201520162公开课根据三视图求组合体中小正方体的个数
根据三视图求小正方体的个数期中复习用

A.11箱
B.10箱
C.9箱
D.8箱
2.看左视图,从左到右每列中的小正方形的个数,从上到下 分别填入俯视图中各行的小正方形中。
3.每个小正方形内的数,两数相同取其一,两数相异取其小, 最后计算正方体的个数和。
一、由三个视图,求小立方体的个数
例1:如图是由几个相同的小正方体搭成的几何体的三视图,
则搭成这个几何体的小正方体的个数是(
B)
在图1中,每个小正方形内取较小的一个数(两数相等,取其中1个), 得到图2,这些正方体的个数和是1+1+2+1+1=6(个).选B
二、由两个视图,求小立方体个数的最大值或最小值
例2如图,是由一些大小相同的小正方体组成的几何体的主视
图和俯视图,则组成这个几何体的小正方体最多块数是(C ).
A.9 B.10
C.11
D.12
例3:一个几何体由一些大小相同的小正方体组成,如图是 它的主视图和俯视图,那么组成该几何体所需小正方体的个
数最少为( B ).
A.3
B.4
C.5
D.6Байду номын сангаас
三、由视图求小立方体个数的实际应
例4:在一仓库里堆放着若干个相同的正方体小货箱,仓库 管理员将这堆货箱的三视图画了出来,如图所示.则这堆正
A.5
B.6
C.7
D.8
分析:观察主视图,从左到右每列中的小正方形的个数和依次为2、1、1, 将数字2、1、1分别填入俯视图中第一、第二、第三列的小正方形中(图1 中带圈的数字)
观察左视图,从左到右每列中的小正方形的个数和依次为1、2,将数字1、 2分别填入俯视图中第一、第二行的小正方形中(图1中不带圈的数字)
由三视图确定小正方体的个数的方法

由三视图确定小正方体的个数的方法
通过三视图确定小正方体的个数是一种简单而有效的方法,可以用来解决许多复杂的几何问题。
三视图法是一种几何技术,它使用三个平面图来表示一个物体的形状,其中包括正视图、左视图和俯视图。
这三个视图是从不同的角度来看待物体的,可以清楚地显示出物体的三维形状。
例如,如果要确定小正方体的个数,可以使用三视图法。
首先,先找出三个视图,即正视图,左视图和俯视图,仔细观察每个视图中小正方体的位置,数数它们的个数。
然后,根据三个视图中小正方体的位置和数量,计算出小正方体的总数。
根据三视图法,可以通过观察三个视图来确定小正方体的总数,而不需要真正地计算它们的体积。
这一步骤非常实用,可以节省大量的时间和精力。
当然,在使用三视图法之前,需要先熟悉三视图的概念,然后根据实际情况,灵活地运用这一技术来解决实际问题。
只有掌握了这种几何方法,才能解决复杂的几何问题。
总之,三视图法是一种有效的几何方法,可以用来快速确定小正方体的个数。
它可以节省大量的时间和精力,因此被广泛应用于复杂的几何问题的解决中。
最新由三视图判断几何体或几何体组成的小正方体个数资料

由三视图判断小正方体个数问题通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。
解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。
通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了。
在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数。
以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人。
”一、结果唯一的计数例1在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。
A.9箱B.10箱C.11箱D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。
由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。
故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。
各行、各列小正方体的个数如俯视图中所表示。
这堆货箱共有3+1+1+2+1+1=9(箱)。
二、结果不唯一的计数例2(“希望杯”数学邀请赛试题)如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是()。
分析:由给出的主视图、俯视图可以看出,该几何体共有2行,3列。
第1列均为1层,第2列最高2层,第3列最高3层。
左视图为A时,第1行、第2行最高均为3层。
几何体中,第1列第1行为1层;第2列第1行、第2行均可为1层或2层,,但不能同时为1层;第3列两行均为3层。
此时,小正方体的个数如俯视图A所示,最少为1+2+1+3+3=10(个),最多为1+2+2+3+3=11个。
由三视图_判断小正方体个数上课讲义

由三视图,判断小正方体个数问题通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。
解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。
通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了。
在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数。
以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人。
”一、结果唯一的计数例1在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。
A.9箱B.10箱C.11箱D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。
由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。
故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。
各行、各列小正方体的个数如俯视图中所表示。
这堆货箱共有3+1+1+2+1+1=9(箱)。
二、结果不唯一的计数例2(“希望杯”数学邀请赛试题)如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是()。
分析:由给出的主视图、俯视图可以看出,该几何体共有2行,3列。
第1列均为1层,第2列最高2层,第3列最高3层。
左视图为A时,第1行、第2行最高均为3层。
几何体中,第1列第1行为1层;第2列第1行、第2行均可为1层或2层,,但不能同时为1层;第3列两行均为3层。
此时,小正方体的个数如俯视图A所示,最少为1+2+1+3+3=10(个),最多为1+2+2+3+3=11个。
由三视图怎样确定小立方体的个数

怎样确定小立方体的个数湖北省阳新县高级中学邹生书空间几何体的三视图是高中新课标中新增的重要内容之一,考纲不仅要求考生能画出简单空间几何体的三视图,而且会根据几何体的三视图想象出原几何体的立体模型,并对原几何体进行有关面积和体积的计算及图形性质的判断等。
以三视图知识为背景的各种新颖试题活跃在近几年新课标高考卷或模拟卷上,已成为一道清新亮丽的风景线。
本文介绍其中一种新题型及其解法,希望能对大家有所帮助或启发。
例1 用单位立方体搭成一个几何体,使它的主视图和俯视图如图所示,则它的体积的最大值和最小值之差为__。
分析本题和后面例题的共同点是:1、题目中的几何体都是由相同的小正方体组合而成;2、问题给出了这个几何体的主视图或俯视图或左视图;3、要确定搭成该几何体所需要小正方体个数等有关问题。
这类问题由于给出的是三视图或部分三视图,因此它所表示的几何体具有不确定性,从而这类试题具有一定的开放性、探索性和挑战性,能很好地考查同学们的空间想象能力和判断能力。
笔者在报纸、杂志上见到很多介绍这类题目的文章,但遗憾的是:只有题目评价和答案,没有解题分析(即使有也实际上被题目评价所取代),没有解题过程、解法小结以及揭示解题规律等学生最为关注的东西。
笔者通过解题发现,这类问题的解决确实不好进行语言表达,是不是只可意会不可言传了呢?为了让学生更好地理解和掌握这类问题的解法,笔者进行了解法探讨,下面向大家介绍这类问题的一种行之有效的方法——俯视图填数法,以期填补这方面的空白。
解用俯视图填数法。
由主视图知该几何体从左到右共有3列每列高度分别为3、2、1,据此在俯视图中从西到东每列对应的格子内分别标上数字3、2、1。
格子内的数字表示在这个位置上立着的小正方体的最多个数。
由主视图知,第一列3个格子内的数至少有一个3,第二列3个格子内的数至少有一个2。
又由俯视图知,每个格子内的数最小是1。
故该几何体最多有个小立方体。
另一方面,第一列最多可少个小立方体,第二列最多可少个小立方体,故最少有个小立方体。
根据三视图求小正方体的个数课件

实例三
要点一
总结词
实际生活中三视图的小正方体个数求解需要结合实际情况 进行,通过观察实际物体的三视图并结合实际尺寸来进行 计算。
要点二
详细描述
在实际生活中,有些物体可能不是规则的几何体,如机器 零件、建筑物等。此时需要结合实际物体的尺寸和三视图 中的投影来进行计算。例如,对于一个建筑物,可以通过 测量其长、宽、高来计算其小正方体的数量。同时,还需 要注意实际物体中的一些细节和特征,如孔洞、凸起等, 这些特征可能会影响小正方体的数量。
下一步学习建议
学习根据多视图计算小正方体个数的方 法
练习常见题型及解题思路 提高空间想象能力和几何思维能力
深入理解多视图的原理及应用 学习立体几何中其他相关知识点
THANKS
感谢观看
在日常生活和生产实践中,很多时候 需要从三视图来观察物体的形状和结 构,因此掌握三视图求解小正方体的 个数是非常重要的技能。
课程目标
理解三视图的基本概 念和原理。
学会求解三视图中小 正方体的个数。
掌握三视图下小正方 体的排列规律。
学习方法
通过实例分析,让学生了解三视 图与立体图之间的转换关系。
通过对不同类型三视图的讲解, 让学生掌握小正方体的排列规律
总结词
理解三视图中的投影关系与小正方体个数的关系是求解小正方体个数的关键。
详细描述
在三视图中,每个视图都是从不同的方向对几何体进行投影得到的。理解投影关系可以帮助我们更好 地理解小正方体的数量。例如,在一个视图中看到的小正方体可能在其他视图中并不能看到,这是因 为其他视图是从不同的方向进行投影的。
06
小正方体的形状由左视图的前后 、左右、上下三个方向确定。
04
CATALOGUE
三视图中的小正方体计数问题.doc

三视图中的小正方体计数问题湖北省黄石市下陆中学宋毓彬通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。
解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。
通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了。
在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数。
以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人。
”一、结果唯一的计数例1在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。
A.9箱B.10箱C.11箱D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。
由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。
故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。
各行、各列小正方体的个数如俯视图中所表示。
这堆货箱共有3+1+1+2+1+1=9(箱)。
二、结果不唯一的计数例2(“希望杯”数学邀请赛试题)如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是()。
分析:由给出的主视图、俯视图可以看出,该几何体共有2行,3列。
第1列均为1层,第2列最高2层,第3列最高3层。
左视图为A时,第1行、第2行最高均为3层。
几何体中,第1列第1行为1层;第2列第1行、第2行均可为1层或2层,,但不能同时为1层;第3列两行均为3层。
此时,小正方体的个数如俯视图A所示,最少为1+2+1+3+3=10(个),最多为1+2+2+3+3=11个。
三视图中的小正方体计数问题

三视图中的小正方体计数问题通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。
解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。
通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了。
在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数。
以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人。
”一、结果唯一的计数例1在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。
A.9箱B.10箱C.11箱D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。
由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。
故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。
各行、各列小正方体的个数如俯视图中所表示。
这堆货箱共有3+1+1+2+1+1=9(箱)。
练习题1.在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来(如图),则这堆正方体货箱共有()A.4箱B.5箱C.6箱D.7箱2.在仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱从三个方向看到的图形画了出来,如图所示,则这堆正方体货箱共有()A.9箱B.10箱C.11箱D.12箱3.在某仓库里堆放着若干个相同的正方体货箱,管理员将这堆货箱的三视图画了出来(如图),则这堆正方体货箱共有()A.8箱B.9箱C.10箱D.11箱4.在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图,则这堆货箱共有()A.6个B.5个C.4个D.3个5.在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图,则这堆货箱共有()A.4个B.5个C.6个D.7个6.在学校教师办公室里堆放着若干个相同的正方体粉笔盒,某同学将这堆粉笔盒的三视图画了出来,如图,则这堆粉笔盒共有()A.2个B.3个C.4个D.5个7.在抗震救灾某仓库里放着若干个相同的正方体货箱,某摄影记者将这堆货箱的三视图照了出来(如图),则这堆正方体货箱共有()A.2箱B.3箱C.4箱D.5箱8.在一个仓库里堆积着若干个正方体的货箱,要搬运这些货箱很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个方法:将这堆货箱分别从正面、左面、上面所看到的平面图形画了出来,如图所示,你能根据这些平面图形帮他清点一下箱子的数量吗?这些正方体货箱的个数为()A.5 B.6 C.7 D.89.如图是抗争救灾某仓库里放着若干个正方体货箱,某摄影记者将这堆货箱的三视图照了出来,则这堆正方体货箱共有()A.5箱B.6箱C.7箱D.8箱10.在学校仓库里堆放着若干个盒相同的正方体小粉笔盒,仓库管理员将这堆粉笔盒的三视图画了出来,如图所示,则这堆正方体小粉笔盒共有()A.11盒B.10盒C.9盒D.8盒11.在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的三种视图画了出来,如图,你能根据三视图,帮他清点一下箱子的数量吗?这些正方体箱的个数是()A.6 B.7 C.8 D.912.在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的三种视图画了出来,如图,你能根据三视图,帮他清点一下箱子的数量吗?这些箱子的个数是()A.9 B.8 C.7 D.613.仓库里堆积着正方体的货箱若干,根据如图所示的三视图可得出箱子的个数是()A.6 B.7 C.8 D.914.一仓库管理员在清理仓库物品时,发现所有物品都是一些大小相同的正方体箱子.若摆放物品的三视图如图所示,则仓库最高摆放正方体的箱子的个数是()A.1个B.2个C.3个D.无法确定二、根据两种视图确定计数范围(结果不唯一的计数)(1)知道几何体的主视图和俯视图例2.如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是()。
根据三视图求小正方体的个数

正面
左面
上面
一、由三个视图,求小立方体的个数
例1:如图是由几个相同的小正方体搭成的几何体的三视图, 则搭成这个几何体的小正方体的个数是( ) A.5 B.6 C.7最大值或最小值
例2如图,是由一些大小相同的小正方体组成的几 何体的主视图和俯视图,则组成这个几何体的小 正方体最多块数是(C). A.9 B.10 C.11 D.12
例3:一个几何体由一些大小相同的小正方体组成, 如图是它的主视图和俯视图,那么组成该几何体 所需小正方体的个数最少为( ) . B A.3 B.4 C.5 D.6
三、由视图求小立方体个数的实际应
例4:在一仓库里堆放着若干个相同的正方体小货 箱,仓库管理员将这堆货箱的三视图画了出来, 如图所示.则这堆正方体小货箱共有( ).
根据三视图求小正方体的个数
已知由若干个小立方体组成的几何体的三视 图,求出组成这个几何体所需小立方体的个 数.这是我们感到困难的问题,也是中考的热 点. 解题的思路是这样的:先根据主视图和左视 图确定俯视图中每个小正方形相应位置上的 小立方体的个数,再求出组成这个几何体所 需小立方体的个数
分别从正面、左面、上面看一个由若干个正方体组成的立 体图形,得到的平面图形如下图所示,你能搭出这个立体图形吗? 动手试试看!
A.11箱 B.10箱 C.9箱 D.8箱
分析:由主视图、左视图确定出俯视图中每列、每行的正 方体小货箱的个数,如图7,从而可得仓库里所堆放着的 正方体小货箱的个数,如图8,即为9箱.选C.评点:中考
根据三视图求小正方体的个数

例3:一个几何体由一些大小相同的小正方体组成,如图是 它的主视图和俯视图,那么组成该几何体所需小正方体的个 数最少为( ).
A.3
B.4
C.5
D.6
分析:由主视图和俯视图可以想象出左视图应是2行2列,最少是由3个小 正方形组成,然后用同样的方法,由主视图、左视图确定出俯视图中每 列、每行的小立方体的个数,如图5,再求出组成这个几何体所需小立方 体的个数,如图6,从而得到这个几何体最少可以由4个小正方体组成.想 象出的几何体如图所示.选B.
二、由两个视图,求小立方体个数的最大值或最小值
例2如图,是由一些大小相同的小正方体组成的几何体的主视 图和俯视图,则组成这个几何体的小正方体最多块数是( ).
A.9 B.10 C.11 D.12
分析:由主视图和俯视图可以想象出 左视图应是3行3列,最多是由9个小正 方形组成,然后用同样的方法,先由 主视图、左视图确定出俯视图中每列、 每行的小立方体的个数,如图3,再求 出组成这个几何体所需小立方体的个 数,如图4,从而得到这个几何体最多 可以由11个小正方体组成.想象出的几 何体如图所示.选C.
评点:由两个视图想象出另一个视图,再按照三个步骤求得 结果.关键是要有一定的空间想象能力
三、由视图求小立方体个数的实际应 例4:在一仓库里堆放着若干个相同的正方体小货箱,仓库 管理员将这堆货箱的三视图画了出来,如图所示.则这堆正 方体小货箱共有( ).
A.11箱
B.10箱
C.9箱
D.8箱
分析:由主视图、左视图确定出俯视图中每列、每行的正 方体小货箱的个数,如图7,从而可得仓库里所堆放着的 正方体小货箱的个数,如图8,即为9箱.选C.评点:中考
例1:如图是由几个相同的小正方体搭成的几何体的三视图, 则搭成这个几何体的小正方体的个数是( ) A.5 B.6 C.7 D.8
由三视图怎样确定小立方体的个数

怎样确定小立方体的个数湖北省阳新县高级中学邹生书空间几何体的三视图是高中新课标中新增的重要内容之一,考纲不仅要求考生能画出简单空间几何体的三视图,而且会根据几何体的三视图想象出原几何体的立体模型,并对原几何体进行有关面积和体积的计算及图形性质的判断等。
以三视图知识为背景的各种新颖试题活跃在近几年新课标高考卷或模拟卷上,已成为一道清新亮丽的风景线。
本文介绍其中一种新题型及其解法,希望能对大家有所帮助或启发。
例1 用单位立方体搭成一个几何体,使它的主视图和俯视图如图所示,则它的体积的最大值和最小值之差为__。
分析本题和后面例题的共同点是:1、题目中的几何体都是由相同的小正方体组合而成;2、问题给出了这个几何体的主视图或俯视图或左视图;3、要确定搭成该几何体所需要小正方体个数等有关问题。
这类问题由于给出的是三视图或部分三视图,因此它所表示的几何体具有不确定性,从而这类试题具有一定的开放性、探索性和挑战性,能很好地考查同学们的空间想象能力和判断能力。
笔者在报纸、杂志上见到很多介绍这类题目的文章,但遗憾的是:只有题目评价和答案,没有解题分析(即使有也实际上被题目评价所取代),没有解题过程、解法小结以及揭示解题规律等学生最为关注的东西。
笔者通过解题发现,这类问题的解决确实不好进行语言表达,是不是只可意会不可言传了呢?为了让学生更好地理解和掌握这类问题的解法,笔者进行了解法探讨,下面向大家介绍这类问题的一种行之有效的方法——俯视图填数法,以期填补这方面的空白。
解用俯视图填数法。
由主视图知该几何体从左到右共有3列每列高度分别为3、2、1,据此在俯视图中从西到东每列对应的格子内分别标上数字3、2、1。
格子内的数字表示在这个位置上立着的小正方体的最多个数。
由主视图知,第一列3个格子内的数至少有一个3,第二列3个格子内的数至少有一个2。
又由俯视图知,每个格子内的数最小是1。
故该几何体最多有个小立方体。
另一方面,第一列最多可少个小立方体,第二列最多可少个小立方体,故最少有个小立方体。
三视图求小正方体的个数

-
第一类:已知三视图,求小正方体的个数
主视图
左视图
俯视图
第一类:已知三视图,求小正方体的个数
主视图
左视图
俯视图
第二类:已知两种视图,求小正方体的个数
左视图
俯视图
1.在俯视图的方格中标出由左视图所看到的小正方体的 最高层数,可以得到这个几何体所需最多块数。
2.将每个横行上的数字保留一个,其余的均改为1, :已知两种视图,求小正方体的个数
1.在俯视图的方格中标出由主视图所看到的小正方体的 最高层数,可以得到这个几何体所需的最多块数。 2. 将每个竖列上的数字留一个,其余均改为1,可以确定 所需小正方体的最少块数
二、由两个视图,求小立方体个数的最大值或最小值
管理员将这堆货箱的三视图画了出来,如图所示.则这堆正
方体小货箱共有(
).
A.11箱 D.8箱
B.10箱
C.9箱
-
分析:由主视图、左视图确定出俯视图中每列、每行的正 方体小货箱的个数,如图7,从而可得仓库里所堆放着的 正方体小货箱的个数,如图8,即为9箱.选C.评点:中考
-
)
A.5
B.6
C.7
D.8
-
分析:观察主视图,从左到右每列中的小正方形的个数和依次为2、1、1, 将数字2、1、1分别填入俯视图中第一、第二、第三列的小正方形中(图1 中带圈的数字) 观察左视图,从左到右每列中的小正方形的个数和依次为1、2,将数字1、 2分别填入俯视图中第一、第二行的小正方形中(图1中不带圈的数字)
三视图中的小正方体计数问题

三视图中的小正方体计数问题通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。
解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。
通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了。
在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数。
以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人。
”一、结果唯一的计数例1 在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。
A.9箱 B.10箱 C.11箱 D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。
由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。
故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。
各行、各列小正方体的个数如俯视图中所表示。
这堆货箱共有3+1+1+2+1+1=9(箱)。
二、结果不唯一的计数例2(“希望杯”数学邀请赛试题)如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是()。
分析:由给出的主视图、俯视图可以看出,该几何体共有2行,3列。
第1列均为1层,第2列最高2层,第3列最高3层。
左视图为A时,第1行、第2行最高均为3层。
几何体中,第1列第1行为1层;第2列第1行、第2行均可为1层或2层,,但不能同时为1层;第3列两行均为3层。
此时,小正方体的个数如俯视图A所示,最少为1+2+1+3+3=10(个),最多为1+2+2+3+3=11个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)已知组合体的主视图与左视图求小正方体的个数.
主视图
左视图
解:最多有 2+1+1+1+1+1+1+1+1=10(个).
21 2
1 22
21 1
11
1
21 1 11 1
解:最少有2+1+1=4(个).
想象的俯视图
巩固练习:
1.由一些大小相同的小正方体组成的几何体的三种视图如图所示,
那么组成几何体的小正方体有( )个.
(A)4
(B)5
(C)6
(D)7
主视图
左视图
俯视图
2.如图是由一些大小相同的小正方体组成的几何体的主视
图和俯视图,则组成这个几何体的小正方体最多块数是
( ),小正方体最少块数是( ).
A.9
Байду номын сангаас
B.10
C.11
D.12
3 311 3
3.
(1)该组合体最高4层 (2)最高部分位于前排中间 (3)该组合体共有9(或10)个小正方体
根据三视图求小正方体的个数
已知由若干个小立方体组成的几何体的三视图,求出组成 这个几何体所需小立方体的个数.这是我们感到困难的问题, 也是中考的热点. 解题的思路是这样的:先根据主视图和左视图确定俯视图 中每个小正方形相应位置上的小立方体的个数,再求出组 成这个几何体所需小立方体的个数
2016.3.15
复习:1(1)已知三视图,求小正方体的个数.
主视图
左视图
俯视图
(2)
(3)
主视图
左视图
俯视图
例1:如图是组合体的三视图,试求该组合体中小正方体的个数.
2
2222ni
najziaaizi22
1 2222222
2
1
22
1 1
1 2
解:1+1+2+1+1=6(个).
例2:在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将 这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有 ( ).
31 33
1 31 2 22 1 1
(左视图)
(主视图)
(俯视图)
A.9箱 B.10箱
C.11箱
D.12箱
解:3+1+1+2+1+1=9.
例3:(1)已知两种视图,求小正方体的个数.
左视图
俯视图
2
2
2
2
1
1
1
俯视图
解:最多有2+2+2+1=7(个), 最少有2+1+1+1=5(个).
1 俯视图
俯视 俯视 俯视