七年级数学期中考试试卷
初中七年级期中数学考试卷
一、选择题(每题4分,共40分)1. 下列数中,有理数是()A. √2B. πC. -3/4D. 无理数2. 若a、b为实数,且a+b=0,则下列选项中正确的是()A. a=0,b=0B. a=0,b≠0C. a≠0,b=0D. a≠0,b≠03. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 5 = 0C. 4x + 2 = 2x + 4D. 2x + 1 = 2x + 34. 下列图形中,轴对称图形是()A. 长方形B. 正方形C. 三角形D. 梯形5. 若等边三角形的边长为a,则其周长为()A. 3aB. 2aC. aD. a/26. 下列函数中,为一次函数的是()A. y = 2x + 3B. y = x^2 + 2C. y = 3x + 4 + 2xD. y = 2x + 5 +x^27. 若等腰三角形的底边长为b,腰长为a,则其面积S为()A. S = (b^2 + a^2) / 2B. S = (b^2 - a^2) / 2C. S = (a^2 + b^2) / 2D. S = (a^2 - b^2) / 28. 下列数中,绝对值最小的是()A. -3B. 0C. 3D. -59. 若a、b、c为等差数列,且a+b+c=12,a+c=8,则b的值为()A. 4B. 5C. 6D. 710. 下列方程中,解为x=3的是()A. 2x + 1 = 7B. 3x - 2 = 7C. 4x + 3 = 7D. 5x - 4 = 7二、填空题(每题4分,共40分)11. -5与5的差是_________。
12. 若a=2,b=-3,则a-b的值为_________。
13. 等腰三角形的底边长为8,腰长为10,则其高为_________。
14. 若y = 2x + 3,当x=2时,y的值为_________。
15. 等边三角形的边长为6,则其面积为_________。
16. 若a、b、c为等差数列,且a+c=12,a+b+c=18,则b的值为_________。
泰山区数学七年级期中试卷
考试时间:120分钟满分:100分一、选择题(每题4分,共40分)1. 下列数中,有理数是()A. √9B. πC. √-16D. √-252. 已知x² = 4,则x的值为()A. ±2B. ±4C. ±1D. ±33. 如果a < b,那么以下不等式中错误的是()A. a - 3 < b - 3B. a + 2 < b + 2C. 2a < 2bD. a² < b²4. 下列代数式中,最简式是()A. 4x²yB. 3a²bC. 2ab²D. 5xy5. 下列图形中,属于轴对称图形的是()A. 矩形B. 正方形C. 圆D. 三角形6. 已知直角三角形的两条直角边分别为3和4,那么斜边的长度为()A. 5B. 6C. 7D. 87. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = 3x²C. y = 4xD. y = 5x - 28. 如果一个数的平方根是2,那么这个数是()A. 4B. -4C. ±4D. 09. 在直角坐标系中,点P(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)10. 下列命题中,正确的是()A. 所有的偶数都是整数B. 所有的奇数都是整数C. 所有的整数都是偶数D. 所有的整数都是奇数二、填空题(每题4分,共40分)11. 5的倒数是__________。
12. 下列数中,无理数是__________。
13. 如果a > b,那么a - b的符号是__________。
14. 下列代数式中,同类项是__________。
15. 已知直角三角形的斜边长为5,一条直角边长为3,那么另一条直角边长为__________。
16. 下列函数中,是反比例函数的是__________。
七年级上册数学期中考试试卷附答案
七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。
甘肃省武威市凉州区五和中学联片教研2024-—2025学年七年级上学期10月期中数学试题(含答案)
2024-2025学年第一学期甘肃省武威市凉州区五和中学联片教研七年级数学期中考试试卷一、选择题(共30分)1.(3分)一种食品,标准质量为每袋250克,用正数表示超过标准质量的克数,用负数表示比标准质量少的克数.质检员抽取一袋进行检测,质量是245克,应记作( )A .克B .克C .克D .克2.(3分)若,那么( )A .B .C .D .3.(3分)数轴上表示数和2的点分别是点A 和点B ,则点A 和点B 的距离是( )A .B .C .2D .64.(3分)设a 是最小的正整数,b 是最大的负整数,c 既不是正数也不是负数,则等于( )A .B .0C .1D .25.(3分)有理数、在数轴上的位置如图所示,则下列式子正确的是( )A .B .C .D .6.(3分)如果4个数的乘积为负数,那么这4个数中负数有( )A .1个或2个B .1个或3个C .2个或4个D .3个或4个7.(3分)某同学在计算时,误将“”看成“”,算出的结果是,则计算的正确结果是( )A .6B .C .4D .8.3分)地球上海洋的面积约为361000000m 2,则用科学计数法表示应为( )A .B .C .D .9.(3分)如图,是一所住宅的建筑平面图(图中长度单位:),则用式子表示这所住宅的建筑面积是( )A .B .C .D .5-5+245+245-a a =0a >0a <0a ≥0a ≤4-6-2-a b c ++1-a b 0a b ->10a +>0a b +<a b >-(16)a -÷÷+12-(16)a -÷6-4-361000000636110⨯736.110⨯83.6110⨯90.36110⨯m 2m mn pq+mp nq+mn mp nq pq+++mp mq np nq+++10.(3分)当时,代数式的值等于2024,那么当时,代数式的值为( )A .2024B .C .2022D .二、填空题(共24分)11.(3分)一袋装面粉标准净重为,质监工作人员为了解这种面粉标准净重和每袋净重的关系,把记为,那么一袋面粉净重记为.12.(3分)如果,那么.13.(3分)定义新运算:对任意有理数a ,b ,都有,例如,那么的值是.14.(3分)已知,则的值为.15.(3分)在,,,,这五个数中任取三个数相乘,其中最小的积是 .16.(3分)满足方程的整数的和为.17.(3分)某种商品原价每件b 元,第一次降价是打8折(按原价的出售),第二次降价每件又减10元,这时的售价用含b 的代数式表示是 元.18.(3分)将,,,,这个自然数,任意分成组,每组两个数,现将每组中的两个数记为,代入中进行计算,求出结果,可得到个值,则这个值的和的最大值为 .三、解答题(共66分)19.(6分)如图,数轴上的相邻两个刻度之间的距离为1个单位长度,点A ,B 表示的数互为相反数.(1)(1分)点C 表示的数是__________.(2)(2分)在数轴上标出原点O 的位置,并将,,0,,在数轴上表示出来.(3)(2分)将(2)中的各数按由小到大的顺序用“”连接起来.20.(12分)计算:(1);(2);(3);(4).21.(5分)将下列各数填在相应的集合里.,,,,,,,,,整数集合: ;正数集合: ;2x =31px qx ++2x =-31px qx ++2024-2022-50kg 51kg 1kg +49kg kg 5x =x =11a b a b ⊕=+112121⊕=+(2)3-⊕|4||5|0x y -+-=x y -21-5-43-25216a a ++-=a 80%123L 10010050a b 2a b a b++-50501421-()1.5--3--<()()1251617-++---()216825÷---⨯531241286⎛⎫⨯-+ ⎪⎝⎭421250215⎛⎫-++⨯-- ⎪⎝⎭3.8-10-4.3207-42π3 1.010010001⋯035⎛⎫-- ⎪⎝⎭{}{}分数集合: ;负数集合: .22.(6分)一天,某快递员骑摩托车沿一条东西方向的街道分发邮件,早晨他从A 地出发,晚上到达B 地.约定向东为正方向,当天的行程记录如下(单位:千米):8,,,,11,.(1)请说明B 地在A 地的哪个方向?它们相距多少千米?(2)如果摩托车每千米耗油升,那么这一天共耗油多少升?23.(6分)先阅读下列解题过程,再解答问题:解方程:.解:当时,原方程可化为,解得;当时,原方程可化为,解得所以原方程的解是或.(1)解方程:;(2)若的最小值为,求的值.24.(6分)已知互为相反数,互为倒数,,求的值.25.(8分)小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.请根据图中的数据(单位:),解答下列问题:(1)用含x 、y 的代数式表示地面总面积;(2)若,,铺地砖的平均费用为80元,那么铺地砖的总费用为多少元?26.(8分)已知,,为有理数,,,,且,.求的值.27.(10分)问题情境:数学活动课上,王老师出示了一个问题:,,,.(1)(3分)利用规律计算:;(2)(3分)问题拓展,求;{}{}9-12-1-3-0.0232x +=30x +≥32x +=1x =-30x +<32x +=- 5.x =-1x =-5x =-3150x --=1x a x -++4a m n 、p q 、2x =32m npq x pq+-+-m 5x =32y =21m a b c 24a =||4b =327c =0ab <0bc >ab bc ca -+111122=-⨯1112323=-⨯1113434=-⨯1114545=-⨯111111223344520212022+++++⨯⨯⨯⨯⨯ 111113355720212023++++⨯⨯⨯⨯(3)(4分)问题解决:求的值.1111112123123412345123420212022+++++++++++++++++++++答案题号12345678910答案ACDBCBDCDD11.;12.;13.;14.;15.;16.;17.;18.19(1)解:点A 、B 表示的数是互为相反数,直线上的相邻两点的距离为1个单位,点A 、B 到原点的距离均为2个单位,点A 在原点左侧,点C 在原点左侧,到原点的距离为4个单位,即点C 表示的数为;(2)解:由题可知,,,在数轴上表示如下:(3)解:由(2)中数轴可知,.20.(1);(2);(3)5;(4)21.整数集合:,,,;正数集合:,,,,,;分数集合:,,,;负数集合:,,,22.(1)B 地在A 地的西方,相距6千米;(2)该天共耗油升.23.(1)解:,移项,得,当,即时,原方程可化为:,解得:,当,即时,原方程可化为:,解得.∴原方程的解是:或.(2)解:的最小值为,表示的点与表示的点的距离为,,,或.1-5±16-1-40-3-(80%10)b -3775∴∴4-()1.5 1.5--=33--=-()1310 1.542--<-<<--<6-18-1325{10-4230}{4.342π3 1.010010001⋯35⎛⎫-- ⎪⎝⎭}{ 3.8- 4.3207-35⎛⎫-- ⎪⎝⎭}{ 3.8-10-207-}0.883150x --=315x -=310x -≥13x ≥315x -=2x =310x -<13x <315x -=-43x =-2x =43x =-1x a x -++ 4∴a 1-4143-+= 145--=-3a ∴=5a =-24.∵互为相反数,互为倒数,,∴,,,当时,原式;当时,原式;故的值为或.25.(1)解:由题意得;(2)解:当,时,(),(元).答:铺地砖的总费用为元.26.,,,,,,,.,,将,,代入中,原式.m n 、p q 、2x =0m n +=1pq =2x =±2x =302121=-⨯+-28=--10=-2x =-()302121=-⨯+--()28=---6=32m npq x pq+-+-10-6634232x y +⨯++⨯()6218x y =++2m 5x =32y =6218x y ++3652182=⨯+⨯+51=2m 51804080⨯=4080 24a =||4b =327c =2a ∴=±4b =±3c = 0ab <0bc >4b ∴=2a =-2a =-4b =3c =ab bc ca -+()()244332=-⨯-⨯+⨯-8126=---26=-27.(1)解:依题意,∵,,,,∴;(2)解:;(3)解:∵,;,;,;……,所以原式.111122=-⨯1112323=-⨯1113434=-⨯1114545=-⨯111111223344520212022+++++⨯⨯⨯⨯⨯ 11111122320212022=-+-+⋯+-112022=-20212022=111113355720212023++++⨯⨯⨯⨯ 11111111111123235257220212023⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⋯+⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111123355720212023⎛⎫=⨯-+-+-++- ⎪⎝⎭ 11122023⎛⎫=⨯- ⎪⎝⎭10112023=11123=+11111322323⨯==-⨯111236=++11111162123434⨯===-⨯11123410=+++111111102204545⨯===-⨯1112342021202220231011=++++++⨯ 111112023101122022202320222023⨯==-⨯⨯1111223344520222023⎛⎫=⨯++++ ⎪⨯⨯⨯⨯⎝⎭ (111111)11223344520222023⎛⎫=⨯-+-+-++- ⎪⎝⎭ (1)1222023⎛⎫=⨯- ⎪⎝⎭202124046=⨯20212023=。
七年级数学期中试卷附答案
一、选择题(每题3分,共30分)1. 下列数中,是有理数的是()A. √2B. πC. 0.1010010001...D. -32. 如果a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. a ≥ bD. a ≤ b3. 下列各数中,是负数的是()A. -1/3B. 0C. √4D. -√94. 下列各数中,是有理数的是()A. √2B. πC. 0.1010010001...D. -35. 下列各数中,是无理数的是()A. √4B. πC. 0.1010010001...D. -36. 如果a = -2,b = 3,那么a + b的值是()A. 1B. -1C. 0D. 57. 下列各数中,是偶数的是()A. 1B. 2C. 3D. 48. 下列各数中,是奇数的是()A. 1B. 2C. 3D. 49. 下列各数中,是质数的是()A. 2B. 3C. 4D. 510. 下列各数中,是合数的是()A. 2B. 3C. 4D. 5二、填空题(每题3分,共30分)11. 1/2 + 2/3 = __________12. (-3) × (-2) × (-1) = __________13. 2 × 3 × 5 × 7 = __________14. 3^2 × 3^3 = __________15. 4^2 ÷ 2^2 = __________16. 0.5 + 0.25 = __________17. 2 - 3/4 = __________18. 5 × 3/4 = __________19. 8 ÷ 2 + 2 = __________20. 3^2 × 2^3 = __________三、解答题(每题10分,共40分)21. 简化下列各式:(1) 3a - 2b + 4a - b(2) 2x + 3y - 5x - 2y22. 解下列方程:(1) 2x - 3 = 7(2) 3y + 5 = 2y + 1023. 判断下列各数是有理数还是无理数:(1) √9(2) 0.1010010001...24. 已知a = 2,b = -3,求a + b的值。
七年级数学期中试卷及答案【含答案】
七年级数学期中试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10cm,腰长为13cm,那么这个三角形的周长是?A. 32cmB. 36cmC. 42cmD. 46cm3. 一个数加上6后,再除以3,结果是5,这个数是?A. 11B. 13C. 15D. 174. 一个长方体的长、宽、高分别是10cm、6cm、4cm,那么这个长方体的体积是?A. 240cm³B. 480cm³C. 720cm³D. 960cm³5. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 圆二、判断题1. 任何两个奇数相加的和都是偶数。
()2. 一个数的平方和它的立方一定相等。
()3. 一个等边三角形的三个角都是60度。
()4. 两个负数相乘的结果是正数。
()5. 一个数的倒数乘以它自己等于1。
()三、填空题1. 2的平方根是______。
2. 一个等腰三角形的两个底角相等,如果一个底角是50度,那么另一个底角是______度。
3. 1千克等于______克。
4. 一个圆的半径是5cm,那么这个圆的面积是______cm²。
5. 一个数的因数是它自己,那么这个数是______。
四、简答题1. 请简述勾股定理的内容。
2. 请解释等差数列的定义。
3. 请解释比例的基本性质。
4. 请简述分数的基本性质。
5. 请解释正方形的性质。
五、应用题1. 一个长方体的长、宽、高分别是12cm、8cm、6cm,求它的体积。
2. 一个等腰三角形的底边长是10cm,腰长是13cm,求这个三角形的面积。
3. 一个数加上7后,再乘以3,结果是60,求这个数。
4. 一个数的2倍加上4等于18,求这个数。
5. 一个数的3/4等于15,求这个数。
六、分析题1. 小明有10个苹果,他吃了一半,然后又吃了一个,请问小明还剩下几个苹果?2. 一个长方体的长、宽、高分别是10cm、6cm、4cm,如果长、宽、高都增加2cm,那么新长方体的体积是多少?七、实践操作题1. 请画出一个正方形,并标出它的对角线。
江苏省灌云高级中学2023-2024学年七年级上学期期中考试数学试卷(含解析)
2023-2024学年度第一学期期中监测灌云高级中学七年级数学试题考试时间:100分钟;总分:150分1.答题前填写好自己的姓名、班级、考号等信息.2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一、单选题(每题3分,共计24分)1. 计算的结果为()A. 1B.C. 3D.【答案】B解析:解:,故选B.2. 在下列各数,π,0,,,,(每两个2之间依次增加一个数6)中,无理数的个数有()A4个 B. 3个 C. 2个 D. 1个【答案】C解析:是循环小数,是有理数;π是无限不循环小数,是无理数;0是有理数;是分数,是有理数;是小数,是有理数;是小数,是有理数;(每两个2之间依次增加一个数6)是无限不循环小数,是无理数,无理数的个数有2个,故选:C.3. 下列各式运用等式的性质变形,正确的是().A. 若,则B. 若,则C. 若,则D. 若,则【答案】C解析:解:A、若,则,原变形错误,不符合题意;B、若,,则,原变形错误,不符合题意;C、若,则,原变形正确,符合题意;D、若,,则,原变形错误,不符合题意,故选:C.4. 下列运算中,正确的是()A. B.C. D.【答案】D解析:A、,故A错误;B、,故B错误;C、,故C错误;D、,故D正确.故选:D.5. 2023年歌曲《罗刹海市》席卷全球,据统计截止八月中旬,播放量突破惊人的亿,数字用科学记数法表示为( )A. B. C. D.【答案】C解析:解:.故选:C.6. 若,则的值()A. 1B. 或1C. 0D. 或3【答案】D解析:解:当时,,;当时,,;当时,,;当时,,;综上所述,的值为或3.故选:D.7. 如图,将,,,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在分别表示其中的一个数,则的值为()A. B. C. 0 D. 5【答案】A解析:解:根据题意得:,,,,故选:A.8. 如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是( )A. 0B. 1C. 2D. 3【答案】D解析:因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)-7p格,这时P是整数,且使0≤k(k+1)-7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)-7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤10,设k=7+t(t=1,2,3)代入可得,k(k+1)-7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即这枚棋子永远不能到达的角的个数是3.故选D.第Ⅱ卷(非选择题)二、填空题(每题3分,共计30分)9. 若数在数轴上所对应的点在原点的右边且到原点的距离等于5,那么这个数等于__________.【答案】5解析:解:数在数轴上所对应的点在原点的右边且到原点的距离等于5,这个数,故答案为:5.10. 若单项式和是同类项,则的值为_________.【答案】4解析:解:∵单项式和是同类项,∴,,解得:,∴.故答案为:4.11. 若是关于x的一元一次方程,则m的值是________.【答案】解析:解:∵是关于x的一元一次方程,∴,,解得:或,,∴.故答案是:.12. 已知在如图数值转换机中的输出值,则输入值________.【答案】解析:解:根据题意得,∴解得.故答案为:.13. 已知有理数a,b,c,d,e,且互为倒数,c,d互为相反数,e的绝对值为2,则式子___________.【答案】或解析:解:∵互为倒数,c,d互为相反数,e的绝对值为2,∴,,,∴当时,;当时,;故答案为:或.14. 现定义一种新运算,对于任意有理数,,,满足,若对于含未知数式子满足,则________.【答案】2解析:∵∴,去括号,可得:,移项,合并同类项,可得:,系数化为1,可得:.故答案为:.15. 如图,将直径为1个单位长度的圆形纸片上的点A放在数轴的处,纸片沿着数轴向左滚动一周,点A到达了点的位置,则此时点表示的数是________.【答案】##解析:解:由题意得,点表示的数是,故答案为:.16. 如果,为定值,关于的一次方程,无论为何值时,它的解总是1,则______.【答案】1解析:解:将代入方程,,,,,由题意可知,,,,,,故答案为:1.17. 若,则________.【答案】解析:解:当时,∵,∴,即,当时,∵,∴,∴,∴,故答案为:.18. 如图,将一个边长为1的正方形纸片分割成7个图形,图形①面积是正方形纸片面积的,图形②面积是图形①面积的2倍的,图形③面积是图形②面积的2倍的,…,图形⑥面积是图形⑤面积的2倍的,图形⑦面积是图形⑥面积的2倍.计算的值为________【答案】解析:解:根据题意得:图形①的面积是,图形②的面积是,图形③的面积是,…,图形⑥的面积是,图形⑦的面积是,∴.故答案为:三、解答题19. 计算题①②③④【答案】①5,②26,③9,④4详解】①原式;②原式;③原式;④原式20. 解方程:(1);(2).【答案】(1)(2)【小问1详解】解:去括号得:,移项合并同类项得:,解得:;【小问2详解】解:,去分母得:,去括号得:,移项合并同类项得:,解得:.21. (1)先化简再求值:,其中.(2)先化简,再求值:,其中,.【答案】(1),;(2),4解析:解:(1),当,时,原式;(2),,,当,时,原式,,.22. 出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午的行程记录如下:(单位:千米),,,,,,(1)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(2)若汽车的耗油量为升/千米,油价为元/升,这天下午共需支付多少油钱?【答案】(1)将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米(2)这天下午共需支付油费元【小问1详解】解:(千米),答:将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米.【小问2详解】解:(元),答:这天下午共需支付油费元.23. 已知,.(1)若m为最小的正整数,且,求;(2)若的结果中不含一次项和常数项,求的值.【答案】(1)(2)1【小问1详解】解:∵m为最小的正整数,且,∴,故,则;【小问2详解】解:.∵的结果中不含一次项和常数项,∴,解得:,∴.24. 列方程解应用题:某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天20元生活补助费,现有三种修理方案:、由甲单独修理;、由乙单独修理;、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?【答案】(1)该中学库存960套桌椅(2)方案c省时省钱【小问1详解】解:(设该中学库存x套桌椅,则,解得.答:该中学库存960套桌椅.【小问2详解】解:设a、b、c三种修理方案的费用分别为元,则,,,综上可知,选择方案c更省时省钱.答:方案c省时省钱.25. 关于x的整式,当x取任意一组相反数m与时,若整式的值相等,则该整式叫做“偶整式”;若整式的值互为相反数,则该整式叫做“奇整式”.例如:是“偶整式”,是“奇整式”.(1)若整式A是关于x的“奇整式”,当x取1与时,对应的整式值分别为,,则________;(2)对于整式,可以看作一个“偶整式”与“奇整式”的和.①这个“偶整式”是________,“奇整式”是________;②当x分别取,,,0,1,2,3时,这七个整式的值之和是________.【答案】(1)0 (2)①,;②35【小问1详解】解:∵整式A是关于x的“奇整式”,当x取1与时,对应的整式值分别为,,∴,∴,故答案为:0;【小问2详解】解:①,∵,,∴“偶整式”,是奇整式”,故答案为:,;②由于是偶整式,是奇整式,∴当x分别取,,,0,1,2,3时,的值分别为10,5,2,1,2,5,10;当x取互为相反数的值时的值也互为相反数,即和为0,∴当x分别取,,,0,1,2,3时,的所有值的和为0,,∴这七个整式的值之和是;故答案为:35.26. 将整数1,2,3……2009按下列方式排列成数表,用斜十字框“×”框出任意的5个数,如果用a,b,c,d,m表示类似“×”形框中的5个数.其中.(1)记,若S最小,那么m=__________,若S最大,那么m=__________.(2)用等式表示a,b,c,d,m这5个数之间的关系并说明理由.(3)若.求m的值.(4)框出的五个数中,a,b,c,d的和能否等于588吗?若能,求出m的值,若不能,请说明理由.【答案】(1)17,2009(2)(3)(4)能,【小问1详解】(1)由题意可得,∴∵∴当时S最小,此时,∵,∴,∴,∵,∴当时,S最大,故答案为:17,2009;【小问2详解】解:∵,∴,,∴;【小问3详解】解:∵,∴,,∵,∴,∴∴;【小问4详解】解:若,则,解得,∵,∴是第三列的数,∴框出的五个数中,a,b,c,d的和能等于588,且.27. 已知a,b满足,a,b分别对应数轴上的A,B两点.(1)直接写出__________,__________;(2)若点P从点A出发,以每秒3个单位长度的速度向数轴正方向运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的2倍?(3)数轴上还有一点C对应的数为30.若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动.P点到达C点后,再立刻以同样的速度返回,运动到终点A,点Q 达到点C后继续向前运动.求点P和点Q运动多少秒时,P,Q两点之间的距离为4?【答案】(1)4,16(2)或8(3)点P和点Q运动4或8或9或11秒时,P、Q两点之间的距离为4【小问1详解】解:∵,∴,,∴,,故答案为:4,16;【小问2详解】解:设运动时间为,由题意得,或,解得或8,∴运动时间为或8秒时,点P到点A的距离是点P到点B的距离的2倍;【小问3详解】解:设点P和点Q运动t秒时,P、Q两点之间的距离为4,如图,当点Q在点P右侧,,解得,如图,当点P在点Q的右侧,,解得,如图,当点P从点C返回时,且点P在Q的右侧,,解得,如图,当点P返回时,点Q在点P的右侧,,解得,即点P和点Q运动4或8或9或11秒时,P、Q两点之间的距离为4,此时点Q表示的数为20、24、25、27.。
数学七年级期中试卷【含答案】
数学七年级期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个等腰三角形的底边长为10厘米,腰长为13厘米,那么这个三角形的周长是多少?A. 36厘米B. 42厘米C. 26厘米D. 46厘米4. 有一个长方形的长是10厘米,宽是5厘米,那么这个长方形的面积是多少平方厘米?A. 15平方厘米B. 50平方厘米C. 30平方厘米D. 25平方厘米5. 下列哪个数是合数?A. 31B. 37C. 41D. 39二、判断题(每题1分,共5分)1. 任何一个三角形的内角和都是180度。
()2. 两个质数相乘,其积一定是合数。
()3. 等边三角形的三条边都相等。
()4. 1是既是质数又是合数。
()5. 一个正方形的周长是它的四倍边长。
()三、填空题(每题1分,共5分)1. 一个正方形的边长是6厘米,那么它的面积是____平方厘米。
2. 如果一个数的因数只有1和它本身,那么这个数是____。
3. 一个等腰三角形的底边长是8厘米,腰长是5厘米,那么这个三角形的周长是____厘米。
4. 下列数中,____是最大的质数。
5. 一个长方形的长是10厘米,宽是5厘米,那么这个长方形的面积是____平方厘米。
四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。
2. 请解释什么是等腰三角形。
3. 请说明如何计算一个长方形的面积。
4. 请解释什么是因数。
5. 请简述三角形内角和的性质。
五、应用题(每题2分,共10分)1. 一个正方形的边长是8厘米,请计算它的面积。
2. 如果一个数的因数只有1和它本身,那么这个数是什么?3. 一个等腰三角形的底边长是10厘米,腰长是13厘米,请计算这个三角形的周长。
七年级期中考试数学试卷及答案
ACDB中考试 数学试卷一、选择题(3×10=30)1.在下图中, ∠1,∠2是对顶角的图形是( )2.下列图中,哪个可以通过左边图形平移得到( )3.如图, 不能推出a ∥b 的条件是.. )A.∠1=∠3 B 、∠2=∠4C.∠2=∠3 D 、∠2+∠3=1800 4.下列语句不是命题的是( )A. 明天有可能下雨B.同位角相等C.∠A 是锐角D. 中国是世界上人口最多的国家 5.下列长度的三条线段能组成三角形的是( )A、1, 2, 3 B、1, 7, 6 C、2, 3, 6 D.6, 8, 106.点C在轴的下方, 轴的右侧, 距离轴3个单位长度, 距离轴5个单位长度, 则点C的坐标为( ) A、(-3, 5) B、(3, -5) C、(5, -3) D、(-5, 3)7.一辆汽车在笔直的公路上行使, 两次拐弯后, 仍在原来的方向上平行前进, 那么两次拐弯的角度是( )A.第一次右拐50°, 第二次左拐130°B.第一次左拐50°, 第二次右拐50°C.第一次左拐50°, 第二次左拐130°D.第一次右拐50°, 第二次右拐50°8.如图,能表示点到直线(或线段)距离的线段有.. ) A. 2条 B.3条 C.4条 D.5条9.如图两条非平行的直线AB ,CD 被第三条直线EF.截,交点为PQ ,那么这条直线将所在平面分成..)A. 5个部分B.6个部分C.7个部分D. 8个部分 10.以下叙述正确的有. )①对顶角相等 ②同位角相等 ③两直角相等 ④邻补角相等⑤有且只有一条直线垂直于已知直线 ⑥三角形的中线把原三角形分 成面积相等的两个三角形A 2121B 21C 21D4 3 21 c b a 第3题A、2个 B、3个 C、4个 D、5个 二、填空题(3×10=30)11.如图直线AB、CD、EF相交于点O, ∠AOC的邻补角......________.若∠AOC=500,则∠COB.....0 12.剧院里5排2号可以用(5,2)表示,则7排4号..... 表示.13.两条平行线被第三条直线所截.如果同旁内角之比为1:3,则这两个角分别为________和________.14.两个角的两边互相平行, 其中一个角30°, 则是另一个角的度数....... 15.已知, xy ﹤0, 则点P在坐标平面的位置是第________象限 16.若直线a ⊥b,a ∥c,则c___b.17.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为___________cm 18.点A距离每个坐标轴都是4个单位长度, 则点A的坐标为__________.19.如图, 天地广告公司为某商品设计的商品图案, 图中阴影部分是彩色, 若每个小长方形的面积都是1, 则彩色的面积为 。
七年级上册数学期中考试试卷及答案
七年级上册数学期中考试试题一、单选题1.下面四个数中比﹣5小的数是()A .1B .0C .﹣4D .﹣62.如果a 与2020-互为倒数,那么a 的值是()A .2020B .2020-C .12020D .12020-3.下列各式计算结果为负数的是()A .﹣(﹣1)B .|﹣(+1)|C .﹣|﹣1|D .|1﹣2|4.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为()A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里5.下列去括号正确的是()A .﹣(a+b ﹣c )=a+b ﹣cB .﹣2(a+b ﹣3c )=﹣2a ﹣2b+6cC .﹣(﹣a ﹣b ﹣c )=﹣a+b+cD .﹣(a ﹣b ﹣c )=﹣a+b ﹣c 6.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式7.有理数a ,b ,c 在数轴上的位置如图所示,则a b b c +--的值为()A .2a b c --B .a c +C .2a b c--+D .a c--8.已知21a b -+的值是1-,则()3224a b a b --+的值是()A .4-B .10-C .0D .2-9.如图,A 、B 、C 、D 是数轴上的四个整数所对应的点,且1B A C B D C -=-=-=,而数m 在A 与B 之间,数n 在C 与D 之间,若3m n +-=,且A 、B 、C 、D 中有一个是原点,则此原点可能是()A .A 点或D 点B .B 点或D 点C .A 点D .D 点10.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求422a bx cdx ++-的值是()A .10B .-10C .20D .-20二、填空题11.用四舍五入法按照要求对0.43295取近似值,精确到千分位是________.12.若25-m x y 与n x y 是同类项,则m n +=__________.13.某超市销售的一种水果原价为m 元,因为销量不好,降价10%进行销售,一段时间后销量良好,决定提价20%,提价20%后这种水果的价格为________.14.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.15.对于有理数a ,b 定义一种新运算:*24a b a b =-+-.则()3*4*2-⎡⎤⎣⎦的值是________.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(100)个图案中有小正方形的个数是________.17.如果水库水位上升2m 记作+2m ,那么水库水位下降6m 记作_____.三、解答题18.计算:(1)()()1536---+.(2)()948149-÷⨯.(3)()157362612⎛⎫--⨯- ⎪⎝⎭.(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭.19.化简:(1)()()223222a a a a ++-+.(2)()2243324y y y y ⎡⎤---+⎣⎦.20.先化简,再求值:()()225214382a a a a+---+,其中3a =-.21.已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位.(1)根据题意,m =________.(2)求()202022a b mxy +++-的值.22.某公园中一块草坪的形状如图中的阴影部分.()1用整式表示草坪的面积;()2若2a =米,5b =米,求草坪的面积.23.已知一个三角形的第一条边长为3a b +,第二条边比第一条边短2a b -,第三条边比第二条边长2a b +.(1)则第二边的边长为________,第三条的边长为________.(2)用含a ,b 的式子表示这个三角形的周长,并化简.(3)若a ,b 满足()2870a b -+-=,求这个三角形的周长.24.小丽暑假期间参加社会实践活动,从某批发市场以每个a 元的价格购进50个手机充电宝,然后每个加价b 元到市场出售.(以下结果用含a ,b 的式子表示)(1)全部售出50个手机充电宝的总销售额为多少元?(2)由于开学临近,小丽在成功售出30充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②如果不采取降价销售,并且全部售出这50个充电宝,小丽将比实际销售多盈利多少元?25.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”;若C 到A 、B 的距离之和为6,则C 叫做A 和B 的“幸福中心”.(1)如图1,点A 表示的数为1-,则A 的幸福点C 所表示的数应该是________.(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为2-,若点C 就是M 和N 的幸福中心,则C 所表示的所有数中,整数之和为________.(3)如图3,A 、B 、C 为数轴上三点,点A 所表示的数为1-,点B 所表示的数为4,点C 所表示的数为8,点P 从点C 出发,以每秒2个单位的速度向左运动,同时,点M ,N 分别从点A ,B 以每秒1个单位的速度向右运动,经过多少秒时,点P 是M 和N 的幸福中心?26.已知A 点的初始位置位于数轴上表示1的点,现对点A 做如下移动:第1次向左移动3个单位长度至1A 点,第2次从1A 点向右移动6个单位长度至2A 点,第3次从2A 点向左移动9个单位长度至3A 点,第4次从3A 点向右移动12个单位长度至4A 点,…,依此类推.设点i A (1,2,3,i =⋅⋅⋅)对应的数为i a (1,2,3,i =⋅⋅⋅).(1)点5A 对应的数5a =________,点6A 对应的数6a =________.(2)第n 次移动到点n A ,求n a 的表达式(用含n 的式子表示).(3)是否存在第m 次移动到的点m A 到原点的距离为2020?如果存在,请求出m 的值,若不存在,请说明理由.参考答案1.D【解析】【详解】解:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选:D.2.D【解析】【分析】根据倒数的概念求解可得.【详解】解:∵1()(2020)1 2020-⨯-=,∴-2020的倒数是1 2020 -,故选:D.【点睛】本题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.3.C【解析】【分析】将各式的结果计算出来,再根据小于零的数是负数,可得答案.【详解】A.﹣(﹣1)=1,1是正数,故A错误;B.|﹣(+1)|=1,1是正数,故B错误;C.﹣|﹣1|=﹣1,﹣1是负数,故C正确;D.|1﹣2|=|-1|=1,1是正数,故D错误.故选:C.【点睛】本题考查了正数和负数.掌握正数和负数的分辨,明确小于零的数是负数,能够正确化简各数是解题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.【点睛】本题考查去括号的知识,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变.6.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.7.D 【解析】【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出a+b ,b-c 的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形可知,b <c <0<a ,且|b|>|a|>|c|,∴a+b <0,b-c <0,∴|a+b|−|b−c|=-(a+b )+(b-c )=-a-b+b-c =-a-c .故选:D .【点睛】本题考查了整式的加减,数轴与绝对值的性质,根据数轴判断出a 、b 、c 的大小关系以及a+b ,b-c 的正负情况是解题的关键,也是难点.8.D 【解析】【分析】先化简多项式,再变形已知条件,最后整体代入求值.【详解】解:3(2)24a b a b --+3624a b a b=--+2a b =-,21a b -+ 的值是1-,211a b ∴-+=-.即22a b -=-.∴原式2=-.故选:D .【点睛】本题考查了整式的加减,掌握整式加减的运算法则是解决本题的关键.9.A 【解析】【分析】先根据图形和已知条件找出各线段长度,然后由3m n +-=推测原点位置.【详解】解:由“B-A=C-B=D-C=1且数m 在A 与B 之间,数n 在C 与D 之间”可以得出:1AB BC CD ===3AD ∴=①当原点是B 点或C 点时,3m n +-<与已知3m n +-=相矛盾,故原点不可能是B 点或C 点;②当原点在A 点或D 点且A m D n -=-时,3m n m n +-=+=,综上可知:数轴原点可能是A 点或D 点.故选A .【点睛】本题主要考查了数轴和绝对值,解决本题的关键在于理解绝对值的几何意义.10.C 【解析】【分析】根据相反数的定义,倒数的定义,绝对值的定义求出a+b=0,cd=1,2x =±,分两种情况代入数值计算即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,∴a+b=0,cd=1,2x =±,当x=2时,422a bx cdx ++-=16+4-0=20,当x=-2时,422a b x cdx ++-=16+4-0=20,故选:C .【点睛】此题考查已知式子的值求代数式的值,正确掌握相反数的定义,倒数的定义,绝对值的定义是解题的关键.11.0.433【解析】【分析】把万分位上的数字9进行四舍五入即可.【详解】解:0.43295≈0.433(精确到千分位).故答案是:0.433.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.12.3.【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n ,m 的值,再相加即可.【详解】∵-5x 2y m 和x n y 是同类项,∴n=2,m=1,∴m+n=2+1=3.13.1.08m 【解析】【分析】直接利用降价与提价的变化得出变化后实际价格.【详解】解:由题意可得:m (1-10%)(1+20%)=1.08m (元).故答案为:1.08m .【点睛】本题主要考查了列代数式,正确表示出变化后价格是解题关键.14.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.15.-7【解析】【分析】先计算(-3)*4得出其结果,再代入[(-3)*4]*2列式计算即可.【详解】解:∵(-3)*4=-(-3)+2×4-4=3+8-4=7,∴[(-3)*4]*2=7*2=-7+2×2-4=-7+4-4=-7,故答案为:-7.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.16.397【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形.【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形,第(2)个图案中有4115⨯+=个小正方形,第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=.故答案为:397.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形.17.﹣6m .【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位上升2m ,记作+2m ,∴水位下降6m ,记作﹣6m .故答案为﹣6m .【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.18.(1)6-;(2)16-;(3)33;(4)13【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)根据有理数的乘除运算法则计算即可;(3)根据乘法的分配律计算即可;(4)根据有理数的乘方以及混合运算,计算即可;【详解】解:(1)()()()153615366---+=-++=-(2)()94448181164999-÷⨯=-⨯⨯=-(3)()15715736(36)(36)(36)1830213326122612⎛⎫--⨯-=⨯--⨯--⨯-=-++= ⎪⎝⎭(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭121(39)(63=--⨯+⨯-12112(63=--⨯⨯-413=-+13=【点睛】此题考查了有理数的运算,涉及了加减、乘除以及乘方,熟练掌握有理数的运算法则是解题的关键.19.(1)254a +;(2)35y -.【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)先去小括号,再去中括号,然后合并同类项即可求出答案.【详解】解:(1)原式2232224a a a a =++-+254a =+;(2)原式224(3324)y y y y =--++2243324y y y y =-+--35y =-.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.20.233413a a -+-,142-【解析】【分析】先将原式去括号合并同类项得到最简结果,再将a 的值代入计算即可求出值.【详解】解:原式2252112328a a a a =+--+-,233413a a =-+-,当3a =-时,原式23(3)34(3)13=-⨯-+⨯--2710213=---142=-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(1)2或-2;(2)5.【解析】【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可.【详解】解:(1)∵m 到原点距离2个单位,∴m=2或-2,故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2,当m=2时,()202022a b m xy +++-=22+0+(-1)2020=4+1=5;当m=-2时,()202022a b m xy +++-=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++-的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.(1)草坪的面积为18ab 平方米;()2草坪的面积是180平方米.【解析】【分析】(1)草坪的面积=大长方形的面积-两个空白长方形的面积,应该根据图中数据逐一进行计算,然后求差;(2)将a 2=米,b 5=米代入求值即可.【详解】(1)(1.5b+2.5b )(a+2a+a+2a+a )-2.5b×2a×2=18ab ,即草坪的面积为18ab 平方米;(2)当a 2=米,b 5=米时,18ab 1825180=⨯⨯=(平方米),答:草坪的面积是180平方米.【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.23.(1)23a b +,44a b +;(2)98a b +;(3)128【解析】【分析】(1)根据题意列出算式即可求出答案;(2)列出算式后,根据整式的运算法则即可求出答案;(3)先求出a 与b 的值,然后代入原式即可求出答案.【详解】解:(1)第二条边为(3)(2)3223a b a b a b a b a b +--=+-+=+,第三条边为:(23)(2)23244a b a b a b a b a b +++=+++=+,故答案为:23a b +,44a b +;(2)该三角形的周长为:(3)(23)(44)a b a b a b +++++32344a b a b a b=+++++98a b =+;(3)∵()2870a b -+-=,且80a -≥,()270b -≥,∴80a -=,70b -=,∴8a =,7b =,∴该三角形的周长为:9887128⨯+⨯=.【点睛】本题考查整式加减的应用,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型,也考查了绝对值和平方的非负性.24.(1)全部售出50个手机充电宝的总销售额为50(a+b )元(2)①她的总销售额是(46a+46b )元;②小丽将比实际销售多盈利(4a+4b )元.【解析】【分析】(1)根据总销售额=销售单价×数量列出式子即可.(2)①总销售额等于未打折的30个充电宝的销售额+(50-30)个打8折的充电宝的销售额,列出算式并化简即可;②用(1)中的销售额减去(2)①中的销售额,计算即可.【详解】解:(1)由题意可知,每个手机充电宝的售价为(a+b )元,∴全部售出50个手机充电宝的总销售额为:50(a+b )元.(2)①由题意得:30(a+b )+(50-30)(a+b )×0.8=30a+30b+16a+16b=(46a+46b )元,∴她的总销售额是(46a+46b )元;②由题意得:50(a+b )-46(a+b )=(4a+4b )元,∴小丽将比实际销售多盈利(4a+4b )元.【点睛】本题考查了列代数式在成本利润问题中的应用,明确成本利润问题的基本数量关系是解题的关键.25.(1)2或4-;(2)7;(3)76秒或196秒【解析】【分析】(1)根据幸福点的定义即可求解,注意分类讨论;(2)先根据题意可求得6MN =,由此再结合幸福中心的定义即可求解;(3)分两种情况讨论:①P 在N 的右边;②P 在M 的左边,由此可以得出结论.【详解】解:(1)132-+= ,134--=-,A ∴的幸福点C 所表示的数应该是2或4-,故答案为:2或4-;(2)4(2)6MN =--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心,故C 所表示的整数可以是2-或1-或0或1或2或3或4,21012347∴--+++++=,故答案为:7;(3)设经过x 秒时,点P 是M 和N 的幸福中心,由题意可得:点P 表示的数为82x -,点M 表示的数为1x -+,点N 表示的数为4x +,∴4(1)56MN x x =+--+=<,又∵点P 是M 和N 的幸福中心,∴点P 在点M 的左边或者在点N 的右边,①当点P 在N 的右边时,有82(4)82(1)6x x x x --++---+=,解得:76x =;②当点P 在M 的左边时,有4(82)(1)(82)6x x x x +--+-+--=,解得:196x =.答:当经过76秒或196秒时,点P 是M 和N 的幸福中心.【点睛】本题考查了一元一次方程的应用、数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间⨯速度,认真理解新定义,学会运用分类讨论思想是解决本题的关键.该类题型主要考查学生对新知识的接受和应用能力.26.(1)8-;10;(2)()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)1346【解析】【分析】(1)按照题目,找出已知规律,推算即可;(2)根据数轴上点所对应的数的变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对第奇数个以及第偶数个分别探究,找出其中的规律(相邻两数都相差3),进而写出表达式就可解决问题;(3)利用(2)中的结论,代入求值.【详解】解:(1)第1次点A 向左移动3个单位长度至点1A ,则1A 表示的数,132-=-;第2次从点1A 向右移动6个单位长度至点2A ,则2A 表示的数为264-+=;第3次从点2A 向左移动9个单位长度至点3A ,则3A 表示的数为495-=-;第4次从点3A 向右移动12个单位长度至点4A ,则4A 表示的数为5127-+=;第5次从点4A 向左移动15个单位长度至点5A ,则5A 表示的数为7158-=-;第6次从点5A 向右移动18个单位长度至点6A ,则6A 表示的数为81810-+=;故答案是:8-;10;(2)由(1)可知,当移动次数n 为奇数时,点n A 在原点的左侧,1369123n a n-+-+--=…1(36)(912)[3(2)3(1)]3n n n=+-++-+++--+--…11332n n-=+⨯-312n +=-,当移动次数n 为偶数时,点n A 在原点的右侧,1369123(1)3n a n n-+-+---+=...1(36)(912)[3(1)3]n n =+-++-+++--+ (13)2n=+⨯322n +=,综上所述,()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)根据题意,得当移动次数n 为奇数时,3120202m +-=-,解得:40393m =(不符合题意,舍去),当移动次数n 为偶数时,3220202m +=,解得:1346m =,∴存在第m 次移动到的点m A 到原点的距离为2020,此时m 的值为1346.。
2024-2025学年初中沪科版七年级数学上学期期中模拟考试卷
2024-2025学年七年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪科2024七上第1~3.3章(有理数+整式及其加减+一元一次方程及其应用)。
5.难度系数:0.65。
第一部分(选择题共40分)一、选择题(本大题共10个小题,每小题4分,满分40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列各数中,负数的是()A .|-2025|B .()2025+-C .2025D .()2025--2.下列方程中,解是1x =-的方程是()A .10x +=B .10x -=C .112x -=D .()210x x --=3.点A 为数轴上表示2-的点,将点A 沿数轴移动4个单位长度得到点B ,点B 表示的数为()A .2B .6-C .2或6-D .2-4.下列几位同学的方程变形中,正确的是()A .小高B .小红C .小英D .小聪5.用四舍五入法,分别按要求取0.17326的近似值,下列结果中错误的是()A .0.2(精确到0.1)B .0.17(精确到0.01)C .0.174(精确到0.001)D .0.1733(精确到0.0001)6.若7x =,9y =,且x y >则x y +的值为()A .2-或16-B .2或16C .2-或16D .2±或16±8.有理数a ,b 在数轴上的位置如图所示,则下列结论正确的是()A .a−b>0B .a+b<0C .ab>0D .a+2>09.已知多项式ax bx +合并后的结果为2x ,则下列关于,a b 的叙述一定正确的是()A .2a b x ===B .2a b -=C .2a b ==D .2a b +=10.一根1m 长的小木棒,第一次截去它的,第二次截去剩余部分的,第三次再截去剩余部分的,如此截下去,第10次后剩余的小木棒的长度是()A .10314m⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦B .1034m⎛⎫ ⎪⎝⎭C .9314m⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦D .934m⎛⎫ ⎪⎝⎭第二部分(非选择题共110分)二、填空题(本大题共4小题,每小题5分,满分20分)13.张方和哥哥按相同的路径步行前往新华书店,已知张方每步比哥哥少0.1米,他们的运动手环记录显示,张方去新华书店的路上走了4800步,哥哥走了4000步,请问张方和哥哥每步各走多少米?设张方每步走x 米,则可列方程为.14.设221,22x a ax A B +-=+=,a 为常数,x 的取值与A 的对应值如下表:x …1…A…4…小明观察上表并探究出以下结论:①5a =;②当4x =时,7A =;③当1x =时,1B =;④若A B =,则4x =.上面结论中正确结论的序号是.三、解答题(本大题共9个小题,共90分,其中15~18题每题8分,19~20题每题10分,21~22题每题12分,第23题14分.解答应写出文字说明,证明过程或演算步骤)(10分)如果汽车以每小时40千米的速度从甲地开往乙地,正好在预定时间内到达.实际上汽车行驶了3小时后,速度减慢为30千米/小时,因此比预定时间迟到(12分)若()2530x y -++=,求222x y x -+(12分)用“*”定义一种新运算:对于任何有理数(3)已知23120x x +-=,求代数式3212060x x -+的值.2024-2025学年七年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
部编七年级数学期中试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。
A. √2B. πC. 0.1010010001…D. -√92. 下列运算正确的是()。
A. (-3)² = 9B. (-3)³ = -27C. (-3)⁴ = -81D. (-3)⁵ =2433. 已知 a > b,下列不等式中正确的是()。
A. a + 1 > b + 1B. a - 1 < b - 1C. a / 2 > b / 2D.a / 2 <b / 24. 下列函数中,是二次函数的是()。
A. y = x² + 3x + 2B. y = 2x³ - 5x² + 3C. y = x² + 2x + 1D. y = 3x² - 4x + 55. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()。
A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)6. 下列命题中,正确的是()。
A. 平行四边形的对角线相等B. 矩形的对角线相等C. 菱形的对角线互相垂直 D. 正方形的对角线互相平分7. 下列图形中,是轴对称图形的是()。
A. 正方形B. 等腰三角形C. 矩形D. 圆8. 下列等式中,正确的是()。
A. sin²x + cos²x = 1B. tan²x + 1 = sec²xC. cot²x + 1 =csc²x D. sin²x + tan²x = 19. 下列函数中,在定义域内单调递增的是()。
A. y = x²B. y = -x²C. y = 2xD. y = -2x10. 下列运算正确的是()。
A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C.(a + b)³ = a³ + 3a²b + 3ab² + b³ D. (a - b)³ = a³ - 3a²b + 3ab² - b³二、填空题(每题3分,共30分)11. 若 |x - 3| = 5,则 x 的值为________。
人教版七年级上册数学期中考试试卷含答案
人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。
七年级上册数学期中考试试卷及答案
七年级上册数学期中考试试题一、单选题1.在0.15-、 1.3+、0、32-这四个数中,最小的数是()A .0.15-B . 1.3+C .0D .32-2.计算()32-,正确结果是()A .-6B .-8C .6D .83.1x =-是下列哪个方程的解()A .56x -=B .1262x +=C .314x +=D .440x +=4.2||3-的相反数是()A .32B .23-C .32-D .235.下列去括号正确的是()A .-2(a +b)=-2a +bB .-2(a +b)=-2a -bC .-2(a +b)=-2a -2bD .-2(a +b)=-2a +2b6.下列说法中正确的是()A .单项式235xy 的系数是3,次数是2B .单项式15ab -的系数是15,次数是2C .12xy -是二次多项式D .多项式243x -的常数项是37.已知a 是三位数,b 是两位数,将a 放在b 的左边,所得的五位数是()A .abB .a b+C .10a b+D .100a b+8.代数式227y y ++的值是6,则2485y y +-的值是()A .9B .9-C .18D .18-9.如果a >0,b <0,且|a|<|b|,则下列正确的是()A .a+b <0B .a+b >0C .a+b=0D .ab=010.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b (a b >),则()-a b 等于()A .7B .6C .5D .4二、填空题11.如果80m 表示向东走80m ,那么60m -表示________.12.中国领水面积约为370000km 2,用科学记数法表示370000为_______.13.若单项式3m ab 和4-n a b 是同类项,则m n +=_________.14.已知|a|=5,|b|=7,且|a+b|=a+b ,则a−b 的值为___________.15.近似数63.2010⨯精确到____________位.16.若()223310a b ++-=,则ab =__________.17.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:______________.18.如图所示,用火柴棍拼成一排由三角形组成的图形,如果图形中包含2个三角形就需要5根火柴棍,如果图形中包含8个三角形就需要______根火柴棍,如果图形中包含n 个三角形就需要____根火柴棍.(用含n 的代数式表示)三、解答题19.计算()()16252435+-++-20.解方程:23(1)12(10.5)-+=-+x x 21.计算:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦22.先化简,再求值.224[62(42)]1x y xy xy x y ----+,其中12x =-,1y =.23.若多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,求222m mn n -+的值.24.有理数a 、b 在数轴上的对应点位置如图所示(1)用“<”连接0、a -、b -、1-;(2)化简:||2||||-+--a a b b a .25.某出租车驾驶员从公司出发,在东西向的路上连续接送5批客人,行驶路程记录分别为:+5,+2,﹣4,﹣3,+10(规定向东为正,向西为负,单位:千米)(1)接送完第5批客人后,该驾驶员在公司的什么方向?距离公司多少千米?(2)若该出租车每千米耗油0.2升,则在这个过程中共耗油多少升?(3)若该出租车的计价标准为行驶路程不超过3千米收费10元,超过3千米的部分按每千米1.8元收费,在这过程该驾驶员共收到车费多少?26.观察下列各算式:221342,13593,1357164+==++==+++==.(1)试猜想:135720052007++++++ 的值?(2)推广:13579(21)(21)++++++-++ n n 的和是多少?27.一个跑道由两个半圆和一个长方形组成.已知长方形的长为a 米,宽为b 米.(1)用代数式表示该跑道的周长C .(2)用代数式表示该跑道的面积S .(3)当100a =,40b =时,求跑道的周长()π3C ≈.参考答案1.D【解析】【分析】根据有理数比较大小的方法求解即可.正数大于负数,两个负数比较大小,绝对值大的反而小.【详解】解:∵正数大于负数,又∵3 0.15<2--,∴3 0.15>2 --,∴这四个数中,最小的数是3 2-.故选:D.【点睛】此题考查了有理数比较大小,解题的关键是熟练掌握有理数比较大小的方法.正数大于负数,两个负数比较大小,绝对值大的反而小.2.B【解析】【分析】根据乘方的性质计算,即可得到答案.【详解】()328-=-故选:B.【点睛】本题考查了乘方的知识;解题的关键是熟练掌握乘方的性质,从而完成求解.3.D【解析】【分析】把1x=-分别代入四个选项的方程中,能够使得方程左右两边相等的选项即为所求.解:A 、把1x =-代入方程56x -=得156--=,即66=-不成立,故不符合题意;B 、把1x =-代入方程1262x +=得1262-+=,即362=不成立,故不符合题意;C 、把1x =-代入方程314x +=得314-+=,即24-=不成立,故不符合题意;D 、把1x =-代入方程440x +=得440-+=,即00=成立,故符合题意;故选D .【点睛】本题主要考查了一元一次方程的解,解题的关键在于能够熟练掌握一元一次方程解的定义.4.B 【解析】【分析】利用相反数的定义,先列式,再化简绝对值即可.【详解】−2-3的相反=-2-3=-23.故选择:B .【点睛】本题考查相反数与绝对值问题,掌握相反数与绝对值概念是关键.5.C 【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A.原式=−2a−2b ,故本选项错误;B.原式=−2a−2b ,故本选项错误;C.原式=−2a−2b ,故本选项正确;D.原式=−2a−2b ,故本选项错误;故选C.【点睛】考查去括号法则,当括号前面是“-”号时,把括号去掉,括号里的各项都改变正负号.6.C【分析】根据单项式与多项式的概念进行判断,即可得出正确结论.【详解】解:A .单项式235xy 的系数是35,次数是3,故本选项错误,不符合题意;B .单项式15ab -的系数是15-,次数是2,故本选项错误,不符合题意;C .12xy -是二次二项式,故本选项正确,符合题意;D .多项式243x -的常数项是3-,故本选项错误,不符合题意,故选:C .【点睛】本题主要考查了单项式与多项式的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,熟练掌握单项式与多项式的概念是解决本题的关键.7.D 【解析】【分析】组成五位数后,a 是原来的100倍,b 不变,相加即可.【详解】解:a 原来的最高位是百位,组成五位数后,a 的最高位是万位,是原来的100倍,b 的大小不变,那么这个五位数应表示成100a+b .故选:D .【点睛】本题主要考查列代数式,关键是看哪个数变大了,只把那个数变化即可.8.B 【解析】【详解】∵227y y ++=6,∴22y y +=-1,=4×(-1)-5=-9,故选B.9.A【解析】【分析】根据a>0,b<0,且|a|<|b|,可得a<-b,即a+b<0.【详解】∵a>0,b<0,且|a|<|b|,∴a<-b,即a+b<0.故选A.【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a<-b.10.A【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差.【详解】设重叠部分面积为c,a-b=(a+c)-(b+c)=16-9=7,故选A.【点睛】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.11.向西走60米【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负来表示;【详解】80m表示向东走80m,规定向东为正,则-60m表示向西走60米.故答案为向西走60米.【点睛】本题主要考查了正数和负数的概念,掌握正数和负数的概念是解题的关键.12.3.7×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n 为整数)中n的值,由于370000有6位,所以可以确定n=6-1=5.【详解】370000=3.7×105,故答案为3.7×105.【点睛】此题考查科学记数法—表示较大的数,解题关键在于掌握其一般表示形式.13.2【解析】【分析】根据同类项的概念求解.【详解】ab和4-n a b是同类项,解:∵单项式3m∴n=1,m=1,+=2,∴m n故答案为:2.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.−2或−12.【解析】【分析】根据绝对值的性质求出a 、b 的值,然后代入进行计算即可求解.【详解】∵|a|=5,|b|=7,∴a=5或−5,b=7或−7,又∵|a+b|=a+b ,∴a+b ⩾0,∴a=5或−5,b=7,∴a−b=5−7=−2,或a−b=−5−7=−12.故答案为−2或−12.【点睛】此题考查绝对值,解题关键在于掌握其性质.15.万【解析】【分析】3.20×106精确到0.01×106位即万位.【详解】近似数3.20×106=3200000精确到万位,故答案为:万.【点睛】本题主要考查近似数,对于用科学记表示的数,精确到哪一位是需要识记的内容,经常会出错.16.12-【解析】【分析】由绝对值和平方的非负性结合已知条件求得a 、b 的值,再代入ab 中计算即可.【详解】解:∵223(31)0a b ++-=,∴3123a b =-=,∴311232ab =-⨯=-.故答案为12-.17.22(1)(1)21n n n n n --=+-=-【解析】【分析】观察式子即可得出结论.【详解】解:观察式子可发现22(1)(1)21n n n n n --=+-=-,故答案为:22(1)(1)21n n n n n --=+-=-.【点睛】本题考查规律型,观察式子得到规律是解题的关键.18.1721n +##12n+【解析】【分析】一个三角形时,将左边一根固定,后面每增加一个三角形就加2根火柴棍,据此可分别计算出有8个及n 个三角形时,火柴棍数量.【详解】有1个三角形时,需要123+=根火柴棍,有2个三角形时,需要1225+⨯=根火柴棍,有3个三角形时,需要1327+⨯=根火柴棍,有4个三角形时,需要1429+⨯=根火柴棍,……有8个三角形时,需要18217+⨯=根火柴棍,有n 个三角形,需要1221n n +⨯=+根火柴棍.故答案为:17,21n +.【点睛】本题考查了图形的变化规律,找出图形之间的联系是关键,并将得出的运算规律解决问题,属中档题.19.-20【解析】【分析】先根据有理数加法的交换律和结合律,得到()()16242535++-+-⎡⎤⎣⎦,再利用有理数加法法则,计算即可求解.【详解】解:()()16252435+-++-()()16242535=++-+-⎡⎤⎣⎦()406020=+-=-.【点睛】本题主要考查了有理数的加法运算,能利用有理数加法的交换律和结合律简化运算是解题的关键.20.x =0【解析】【分析】根据解一元一次方程的基本步骤依次去括号、移项、合并同类项、系数化为1即可.【详解】解:去括号,得:2﹣3x ﹣3=1﹣2﹣x ,移项,得:﹣3x+x =1﹣2﹣2+3,合并同类项,得:﹣2x =0,系数化为1,得:x =0.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.21.4165-.【解析】【分析】先计算乘方,小数化分数,把除化乘,计算小括号的乘方,再计算小括号减法,计算中括号乘法,去括号,进行有数加法即可.【详解】解:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎢⎥⎝⎭⎣⎦,=4312581()542⎡⎤⎛⎫---+-⨯⨯- ⎪⎢⎥⎝⎭⎣⎦,=312581()52⎡⎤⎛⎫---+-⨯- ⎪⎢⎥⎝⎭⎣⎦,=21258()52⎡⎤---+⨯-⎢⎥⎣⎦,=12585⎛⎫---- ⎪⎝⎭,=12585-++,=4165-.【点睛】本题考查含乘方的有理数混合运算,掌握有理数混合运算顺序为先乘法,再乘除,最后加减,有括号先计算小括号,再算中括号,最后大括号是解题关金.22.2523x y xy +-,114-.【解析】【详解】解:原式=224[684]1x y xy xy x y --+-+=224[24]1x y xy x y --+-+,=224241x y xy x y +-++=2523x y xy +-,把12x =-,1y =代入上式得:原式=211115()12()13224⨯-⨯+⨯-⨯-=-.23.1,25.【解析】【分析】先根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩,解方程组,然后分类代入代数式计算即可.【详解】解:∵多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,∴2430m n ⎧+=⎨-=⎩,解得23m n =±⎧⎨=⎩,当2,3m n ==时,222222223341291m mn n -+=-⨯⨯+=-+=;当2,3m n =-=时,()()2222222233412925m mn n -+=--⨯-⨯+=++=.【点睛】本题考查多项式的项数与次数,方程组,代数式求值,根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩是解题关键.24.(1)﹣1<﹣b <0<﹣a ;(2)2a+b 【解析】【分析】(1)先根据相反数的意义在数轴上分别表示出﹣a ,﹣b ,所对应的点,再根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,由此即可比较出0,﹣a ,﹣b ,﹣1的大小关系;(2)首先根据数轴可得a <0,a+b <0,b ﹣a >0,由此可得|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,然后根据整式加减的运算法则化简即可.【详解】解:(1)由题意可得:由此可得:﹣1<﹣b <0<﹣a .(2)由数轴可得:a <0,a+b <0,b ﹣a >0,∴|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,∴|a|﹣2|a+b|﹣|b﹣a|=﹣a+2(a+b)﹣(b﹣a)=﹣a+2a+2b﹣b+a=2a+b.【点睛】(1)此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.(2)此题还考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(3)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(4)此题还考查了整式的加减运算,要熟练掌握,解答此类问题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.25.(1)接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)4.8升.(3)68元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.(3)根据题意列出算式即可求出答案.【详解】解:(1)5+2+(−4)+(−3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)(5+2+|−4|+|−3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5−3)×1.8]+10+[10+(4−3)×1.8]+10+[10+(10−3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.n+.26.(1)1008016;(2)()21【分析】(1)根据2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,由此可求135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭(2)根据规律可得一般形式,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,从而可以求解推广.【详解】解:(1)2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,∴135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭=1008016;(2)一般形式2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,由此可以发现()()221211357921(21)12n n n n ++⎛⎫+++++⋅⋅⋅-++==+ ⎪⎝⎭,【点睛】本题主要考查了数字类规律,解题的关键在于能够根据题意发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭.27.(1)()2πa b +米(2)2π44b ab +平方米(3)320米【分析】(1)跑道的周长是两条“直道”和两条“弯道”的长度和;(2)长方形的面积与圆的面积和即可;(3)将a=100,b=40代入(1)中的代数式计算即可.(1)两条“直道”的长为2a 米,两条“弯道”的长为πb 米,因此该跑道的周长()2πC a b =+(米),答:该跑道的周长C 为()2πa b +米.(2)两个半圆的面积为22ππ24b b ⎛⎫⨯= ⎪⎝⎭(平方米),长方形的面积为ab (平方米),因此跑道的面积为22ππ444ab b b ab=+=+(平方米).(3)当100a =,40b =时,2π20040π200120320a b +=+≈+=(米),答:当100a =,40b =时跑道的周长C 约为320米.【点睛】本题考查列代数式和代数式求值,正确的列代数式是求值的前提.。
2024-2025学年初中七年级上学期数学期中考及答案(人教版)
2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。
七年级期中数学试卷及答案
七年级期中数学试卷及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.下列哪个数是质数?A.21B.37C.39D.49答案:B2.一个等腰三角形的底边长是10cm,腰长是13cm,那么这个三角形的周长是多少?A.32cmB.36cmC.46cmD.52cm答案:B3.下列哪个数是偶数?A.101B.102C.103D.104答案:D4.一个长方形的长是8cm,宽是4cm,那么这个长方形的面积是多少?A.12cm²B.24cm²C.32cm²D.48cm²答案:D5.下列哪个数是奇数?A.111B.112C.113D.114答案:C二、判断题(每题1分,共20分)1.2是质数。
()答案:对2.一个等边三角形的三个角都是60度。
()答案:对3.15是偶数。
()答案:错4.一个正方形的四条边都相等。
()答案:对5.0是奇数。
()答案:错三、填空题(每空1分,共10分)1.1+2+3++100的和是______。
答案:50502.一个正方形的边长是6cm,那么它的面积是______cm²。
答案:363.两个质数相乘,它们的积是______。
答案:合数4.一个长方形的长是10cm,宽是5cm,那么它的周长是______cm。
答案:305.下列哪个数既是偶数又是质数?______。
答案:2四、简答题(每题10分,共10分)1.请问什么是质数?答案:一个大于1的自然数,除了1和它本身外,不能被其他自然数整除的数。
2.请问什么是等腰三角形?答案:有两条边相等的三角形。
五、综合题(1和2两题7分,3和4两题8分,共30分)1.有一个长方形的长是10cm,宽是5cm,求这个长方形的面积和周长。
答案:面积是50cm²,周长是30cm。
2.有一个等腰三角形,底边长是12cm,腰长是13cm,求这个三角形的周长。
答案:周长是38cm。
山西省晋中市榆次区2023-2024学年七年级上学期期中考试数学试卷(含解析)
榆次区2023-2024学年第一学期期中学业水平质量监测题(卷)一、选择题(在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1. 有理数的相反数是()A. B. C. 2 D.答案:C解析:解:的相反数是,故选:C2. 用一个平面去截如图所示的几何体,若截面形状是长方形,则被截几何体不可能是()A. B. C. D.答案:D解析:解:A、正方体的截面可以是长方形,不符合题意;B、棱柱的截面可以是长方形,不符合题意;C、圆柱的横截面或纵截面中有一个为长方形,不符合题意;D、圆锥有一个平面和一个曲面,截面最多有三条边,截面不可能是长方形,符合题意.故选:D.3. 中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.公元3世纪,我国数学家刘徽在“正负术”的注文中指出“今两算得失相反,要令正、负以名之.”就是说,对两个得失相反的量,要以正、负加以区别.如果盈利120元记作元,那么亏本80元记作()A. 元B. 元C. 元D. 元答案:A解析:解:∵盈利120元记作元,∴亏本80元记作元,故选:A.4. 小明将“明”“德”“乐”“学”“尚”“美”六个字分别写在某个正方体的表面上,如图是它的一种展开图,则在原正方体中,与“德”字所在面相对的面上的汉字是()A. 乐B. 学C. 尚D. 美答案:B解析:解:由正方体的展开图可知,与“德”字所在面相对的面上的汉字是“学”,故选:B.5. 平遥牛肉是山西省平遥县特产,中国国家地理标志产品.现有4袋平遥原味一品香牛肉,每袋以为标准,超过的克数记为正数,不足的克数记为负数,以下数据是记录结果,其中最接近标准质量的是()A. B. C. D.答案:C解析:解:∵∴记录结果为的这袋实际克数最接近标准克数.故选C.6. 下列计算正确的是()A. B. C. D.答案:D解析:解:A、与不是同类项,所以不能合并,故本选项不合题意;B、,计算错误,故本选项不合题意;C、与不是同类项,不能合并,故本选项不合题意;D、,计算正确,符合题意;故选:D.7. 第19届亚洲运动会于2023年9月23日在杭州奥体中心体育场隆重开幕,杭州奥体中心体育场,又称“大莲花”,总建筑面积约21.6万平方米.数据“21.6万”用科学记数法表示为()A. B. C. D.答案:C解析:解:21.6万,小数点向左移动5位,得,因此21.6万.故选C.8. 下列说法中①棱柱的侧面可以是正方形,也可以是三角形;②棱柱的所有棱长都相等;③长方体、正方体都是四棱柱;④五棱锥共有6个面;⑤六棱柱有8个面,12条棱,12个顶点.正确的有()A. 1个B. 2个C. 3个D. 4个答案:B解析:解:根据棱柱的结构特征:棱柱的各个侧面都是平行四边形,不可能是三角形,故①错误;棱柱的所有侧棱长都相等,故②错误;长方体、正方体都是四棱柱,故③正确;五棱锥共有6个面,故④正确;六棱柱有8个面,18条棱,12个顶点,故⑤错误;所以正确的由2个.故选:B.9. 某商场书包原价为m元,在9月份开学之季,商家开展优惠活动,现售价为元,则下列说法中,符合题意的是()A. 原价减30元后再打8折B. 原价打8折后再减30元C. 原价打2折后再减30元D. 原价减30元后再打2折答案:B解析:解:原价为m元,而则代表在原有的基础之上乘了,即打了8折,代表在原有基础之上减少了30元,∴代表的是原价打8折后再减30元,故选:B.10. 近年来出现了二维码,二维码是一种黑白相间的图形,通常一个二维码有1000个小方格组成,将每个小方格分别涂成黑色或白色从而产生不同的二维码.每天会生成许多二维码,有人也许会问,二维码会有用尽的一天吗?同学们想想将一个二维码的每个小方格任意涂成黑色或白色,则可生成不同的二维码数量是()A. 种B. 种C. 种D. 种答案:D解析:解:由题意得:每个小方格都有种不同的涂法,故个小方格有种涂法.故可生成不同的二维码数量是种故选:D二、填空题11. 比较大小:-3___________-2(填“<”或“>”).答案:<解析:解:∵3>2,∴-3<-2.故答案为:<.12. 流星落下时,在天空留下充满幻想的线,其中蕴含的数学事实是______.答案:点动成线解析:解:流星落下时,在天空留下充满幻想的线,其中蕴含的数学事实是点动成线,故答案为:点动成线.13. 已知单项式与的和是单项式,则______.答案:解析:解:由题意得:,,∴,,故答案为:14. 若,则______.答案:9解析:解:,故答案为:15. “整体思想”是数学中的一种重要思想方法,它广泛应用于数学运算中.例如:已知,,则,利用上述思想方法计算:若,.则______.答案:解析:解:====,∵,,代入得,故答案为:.三、解答题(解答应写出文字说明,证明过程或演算步骤)16. 下面是小宇同学进行有理数运算的过程,请认真阅读并完成相应任务.解:…第一步…第二步…第三步.…第四步任务一:(1)填空:①以上运算步骤中,第一步依据的运算律是______;②第______步开始出现错误,错误的原因是______;任务二:(2)请直接写出正确的计算结果.答案:任务一:①乘法分配律②二;去括号时,括号前是负号,去括号后,括号内的项没有变号;任务二:解析:解:任务一:(1)①乘法分配律②二;去括号时,括号前是负号,去括号后,括号内的项没有变号故答案为:①乘法分配律②二;去括号时,括号前是负号,去括号后,括号内的项没有变号;任务二:原式17. 数学学习小组进行“几何体的拼搭”活动,其中勤学小组的同学用几个大小相同的小立块搭成如图所示的几何体,请同学们认真观察,在相应的网格中画出从正面和上面所看到的几何体的形状图.答案:见解析解析:解:根据题意可得:正面看、从上面看,分别如下图所示:18. 计算:(1)(2)(3)答案:(1)(2)(3)小问1解析:小问2解析:小问3解析:.19. 先化简,再求值.,其中,.答案:;解析:解:.当,时,原式20. “十一”黄金周期间,晋中某景区8天假期中每天游玩的人数变化如下表(用正数表示比前一天多的人数,用负数表示比前一天少的人数):日期29日30日1日2日3日4日5日6日变化/万人(1)若9月28日的游客人数为1万人,则9月30日的游客人数为______万人;(2)与9月28日相比,10月6日的游玩人数是减少了还是增多了?变化了多少?答案:(1)(2)10月6日的游玩人数增加了,增加了万人小问1解析:解:由表格可知:9月30日的游客人数为(万人)故答案为:小问2解析:解:(万人),答:与9月28日相比,10月6日的游玩人数增加了,增加了0.7万人21. 为了全面提高学生的综合素养,启迪学生的数学思维,某校初一年级开展了“数学思维导图”评比活动,设立一、二、三等奖共50人,其中二等奖人数比一等奖人数的2倍多10人.设一等奖的人数为x人.(1)请用含x的代数式表示:二等奖人数是______人,三等奖人数是______人(结果化为最简);(2)若一等奖奖品的单价为18元,二等奖奖品的单价为16元,三等奖奖品的单价为12元,请用含x的代数式表示该校本次购买所有奖品需要的总费用,并将结果化为最简;(3)在(2)基础上,若一等奖的人数为10人,则该校本次购买所有奖品共花费多少元?答案:(1),(2)(3)780元小问1解析:一等奖的人数为人.一、二、三等奖共50人,二等奖人数比一等奖人数的2倍多10人,二等奖有人,三等奖有人,故答案为:,;小问2解析:由题意可得,购买50件奖品所需的总费用为:元,即购买50件奖品所需的总费用为元;小问3解析:当时,,答:该校购买50件奖品共花费780元.22. 请仔细阅读小明的数学日记,并按要求完成相应任务.x年x月x日晴整式的加减我们已经学过整式的加减,知道整式的加减可以归结为合并同类项,而合并同类项实际就是合并同类项的系数.因此,进行整式的加减,关键就是把各同类项的系数进行加减.今天在课外阅读时我又学习了一种新的解决整式加减问题的方法.具体做法如下:如果把两个整式的各同类项对齐,我们就可以像小学列竖式进行加减法一样,来进行整式的加减运算了.怎样把同类项对齐呢?其实,只要将参加运算的整式按同一字母进行降幂排列(按同一字母的指数从大到小的顺序排列),凡缺项则留出空位或添零,然后让常数项对齐(即右对齐)即可.例如:计算时,可以用下列竖式计算:∴.我尝试用上述方法计算:.∴.任务:(1)上述小明同学的尝试过程出现了错误,错误的原因是______;(2)请帮助小明写出正确的尝试过程.答案:(1)列竖式时没有将同类项对齐(2)见解析小问1解析:解:列竖式时没有将同类项对齐;小问2解析:解:;∴.23. 数学家华罗庚说过“数缺形时少直观,形少数时难入微”.数轴帮助我们把数和点对应起来,体现了数形结合思想,借助它可以解决我们数学中的许多问题,请同学们和“创新小组”的同学一起利用数轴进行以下探究活动:(1)如图1,在数轴上点A表示的数是______,点B表示的数是______,A,B两点的距离是______;(2)在数轴上,若将点B移动到距离点A两个单位长度的点C处,则移动方式为______;(3)如图2,小明将刻度尺放在了图1的数轴下面,使刻度尺上的刻度0对齐数轴上的点A,发现此时点B 对应刻度尺上的刻度,点E对应刻度,则数轴上点E表示的数是______.答案:(1);5;8(2)将点B向左移动6个单位长度或向左移动10个单位长度(3)小问1解析:解:由数轴得:点A表示的数是,点B表示的数是5,则A,B两点的距离为:,故答案为:;5;8.小问2解析:将点B向左移动6个单位长度或10个单位长度,故答案为:将点B向左移动6个单位长度或向左移动10个单位长度.小问3解析:由(1)得:,(),则数轴上1个单位长度对应刻度尺为,,点E距离点A两个单位长度,故点E所表示的有理数为:,故答案为:.。
七年级数学期中试卷可打印
一、选择题(每题2分,共20分)1. 下列数中,既是整数又是分数的是()A. 3.5B. 0.5C. 5.5D. 2.52. 下列各数中,有理数是()A. √16B. √-4C. πD. 无理数3. 下列各式中,正确的有()A. 2^3 = 8B. 3^2 = 9C. 4^2 = 16D. 5^2 = 254. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b > 0C. a - b < 0D. a + b < 05. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,6)6. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长是()A. 20cmB. 24cmC. 26cmD. 28cm7. 下列函数中,y是x的一次函数的是()A. y = 2x + 5B. y = 3x^2 + 2C. y = 5/x + 3D. y = 2√x + 48. 下列方程中,解为整数的是()A. x^2 - 4x + 3 = 0B. x^2 - 6x + 9 = 0C. x^2 - 5x + 6 = 0D. x^2 - 7x + 10 = 09. 下列图形中,不是平行四边形的是()A. 正方形B. 长方形C. 菱形D. 三角形10. 下列事件中,一定发生的是()A. 抛掷一枚硬币,得到正面B. 抛掷一枚骰子,得到偶数C. 从一副52张的扑克牌中抽取一张,得到红桃AD. 从0到10的自然数中随机抽取一个数,得到7二、填空题(每题2分,共20分)1. 3/4 + 2/5 = ______2. 5 - (-3) = ______3. (-2)^3 = ______4. 2x - 5 = 3 的解是 x = ______5. √25 = ______6. 4x + 3 = 19 的解是 x = ______7. x^2 = 9 的解是 x = ______8. 3x + 5 > 14 的解集是 x > ______9. 5cm - 3cm = ______10. 12 ÷ 4 = ______三、解答题(每题10分,共30分)1. 解下列方程组:\[\begin{cases}2x + 3y = 8 \\3x - 2y = 5\end{cases}\]2. 已知三角形ABC中,∠A = 45°,∠B = 60°,求∠C的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阿拉尔市托喀依乡学校2015—2016年度第一学期期中考试卷
七 年级 数学
(考试时间:100 分钟 满分:100 分)
一、选择题(本大题共8题,每小题3分,共24分。
每题给出四个答案,其中只有一个符合
题目的要求,请把选出的答案编号填在答卷上。
) 1.-3的相反数是( ) A .-3 B . 3 C .13 D .-1
3
2. -2
3
的倒数是( ) A .32 B .23 C .-32 D .13
3.已知矩形周长为20cm ,设长为x cm ,则宽为 ( )
A. x -20
B. 2022
x - C.x 220- D. x -10 4.下列化简,正确的是( )
A .-(-3)= -3
B .-[-(-10)]= -10
C .-(+5)=5
D .-[-(+8)]= -8
5.据统计,截止5月31日上海世博会累计入园人数为8030000.这个数字用科学记数法表
示为
A .8×106
B .8.03×107
C .8.03×106
D .803×104
6.绝对值大于2且小于5的所有整数的和是
A .0
B .7
C .14
D .28
7.若3<a<4时,化简|3||4|a a -+-=
A .2a-7
B .2a-1
C .1
D .7
8.已知代数式x +2y +1的值是3,则代数式2x +4y +1的值是
A .4
B .5
C .7
D .不能确定 二、填空题(本大题共7题,每小题3分,共21分)
1.如果-20%表示减少20%,那么+6%表示_____________。
2.单项式-2
5
xy 的系数是_____________。
3.表示“x 与4的差的3倍”的代数式为_____________。
4.若
15423-+-n m b a b a 与的和仍是一个单项式,则m +=n ____________。
5.化简: =-++-)7()35(x y y x _______________.
6.用四舍五入法取近似数0.00356(精确到0.0001)_____________。
7.M 、N 是数轴上的二个点,线段MN 的长度为2,若点M 表示的数为﹣1,则点N 表示
的数为_____________。
三、判断题(本大题共5题,每小题3分,共15分)
1.一个正数的绝对值是它的相反数。
( )
2.同号两数相加,取相同的符号,并把绝对值相加。
( )
3.在n a 中,a 叫做指数。
( ) 4. 单项式-42ab 和72b a 同类项。
( ) 5.单项式12
ah 的系数是2,次数是1
2。
( )
四、计算题(本大题有2组题, 共24分,要求写出计算步骤)
1.耐心算一算(每小题6分,共12分)
(1)(-3)+(-4)-(+11)-(-19)
(2)3212(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦
班级
2.(本题有2小题,每小题6分,满分12分)
(1)化简 22
2
2
(43)(143)x y x y x y x y --+-
(2)求值 3x -42x +7- 3x +22x +1,其中x =-3
五、解答题(本大题共2题,每小题8分,共16分) 1.先画一条数轴,然后把下面的数在数轴上表示出来。
2, 13, 0, -2
3
, 1.5, -3.5
2. 已知2(3)2
x y +-与互为相反数,z 是绝对值最小的有理数,求
()y
x y xyz ++的值.。