3 等可能事件的概率第1课时
高二数学教案:随机事件的概率(3)——等可能事件的概率(2)
随机事件的概率(3)——等可能事件的概率(2)一、课题:随机事件的概率(3)——等可能事件的概率(2)二、教学目标:1.巩固等可能性事件及其概率的概念;2.掌握排列组合的基本公式计算等可能性事件概率的基本方法与求解的一般步骤。
三、教学重、难点:等可能性事件概率的定义和计算方法;排列和组合知识的正确运用。
四、教学过程:(一)复习:1.基本事件、等可能性事件的概念;2.等可能性事件的概率公式及一般求解方法;3.练习:(1)甲、乙、丙、丁四人中选3名代表,写出所有的基本事件,并求甲被选上的概率。
解:基本事件:甲、乙、丙;甲、乙、丁;甲、丙、丁;乙、丙、丁分别选为代表,其中甲被选上的事件个数为3,所以,甲被选上的概率为34.(2)下列命题:①任意投掷两枚骰子,出现点数相同的概率是16;②自然数中出现奇数的概率小于出现偶数的概率;③三张卡片的正、反面分别写着1、2;2、3;3、4,从中任取一张朝上一面为1的概率为16;④同时投掷三枚硬币,其中“两枚正面朝上,一枚反面朝上”的概率为38,其中正确的有①③④(请将正确的序号填写在横线上).(二)新课讲解:例1 在100件产品中,有95件合格品,5件次品,从中任取2件,计算:(1)2件都是合格品的概率;(2)2件是次品的概率;(3)1件是合格品,1件是次品的概率。
解:(1)记事件1A=“任取2件,2件都是合格品”,∴2件都是合格品的概率为29512100893 ()990CP AC==.(2)记事件2A=“任取2件,2件都是次品”,∴2件都是次品的概率为25321001 ()495CP AC==.(3)记事件3A=“任取2件,1件是合格品,1件是次品”∴1件是合格品,1件是次品的概率119553210019 ()198C CP AC⋅==.例2 储蓄卡上的密码是一种四位数字号码,每位上的数字可以在0至9这10个数字中选出,(1)使用储蓄卡时,如果随意按下一个四位数字号码,正好按对着张储蓄卡的密码的概率是多少?(2)某人未记住储蓄卡的密码的最后一位数字,他在使用这张储蓄卡时,如果前三位号码仍按本卡密码,而随意按下最后一位数字,正好按对密码的概率是多少? 解:(1)由分步计数原理,这种四位数字号码共410个,又由于随意按下一个四位数字号码,按下其中哪一个号码的可能性都相等,∴正好按对密码的概率是14110P =; (2)按最后一位数字,有10种按法,且按下每个数字的可能性相等,∴正好按对密码的概率是2110P =. 例3 7名同学站成一排,计算:(1)甲不站正中间的概率;(2)甲、乙两人正好相邻的概率; (3)甲、乙两人不相邻的概率。
北师大版七年级下册数学教案:第六章6.3.1《等可能事件的概率》x
北师大版七年级下册数学教案:第六章6.3.1《等可能事件的概率》x一. 教材分析《北师大版七年级下册数学》第六章主要介绍概率的初步知识。
6.3.1《等可能事件的概率》是本节课的主要内容,通过这个课题,让学生理解等可能事件的概率公式,并能够运用该公式计算简单事件的概率。
二. 学情分析学生在学习本节课之前,已经掌握了事件的分类,如必然事件、不可能事件和随机事件。
同时,学生已经能够理解概率的概念,并掌握了如何用分数表示概率。
但是,对于等可能事件的概率公式,学生可能较为陌生,需要通过具体的例子来理解和掌握。
三. 教学目标1.让学生理解等可能事件的概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,那么这个事件发生的概率P就等于1/n。
2.能够运用等可能事件的概率公式计算简单事件的概率。
3.通过解决实际问题,培养学生的动手操作能力和解决问题的能力。
四. 教学重难点1.教学重点:理解等可能事件的概率公式,并能够运用该公式计算简单事件的概率。
2.教学难点:对于复杂的事件,如何正确地运用等可能事件的概率公式进行计算。
五. 教学方法采用问题驱动的教学方法,通过具体的例子引导学生理解和掌握等可能事件的概率公式。
同时,运用小组合作的学习方式,让学生在解决实际问题的过程中,巩固所学知识。
六. 教学准备1.准备一些实际问题,如抛硬币、抽签等,用于引导学生理解和运用等可能事件的概率公式。
2.准备PPT,用于展示和讲解等可能事件的概率公式。
七. 教学过程1.导入(5分钟)通过抛硬币的例子,引导学生思考:如果抛一枚硬币,正面朝上的概率是多少?让学生意识到,有些事件的概率是可以计算的。
2.呈现(10分钟)呈现等可能事件的概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,那么这个事件发生的概率P就等于1/n。
并用PPT展示一些简单的例子,让学生直观地理解公式。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,运用等可能事件的概率公式进行计算。
用树状图或表格求概率第一课时
想一想
真知灼见源于实践
探究体会: 概率的等可能性
由于硬币是均匀的,因此抛掷第一枚硬币出现“正面朝上”和 “反面朝上”的概率相同。无论抛掷第一枚硬币出现怎样的结果,抛 掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的。 所以,抛掷两枚均匀的硬币,出现的(正,正)(正,反)(反,正) (反,反)四种情况是等可能的。
由上面的数据,请分别估计“两枚正面朝上”,“两枚反面朝上”,“一枚 正面朝上,一枚反面朝上”的概率。由此,你认为游戏公平吗?
教师点拨
活动体会:从上面的试验中我们发现,试验次数较大
时,试验频率基本稳定,用频率估计概率。而且在一般 情况下,“一枚正面朝上,一枚反面朝上”发生的概率 大于其他两个事件发生的概率。所以,这个游戏不公平, 它对小凡比较有利。
新课讲解
请将各自的试验数据汇总后,填写下面的表格:
掷第一枚硬币
抛第二枚硬币
正面朝上次数
正面朝上次数
反面朝上次数
反面朝上次数
正面朝上次数
反面朝上次数
教师启发 表格中的数据支持你的猜测吗?
想一想
真知灼见源于实践
探究体会: 抛掷第一枚硬币可能出现的结果是“正面朝上”
或“反面朝上”,抛掷第二枚硬币可能出现的结果也 是“正面朝上”或“反面朝上”。
四、问渠那得清如许,为有源头活水来
1、本节课你有哪些收获?有何感想? 2、用树状图或列表法求概率时应注意什么情况?
教师启发
学会了 明白了 懂得了
用列表法求随机事件发生的理论概率 (也可借用树状图分析)
用列表法求概率时应注意各种情况发生 的可能性务必相同
合作交流的重要性,体会到了一种精神: 就是要勇于表达自己的思想
2020春北师版七下数学第六章概率初步3等可能事件的概率第1课时简单概率的计算同步分层练习
3等可能事件的概率第1课时简单概率的计算1.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,该球是黄球的概率为(C)A.12B.15C.310D.7102.小明掷一枚质地均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是(C)A.16B.13C.12D.233.某市电视台在举办的《开心就唱》歌手大赛活动中,号召观众发短信为参赛者投支持票,投票短信每1万条为1组,每组抽出1个一等奖,3个二等奖,6个三等奖.张艺同学发了1条短信,她获奖的概率是(B)A.110000B.11000C.1100D.1104.(2019·湖南娄底涟源模拟)从“绿水青山就是金山银山”中任选一个字,选出“山”的概率是(A)A.310B.110C.19D.185.某校七(1)班有男生25人,女生24人,从中任选一人,是男生的概率是2549.6.从一副扑克牌(去掉“大王”和“小王”)中任意抽出1张.(1)抽到红桃的概率是多少?(2)抽到“2”的概率是多少?(3)抽到红桃“2”的概率是多少?解:一副扑克牌中共有54张,去掉“大王”和“小王”后还剩52张,其中红桃有13张,“2”有4张,红桃“2”有1张.(1)P (抽到红桃)=1352=14.(2)P (抽到“2”)=452=113.(3)P (抽到红桃“2”)=152.7.某口袋中有20个球,其中白球x 个,绿球2x 个,其余为黑球.甲从口袋中任意摸出一个球,若为绿球则甲获胜;甲摸出的球放回口袋中,乙再从口袋中任意摸出一个球,若为黑球则乙获胜.当x 等于多少时,游戏对甲、乙双方都公平(B )A.3B.4C.5D.68.有编号为1~10的10张卡片,甲从中任意抽取一张,若其号码数能被3整除,则甲获胜;将甲抽取的卡片放回后,乙也从中任意抽取一张,若其号码数能被4整除,则乙获胜.这项游戏对甲、乙两人公平吗?若不公平,应如何添加卡片?(添加的卡片上的编号与原来卡片上的编号不同)解:不公平.在1~10中能被3整除的数字是3,6,9,共3个;能被4整除的数字是4,8,共2个.所以P (甲获胜)=310,P (乙获胜)=210=15.因为310≠15,所以这项游戏对甲、乙两人不公平.若要使这项游戏对甲、乙两人公平,则可以添加编号为“16”或“20”的卡片(答案不唯一,能被4整除,不能被3整除即可).9.设计摸球游戏:(1)用12个除颜色外其他都相同的球,设计一个摸球游戏,使摸到红球的概率为12,摸到黄球的概率为13;(2)如果要使摸到红球的概率为23,摸到黄球的概率为16,那么摸球游戏至少要设置几个球?解:(1)红球:12×12=6(个);黄球:12×13=4(个).设计游戏如下:在一个不透明的口袋中装有除颜色外其他都相同的12个球,其中红球有6个,黄球有4个,白(其他颜色也可以)球有2个.从中任意摸出一个球,则摸到红球的概率为12,摸到黄球的概率为13.(2)设有x 个球,则23x +16x =56x .因为x 是6的倍数,所以x 的最小值为6.故摸球游戏至少设置6个球.易错点摸球问题中仅从颜色来划分结果10.甲袋中放有17个黄球、4个白球,乙袋中放有300个黄球、100个白球、20个红球,这几种球除了颜色以外没有任何区别,两袋中的球都已经各自搅匀,从袋中任意摸1个球,如果想摸出1个白球,选哪个袋摸球成功的机会大?解:因为在甲袋中P (摸出1个白球)=417+4=421,在乙袋中P (摸出1个白球)=100300+100+20=521>421,所以选乙袋摸球成功的机会大.11.(2019·黑龙江齐齐哈尔中考)在一个不透明的口袋中,装有一些除颜色外其他完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出1个红球的概率是110,则袋中黑球的个数为(C)A.27B.23C.22D.1812.(2019·江苏徐州铜山区二模)一个两位数,它的十位数字是5,个位数字是抛掷一枚质地均匀的骰子(六个面分别为1~6点)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是4的整数倍的概率等于(A )A.13B.16C.23 D.1213.在x 2□2xy □y 2的□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是(A)A.12B.34C.1D.1414.有5张卡片,上面分别画有圆、等边三角形、正方形、平行四边形、直角梯形,将卡片画有图形的一面朝下随意放在桌上,任取一张,那么取到卡片对应图形是轴对称图形的概率是(C)A.15B.25C.35D.4515.甲、乙两人投掷两个普通的正方体骰子,规定掷出“和为7”则甲赢,掷出“和为8”则乙赢,这个游戏是否公平(B)A.公平B.对甲有利C.对乙有利D.不能判断16.(2019·四川成都锦江区期末)电影《流浪地球》上映,小玲准备买票观看,在选择座位时,她发现理想的位置只剩了第六排的4个座位和第七排的3个座位.她从这7个座位中随机选择1个座位,是第六排座位的概率为47.17.一枚质地均匀的骰子,骰子的六个面上分别刻有1~6的点数,投掷这枚骰子一次,向上一面的点数是2或3的概率是a6,则a 的值是2.18.如图,在3×3的方格中,A ,B ,C ,D ,E ,F 分别位于格点上,从C ,D ,E ,F 四个点中任取一点,与点A ,B 构成三角形,则所构成的三角形为等腰三角形的概率是34.19.请将下列事件发生的概率标在图中(用字母表示):(1)记为点A :随意掷两枚质地均匀的骰子,朝上一面的点数之和为1;(2)记为点B :抛出的篮球会落下;(3)记为点C :从装有3个红球、7个白球的口袋中任取1个球,恰好是白球(这些球除颜色外其他完全相同).解:(1)是不可能事件,其概率为0;(2)是必然事件,其概率为1;(3)是随机事件,其概率为73+7=0.7.20.有四张形状、大小、颜色、质地都相同的卡片,正面分别写有数字-2,-1,1,2,将这四张卡片背面向上洗匀,从中任取1张卡片,记卡片上的数字为A ;放回洗匀后再任取1张,记卡片上的数字为B .于是得到有理数AB.(1)第1张卡片上可能出现的结果:-2,-1,1,2;第2张卡片上可能出现的结果:-2,-1,1,2.(2)求有理数AB恰好是整数的概率.解:(2)根据抽取结果,得到的A B 有16种不同的结果,分别是1,2,-2,-1,12,1,-1,-12,-12,-1,1,12,-1,-2,2,1.其中结果是整数的有12种,所以P 有理数AB 恰好是整数=1216=34.21.(2019·山东东营期末)如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成27个大小相同的小正方体,从这些小正方体中任意取出一个,求取出的小正方体出现以下情况的概率.(1)只有一面涂有颜色;(2)至少有两面涂有颜色;(3)各个面都没有涂颜色.解:(1)因为只有一面涂有颜色的小正方体有6个,所以P (只有一面涂有颜色)=627=29.(2)因为至少有两面涂有颜色的小正方体有12+8=20(个),所以P (至少有两面涂有颜色)=2027.(3)因为各个面都没有涂颜色的小正方体只有1个,所以P (各个面都没有涂颜色)=127.。
七年级数学下册 6.3.1 等可能事件的概率教案 (新版)北师大版-(新版)北师大版初中七年级下册数
课题:等可能事件的概率教学目标:1.通过本节课的学习使学生了解古典概型的特点,学生会根据随机试验结果的对称性或均衡性判断试验结果是否具有等可能性.2.掌握古典概型的概率计算方法,初步体会概率是描述不确定现象的数学模型.3.通过本节课的学习,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣,体会学习数学的实用性.教学重点与难点:重点:古典概率的意义及其计算方法的理解与应用.难点:灵活应用概率的计算方法解决各种类型的实际问题.课前准备:多媒体课件,学生自制球箱,准备不同颜色乒乓球若干.教学过程:一、创设情境,激情导入同学们喜欢足球运动吗?足球运动是世界上最精彩,最富有激情的运动.时间5月14日,欧冠半决赛皇马主场战平尤文图斯,总比分2比3无缘决赛,斑马军团第8次打进冠军杯决赛.以下是比赛截取视频,请同学们欣赏.思考:足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长都没有异议,为什么?处理方式:学生认真观看视频后,教师简单介绍足球比赛前选场地的规则,让学生了解一些课外知识.小组合作解决提出的问题,得出结论硬币正面朝上还是反面朝上的概率相等,同时教师强调抛硬币的随机性.教师板书课题:等可能事件的概率.设计意图:利用学生感兴趣的足球比赛视频激发学生学习的热情,让学生理解比赛抛硬币选场地的公平性.同时让学生体会数学来源于生活,并为下面古典概率的学习作铺垫.二、自主探究,学习新知探究活动1:(多媒体出示)一个袋中有5个球,分别标有1,2,3,4,5这5个,这些球除外都相同,搅匀后任意摸出一个球.1.会出现哪些可能的结果?2.每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?处理方式:教师利用自制球箱,找学生摸球,展示结果有5种等可能结果,即摸到1号球、摸到2号球、摸到3号球、摸到4号球、摸到5号球,学生畅所欲言,表述自己发现的结论,准确说出所有结果.每个结果出现的可能性相同,它们概率都是15. 设计意图:通过摸球活动,让学生感受古典概型的特点,使本节课顺利的进入到下一个环节,同时培养学生准确表达自己的思维结果的能力.探究活动2:抛硬币,掷骰子和前面的摸球游戏有什么共同点?和我们学过的抛图钉实验一样吗?处理方式:1.通过小组合作交流讨论,教师引导,学生能够准确理解等可能事件的特点,(1)所有可能的结果是有限的,(2)每种结果出现的可能性相同.2.抛图钉不符合每种结果出现的可能性相同,所以它不是等可能事件.此处教师还可以举例发芽实验中的发芽与不发芽,射击实验中的中靶与脱靶,让学生感受它们为什么不是等可能实验.3.教师出示想一想:你能找一些结果是等可能的实验吗?比如:抓阄,摸牌等.让学生说明理由.4.师生共同合作得出求等可能试验中事件A 的概率公式.教师应注重给学生更多的展示自己观点的机会.一般地,如果一个试验有n 种等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为: P (A )=nm .设计意图:让学生能够理解等可能事件的两个基本特点,并掌握古典概型的概率公式,注重培养学生与他人的合作的能力.考考你:从分别标有1,2,2,3的4X 背面完全一样的卡片中任意摸到一X 卡片,则P (摸到1号卡片)=_______,P (摸到2号卡片)=.答案:14;2142. 处理方式:题目较为简单,学生很快能得出结果,找两名同学板演,其余学生在练习本上完成.完成后,让学生进行评价.对于出现的问题及时矫正,书写格式,结果要化简等.设计意图:这一道题设计较为简单,在前面的准确讲解后,学生能够立刻准确求出本题答案,但在本环节中教师应注重引导学生按照规X 形式书写求出概率的过程,注意强调所有结果出现的等可能性.并初步掌握古典概型概率的计算方法.三、例题解析,学以致用例1 任意掷一枚质地均匀的骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的可能性相同.(1)掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6.所以P (掷出的点数大于4)=31; (2)掷出的点数是偶数的结果有3种:掷出的点数分别是2,4,6,所以P (掷出的点数是偶数)=21. 探究:你还可以求出哪些事件的概率?处理方式:1.教师先利用实物给学生介绍骰子的特点,教师应注重引导学生分析事件发生的结果数,所有可能发生的结果数.按照规X 形式书写求出概率的过程.2.给学生充分的时间思考这个开放性问题,然后小组展示,教师补充.比如可以求:掷出点数小于5的概率;掷出点数是3的倍数的概率;掷出点数不是3的概率;......学生的答案只要合理即可.设计意图:本例的设计意在让学生会用古典概率的计算公式,关键是计算实验中所有等可能的结果总数和所求事件出现的结果数.同时渗透用列举法求概率是现阶段的常用方法.思考:盒子里装有三个红球和一个白球,它们除颜色外完全相同.小明从盒中任意摸出一球,请你求出摸出红球的概率.解:因为从盒中任意摸出一球的可能结果有4种,而摸出红球的可能结果有3种,所以P(摸出红球)=34.游戏环节:将学生合理分组,进行摸球实验,每组摸球10次,并由本组同学记录实验结果.想一想:试验的结果与你所求的概率为什么不一样?处理方式:1.先让两个学生板书,其余学生在练习本上完成.2.然后学生分组进行试验,要求学生认真观察实验结果的变化规律,体会试验的结果为什么与所求概率相差很大.引导学生发现概率学中的重要结论:实验的次数越多,实验的结果越接近于事件本身的概率.3.教师用动画演示摸球试验,让学生进一步体会频率与概率区别与联系.设计意图:突出本节课的重点:概率的意义及其计算方法的理解.以游戏和分组合作的方式,突破本节课重难点,有利于培养学生与他人的合作、互助意识.巩固训练:课本148页随堂练习1,2.处理方式:第2题学生思考后,小组探究.有些学生对扑克牌不是很熟悉,特别是方块的X数,教师根据实际情况对这一内容进行了提问铺垫、扑克牌实物演示.1.解:出现5种等可能结果:摸到写有字母A的纸条,摸到写有字母B的纸条,摸到写有字母C的纸条,摸到写有字母D的纸条,摸到写有字母E的纸条.它们是等可能的.2.解:一副扑克牌共有54X,大王1X,P(抽到大王)=154.3共有4X,所以P(抽到3)=454=227.所以打牌的时候你摸得大王的机会比摸到3的机会小.因为方块共有13X,所以P(抽到方块)=13 54.设计意图:通过巩固训练使学生熟练掌握古典概型概率的计算方法,了解概率在现实生活中的应用.四、回顾小结,反思提高通过这节课的学习,你学会了哪些知识?想一想,再分享给大家.鼓励学生结合本节课的学习谈自己的收获与感想.处理方式:学生小组内交流分享本节课所学知识,教师总结.设计意图:鼓励学生结合本节课的学习,谈谈自己的收获和感想,培养学生语言表达归纳总结的能力和反思意识,总结研究数学问题的一般方法,形成完整的知识体系.五、达标检测,反馈提高A 组:1.一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同.从中任意摸出一球,则: P (摸到红球)= ; P (摸到白球)= ; P (摸到黄球)= .2.一个袋中有3个红球和5个白球,每个球除颜色外都相同.从中任意摸出一球,摸到红球和摸到白球的概率相等吗?如果不等,能否通过改变袋中红球或白球的数量,使摸到的红球和白球的概率相等?答案:1.P (摸到红球)=31 ; P (摸到白球)=92 ;P (摸到黄球)=94. 2.不相等,P (摸到红球)=83 ; P (摸到白球)=85 . 增加两个红球或减少两个白球.B 组:课本149页第4题.3.小明所在的班有40名同学,从中选出一名同学为家长会准备工作.请你设计一种方案,使每一名同学被选中的概率相同.参考答案:这是一个开放性的问题,让学生充分参与,比如:抓阄,按学号随机抽等等,学生的答案只要合理即可.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高.六、布置作业,落实目标必做题:课本148页,习题第1,2题.选做题助学139页,习题5.5第8,9题.设计意图:作业的分类设置可以满足不同层次学生的认知需要,充分体现数学的基础性、普及性和层次性.板书设计:。
4.2 等可能条件下的概率(一) 课件(共36张PPT) 苏科版数学九年级上册
结构导图
课堂小结
概念 计算公式
概率
直接枚举法 列表法 树状图
4. 易错警示 列表时要注意“放回”还是“不放回”.
感悟新知
特别提醒
⑴ 列表法不适用于求三步及三步以上试验的概率 . ⑵列表法适用的条件还可以理解为各种结果出现
的可能性相等,含有两次操作(如掷一枚骰子两 次 ) 或两个条件 ( 如两个转盘 )的事件 .
感悟新知
例2 袋中装有大小相同、标号不同的2个白球和2个黑球. 袋中的球已搅匀. 解题秘方:紧扣放回两次操作相同,不放回两次操 作不相同,反映在列表中的实质就是舍不舍去表格 中一条对角线上的所有结果来求概率.
感悟新知
(2)从中任意摸出1个球,记录颜色后放回、搅匀,再从中 任意摸出1个球,摸到的2个球的顺序为黑球、白球的概 率是多少? 解:把4个球分别编号为白1,白2,黑1,黑2.
感悟新知
根据题意列表如下:
结果 第二次
第一次
白1
白2
黑1
黑2
白1
(白1,白1) (白1,白2) (白1,黑1) (白1,黑2)
白2
(白2,白1) (白2,白2) (白2,黑1) (白2,黑2)
黑1
(黑1,白1) (黑1,白2) (黑1,黑1) (黑1,黑2)
黑2
(黑2,白2) (黑2,白2) (黑2,黑1) (黑2,黑2)
感悟新知
由表格可知,共有16种可能的结果,并且它们的 出现是等可能的. “摸到2个球的顺序为黑球、白球”记 为事件B,它的发生有4种可能,所以事件B发生的概率
感悟新知
(1)先从中任意摸出1 个球(不放回),再从余下的3个球中任 意摸出1 个球,摸到的2 个球中有1 个白球和1 个黑球的 概率是多少? 解:把4个球分别编号为白1,白2,黑1,黑2.
北师大版数学七年级下册3 等可能事件的概率教案与反思
3 等可能事件的概率人非圣贤,孰能无过?过而能改,善莫大焉。
《左传》原创不容易,【关注】店铺,不迷路!第1课时概率的计算方法教学目标一、基本目标理解和掌握概率的计算方法,体会概率是描述随机现象的数学模型.二、重难点目标【教学重点】概率的计算方法.【教学难点】灵活应用概率的计算方法解决各种类型的实际问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P147~P148的内容,完成下面练习.【3min反馈】1.设一个试验的所有可能的结果有n种,每次试验有且只有其中一种结果出现.如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的.2.一般地,如果一个试验有n种等可能的结果,事件A包含其中m种结果,那么事件A发生的概率为P(A)=m n .3.完成教材P147“议一议”第1题:解:(1)会摸到1号球、2号球、3号球、4号球、5号球这5种可能的结果.(2)相同.它们的概率均为1 5 .4.完成教材P147“议一议”第2题:解:所有可能的结果有有限个,每种结果出现的可能性相等.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】一只不透明的箱子里共有8个球,其中2个白球、1个红球、5个黄球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)再往箱子中放入多少个黄球,可以使摸到白球的概率变为0.2? 【互动探索】(引发学生思考)(1)从袋中任意摸出一个球,可能出现的结果有多少种?满足条件的结果有多少种?(2)已知摸到白球的概率,可以根据概率公式列方程求解.【解答】(1)因为一只不透明的箱子里共有8个球,其中2个白球, 所以从箱子中随机摸出一个球是白球的概率是28=14.(2)设再往箱子中放入x 个黄球. 根据题意,得28+x=0.2, 解得x =2.故再往箱子中放入2个黄球,可以使摸到白球的概率变为0.2.【互动总结】(学生总结,老师点评)(1)求概率主要是求随机事件发生的概率,关键是分别求出事件所有可能出现的结果数和所求的随机事件可能出现的结果数,后者与前者的比值即为该事件发生的概率.(2)第(2问也可以根据概率公式直接用除法求出盒子中球的总数,从而求出还需要往箱子中放入的黄球个数.活动2 巩固练习(学生独学)1.完成教材P148“习题6.4”第1~3题. 略2.已知一个口袋中装有7个只有颜色不同的球,其中3个白球、4个黑球. (1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是14,求y 与x 之间的函数关系式.解:(1)因为一个口袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,所以从随机抽取出一个黑球的概率是47 .(2)因为口袋中有3个白球、4个黑球,再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是1 4,所以x+37+x+y=14,则y=3x+5.环节3 课堂小结,当堂达标(学生总结,老师点评)一般地,如果一个试验有n种等可能的结果,事件A包含其中m种结果,那么事件A发的概率为P(A)=m n .练习设计请完成本课时对应练习!第2课时游戏的公平性及按要求设计戏教学目标一、基本目标理解游戏的公平性,并能根据不同问题的要求设计出符合条件的摸球游戏.二、重难点目标【教学重点】判断游戏的公平性,根据题目题目要求设计游戏方案.【教学难点】按题目要求设计游戏方案.教学过程环节1 自学提纲,生成问题【5mi阅读】阅读教材P19~P150的内容,完成下面练习.【3min反馈】1.用概率判断游戏的公平性:若获胜的概率相同,则游戏公平;若获胜的概率不相同,则游戏不公平.2.按要求设计游戏:若设计公平的游戏,则要使随机事件发生的概率相等;若设计不公平的游戏,则要使随机事件发生的概率不相等.3.完成教材P149“议一议”: 解:(1)第二位同学说的有道理.(2)不公平.游戏否公平,应看双方获胜的概率是否相等. 4.完成教材P149“做一做”:解:(1)在一个不透明的口袋里装入除颜色外完全相同的2个红球、2个白球,摇匀后,从中任摸一球,则摸到红球的概率为12,摸到白球的概率也为12.(2)在一个不透明的口袋里装入除颜色外完全相同的2个红球、1个白球和1个黄球,摇匀后,从中任摸一球,则摸到红球的概率为12,摸到白球和黄球的概率都为14.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】小明和小红一起做游戏,在一个不透明的袋中有8个白球和6个红球,它们除颜色外都相同,从袋中任意摸出一球,若摸到白球小明胜;若摸到红球小红胜,这个游戏公平吗?请说明理由;若你认为不公平,请你改动一下规则,使游戏对双方都是公平的.【互动探索】(引发学生思考)根据概率公式可计算出P (小明胜)和P (小红胜),再比较两个概率的大小即可判定游戏不公平,然后改动规则,满足袋中白球和红球的个数相等即可.【解答】不公平.理由如下: 因为P (小明胜)=88+6=47,P (小红胜)=68+6=37, 而47>37,即P (小明胜)>P (小红胜), 所以这个游戏不公平.可改为:从袋中取出2个白球或放入2个红球,使袋中白球和红球的个数相等,这样游戏对双方都是公平的.【互动总结】(学生总结,老师点评)判断游戏对双方是否公平,关键是看双方在游戏中所关注的事件发生的概率是否相等.【例2】用12个除颜色外完全相同的球设计一个摸球游戏. (1)使得摸到红球、白球和蓝球的概率都是13;(2)使得摸到红球的概率为13,摸到白球的概率为12,摸到蓝球的概率为16.【互动探索】(引发学生思考)根据摸到各种颜色球的概率,求出它们的个数,便可进行游戏的设计.【解答】(1)根据概率的计算公式可知,P (摸到红球)=摸到红球可能出现的结果数所有可能出现的结果数,所以摸到红球可能出现的结果数=所有可能出现的结果数×P (摸到红球)=12×13=4;同理可得摸到白球和蓝球可能出现的结果数均为4,所以只要使得红球、白球和蓝球的数目均为4个,就能满足题目要求.(2)同理,由(1)可知,只要使得红球的数目为4个,白球的数目为6个,蓝球的数目为2个,就能满足题目要求.【互动总结】(学生总结,老师点评)灵活运用概率的计算公式求出各色球的个数是解题的关键.活动2 巩固练习(学生独学)1.有8个大小相同的球,设计一个摸球游戏,使摸到白球的概率为12,摸到红球的概率为14,摸到黄球的概率为14,摸到绿球的概率为0,则白球有4个,红球有2个,绿球有0个.2.有一盒子中装有3个白色乒乓球、2个黄色乒乓球、1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是白色颜色; (2)请你计算摸到每种颜色乒乓球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?解:(2)P (摸到白色乒乓球)=36=12,P (摸到黄色乒乓球)=26=13,P (摸到红色乒乓球)=1 6 .(3)公平.理由如下:因为P(摸到白色乒乓球)=12,P(摸到其他球)=2+16=12,所以这个游戏对双方公平.3.现在有足够多除颜色外均相同的球,请你从中选12个球设计摸球游戏.(要求写出设计方案)(1)使摸到红球的概率和摸到白球的概率相等;(2)使摸到红球、白球、黑球的概率都相等;(3)使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.解:(1)12个球中,有6个红球、6个白球可使摸到红球的概率和摸到白球的概率相等.(2)12个球中,有4个红球、4个白球、4个黑球可使摸到红球、白球、黑球的概率都相等.(3)12个球中,有3个红球、3个白球、6个黑球可使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.环节3 课堂小结,当堂达标(学生总结,老师点评)1.游戏的公平性2.按要求设计游戏练习设计请完成本课时对应练习!第3课时几何图形中的概率教学目标一、基本目标1.理解和掌握与面积有关的一类事件发生的概率的计算方法,并能进行简单的计算.2.能设计符合要求的简单概率模型,进一步体会概率的意义.二、重难点目标【教学重点】能计算与面积有关的一类事件发生的概率.【教学难点】能设计符合要求的简单概率模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P151~P152的内容,完成下面练习.【3min反馈】1.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型.2.与面积有关的几何概率也就是概率的大小与面积大小有关,事件发生的概率等于此事件所有可能结果所组成的图形的面积除以所有可能结果所组成的图形的总面积.3.完成教材P152“想一想”:解:(1)图中共有20块方砖组成,这些方砖除颜色外其他完全相同,小球停留在任何一块方砖上的概率都相等,所以P(小球停留在白砖上)=1520=34.(2)同意.因为袋中共有20个球,这些球除颜色外其他都相同,从中任意摸出一个球,这20个球被摸到的概率都相等,所以P(任意摸出一球是白球)=15 20=34.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2 B.P1<P2C .P 1=P 2D .以上都有可能【互动探索】(引发学生思考)由图甲可知,黑色方砖6块,共有16块方砖,所以黑色方砖在整个地板中所占的比值为616=38,所以在甲种地板上最终停留在黑色区域的概率为P 1=38;由图乙可知,黑色方砖3块,共有9块方砖,所以黑色方砖在整个地板中所占的比值=39=13,所以在乙种地板上最终停留在黑色区域的概率为P 2=13.因为38>13,所以P 1>P 2.【答案】A【互动总结】(学生总结,老师点评)利用公式求几何概率通常分为三步:(1)分析事件所占面积与总面积的关系;(2)计算出各部分的面积;(3)代入公式求出几何概率.【例2】如图,一个可以自由转动的转盘被均匀的分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分的概率是多少? (2)试再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率变为12.【互动探索】(引发学生思考)(1)先确定在图中阴影区域的面积在整个面积中所占的比例,根据这个比例即可求出指针指向阴影区域的概率;(2)根据概率等于相应的面积与总面积之比得出阴影部分面积即可.【解答】(1)因为转盘被均匀的分成了20个扇形区域,阴影部分占其中的6份,所以转动转盘,当转盘停止时,指针落在阴影部分的概率=620=310.(2)如图所示,当转盘停止时,指针落在阴影部分的概率变为12 .【互动总结】(学生总结,老师点评)在几何概型中若是等分图形,则只需求出总的图形个数与某事件发生的图形个数;若不是等分图形,则需求出各图形面积的大小.活动2 巩固练习(学生独学)1.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是( C )A.116B.18C.14D.122.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是( D )A.转盘2与转盘3 B.转盘2与转盘4C.转盘3与转盘4 D.转盘1与转盘43.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是1 8 .4.向如图所示的正三角形区域内扔沙包(区域中每个小正三角形除颜色外完全相同),沙包随机落在某个正三角形内.(1)扔沙包一次,落在图中阴影区域的概率是3 8;(2)要使沙包落在图中阴影区域和空白区域的概率均为12,还要涂黑几个小正三角形?请在图中画出.解:如图所示,要使沙包落在图中阴影区域和空白区域的概率均为12,还要涂黑2个小正三角形(涂法不唯一).环节3 课堂小结,当堂达标(学生总结,老师点评)几何图形中的概率计算公式:P(A)=事件A发生的所有可能结果所组成的图形的面积所有可能结果所组成的图形的总面积练习设计请完成本课时对应练习!第4课时转盘问题教学目标一、基本目标计算转盘问题中的概率,进一步理解几何概型,能设计出符合要求的简单概率模型.二、重难点目标【教学重点】计算转盘问题中的概率.【教学难点】设计符合要求的简单概率模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P154~P155的内容,完成下面练习.【3min反馈】1.转盘问题中的概率计算:指针停留在某扇形内的概率等于该扇形的面积除以圆的面积,即P(指针停留在某扇形内)=某扇形的面积圆的面积=某扇形所占圆的份数总份数.2.完成教材P154“想一想”:解:P(落在红色区域)=110°360°=1136,P(落在白色区域)=360°-110°360°=250°360°=2536.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】某商场柜台为了吸引顾客,打出了一个小广告如下:本专柜为了感谢广大消费者的支持和厚爱,特举行购物抽奖活动,中奖率100%,最高奖50元.具体方法是:顾客每购买100元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准黄、红、绿、白色区域,顾客就可以分别获得50元、20元、10元、5元的购物券.(转盘的各个区域均被等分)请根据以上信息,解答下列问题:(1)小亮的妈妈购物150元,她获得50元、5元购物券的概率分别是多少?(2)请在转盘的适当地方写上一个区域的颜色,使得自由转动这个转盘,当它停止转动时,指针落在某一区域的事件发生概率为38,并说出此事件.【互动探索】(引发学生思考)(1)根据随机事件概率大小的求法,找准两点:①符合条件的情况数;②全部情况的总数,二者的比值就是其发生的概率的大小;(2)指针落在某一区域的事件发生概率为38,则该区域应该有6份,据此解答即可.【解答】(1)因为转盘被等分为16份,黄色占1份,白色占11份,所以获得50元、5元购物券的概率分别是116,1116.(2)根据概率的意义可知,若指针落在某一区域的事件发生概率为38,那么该区域应有16×38=6(份).根据等级越高,中奖概率越小的原则,此处应涂绿色,事件为获得10元购物券.【互动总结】(学生总结,老师点评)(1)转盘中哪种区域的面积越大,则指针指向哪种区域的概率越大;(2)根据几何概率的大小设计概率模型就是选定一个图形,再分割图形,使其中一部分图形的面积与总面积的比值等于几何概率.活动2 巩固练习(学生独学)1.如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是25.2.完成教材P155“随堂练习”第1~2题. 略3.有一个质地均匀的正12面体,12个面上分别写有1到12这12个整数(每个面只有一个整数且互不相同),投掷这个正12面体一次,记事件A 为“向上一面的数字是3的整数倍”,记事件B 为“向上一面的数字是4的整数倍”请你判断事件A 与事件B ,哪个发生的概率大,并说明理由.解:因为P (A )=412=13,P (B )=312=14,13>14,所以事件A 发生的概率大于事件B 发生的概率.4.如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为23.解:(1)指针指向奇数区的概率是36=12. (2)答案不唯一,如:自由转动的转盘停止时,指针指向大于2的区域. 环节3 课堂小结,当堂达标(学生总结,老师点评)转盘问题的概率计算公式:P (指针停留在某扇形内)=某扇形的面积圆的面积=某扇形所占圆的份数总份数练习设计请完成本课时对应练习!【素材积累】宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。
概率复习课+教案陈
概率复习课(第1课时)河北师大附中陈英辉【教材分析】本章是中学数学相对独立的一部分内容,它是概率统计的基础,是每年高考必考的内容之一,侧重考查三种概率事件在实际问题中的应用,即求等可能事件的概率,求互斥事件、独立事件的概率,求某事件在n次独立重复试验中恰好发生k次的概率,难度一般为中等或较容易,分值在12分左右.基于以上分析,确定如下的知识目标、能力目标、重点、难点.【知识目标】 1.掌握等可能事件的概率计算公式;2.掌握互斥事件和对立事件;3.掌握相互独立事件和n次独立重复试验的概率计算公式.【能力目标】 1.注意分类讨论思想、转化思想等数学思想在概率问题中的应用,提高学生分析问题、解决问题的能力;2.培养学生简约化思想的意识,提升学生运用数学知识解决实际问题的能力.【教学重点】 1.概率的定义、性质;2.区分互斥事件、对立事件、相互独立事件和独立重复试验.【教学难点】应用本章知识解决实际问题【教学方法】讲练结合法教学过程:一、创设问题回顾旧知:通过以下几个简单实例,让学生逐步回忆概率的有关概念.注意区分互斥事件、对立事件、相互独立事件和独立重复试验.对于本章的一些公式,要注意运用它们的前提条件,通过学生回答,在练中求知,及时发现存在问题,纠正错误.1.下列四个命题:(1)对立事件一定是互斥事件(2)若A、B是两个互斥事件,则P(A+B)=P(A)+P(B)(3)若事件A、B、C彼此互斥,则P(A)+P(B)+P(C)=1其中正确的有()A 、0个B 、1个C 、2个D 、3个2.先后抛掷两枚均匀的硬币,出现“1枚正面、1枚反面”的概率是多少?3. 甲乙两人下棋,两人下成和棋的概率是12 ,甲获胜的概率是13, 则甲不输的概率 是 ,乙获胜的概率是 .4. 在一段时间内,甲去某地的概率是41,乙去此地的概率是51,假定两人的行动相互之间没有影响,则在这段时间内甲、乙都去此地的概率是多少?5. 某射手射击1次,击中目标的概率是0.9,他连续射击3次,且各次射击是否击中相互之间没有影响,则他在这3次射击中恰好击中2次的概率是多少?[设计意图] 通过几个简单小题的练习使学生达到复习概率基本知识点的目的.二、总结构建知识体系通过以上练习归纳出本章知识体系,然后再通过典型实例达到巩固提高的目的.本节课,我们将重点从 概率的基本性质、等可能事件、互斥事件、相互独立事件、独立重复试验等事件进行归纳总结,通过专题练习来达到巩固提高的效果!一、概率的基本性质:1)必然事件概率为1,不可能事件概率为0.随机事件的概率0≤P(A)≤1;2)当事件A 与B 互斥时,满足概率的加法公式: P (A +B )=P (A )+P (B );3)若事件A 与B 为对立事件,则P (A )=1—P (B );(巧妙的运用这一性质可以简化解题)4)互斥事件与对立事件的区别与联系:我们可以说如果两个事件为对立事件则它们一定互斥,而互斥事件则不一定是对立事件.二、等可能事件1.正确理解的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;2.掌握等可能事件的概率计算公式:P (A ) =A 包含的基本事件个数m总的基本事件个数n三、互斥事件有一个发生的概率1.正确理解互斥事件和对立事件.2.掌握公式:P (A +B )=P (A )+P (B )若A 、B 是对立事件,则P (A )+P (B )=1.四、相互独立事件同时发生的概率和独立重复试验1.正确理解相互独立事件和互斥事件的区别.2.掌握公式:)()()(B P A P B A P ⋅=⋅()(1)k k k n nP k C p p =- (k =0,1,2,…n) 三、典型例题在这部分练习中,使学生体会本章应用题的思考方法,正向思考时要善于将复杂的问题进行分解,解决有些问题时还要注意运用思考的方法,即正难则反.例1:柜子里装有3双不同的鞋,随机地取出2只,试求下列事件的概率:(1)取出的鞋子都是左脚的;(2)取出的鞋子都是同一只脚的.分析:本题应引导学生首先判断是属于等可能事件,再引导结合前面回顾的知识点求出所需的量,强调古典概型的特征:一是基本事件的有限性,而是基本事件的等可能性.变式:(1)取出的鞋一只是左脚的,一只是右脚的;(2)取出的鞋不成对.分析:进行变式的目的是要重点引导学生当从正面解决比较困难或者比较繁琐时,可考虑其反面,会把一个复杂时间分解为彼此互斥的事件,或分解为彼此独立的事件;灵活的把P (A )转化为P (A —),使学生将概率的基本性质更好的运用于解题中,同时提高学生的思维能力,培养学生勇于创新的习惯.例2. 某气象站天气预报的准确率为23,求 (1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第三次预报准确的概率.分析:把一个复杂事件分解为几个彼此互斥的简单事件的和,然后再求每一个简单事件的概率,当正面分解包括的情况较多时,可先求其对立事件的概率.[设计意图]本例采用书上例题和习题,引导学生在复习时要重视课本的作用,回归课本,同时学会把复杂问题简单化.解题过程中,要明确条件中“至少有一个发生”,“至多有一个发生”,“恰有有一个发生”,“都发生”,等词语的意义,以及它们的概率之间的关系和计算公式.随堂练习1.从装有2个红球和2个黑球的袋子中任取2个球,那么互斥而不对立的事件是A.至少有一个黑球与都是黑球B.至少有一个黑球与至少有一个红球C.恰有一个黑球与恰有两个黑球D.至少有一个黑球与都是红球2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取两个恰好都是不合格的概率是.3.(2007广东高考,文8)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是.[设计意图]通过前面的回顾分析,学生需要相应的练习来进一步巩固,以上选择的题目,注重了和前面例题的联系和补充,而有意识的加入了高考题,用意在于激起部分学优生的兴趣,同时也使学生明白这部分知识考查的难度,可以取到一定的引导作用,题目难度上仍有一定的层次性,如学生部分题目没办法课堂上完成,可课后完成.课堂小结1.本节课主要复习了概率的基本性质,几种事件的概率.2.求解概率问题应当明确以下几点:1)认清事件的特征,分清事件的类型是正确求解事件概率的基础,也是正确求解事件概率的保障。
《等可能情形下的概率计算+第1课时》精品教学方案
第二十六章概率初步26.2 等可能情形下的概率计算第1课时一、教学目标1.了解结果、等可能的概念,理解等可能情形下的随机事件的概率;2.明确概率的取值范围,能求简单的等可能事件的概率;3.经历在具体情境中探索概率的意义的探索过程,体会事件发生的可能性的大小与概率的值的关系;4.通过数学活动,体会数学的应用价值,培养积极思考的学习习惯.二、教学重难点重点:随机事件概率的特点和一步随机事件概率的求法;难点:理解随机事件概率的意义和求法.三、教学用具多媒体课件四、教学过程设计追问2:具有上述特点的试验,如何表达事件的概率?教师活动:教师提出问题,可以让学生以掷骰子试验为例积极思考.启发学生注意到,对于具有上述特点的试验,用事件所包含的各种可能的结果数在全部可能的结果总数中所占的比,表示事件发生的概率.小组交流后选取代表回答.【归纳】【思考】问题3 在掷骰子试验中,计算下列事件的概率.(1)事件A:点数是奇数;(2)事件B:点数是小于6的数;(3)事件C:点数是小于0的数.预设答案:(1) 事件A包含了1,3,5共3种可能的结果,故事件A发生的概率:P(A)=36=12;(2) 事件B包含了1,2,3,4,5,共5种可能的结果,故事件B发生的概率:P(B)=56;(3) 事件C包含了0种可能的结果,故事件C 发生的概率:P(C)=0.教师活动:教师简单叙述,引出问题,引导学生结合概率的公式进行计算.【探究】事件发生的概率的取值范围是多少呢?由m和n的含义可知:0≤m≤n,0≤mn≤1,即:0≤P(A)≤1【思考】什么时候事件的概率为0或1?举例说明.小组合作:1.两人一组,合作完成;2.适当举例,小组内交流后,总结规律.教师活动:教师组织学生小组合作、举例,待学生充分交流后,选代表回答,全班交流.预设答案:如图,不透明袋子里装有5个大小相同的黑球,标号分别为1-5,从中随机摸取1个球,P(摸到白球)=0 ;P(摸到黑球)=1 .结论:不可能事件的概率为0;必然事件的概率为1.【归纳】①0≤P(A)≤1;②当A为必然事件时,m=n,P(A) =1;③当A为不可能事件时,m=0,P(A) =0.【典型例题】思维导图的形式呈现本节课的主要内容:。
北师大版数学七年级下册6.3《等可能事件的概率》说课稿3
北师大版数学七年级下册6.3《等可能事件的概率》说课稿3一. 教材分析北师大版数学七年级下册6.3《等可能事件的概率》是学生在学习了概率的基本概念和随机事件的基础上,进一步研究等可能事件概率的计算方法。
本节内容通过具体的实例,让学生理解等可能事件的概率计算公式,并能够运用该公式解决实际问题。
教材内容紧密联系学生的生活实际,既有助于激发学生的学习兴趣,也有助于学生体会数学与生活的紧密联系。
二. 学情分析学生在学习本节内容前,已经学习了概率的基本概念,对随机事件有所了解,具备了一定的数学基础。
但学生在理解等可能事件的概率计算公式时,可能会存在一定的困难,因此,在教学过程中,需要教师引导学生通过实例去感受等可能事件的概率计算方法,从而更好地理解并掌握该公式。
三. 说教学目标1.理解等可能事件的概率计算公式。
2.能够运用等可能事件的概率计算公式解决实际问题。
3.培养学生的动手操作能力和团队协作能力。
四. 说教学重难点1.教学重点:等可能事件的概率计算公式的理解和运用。
2.教学难点:等可能事件的概率计算公式的推导和理解。
五. 说教学方法与手段1.教学方法:采用案例教学法、问题驱动法、合作学习法等。
2.教学手段:利用多媒体课件、实物模型、课堂练习等辅助教学。
六. 说教学过程1.导入:通过一个简单的实例,引导学生复习概率的基本概念,为新课的学习做好铺垫。
2.新课导入:介绍等可能事件的定义,并通过具体的实例让学生理解等可能事件的概率计算公式。
3.公式推导:引导学生通过小组合作,共同推导出等可能事件的概率计算公式。
4.公式讲解:详细讲解等可能事件的概率计算公式,并给出公式中的各个参数的含义。
5.课堂练习:安排一些典型的练习题,让学生运用所学的知识去解决问题,巩固所学内容。
6.总结提升:对本节课的主要内容进行总结,强调等可能事件的概率计算公式的应用。
7.课后作业:布置一些相关的作业,让学生进一步巩固所学知识。
七. 说板书设计板书设计要简洁明了,能够清晰地展示等可能事件的概率计算公式,以及公式中的各个参数的含义。
《等可能条件下的概率(一)》word教案 (公开课获奖)2022苏教版 (2)
4.2 等可能条件下的概率(一)教学目标:1.进一步理解等可能事件的意义,掌握等可能条件下的古典概型的两个基本特征,会把事件分解成等可能的结果(基本事件);2.通过具体实例学会用列举法(即列表或画树状图)列举出古典类型的随机实验的所有等可能结果(基本事件)并计算一些随机事件发生的概率. 教学重点:通过列表、树状图来表示等可能条件下的概率. 教学难点:通过列表、树状图来表示等可能条件下的概率. 创设情境抛掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率有多大?对抛掷一枚质地均匀的硬币2次的试验,我们将第1次正面朝上,第2次正面朝上,记作(正,正);第1次正面朝上,第2次反面朝上,记作(正,反);第1次反面朝上,第2次正面朝上,记作(反,正);第1次反面朝上,第2次反面朝上,记作(反,反).这样,我们可以利用表格列出所有可能出现的结果:结果 正 反 正 (正,正) (正,反) 反(反,正)(反,反)这4种结果是等可能的.其中,2次抛掷的结果都是“正面朝上”只有1种,所以P (正,正)=41. 我们还可以画图,列出2次抛掷所有等可能出现的结果:像这样的图,我们称之为树状图,它可以帮助我们不重复、不遗漏地列出所有可能出现的结果.思考 “先后两次掷一枚硬币”与“同时掷两枚硬币”,这两种试验的所有可能结果一样吗? 探索活动活动1 同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数相同; (2)两个骰子点数的和是9; (3)至少有一个骰子的点数为2.正面反面问题1 如果把题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?小结1 当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.活动2 甲、乙、丙三只不透明的口袋中都装有1个白球、1个红球,它们除颜色外都相同,搅匀后分别从三只口袋中任意摸出1个球,问从三只口袋摸出的都是红球的概率是多少?问题2 此时,列表能否列举出所有可能的结果?小结2 当一次试验要涉及3个或更多的因素(例如从三只口袋中摸球)时,列表就不方便了,为了不重不漏地列出所有可能的结果,通常采用树形图.当事件要经过多次步骤(三步以上)完成时,用这种“树形图”的方法求事件的概率很有效.思考(1)列举法有哪些?列表与画树状图分别有哪些适用条件?(2)若从三只口袋摸出的球中有一只白球、两只红球的概率是多少?例题选讲例1 一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从袋中任意摸出1个球,记录颜色后放回、摇匀,再从中任意摸出1个球.求两次摸到红球颜色的概率.例2 北京2008年奥运会吉祥物“福娃”是“贝贝、晶晶、欢欢、迎迎、妮妮”:将5张分别印有5个“福娃”图案的卡片(卡片的形状、大小、质地都相同)放在盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片.求下列事件的发生的概率:(1)取出的2张卡片相同;(2)取出的2张卡片中,1张为“欢欢”,1张为“贝贝”;(3)取出的2张卡片中,至少有1张为“欢欢”.拓展延伸一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?课堂小结举例说明,如何利用“树状图”“表格”列出所有等可能出现的结果?它们各有怎样的特点?作业布置习题4.2第5、6、7、9.教后记9.1 单项式乘单项式力.教学重点:理解单项式相乘的法则,会进行单项式的乘法运算.教学难点:能运用单项式乘以单项式的法则解决实际问题.【情景创设】用6个边长为a的小正方体拼成一个长方体,并用不同的方法表示你所拼出来的长方体的体积,从不同的表示方法中,你能发现些什么?(1)体积的表示方法;(2)面对你的侧面积的表示方法.探索新知让学生在交流的基础上思考下列问题:(1)体积的表示方法:①3a·2a·a=________________=6a3,②3a·2a·b=________________=6a2b.侧面积的表示方法:3a·2a=________________=6a2.(2)从不同的表示中你发现了什么?(3)通过下面两个计算我们来进一步的探讨:(2a2b)(3ab2)=[2 ×3]•(a2•a)(b•b2)=6a3b3系数相乘相同字母相同字母(4ab2)(5b)=[4×5]•(b2•b)•a=20ab3系数相乘相同字母只在一个单项式中出现的字母你能告诉大家你算出的结果吗?你是怎样来思考的呢? 通过探索得到单项式乘单项式的计算法则: (1)将它们的系数相乘; (2)相同字母的幂相乘;(3)只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.【展示交流】例 1 计算:① -13a 2·(-6ab ); ② 6x 2·(-2x 2y ).注:教师强调格式规范,板书过程.(通过计算引导学生发现单项式与单项式相乘时,一找系数,二找相同字母的幂,三找只在一个单项式里出现的字母.) 练习1: 判断正误:(1)3x 3·(-2x 2)=5x 3; (2)3a 2·4a 2=12a 2; (3)3b 3·8b 3=24b 9; (4)-3x ·2xy =6x 2y ; (5)3ab +3ab =9a 2b 2. 练习2:课本练一练 第1、2题.例 2 计算:(1)(2x )3·(-3xy 2); (2)(-2a 2b )·(-a 2)·14bc .注:遇到乘方形式先用积的乘方公式展开,然后转化为单项式乘以单项式的形式,再根据今天所学内容计算. 练习3:计算:(1)(a 2)2·(-2ab ); (2)-8a 2b ·(-a 3b 2) ·14b 2 ;(3)(-5an +1b ) ·(-2a )2;(4)[-2(x -y )2]2·(y -x )3.【盘点收获】【课后作业】补充习题和同步练习。
新北师大版七年级数学下册第六章《概率初步》同步分层练习含答案
1感受可能性1.下列事件是必然事件的是(D)A.乘坐公共汽车恰好有空座B.同位角相等C.打开手机就有未接电话D.三角形的内角和等于180°2.(2019·湖北武汉江岸区月考)下列事件中,是随机事件的是(C)A.通常温度降到0 ℃以下,纯净的水结冰B.明天太阳从东方升起C.购买1张彩票,中奖D.任意画一个三角形,其内角和是360°3.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为随机事件(填“必然”“不可能”或“随机”).4.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为4,这个事件是不可能事件 (填“必然事件”“不可能事件”或“随机事件”).5.从一副扑克牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情(D)A.可能发生B.不可能发生C.很可能发生D.必然发生6.小明的书包里装有大小、形状完全一样的6本作业本,其中语文作业本3本,数学作业本2本,英语作业本1本,那么他从书包中随机抽出1本作业本,可能性最大的是抽出语文作业本.7.下列第一排表示各盒中球的情况,第二排的语言描述了摸到蓝球的可能性大小,请你用线把第一排盒子与第二排的描述连接起来,使之相符.解:如图所示.8.(2018·福建中考)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是(D)A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于129.(教材P139,习题6.1,T5改编)如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列事件发生的可能性的大小,并将这些事件的序号按发生的可能性从小到大的顺序排成一列: (2)(1)(4)(3) .(填序号)(1)指针落在标有3的区域内;(2)指针落在标有9的区域内;(3)指针落在标有数字的区域内;(4)指针落在标有奇数的区域内.10.在三个不透明的布袋中分别放入一些除颜色不同外其他都相同的玻璃球,并搅匀,具体情况如下表:布袋编号12 3布袋中玻璃球的颜色、数量2个绿球、2个黄球、5个红球1个绿球、4个黄球、4个红球6个绿球、3个黄球(1)随机地从1号布袋中摸出1个玻璃球,该球是黄色、绿色或红色的;(2)随机地从2号布袋中摸出2个玻璃球,2个球中至少有1个不是绿色的;(3)随机地从3号布袋中摸出1个玻璃球,该球是红色的;(4)随机地从1号和2号布袋中分别摸出1个玻璃球,2个球的颜色一致.解:(1)(2)是必然事件,(3)是不可能事件,(4)是随机事件.2 频率的稳定性1.在中考体育跳绳项目测试中,1 min 跳160次为达标.小敏在预测时1 min 跳的次数分别为165,155,140,162,164,则她在预测中达标的次数是 3 ,达标的频率是 0.6 . 2.某自行车厂在一次质量检查中,从5 000辆自行车中随机抽查了100辆,查得合格率为96%,估计这5 000辆自行车中大约有 200 辆车不合格.3.做重复试验:抛掷一枚啤酒瓶盖1 000次.经过统计得“凸面向上”的次数为420,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( B ) A .0.22 B .0.42 C .0.50 D .0.584.(2019·江苏泰州中考)小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:抛掷次数 100 200 300 400 500 正面朝上的频数5398156202244A .20B .300C .500D .8005.在一个不透明的布袋中装有黄、白两种颜色的球(除颜色外其他都相同)共40个.小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有( B ) A .12个 B .14个 C .18个 D .28个6.(2019·江西南昌一模)元旦那天,某超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买的活动,顾客购买物品就能获得一次转动转盘的机会,当转盘停止时,就可以获得指针所在区域相对应的奖品.下表是该活动的一组统计数据.假如你去转动一次转盘,获得铅笔的概率大约是 0.70 .(结果精确到0.01)转动转盘的次数n 100 150 200 500 800 1 000 落在“铅笔”区域的次数m 68 108 140 355 560 690 落在“铅笔”区域的频率mn0.680.720.700.710.700.69下面是小明和同学做“抛掷图钉试验”获得的数据: 抛掷次数n 100 200 300 400 500 600 700 800 900 1 000 钉尖不着地的频数m63120 186 252 310 360 434 488 549 610 钉尖不着地的频率m n0.630.600.620.630.620.600.620.610.610.61(1)填写表中的空格;(2)画出该试验中,钉尖不着地的频率的折线统计图;(3)观察折线统计图,你发现了什么?(4)根据“抛掷图钉试验”的结果,估计“钉尖着地”的概率为 0.39 .解:(3)观察折线图可以发现:随着抛掷次数的增加,钉尖不着地的频率逐渐稳定在0.61附近.易错点 不能正确理解频率的稳定性的含义8.小明在抛啤酒瓶盖(规定凹面为正)时,共抛了10次,结果有7次正面朝上,于是他说:“在抛掷啤酒瓶盖时正面朝上的概率是0.7.”你认为他的说法正确吗?为什么? 解:不正确.因为他的试验次数太少,不能用该频率估计事件发生的概率,只有试验次数较多时,其频率才与概率相近.9.(2019·北京朝阳区一模)某班同学随机抛掷一枚硬币的试验结果如下表所示:①表中没有出现“正面向上”的概率是0.5的情况,所以不能估计“正面向上”的概率是0.5;②这次试验抛掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48;③抛掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生.其中合理的是(C)A.①② B.①③C.③ D.②③10.在不透明的袋子中有黑棋子10枚和白棋子若干枚(它们除颜色外其他都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:A.60枚B.50枚C.40枚D.30枚11.(2019·浙江绍兴中考)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:(D) A.0.85 B.0.57C.0.42 D.0.1512.(2019·河南模拟)一个不透明的袋子中装有若干个大小相同的白球,现取8个与白球除颜色外完全相同的黑球放入袋子中,摇匀之后,随机摸出一个球,记下颜色并放回.经过大量重复试验后,发现摸出黑球的频率稳定在0.1附近,则估计袋子中原有白球约 72 个.13.(2019·河北唐山路南区一模)某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调査结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了多少名学生?(2)通过计算,补全条形统计图;(3)若该校爱好运动的学生共有600名,求该校共有学生大约多少名;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,求选出的恰好是爱好阅读的学生的概率.解:(1)40÷40%=100(名).(2)爱好上网的人数为100×10%=10,爱好阅读的人数为100-40-20-10=30.补全条形统计图,如图所示.(3)600÷40%=1 500(名).(4)因为爱好阅读的学生人数所占的百分比为30%,所以用频率估计概率,则选出的恰好是爱好阅读的学生的概率为310.3 等可能事件的概率第1课时 简单概率的计算1.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,该球是黄球的概率为( C ) A.12 B.15 C.310 D.7102.小明掷一枚质地均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是( C )A.16B.13C.12D.233.某市电视台在举办的《开心就唱》歌手大赛活动中,号召观众发短信为参赛者投支持票,投票短信每1万条为1组,每组抽出1个一等奖,3个二等奖,6个三等奖.张艺同学发了1条短信,她获奖的概率是( B ) A.110 000 B.11 000 C.1100 D.1104.(2019·湖南娄底涟源模拟)从“绿水青山就是金山银山”中任选一个字,选出“山”的概率是( A )A.310B.110C.19D.185.某校七(1)班有男生25人,女生24人,从中任选一人,是男生的概率是 2549 .6.从一副扑克牌(去掉“大王”和“小王”)中任意抽出1张. (1)抽到红桃的概率是多少? (2)抽到“2”的概率是多少? (3)抽到红桃“2”的概率是多少?解:一副扑克牌中共有54张,去掉“大王”和“小王”后还剩52张,其中红桃有13张,“2”有4张,红桃“2”有1张.(1)P (抽到红桃)=1352=14.(2)P (抽到“2”)=452=113.(3)P (抽到红桃“2”)=152.7.某口袋中有20个球,其中白球x 个,绿球2x 个,其余为黑球.甲从口袋中任意摸出一个球,若为绿球则甲获胜;甲摸出的球放回口袋中,乙再从口袋中任意摸出一个球,若为黑球则乙获胜.当x 等于多少时,游戏对甲、乙双方都公平( B ) A .3 B .4 C .5 D .68.有编号为1~10的10张卡片,甲从中任意抽取一张,若其号码数能被3整除,则甲获胜;将甲抽取的卡片放回后,乙也从中任意抽取一张,若其号码数能被4整除,则乙获胜.这项游戏对甲、乙两人公平吗?若不公平,应如何添加卡片?(添加的卡片上的编号与原来卡片上的编号不同)解:不公平.在1~10中能被3整除的数字是3,6,9,共3个;能被4整除的数字是4,8,共2个.所以P (甲获胜)=310,P (乙获胜)=210=15.因为310≠15,所以这项游戏对甲、乙两人不公平.若要使这项游戏对甲、乙两人公平,则可以添加编号为“16”或“20”的卡片(答案不唯一,能被4整除,不能被3整除即可). 9.设计摸球游戏:(1)用12个除颜色外其他都相同的球,设计一个摸球游戏,使摸到红球的概率为12,摸到黄球的概率为13;(2)如果要使摸到红球的概率为23,摸到黄球的概率为16,那么摸球游戏至少要设置几个球?解:(1)红球:12×12=6(个);黄球:12×13=4(个).设计游戏如下:在一个不透明的口袋中装有除颜色外其他都相同的12个球,其中红球有6个,黄球有4个,白(其他颜色也可以)球有2个.从中任意摸出一个球,则摸到红球的概率为12,摸到黄球的概率为13. (2)设有x 个球,则23x +16x =56x .因为x 是6的倍数,所以x 的最小值为6. 故摸球游戏至少设置6个球.易错点 摸球问题中仅从颜色来划分结果10.甲袋中放有17个黄球、4个白球,乙袋中放有300个黄球、100个白球、20个红球,这几种球除了颜色以外没有任何区别,两袋中的球都已经各自搅匀,从袋中任意摸1个球,如果想摸出1个白球,选哪个袋摸球成功的机会大? 解:因为在甲袋中P (摸出1个白球)=417+4=421,在乙袋中P (摸出1个白球)=100300+100+20=521>421,所以选乙袋摸球成功的机会大.11.(2019·黑龙江齐齐哈尔中考)在一个不透明的口袋中,装有一些除颜色外其他完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出1个红球的概率是110,则袋中黑球的个数为( C )A .27B .23C .22D .1812.(2019·江苏徐州铜山区二模)一个两位数,它的十位数字是5,个位数字是抛掷一枚质地均匀的骰子(六个面分别为1~6点)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是4的整数倍的概率等于( A )A.13B.16C.23D.1213.在x 2□2xy □y 2的□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( A )A.12B.34 C .1 D.1414.有5张卡片,上面分别画有圆、等边三角形、正方形、平行四边形、直角梯形,将卡片画有图形的一面朝下随意放在桌上,任取一张,那么取到卡片对应图形是轴对称图形的概率是( C )A.15B.25C.35D.4515.甲、乙两人投掷两个普通的正方体骰子,规定掷出“和为7”则甲赢,掷出“和为8”则乙赢,这个游戏是否公平( B ) A .公平 B .对甲有利 C .对乙有利D .不能判断16.(2019·四川成都锦江区期末)电影《流浪地球》上映,小玲准备买票观看,在选择座位时,她发现理想的位置只剩了第六排的4个座位和第七排的3个座位.她从这7个座位中随机选择1个座位,是第六排座位的概率为 47.17.一枚质地均匀的骰子,骰子的六个面上分别刻有1~6的点数,投掷这枚骰子一次,向上一面的点数是2或3的概率是a6,则a 的值是 2 .18.如图,在3×3的方格中,A ,B ,C ,D ,E ,F 分别位于格点上,从C ,D ,E ,F 四个点中任取一点,与点A ,B 构成三角形,则所构成的三角形为等腰三角形的概率是 34.19.请将下列事件发生的概率标在图中(用字母表示):(1)记为点A :随意掷两枚质地均匀的骰子,朝上一面的点数之和为1; (2)记为点B :抛出的篮球会落下;(3)记为点C :从装有3个红球、7个白球的口袋中任取1个球,恰好是白球(这些球除颜色外其他完全相同).解:(1)是不可能事件,其概率为0; (2)是必然事件,其概率为1; (3)是随机事件,其概率为73+7=0.7.20.有四张形状、大小、颜色、质地都相同的卡片,正面分别写有数字-2,-1,1,2,将这四张卡片背面向上洗匀,从中任取1张卡片,记卡片上的数字为A ;放回洗匀后再任取1张,记卡片上的数字为B .于是得到有理数A B.(1)第1张卡片上可能出现的结果: -2,-1,1,2 ; 第2张卡片上可能出现的结果: -2,-1,1,2 . (2)求有理数A B恰好是整数的概率.解:(2)根据抽取结果,得到的A B 有16种不同的结果,分别是1,2,-2,-1,12,1,-1,-12,-12,-1,1,12,-1,-2,2,1.其中结果是整数的有12种,所以P ⎝ ⎛⎭⎪⎫有理数A B 恰好是整数=1216=34.21.(2019·山东东营期末)如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成27个大小相同的小正方体,从这些小正方体中任意取出一个,求取出的小正方体出现以下情况的概率.(1)只有一面涂有颜色; (2)至少有两面涂有颜色; (3)各个面都没有涂颜色.解:(1)因为只有一面涂有颜色的小正方体有6个, 所以P (只有一面涂有颜色)=627=29.(2)因为至少有两面涂有颜色的小正方体有12+8=20(个), 所以P (至少有两面涂有颜色)=2027.(3)因为各个面都没有涂颜色的小正方体只有1个, 所以P (各个面都没有涂颜色)=127.第2课时 求简单的几何概率1.(2019·江苏南京鼓楼区一模)如图所示的12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是( B )A.56B.512C.59D.7122.(2019·江苏苏州二模)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( A )A.12B.13C.14D.163.如图,在边长为1的小正方形网格中,△ABC 的三个顶点均在格点上,若向正方形网格中投针,落在△ABC 内部的概率是( C )A.12B.34C.38D.7164.(2019·四川绵阳涪城区自主招生)一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒.当某人到达路口时,看见的是红灯的概率是( B )A.15B.25C.35D.455.一只蚂蚁在如图所示的长方形地砖上爬行,蚂蚁停在阴影部分的概率是 12.6.一张写有密码的纸片被随意埋在如图所示的长方形区域内(每个方格大小一样). (1)写有密码的纸片埋在哪个区域的可能性较大? (2)分别计算写有密码的纸片埋在三个区域内的概率; (3)写有密码的纸片埋在哪两个区域的概率相同?1区2区3区解:(1)埋在2区的可能性较大.(2)P (埋在1区)=14,P (埋在2区)=12,P (埋在3区)=14.(3)埋在1区与3区的概率相同.7.(2019·广西桂林中考)如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( D )A.12B.13C.14D.168.如图,转动质量均匀的转盘,当转盘停止时,指针落在白色区域的概率是( A )A.34B.12C.13D.149.(2019·辽宁沈阳和平区模拟)如图,把一个圆形转盘按1∶2∶3∶4的比例分成A ,B ,C ,D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为( C )A.35B.25C.15D.11010.(2019·山东济南商河一模)如图所示,用扇形统计图反映地球上陆地面积与海洋面积所占比例.若宇宙中一块陨石落在地球上,且落在陆地上的概率是0.3,则陆地面积对应的圆心角的度数是 108 度.11.某商人制作了一个如图所示的转盘游戏,取名为“开心大转盘”,游戏规定:参与者自由转动转盘.若指针指向字母“A ”,则收费2元;若指针指向字母“B ”,则奖3元;若指针指向字母“C ”,则奖1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?解:商人盈利的可能性大.理由如下:指针指向“A ”的次数是80×48=40;指针指向“B ”的次数是80×18=10;指针指向“C ”的次数是80×38=30.所以商人收入:40×2=80(元);商人支出:10×3+30×1=60(元). 因为80>60,所以商人盈利的可能性大.易错点 认为概率大小与转盘大小有关而致错12.用力旋转如图所示的转盘甲和转盘乙的指针,如果想让指针停在蓝色区域内,则下列说法中正确的是( C )A .转盘乙大,蓝色区域的面积也大,所以选转盘乙成功的可能性较大B .每个转盘只有两种颜色,指针不是停在蓝色区域内就是停在红色区域内,成功的可能性都是50%C .转盘甲和转盘乙蓝色区域的面积各占转盘面积的25%,所以停在蓝色区域内的机会都是25%D .指针转的速度越快,停在蓝色区域内的可能性就越大13.(2019·湖北武汉江汉区模拟)如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板内随机投掷一枚飞镖,击中黑色区域的概率是( B ) A.59 B.13 C.518 D.23 14.(2019·山东枣庄峄城区期末)转动下列各个转盘,指针指向红色区域的概率最大的是( D )15.(2018·江苏苏州中考)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( C )A.12B.13C.49D.5916.(2019·北京顺义区二模)某公司的班车在7:30,8:00,8:30从某地发车,小李在7:50至8:30之间到达车站乘坐班车,如果他到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B )A.13B.12C.23D.3417.(2019·河南信阳二模)二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15°就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是 18.18.(2019·贵州贵阳模拟)欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超.如图所示,若铜钱的直径为4 cm ,中间有边长为1 cm 的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是 14π.19.(2019·陕西铜川岐山期末)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB 为转盘的直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠.(1)某顾客消费40元,是否可以获得转转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?解:(1)因为规定消费50元(含50元)以上才能获得一次转转盘的机会,40<50,所以某顾客消费40元,不能获得转盘的机会.(2)由题意,得P (获得9折优惠)=90360=14;P (获得8折优惠)=60360=16;P (获得7折优惠)=30360=112.第六章概率初步1.下列事件中,是不可能事件的是(D)A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°2.“368人中一定有2人的生日是相同的”是(B)A.随机事件B.必然事件C.不可能事件D.以上都不对3.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,向上一面的点数是2.其中是随机事件的是①③ .(填序号)4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是(D)A.3个B.不足3个C.4个D.5个或5个以上5.七年级(6)班共有学生54人,其中男生有30人,女生有24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性大 (填“大”或“小”).6.给出以下四个事件:①电灯通电时“发热”;②某人射击一次“中靶”;③掷一枚硬币“出现正面”;④在常温下“铁熔化”.你认为可能性最大的是① ,最小的是④ .7.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是(C) 投篮次数1050100150200250300500投中次数 4 35 60 78 104 123 152 251 投中频率0.400.700.600.520.520.490.510.508.某人在做掷硬币试验时,抛掷m 次,正面朝上有n 次⎝⎛⎭⎪⎫即正面朝上的频率是P =n m ,则下列说法中正确的是( D ) A .P 一定等于12B .P 一定不等于12C .多投一次,P 更接近12D .随着抛掷次数逐渐增加,P 稳定在12附近9.在一个不透明的布袋中有除颜色外其他都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红球和蓝球的频率分别稳定在35%和55%,则口袋中可能有黄球 20 个.10.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题: (1)这种树苗成活的频率稳定在 0.9 ,成活的概率估计值为 0.9 . (2)该地区已经移植这种树苗5万棵. ①估计这种树苗成活 4.5 万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?解:(2)②18÷0.9-5=15(万棵). 答:该地区还需移植这种树苗约15万棵.11.一个不透明的盒子里装有只有颜色不同的黑、白两种颜色的球共40个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,活动进行中的一组统计数据如下所示:摸球的次数n 200 300 400 500 800 1 000 摸到白球的次数m 116 192 232 295 484 601 摸到白球的频率m n0.580.640.580.590.6050.601(1)当摸球的次数很大时,请估计摸到白球的频率将会接近多少; (2)如果你从盒子中任意摸出一球,那么摸到白球的概率约是多少? (3)试估算盒子中黑、白两种颜色的球各有多少个?(4)请你应用上面频率与概率的关系的思想解决下面的问题:一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计口袋中白球的个数(可以借助其他工具及用品)?请写出解决这个问题的主要步骤及估算方法. 解:(1)0.60. (2)0.60.(3)盒子中白球的个数约为40×0.60=24(个), 则黑球的个数为40-24=16(个).(4)①添加:向口袋中添加一定数目的黑球,并充分搅匀;②试验:进行次数很多的摸球试验(有放回),记录摸到黑球和白球的次数,分别计算频率,由频率估计概率;③估算:黑球个数摸到黑球的概率=球的总个数,球的总个数×摸到白球的概率=白球的个数(答案不唯一).12.小军旅行箱的密码是一个六位数,但他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A.110B.19C.16D.15 13.如图,某农民在A ,B ,C ,D 四块田里插秧时,不慎将手表丢入田里,直到收工时才发现,则手表丢在哪一块田里的可能性大些( D )A .AB .BC .CD .D14.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小正三角形是等可能的,扔沙包一次,击中阴影区域的概率等于( C )A.16B.14C.38D.5815.5张分别写有-1,2,0,-4,5的卡片(除数字不同以外其余都相同),现从中任意取出1张卡片,则该卡片上的数字是负数的概率是 25.16.小兰和小青两人做游戏,有一个质量分布均匀的正六面体骰子,骰子的六面分别标有1,2,3,4,5,6.如果掷出的骰子的点数是质数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢.该游戏规则对 小兰 有利.17.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数; (2)点数大于2且小于5.解:掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种情况,这些点数出现的可能性相等.(1)点数为偶数有3种可能,即点数为2,4,6, 所以P (点数为偶数)=36=12.(2)点数大于2且小于5有2种可能,即点数为3,4, 所以P (点数大于2且小于5)=26=13.18.如图,小明家里的阳台地面铺设着黑、白两种颜色的18块方砖(除颜色不同外其余都相同),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上. (1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖的颜色?怎样改变?解:(1)由图可知,阳台地面共铺有18块方砖,其中白色方砖8块,黑色方砖10块,故小。
初中数学《概率初步》单元教学设计以及思维导图
概率初步主题单元教学设计
确定事件
事件
(二)学生探究教师引领
探究1:
5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:
(1)抽到的序号是0,可能吗?这是什么事件?
(2)抽到的序号小于6,可能吗?这是什么事件?
(3)抽到的序号是1,可能吗?这是什么事件?
(4)你能列举与事件(3)相似的事件吗?
探究2:
小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一
数
率
解:甲顾客购物的钱数在100元到200元之间,可以获得一次转动转盘的机会。
转盘一共等分成20个扇形,其中1份是红色、2份是黄色、4份是绿色,因此,对于该顾客来说,
P(获得购物券)=_______________;
P(获得100元购物券)=_______________;
P(获得50元购物券)=_______________;
P(获得20元购物券)=_______________。
拓展:
如图所示转盘被分成16个相等的扇形。
请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针
落在红色区域的概率为。
例2.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转。
新北师大版七年级数学下册《等可能事件的概率》优质教学课件
(选做题)盒子中装有5只红球、6只黑球,求:①从 中取出一球为红球的概率;②记取到红球则小明获胜, 取到黑球则小红获胜,该游戏公平吗?
解:
①P(红球)=
5 11
②P(黑球)= 6
11
∵ 5 < 6 ∴该游戏不公平。
11 11
(正本作业)课本P148习题6.4第1题
12
4、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏 的规则如下:由乙抛掷,同时出现两个正面,乙得1分; 抛出一正一反,甲得1分;谁先积累到10分,谁就获胜.你 认为 甲 (填“甲”或“乙”)获胜的可能性大.
5、任意掷一枚均匀的骰子
1
(1)P(掷出的点数小于4)= __2___ (2)P(掷出的点数是奇数)= ___12__ (3)P(掷出的点数是7)= ___0__
讨论、更正、点拨(2分钟)
如何设计公平的游戏? 1、先分析所有可能发生的结果总数。
如:检测2中共有8个球,有8种结果。 2、再分析所求事件发生可能的结果数。
如:检测2第2题中红球有3个,有3种结果。 白球有5个,有5种结果。 3、比较各事件发生的概率是否相等。
如:检测2第2题中,摸到红球和摸到白球的概率 不相等。 4、通过改变事件发可能的结果数使得各事件发生 的概率相等。
2、会使用列举法求一个事件的概率. 3、会设计简单的公平性游戏。
(中考考点)应用P(A)= m 解决一些简单的实际问题. n
自学指导1(1分钟)
阅读P147“议一议”到例1的内容,思考下列问题:
1、摸球游戏可能出现的结果
__1_号__球__、__2_号__球__、__3_号__球__、__4_号__球__、__5_号球
6.3 等可能事件的概率课件(第1-4课时)
装有12个黄球、绿球和红球,其中红球3个、黄球8个,他 们除了颜色外都相同.
因为绿球有12﹣3﹣8=1个,
1
所以任意从中摸出一个球,则P(摸到绿球)=
. 12
探究新知
6.3 等可能事件的概率/
素养考点 3 摸球游戏的公平性
例3 在一个不透明的袋中有6个除颜色外其他都相同的小球, 其中3个红球,2个黄球,1个白球. (1)乐乐从中任意摸出一个小球,摸到的白球机会是多少? (2)乐乐和亮亮商定一个游戏,规则如下:乐乐从中任意摸出 一个小球,摸到红球则乐乐胜,否则亮亮胜,问该游戏对双 方是否公平?为什么?
任意掷一枚质地均匀的硬币,可能出现两种结果:
正面朝上、正面朝下;每种结果出现的可能性相同;正
面朝上的概率 1 . 2
探究新知
6.3 等可能事件的概率/
抛掷一个质地均匀的骰子
(1)它落地时向上的点数有几种可能的结果?6种
(2)各点数出现的可能性会相等吗?相等 (3)试猜想:各点数出现的可能性大小是多少? 1
黑1黑2 黑1黑3 黑2黑3
解:(1)如图所示从这4个球中摸出2个的结果有白黑1,白黑3, 黑1黑2,黑1黑3,黑2黑3 ,6种.
(2)摸到2个黑球的结果有:摸到黑1黑2,摸到黑1黑3,摸到黑2
黑3,这3种. (3)P(摸出2个黑球)=
3 6
=
1 2
.
课堂小结
6.3 等可能事件的概率/
一般地,如果一个试验有n个等可能的结果,
1 6
,
(2)因为点数大于3小于6的结果包括:4、5这两个数, 所以P(点数大于3小于6)= 2 = 1 .
63
课堂检测
6.3 等可能事件的概率/
拓广探索题
等可能事件
等可能事件的概率
随机事件的概率,一般可通过大量重复试验求得其近似值。 但对于某些随机事件,也可以不通过试验,而只通过对一次试 验中可能出现的结果的分析来计算其概率。
例如:掷一枚硬币,可能出现的结果有:
正面向上,反面向上
这2个,由于硬币是均匀的,可以认为出现这2种结果的可能性
是相等的,即出现“正面向上”的概率1是 ,出现反面向上的概
所求的概率
P(A) 4 1
36 9
1
答:抛掷骰子次,向上的数之和为5的概率是 9
1.先后抛掷2枚均匀的硬币 (1)一共可以出现多少种不同的结果?4种
(2)出现“1枚正面,1枚反面”的结果有多少种?2种
(3)出现“1枚正面,1枚反面”的概率是多少?12
(4)有人说,“一共可能出现 2枚正面,2枚反面,1枚正面,1枚反面” 的3种结果,因此出现“1枚正面,1枚反面”的概率是1/3。” 这种说法对不对?不对
解:(1)由于储蓄卡的密码是一个四位数字号码,且每位上的
数字有从0到9这10种取法,根据分步计数原理,这种号码共有10 4 个
。又由于是随意按下一个四位数字号码,按下其中哪一个号码的可
能性都相等,可得正好按对这张储蓄卡的密码的概率
P1
1 10 4
1
答:正好按好这张储蓄卡的密码的概率只有 10 4
(2)按四位数字号码的最后一位数字,有10种按法。由于
6×6=36 种不同的结果。
答:先后抛掷骰子2次,一共有36种不同的结果。
(2)在上面所有结果中,向上的数之和是5的结果有 (1,4),(2,3),(3,2),(4,1)
4种,其中每一括号内的前后两个数分别为第1、2次抛掷后向上 的数。上面的结果可用下图表示
北师大初中数学七下《6.3等可能事件的概率》word教案 (5)
等可能事件的概率
教学目标
1.知识与技能:理解等可能试验的定义,会根据随机试验结果的对称性或均衡性判断试验结果是否具有等可能性,掌握等可能事件的概率计算方法.
2.过程与方法:通过生活中实际问题的引入来创设情境,经历“提出问题—猜测—思考交流—抽象概括—解决问题”的过程,将一些生活问题构建成一个等可能性事件模型,学生的构建思维能力得到提升;在归纳定义时用到特殊到一般的思想;在解题时利用类比的方法,举一反三。
3.情感态度价值观:感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作
交流的意识和能力。
初步体会概率是描述不确定现象的数学模型。
教学重点
等可能事件的定义以及等可能事件的概率的求法. 教学难点
1.判断一个事件是否是等可能事件.
2.等可能事件概率公式n
m
A P )( 的理解与运用.
教学备案:
对学有余力的同学我将布置下面一题供他们探讨. <能力提升>
一个纸盒中装有大小形状相同的3个黄球,4个白球,求:
(1)要使摸到白球的概率为31
,需再加入几个黄球。
(2)要使摸到白球的概率为3
2
,需再加入几个白球。
初中数学《概率初步》大单元教学设计全文
,进而可知频率
所稳定到的常数p满
事件一般
用大写英文字
(1)抽到的序号有几种可能的结果?
每次抽签的结果不一定相同,序号1,2,3,4,5都 有可能抽到,共有5种可能的结果,但是事先不能预 料一次抽签会出现哪一种结果:
(2)抽到的序号小于6吗?
标
抽到的序号 一定小于6;
签
2
(3)抽到的序号会是0吗?
抽到的序号不会是0;
(4)抽到的序号会是1吗? 抽到的序号可能是1,也可能不是1,事先无法确定.
分析与归纳
在上面的摸球活动中,“摸出黑球”和“摸出白球”是两个随机事 件. 一次摸球可能发生“摸出黑球”,也可能发生“摸出白球”,事先 不能确定哪个事件发生,但是,由于两种球的数量不等,所以事实上 “摸出黑球”与“摸出白球”的可能性的大小是不一样的,“摸出黑 球”的可能性大于“摸出白球”的可能性,你们的试验结果能说明这 种规律吗?
初中数学
概率初步
大单元教学设计
学情分析:
七年级学生性格还处于比较活泼的阶段,对生活中的事物较敏感, 并且较易接受。在生活中已经接触到了一些与可能性有关的初步认识, 但对不确定事件的概念还比较陌生。
本章是学生在已经了解了统计的相关知识的基础上继续学习概率 的相关知识。由于学生初学概率,面对概率意义的描述,学生容易产 生困惑:概率是什么?概率是否就是频率?古典概型与几何概型到底 有什么不一样?因此,学生对这部分内容学习是一大难点。但这部分 内容在人们的生活和生产建设中有着广泛的应用,也是今后运用概率 知识解决实际问题的预备知识,所以它在教材中处于非常重要的地位。 学生已经具备了一定的学习能力,能对生活中的常见现象发生的可能 性进行一定的分析和判断,但缺乏系统的知识来规范。因此教学过程 中,创设的问题情境应生动活泼、直观形象,且贴近生活。由于学生 概括能力不强,推理能力还有待发展,所以在教学时,可以让学生分 组合作和交流,帮助他们通过直观形象的感知来理解抽象逻辑关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 等可能事件的概率(第1课时)
一、教学目标
1.知识与技能:通过摸球游戏,帮助学生了解计算一类事件发生可能性的方法,体会概率的意义,根据已知的概率设计游戏方案
2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力
教学重点:1.概率的意义及其计算方法的理解与应用。
2.根据已知的概率设计游戏方案。
教学难点:灵活应用概率的计算方法解决各种类型的实际问题。
教学手段和教具准备:自制球箱,准备了红、白色乒乓球若干,并运用了现代多
媒体教学平台。
二、教学设计分析
第一环节回顾思考
活动内容:
任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能相同吗?正面朝上的概率是多少?。
第二环节创设情境,导入新课
活动内容:
一个袋中有5个球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球。
(1)会出现哪些可能的结果?(2)每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?
第三环节学习新知
1.学习新知
这里我们提到的抛硬币,掷骰子和前面的摸球游戏有什么共同点?
设一个实验的所有可能结果有n个,每次试验有且只有其中的一个结果现。
如果每个结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。
想一想:你能找一些结果是等可能的实验吗?
得出结论
一般地,如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为:
P (A )=m /n
2.牛刀小试
例:任意掷一枚均匀骰子。
(1)掷出的点数大于4的概率是多少?
(2)掷出的点数是偶数的概率是多少?
解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的可能性相等。
(1) 掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6.
所以P (掷出的点数大于4)=62=3
1 (2)掷出的点数是偶数的结果有3种:掷出的点数分别是2,4,6.
所以P(掷出的点数是偶数)=63=2
1 第四环节 游戏环节
活动内容:
1.提问:(1)如下图,盒子里装有三个红球和一个白球,它们除颜色外完全相同。
小明从盒中任意摸出一球。
请你求出摸出红球的概率?
第五环节 练习提升
活动内容:教师首先表扬学生本节课学习中同学们表现都非常好,大家团结合作,为了鼓励大家,老师请同学们吃水果大餐,5种水果代表5道题,请大家选题回答。
突出重点,突破难点。
(一)桔子
一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同。
从中任意摸出一球,则: P (摸到红球)=
P (摸到白球)=
P (摸到黄球)=
(二)苹果
一个袋中有3个红球和5个白球,每个球除颜色外都相同。
从中任意摸出一球,摸到红球和摸到白球的概率相等吗?如果不等,能否通过改变袋中红球或白球的数量,使摸到的红球和白球的概率相等?
(三)草莓
将A,B,C,D,E 这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中。
搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?
(四)葡萄
有7张纸签,分别标有数字1,1,2,2,3,4,5,从中随机地抽出一张,求:
(1)抽出标有数字3的纸签的概率;
(2)抽出标有数字1的纸签的概率;
(3)抽出标有数字为奇数的纸签的概率。
(五)香蕉
小明所在的班有40名同学,从中选出一名同学为家长会准备工作。
请你设计一种方案,使每一名同学被选中的概率相同。
第六环节 课堂小结
师生互相交流总结概率的计算方法和根据已有的概率设计游戏的方法。
鼓励学生结合本节课的学习谈自己的收获与感想(学生畅所欲言,教师给予鼓励)包括:
1.概率的计算方法;
2.根据已有的概率设计游戏的方法;
3.常见的概率问题;
4.学习本节课的感想。
第七环节 布置作业
1.设计两个概率是2
1的游戏。
2.预习下一课 四、教学设计反。