概率计算公式,概率的实际应用. (1)根据相互独立事件的概率计算即可. (2)分三种情况讨论计算,最后概率相加即可.(3)分别计算五个人戴口罩和不戴口罩感染的概率,比较大小即可.26.【答案】(1)证明:连结CE ,DF ,因为四边形CDEF 是正方形,所以DF ⊥CE.…………………………(1分) 因为BC ⊥CD ,平面ABCD ⊥平面CDEF ,所以BC ⊥平面CDEF ,从而DF ⊥BC.………………………(3分) 又BC ∩CE =C ,BC ,CE ⊂平面BCE ,所以DF ⊥平面BCE ,BE ⊂平面BCE ,所以BE ⊥DF.…………………(5分)(2)解:如图所示,以DA ,DC ,DE 分别为x ,y ,z 轴建立空间直角坐标系D −xyz , 依题意知A(4,0,0),B(2,2,0),F(0,2,2),D(0,0,0).……………………(7分) 设平面ABF 的法向量为m ⃗⃗⃗ =(x 1,y 1,z 1),AB ⃗⃗⃗⃗⃗ =(−2,2,0),AF⃗⃗⃗⃗⃗ =(−4,2,2),{−2x 1+2y 1=0−4x 1+2y 1+2z 1=0,令y 1=1,则{x 1=1y 1=1z 1=1,所以m ⃗⃗⃗ =(1,1,1)……………………(10分)取平面CDEF 的法向量为n⃗ =(1,0,0),………………(11分) 设该二面角的平面角为θ,所以cosθ=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ ||n ⃗⃗ |=√3×1=√33.………………(12分)【解析】(1)连结CE ,DF ,说明DF ⊥CE.结合BC ⊥CD ,平面ABCD ⊥平面CDEF ,推出DF ⊥BC ,证明DF ⊥平面BCE ,即可推出BE ⊥DF .(2)以DA ,DC ,DE 分别为x ,y ,z 轴建立空间直角坐标系D −xyz ,求出平面ABF 的法向量,平面CDEF 的法向量利用空间向量的数量积求解二面角的余弦函数值. 本题考查直线与平面垂直的判断定理的应用,二面角的平面积的求法,考查空间想象能力,转化思想以及计算能力,是中档题.。

(必修一必修二)高一数学期末试卷及答案新人教A版

(必修一必修二)高一数学期末试卷及答案新人教A版

新泰一中北区2012数学必修一,二自测试卷第Ⅰ卷选择题(5 分×12=60分)1.已知U 为全集,集合M 、N 是U 的子集,若M ∩N=N ,则( ) A 、u u C M C N ⊇ B 、u M C N ⊆ C 、u u C M C N ⊆ D 、u M C N ⊇ 2、.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上递减,则a 的取值范围是A.[-3,+∞]B.(-∞,-3)C.(-∞,5]D.[3,+∞)3、向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是( ).4、下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确的个数有( ).A 、1B 、2C 、3D 、4 5、已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值范围是A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤46、若=-=-33)2lg()2lg(,lg lg yx a y x 则 ( )A .a 3B .a 23C .aD .2a 7、木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( )倍.A、60 B、120 C、3060 D、301208、若函数()012233a x a x a x a x f +++=是奇函数,则=+2220a a ( )A. 0B. 1C. 2D. 4 9、在正方体1111ABCD A B C D -中,下列几种说法正确的是( )A 、11AC AD⊥ B 、11D C AB⊥ C 、1AC 与DC 成45o角D 、11AC 与1B C成60o角10下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、22log 1y x =-C 、21log y x = D 、22log (45)y x x =-+ 11、如果定义在),0()0,(+∞-∞Y 上的奇函数f(x),在(0,+∞)内是减函数,又有f(3)=0,则0)(<⋅x f x 的解集为 ( )A.{x|-3<x<0或x>3}B. {x|x<-3或0<x<3}C. {x|-3<x<0或0<x<3}D. {x|x<-3或x>3}12、如图,三棱柱A 1B 1C 1—ABC 中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E是BC 中点,则下列叙述正确的是( ).A .CC 1与B 1E 是异面直线 B .AC ⊥平面A 1B 1BAC .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E第Ⅱ卷二、填空题(每小题4分,共16分;请将答案填在答卷纸的横线上)13、函数)1(log 2120++-+=x x x y 的定义域14、一个正方体的六个面上分别标有字母A、B、C、D、E、 F,如右图所示 是此正方体的两种不同放置,则与D面相 对的面上的字母是 。

(必修二)(人教A版 2019)高一数学下学期期末考试考前必刷题 (人教A版 2019必修二)

(必修二)(人教A版 2019)高一数学下学期期末考试考前必刷题 (人教A版 2019必修二)

2020-2021高一下学期期末考试考前预测卷03试卷满分:150分 考试时长:120分钟注意事项:1.本试题满分150分,考试时间为120分钟.2.答卷前务必将姓名和准考证号填涂在答题纸上.3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰.超出答题区书写的答案无效;在草稿纸、试题卷上答题无效. 一、单选题(本大题共8小题,共40.0分)1.用任意一个平面截一个几何体,各个截面都是圆,则这个几何体一定是( ) A .圆柱 B .圆锥C .球体D .圆柱、圆锥、球体的组合体【答案】C 【分析】由球体截面的性质,即可确定正确选项. 【详解】各个截面都是圆,几何体中只有球体的任意截面都是圆,∴这个几何体一定是球体,故选:C .2.已知复数z 满足()234z i i +=+(其中i 为虚数单位),则复数z 的共轭复数为( ) A .12i + B .12i -C .2i +D .2i -【答案】C 【分析】根据复数模的公式,结合复数除法运算的法则、共轭复数的定义进行求解可. 【详解】解:∵()234z i i +=+,∵3455(2)222(2)(2)i i z i i i i i +-=====-+++-,∵2z i =+, 故选:C .3.已知数据12,,,,n x x x t 的平均数为t ,方差为21s ,数据12,,,n x x x 的方差为22s ,则( )A .2212s s > B .2212s s = C .2212s s < D .21s 与22s 的大小关系无法判断【答案】C 【分析】利用方差与均值的关系,结合方差公式即可判断2212,s s 的大小.【详解】 由题设,123...1n x x x x t t n +++++=+,即123...nx x x x t n++++=,∵22111()1n i i s x t n ==-+∑,22211()n i i s x t n ==-∑,即有2212s s <. 故选:C.4.甲乙两人进行扑克牌得分比赛,甲的三张扑克牌分别记为A ,b ,C ,乙的三张扑克牌分别记为a ,B ,c .这六张扑克牌的大小顺序为A a B b C c >>>>>.比赛规则为:每张牌只能出一次,每局比赛双方各出一张牌,共比赛三局,在每局比赛中牌大者得1分,牌小者得0分.若每局比赛之前彼此都不知道对方所出之牌,则六张牌都出完时乙得2分的概率为( ) A .16B .23C .12D .13【答案】D 【分析】依题意列出所有的可能情况,根据古典概型的概率公式计算可得; 【详解】解:依题意基本事件总数有3216⨯⨯=种; 分别有以下情况:A a ↔,bB ↔,C c ↔,此时乙得1分; A a ↔,b c ↔,C B ↔,此时乙得1分; A B ↔,b a ↔,C c ↔,此时乙得1分; A B ↔,b c ↔,C a ↔,此时乙得1分; A c ↔,b a ↔,C B ↔,此时乙得2分;A c ↔,bB ↔,C a ↔,此时乙得2分;故六张牌都出完时乙得2分的概率2163P == 故选:D5.在ABC 中,若138,7,cos 14a b C ===,则最大角的余弦是( ) A .15- B .16-C .17-D .18-【答案】C 【分析】运用余弦定理求出c ,再根据三角形中大边对大角的性质,结合余弦定理进行求解即可. 【详解】因为138,7,cos 14a b C ===,所以3c ===, 因为a b c >>,所以A B C >>,因此222499641cos 22737b c a A bc +-+-===-⨯⨯,故选:C6.一个正方体的展开图如图所示,A B C D 、、、为原正方体的顶点,则在原来的正方体中( )A .//AB CD B .AB 与CD 相交C .AB CD ⊥ D .AB 与CD 异面【答案】D【分析】将展开图还原为正方体,然后判断,AB CD 的关系即可 【详解】解:还原的正方体如图所示, 显然AB 与CD 异面,连接,CE DE ,则AB ∵DE ,则EDC ∠为异面直线所成的角,因为CDE △是等边三角形,所以60EDC ∠=︒,所以AB 与CD 不垂直, 故选:D7.已如平面向量a 、b 、c ,满足33a =,2b =,2c =,2b c ⋅=,则()()()()222a b a c a b a c ⎡⎤-⋅---⋅-⎣⎦的最大值为( )A .B .192C .48D .【答案】B 【分析】作OA a =,OB b =,OC c =,取BC 的中点D ,连接OD ,分析出BOC 为等边三角形,可求得OD ,计算得出()()()()()22222ABC a b a c a b a c S ⎡⎤-⋅---⋅-=⎣⎦△,利用圆的几何性质求出ABC 面积的最大值,即可得出结果. 【详解】如下图所示,作OA a =,OB b =,OC c =,取BC 的中点D ,连接OD , 以点O 为圆心,|a⃗|为半径作圆O ,1cos cos ,2b c BOC b c b c⋅∠=<>==⋅,0BOC π≤∠≤,3π∴∠=BOC , 所以,BOC 为等边三角形,D 为BC 的中点,OD BC ,所以,BOC 的底边BC 上的高为2sin3OD π==,a ⃗−b⃗⃗=OA ⃗⃗⃗⃗⃗⃗−OB ⃗⃗⃗⃗⃗⃗=BA ⃗⃗⃗⃗⃗⃗,OA OC a c CA --==, 所以,()()cos a b a c BA CA AB AC AB AC BAC -⋅-=⋅=⋅=⋅∠,所以,()()()()()222222cos a b a c a b a c AB AC AB AC BAC ⎡⎤-⋅---⋅-=⋅-⋅∠⎣⎦()()22sin 2ABC AB AC BACS =⋅∠=△,由圆的几何性质可知,当A 、O 、D 三点共线且O 为线段AD 上的点时,ABC 的面积取得最大值,此时,ABC 的底边BC 上的高h 取最大值,即max 43h AO OD =+=,则()max 122ABC S =⨯⨯=△因此,()()()()222a b a c a b a c ⎡⎤-⋅---⋅-⎣⎦的最大值为(24192⨯=.故选:B. 【点睛】结论点睛:已知圆心C 到直线l 的距离为d ,且圆C 的半径为r ,则圆C 上一点到直线l 距离的最大值为d r +.8.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A B C D 【答案】A 【分析】首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果. 【详解】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,且过棱的中点的正六边形,且边长为2,所以其面积为26S ==,故选A. 点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、多选题(本大题共4小题,共20.0分) 9.下列关于复数的说法,其中正确的是( ) A .复数(),z a bi a b R =+∈是实数的充要条件是0b = B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠ C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称 【答案】AC 【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可. 【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确; 对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确;对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误; 故选:AC 【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.10.已知向量()()1,0,cos ,sin ,,22a b ππθθθ⎡⎤==∈-⎢⎥⎣⎦,则a b +的值可以是( )A B C .2·D .【答案】ABC 【分析】由题意,向量()()1,0,cos ,sin a b θθ==,求得22cos a b +=+结合余弦函数的性质,即可求解. 【详解】由题意,向量()()1,0,cos ,sin a b θθ==, 可得1,1,cos a b a b θ==⋅=,又由22222cos a b a b a b +=++⋅=+因为,22ππθ⎡⎤∈-⎢⎥⎣⎦,则cos [0,1]θ∈2], 即[2,2]a b +∈,结合选项,可得ABC 适合. 故选:ABC.11.已知正三棱锥P ABC-的底面边长为1,点P 到底面ABC,则( ) A.该三棱锥的内切球半径为6B.该三棱锥外接球半径为12C D 【答案】ABD 【分析】设PM 是棱锥的高,则M 是ABC 的中心,D 是AB 中点,易得几何体的体积,进而结合等体积法求得内切球的半径,利用直角三角形求解外接球的半径.【详解】如图,PM 是棱锥的高,则M 是ABC 的中心,D 是AB 中点,21ABC S ==△1133P ABC ABC V SPM -=⋅==△C 错D 正确; 113DM ==,6PD ==CM=. 12PBC S BC PD =⨯⨯△112=⨯=所以331242PBC ABC S S S =+=⨯+=△△, 设内切球半径为r ,则13P ABC Sr V -=,3r ==A 正确;易知外接球球心在高PM 上,球心为O ,设外接球半径为R ,则)2223R R ⎛⎫+= ⎪ ⎪⎝⎭,解得R =,B 正确; 故选:ABD .【点睛】本题考查空间几何体的内切球,外接球问题,三棱锥的体积求解,考查空间想象能力,运算求解能力,是中档题.本题内切球的半径的求解利用等体积法求解,即:13V S r =⋅表面积(其中r 为内切球半径).12.下列说法正确的是( )A .若非零向量0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC 为等边三角形 B .已知,,,OA a OB b OC c OD d ====,且四边形ABCD 为平行四边形,则0a b cd +--=C .已知正三角形ABC 的边长为圆O 是该三角形的内切圆,P 是圆O 上的任意一点,则PA PB ⋅的最大值为1D .已知向量()()()2,0,2,2,2cos OB OC CA αα===,则OA 与OB 夹角的范围是5,412ππ⎡⎤⎢⎥⎣⎦【答案】AC 【分析】利用单位向量以及向量数量积的定义可判断A ;利用向量的加法运算可判断B ;利用向量的加、减运算可判断C ;由题意可得点A 在以()2,2为圆心,2为半径的圆上,由向量夹角定义可判断D.【详解】A ,因为非零向量0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭,所以BAC ∠的平分线与BC 垂直, ABC 为等腰三角形,又12AB AC ABAC⋅=,所以3BAC π∠=, 所以ABC 为等边三角形,故A 正确; B ,a b c d OA OB OC OD +--=+--,CA DB CD DA DA AB =+=+++,在平行四边形ABCD 中,有AB DC =, 所以原式20DA =≠,故B 错误; C ,设正三角形ABC 内切圆半径r , 由面积相等可得112332323sin 223r π⨯⨯=⨯, 解得1r =,令AB 的中点为D ,从而3DA DC == 则2PA PB PD +=,2PA PB BA DA -==, 两式平方作差可得22444PA PB PD DA ⋅=-,即23PA PB PD ⋅=-,若要使PA PB ⋅最大,只需2PD 最大由于D 为AB 的中点,也为圆O 与AB 的切点,所以PD 的最大值为22r =, 所以23431PA PB PD ⋅=-≤-=,故C 正确; D ,设(),OA x y =,())222,2CA OA OC x y αα=-=--=,所以22x α-=,22y α-=,所以()()22222x y -+-=,即A 在以()2,2为半径的圆上, 如图:1sin 2COA ∠==,所以6COA π∠=,当OA 与圆在下方相切时,OA 与OB 夹角最小,此时为4612πππ-=,当OA 与圆在上方相切时,OA 与OB 夹角最大,此时为54612πππ+=,所以OA 与OB 夹角的范围是5,1212ππ⎡⎤⎢⎥⎣⎦,故D 错误. 故选:AC 【点睛】关键点点睛:本题考查了向量的数量积定义、向量的加减法以及向量的夹角,解题的关键是是将向量问题转化为平面几何问题,利用圆的性质求解,考查了转化思想、数学运算、数学建模,此题是向量的综合题目.三、填空题(本大题共4小题,共20.0分)13.已知向量(1,2),(2,3)a b ==-,若向量c 满足()//c a b +,()c a b ⊥+,则c =________. 【答案】77(,)93-- 【分析】设(,)c x y =,表示出相关向量的坐标,然后利用向量的平行与垂直的坐标公式代入计算.【详解】设(,)c x y =,则()1,2c a x y +=++,()3,1+=-a b ,因为()//c a b +,()c a b ⊥+,所以()()3122030x y x y ⎧-+-+=⎨-=⎩,得77,93x y =-=-,所以77(,)93c =--. 故答案为:77(,)93--14.某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为________.【答案】0.55 【分析】用1减去销量为[)30,50的概率,求得日销售量不低于50件的概率. 【详解】用频率估计概率知日销售量不低于50件的概率为1-(0.015+0.03)×10=0.55. 故答案为:0.55 【点睛】本小题主要考查根据频率分布直方图计算事件概率,属于基础题.15.如图,点A 是半径为1的半圆O 的直径延长线上的一点,OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.【答案】【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.16.若四棱锥P ABCD -的侧面PAB 内有一动点Q ,已知Q 到底面ABCD 的距离与Q 到点P 的距离之比为正常数k ,且动点Q 的轨迹是抛物线,则当二面角P AB C 平面角的大小为60︒时,k 的值为_____.【分析】 设二面角PAB C 平面角为θ,点Q 到底面ABCD 的距离为||QH ,点Q 到定直线AB 的距离为d ,则||sin QH d θ=.再由点Q 到底面ABCD 的距离与到点P 的距离之比为正常数k ,可得||||QH PQ k =,故sin PQ d kθ=,根据抛物线的定义sin k θ=,由给定的二面角的大小可求k 值. 【详解】 如图,设二面角P AB C 平面角为θ,点Q 到底面ABCD 的距离为||QH ,点Q 到定直线AB 得距离为d ,则|in |s d QH θ=,即||sin QH d θ=. ∵点Q 到底面ABCD 的距离与到点P 的距离之比为正常数k ,∵||||QH k PQ =,则||||QH PQ k =,所以sin PQ d kθ=. ∵动点Q 的轨迹是抛物线,故sin k θ=.因为60θ=︒,故k =.【点睛】本题考查空间中动点的轨迹以及二面角的应用,前者需利用平面解析几何中圆锥曲线的定义来求动点满足的几何性质,本题属于中档题.四、解答题(本大题共6小题,共70.0分) 17.已知向量(3,2)a =,(2,1)b =-. (1)若k +a b 与ka b +平行,求k 的值; (2)若a b λ-与a b λ+垂直,求λ的值.【答案】(1)1k =±(2)1λ=-±【分析】(1)根据向量平行的坐标表示计算可得结果; (2)根据向量垂直的坐标表示计算可得结果. 【详解】(1)因为向量(3,2)a =,(2,1)b =-,所以(32,2)a kb k k +=+-,(32,21)ka b k k +=+-,因为k +a b 与ka b +平行,所以(32)(21)(2)(32)0k k k k +---+=,即21k =, 所以1k =±.(2)因为向量(3,2)a =,(2,1)b =-,所以a b λ-(32,21)λλ=-+,a b λ+(32,2)λλ=+-,因为a b λ-与a b λ+垂直,所以(32,21)λλ-+(32,2)λλ⋅+-0=,所以(32)(32)(21)(2)0λλλλ-+++-=,解得1λ=-±18.若复数1z 满足()()1211z i i i -++=-(i 为虚数单位),复数2z 的虚部为2,且12z z 是实数.(1)求1z 的模长; (2)求2z .【答案】(1)(2)222z i =+. 【分析】(1)利用复数的四则运算直接化简已知等式可求得1z ,由模长运算可求得结果; (2)设22z a i =+,由12z z 为实数可知12z z 的虚部为零,构造方程求得a ,进而得到2z . 【详解】 (1)()()1211z i i i -++=-,1122221iz i i i i i-∴=+-=-+-=-+,1z ∴==(2)设22z a i =+,则()()()()122222442z z i a i a a i =-+=++-,12z z 为实数,420a ∴-=,解得:2a =,222z i ∴=+.19.如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱.(1)求该圆锥的表面积; (2)求剩余几何体的体积.【答案】(1)4π+(;(2)103π. 【分析】(1)先求母线长,再求侧面积和底面积. (2)用锥体体积减去柱体体积. 【详解】(1)因为圆锥的底面直径和高均是4,所以半径为2,母线l ==所以圆锥的表面积为2222(4S r r l πππππ=⋅+⋅⋅=⨯+⨯⨯=+.(2)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=. 20.甲、乙二人独立破译同一密码,甲破译密码的概率为0.7,乙破译密码的概率为0.6.记事件A :甲破译密码,事件B :乙破译密码. (1)求甲、乙二人都破译密码的概率; (2)求恰有一人破译密码的概率.【答案】(1)0.42;(2)0.46. 【分析】(1)由相互独立事件概率的乘法公式运算即可得解;(2)由互斥事件概率的加法公式及相互独立事件概率的乘法公式运算即可得解. 【详解】(1)事件“甲、乙二人都破译密码”可表示为AB ,事件A ,B 相互独立, 由题意可知()()0.7,0.6P A P B ==,所以()()()0.70.60.42P AB P A P B =⋅=⨯=;(2)事件“恰有一人破译密码”可表示为AB +AB ,且AB ,AB 互斥 所以()()()()()()()P AB AB P AB P AB P A P B P A P B +=+=+()()10.70.60.710.60.46=-⨯+⨯-=.21.由于2020年1月份国内疫情爆发,经济活动大范围停顿,餐饮业受到重大影响.3月份复工复产工作逐步推进,居民生活逐步恢复正常.李克强总理在6月1日考察山东烟台一处老旧小区时提到,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.某商场经营者陈某准备在商场门前“摆地摊”,经营冷饮生意.已知该商场门前是一块角形区域,如图所示,其中120APB ∠=,且在该区域内点R 处有一个路灯,经测量点R 到区域边界PA 、PB 的距离分别为4m RS =,6m RT =,(m 为长度单位).陈某准备过点R 修建一条长椅MN (点M ,N 分别落在PA ,PB 上,长椅的宽度及路灯的粗细忽略不计),以供购买冷饮的人休息.(1)求点P 到点R 的距离;(2)为优化经营面积,当PM 等于多少时,该三角形PMN 区域面积最小?并求出面积的最小值.【答案】(1;(2)PM = 【分析】(1)连接ST ,PR ,在RST 中,利用余弦定理求出ST ,可求出cos STR ∠,可得出sin PTS ∠的值,在PST 中,利用正弦定理求出SP 的值,进而利用勾股定理可求得PR ;(2)利用三角形的面积公式可得出234PM PN PM PN ⋅=+,利用基本不等式可求得PM PN ⋅的最小值,进而可求得PMN 面积的最小值及其对应的PM 的值.【详解】解:(1)连接ST 、PR ,在RST 中,60SRT ∠=,由余弦定理可得:22246246cos6028ST =+-⨯⨯⨯=,ST ∴=在RST 中,由余弦定理可得,222cos 2ST RT SR STR ST RT +-∠==⋅.在PST 中,sin cos PTS STR ∠=∠=,由正弦定理可得:sin sin120SP ST PTS =∠,解得:sin sin120ST PTS SP ∠==.在直角SPR △中,2222211243PR RS SP =+=+=⎝⎭,3PR ∴=;(2)13sin1202PMN S PM PN PM PN =⋅⋅=⋅△, 11462322PMN PRM PRN S S S PM PN PM PN =+=⨯+⨯=+△△△.23PN PM PN ⋅=+≥.128PM PN ∴⋅≥,当且仅当23128PM PNPM PN =⎧⎨⋅=⎩时,即当PM =因此,4PMN S PM PN =⋅≥△ 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理. 22.如图,直三棱柱ABC -A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅰ)设AA 1= AC=CB=2,C 一A 1DE 的体积.【答案】(∵)见解析(∵)111132C A DE V -=⨯=【详解】试题分析:(∵)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∵BC1.再根据直线和平面平行的判定定理证得BC1∵平面A1CD.(∵)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD∵平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D∵DE.进而求得S∵A1DE的值,再根据三棱锥C-A1DE的体积为13•S∵A1DE•CD,运算求得结果试题解析:(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1∵DF.3分因为DF∵平面A1CD,BC1不包含于平面A1CD,4分所以BC1∵平面A1CD.5分(2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1∵CD.由已知AC=CB,D为AB的中点,所以CD∵AB.又AA1∩AB=A,于是CD∵平面ABB1A1.8分由AA1=AC=CB=2,得∵ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE∵A1D 10分所以三菱锥C﹣A1DE的体积为:==1.12分考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积。

(完整)人教版高中数学必修二期末测试题一及答案(20200814125816)

(完整)人教版高中数学必修二期末测试题一及答案(20200814125816)

高中数学必修二期末测试题一1、下图(1)所示的圆锥的俯视图为2、直线l :-、3x y 3 0的倾斜角D 、 150 o3、边长为a 正四面体的表面积是D 、 、,3a 2。

4、对于直线l:3x y 6 0的截距,下列说法正确的是距是6;C 、在x 轴上的截距是3;D 、在y 轴上的截、选择题(本大题共2道小题,每小题5分,共60分。

)A 、30;;60:; 120 ;B 、込 a 3 ;12C 、刍;4A 、在y 轴上的截距是6;B 、在x 轴上的截距是35、已知a// ,b ,则直线a与直线b的位置关系是()A、平行;B、相交或异面;C、异面;D、平行或异面。

6、已知两条直线|「x 2ay 1 0,l2:x 4y 0,且W,则满足条件a的值为()1 1A、;B、;C、2 ;2 2D、2。

7、在空间四边形ABCD中,E,F,G,H分别是AB, BC, CD, DA的中点。

若AC BD a,且AC与BD所成的角为60:,贝卩四边形EFGH的面积为()3 2 3 2 3 2A、 a ;B、 a ;C、 a ;8 4 2D、■-/3a。

8已知圆C:x2 y2 2x 6y 0 ,则圆心P及半径r分别为()A、圆心P 1,3,半径r 10 ;B、圆心P 1,3 ,半径r ;C、圆心P 1, 3,半径r 10 ;D、圆心P 1, 3 ,半径r J0。

9、下列叙述中错误的是()A、若P 口且口l,则PI ;B、三点A,B,C确定一个平面;C、若直线ap|b A,则直线a与b能够确定一个平面;D、若 A I,B I 且 A ,B ,贝卩I 。

10、两条不平行的直线,其平行投影不可能是( )A、两条平行直线;B、一点和一条直线;C、两条相交直线;D、两个点。

11、长方体的一个顶点上的三条棱长分别为4、5,且它的8个顶3、点都在同一个球面上,则这个球的表面积是( )C 、125A、25 ;B、50 ;;D、都不对。

人教A版高中必修二试题期末教学质量统一检查试卷.doc

人教A版高中必修二试题期末教学质量统一检查试卷.doc

保密★启用前注意事项:1.答题时,考生务必将自己的姓名,准考证号写在答题卡上2.考生作答时,选择题和综合题须作在答题卡上,写在本试卷上答题无效。

考生在答题卡上按答题卡中注意事项的要求作答。

3.考试结束后,答题卡收回。

4.本试卷共4页,如有缺页,考生须声明,否则后果自负。

下学期期末教学质量统一检查试卷高一数学一,选择题,本大题共9小题,每题3分,满分27分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1,设集合{}1,0,1-=M ,{}x x N ==2,则N M I 为A.{}1,0,1-=MB.{}1,0C.{}1D.{}02.下面结论正确的一项是A.2199.099.0-->B.7.1log 8.1log 33<C.7.18.133< D.7.1log 8.1log 3.03.0<3.直角坐标平面内,到原点的距离等于4的动点的轨迹方程是A.1622=+y xB.422=+y xC.222=+y xD.()()164422=-+-y x4.如图所示,一个空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的体积为A.2π B.π C.π2 D.π4 5.已知两个平面垂直,下列命题:①一个平面内已知直线必垂直于另一个平面内的任意一条直线;②一个平面内的已知直线必垂直与另一个平面内的无数条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内的任意一点作交线的垂线,则此垂线必垂直于另一个平面。

其中正确的个数是A.3B.2C.1D.0 6.设()833-+=x x f x 用二分法求方程0833=-+x x 在()2,1∈x 内近似解的过程中得()()()025.1,05.1,01<><f f f ,则方程的根落在区间A.()25.1,1B.()5.1,25.1C.()2,5.1D.不能确定7.若直线012:1=-+y ax l 与直线()01:22=+-+a y a x l 平行,则a 值为A.2B.-1C.-1或2D.0或18.函数()()122+++=y a ax x f 是偶函数,则函数的单调递增区间为A.[)+∞,1B.[)+∞,0C.(]1,∞- D.(]0,∞- 9.为提高信息在传输中的抗干扰能力,通常在原信息中按一定的规则加入相关的数据组成传输信息,设定原信息为{}()2,1,01,0....1210=∈i a a a a ,传输信息为12100h a a a h ,其中201100,a h h a a h ⊕=⊕=,⊕运算规则为,011,101,110,000=⊕=⊕=⊕=⊕例如原信息为111,则传输信息为01111;传输信息在传输过程中受到干扰可能导致接收信号出错,则下列接受信息一定有误的是A.11010B.01100C.10111D.01111二,填空题;本大题共6小题,每小题4分。

人教A版高中必修二试题期末数学试卷

人教A版高中必修二试题期末数学试卷

高中数学学习材料
金戈铁骑整理制作
高一(下)期末数学试卷
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目
要求的)
1.(5分)线段AB在平面α内,则直线AB与平面α的位置关系是()
A.A B?αB.A B?α
C.由线段AB的长短而定D.以上都不对
考点:平面的基本性质及推论.
专题:证明题.
分析:线段AB在平面α内,则直线AB上所有的点都在平面α内,从而即可判断直线AB与平面α的位置关系.
解答:解:∵线段AB在平面α内,
∴直线AB上所有的点都在平面α内,
∴直线AB与平面α的位置关系:
直线在平面α内,用符号表示为:AB?α
故选A.
点评:本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.
2.(5分)若直线l∥平面α,直线a?α,则l与a的位置关系是()
A.l∥a B.l与a异面C.l与a相交D.l与a平行或异面
考点:空间中直线与直线之间的位置关系.
专题:阅读型.
分析:可从公共点的个数进行判断.直线l∥平面α,所以直线l∥平面α无公共点,故可得到l与a的位置关系
解答:解:直线l∥平面α,所以直线l∥平面α无公共点,所以l与a平行或异面.
故选D
点评:本题考查空间直线和平面位置关系的判断,考查逻辑推理能力.
3.(5分)下列说法正确的是()。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卷Ⅰ(选择题,共60分)
一.选择题(共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项正确.) 1.若直线过点(1,2),(4,2+
3
),则此直线的倾斜角是
A. 30°
B. 45°
C. 60°
D. 90° 2. 若0a b <<,则下列不等式不能成立的是
A.
11a b
> B. 22a b > C. a b > D. 1
1
()()2
2
a b >
3. 两平行直线3420x y +-=与3480x y ++=之间的距离为 A. 2 B.
12
C. 56
D. 6
5
4. 设数列{}n a 的前n 项和2n S n =,则8a 的值为
A . 16 B. 15 C. 49 D. 64 5. 用a ,,b c 表示三条不同的直线,γ表示平面,给出下列命题: ①若a ∥b ,b ∥c ,则a ∥c ; ②若,,a b b c ⊥⊥则a c ⊥; ③若a ∥γ,b ∥γ,则a ∥b ; ④若,a b γγ⊥⊥,则a ∥b . 其中真命题的序号是
A. ①②
B.②③
C. ①④
D. ③④ 6. 在△ABC
中,若45,2,A a c ∠=== C ∠等于
A. 30°
B. 120°
C. 60°
D. 60°或120° 7. 直线210mx y m -++=经过一定点,则该点的坐标是
A.(-2,1)
B. (2,1)
C.(1,-2)
D. (1,2)
8. 已知M (-2,0),N (2,0), 则以M N 为斜边的直角三角形的直角顶点P 的轨迹方程是 A .22
2
=+y
x B. 4
22=+y x
C . )2(22
2
±≠=+x y
x D. )2(42
2
±≠=+x y
x
9.设x,y 满足约束条件260,260,0,x y x y y +-≥⎧⎪
+-≤⎨⎪≥⎩
则目标函数z=x+y 的最大值是
A. 3
B. 4
C. 6
D. 8
10. 设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为
,,X Y Z
,则下列等式中恒成立的是
A.2X Z Y +=
B.()()Y Y X Z Z X -=-
C.2Y XZ =
D.()()Y Y X X Z X -=-
11. 已知方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围为 A.2a <-或23
a >
B. 223
a -<<
C.20a -<<
D. 22
3
a -
<<
12. 已知等比数列{}n a 中,各项都是正数,且1a 、
12
3a 、22
a 成等差数列,则
91078
a a a a ++=
A .
B
.1-.
D
.3-
卷Ⅱ(非选择题 共90分)
二.填空题(共4小题,每小题5分,共20分)
13.在正方体ABCD-1111A B C D 中,体对角线1AC 与底面ABCD 所成角的正切值为 ; 二面角1C BD C --的正切值为 .
14.在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式
n a = .
15.直线220x y -+=被圆22
(3)(2)9x y ++-=所截得的弦长为________.
16. 若一个底面是正三角形的三棱柱的正视图如图所示, 则其表面积等于 .
三. 解答题(共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

) 17.(本小题满分10分) 设全集,I R =集合{}{}22|60,|280,A x x x B x x x =--<=+-≥ (Ⅰ) 求集合,A B ; (Ⅱ) 求集合A B . 18.(本小题满12分)
如图,在多面体ABC D EF 中,四边形A B C D 是正方形,E F ∥A B ,EF FB ⊥,
2AB EF
=,90B F C ∠=︒,B F F C =,H 为B C 的中点.
A
B
C
D
E
F
H
(Ⅰ) 求证:F H ∥平面ED B ;
(Ⅱ) 求证:平面B F C ⊥平面A B C D ; (理科)(Ⅲ) 求证:A C ⊥平面ED B .
19. (本小题满分12分)
(Ⅰ) 求圆心在直线20x y +=上,并且经过点()2,3-和()2,1-的圆的方程; (Ⅱ) 求过点()0,1与该圆相切的直线方程. 20.(本小题满分12分)
在△ABC 中,,,a b c 分别是角 A , B , C
的对边,7,60,2
2
ABC c C S =
∠==

求a b +的值. 21.(本小题满分12分)
某工厂用7万元钱购买了一台新机器,运输安装费用2千元,每年投保、动力消耗的费用也为2千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,依此类推,即每年增加1千元. (Ⅰ) 求这台机器使用n 年的总费用()f n ;
(Ⅱ) 求这台机器最佳使用年限是多少年(使得年平均费用最小)?并求出平均费用的最小值.
22.(本小题满分12分)
(理科)已知数列{}n a 满足:113,221(2)n n n a a a n -==+-≥. (Ⅰ) 求证:数列12n n
a -⎧⎫

⎬⎩⎭
是等差数列,并求{}n a 的通项公式; (Ⅱ) 求{}n a 的前n 项和n S .
等差数列{}n a 的各项均为正数,13a =,前n 项和n S ,{}n b 为等比数列,11b =,且
223364,960b S b S ==.
(Ⅰ) 求n a 与n b ; (Ⅱ) 求
1
2
111...n
S S S +++
.。

相关文档
最新文档