单片机的交通灯控制

合集下载

基于单片机的交通灯设计答辩问题

基于单片机的交通灯设计答辩问题

基于单片机的交通灯设计答辩问题
在基于单片机的交通灯设计中,可能会遇到以下一些问题需要解决:
1. 如何实现不同车辆的优先级控制?
在道路上,不同车辆的种类和车速不同,因此需要对不同车辆进行优先级控制。

可以通过设置不同颜色和闪烁频率的LED灯来实现。

比如,红色LED表示停止,黄色表示减速或警告,绿色表示行进。

同时可以设置不同的延迟时间,以确保高优先级车辆能够更快地通过。

2. 如何实现多路口的协调控制?
在城市交通中,往往会有多个路口需要同时进行交通灯控制。

这时,需要考虑如何协调各个路口的控制,避免出现拥堵或交通事故。

可以使用网络通信技术,将各个路口的单片机控制器连接起来,通过相互协调的方式来实现交通流的顺畅。

3. 如何实现紧急情况的处理?
在交通中,常常会发生突发事件,比如车祸或火灾等。

这时,需要及时切换交通灯状态,为应急车辆让路。

可以设置特殊的输入端口,接收来自应急车辆的信号,并立即切换交通灯状态,确保应急车辆优先通过。

总之,基于单片机的交通灯设计需要考虑到各种复杂情况,对于控制器和硬件设备的选型、电路设计、程序编写等方面都需要进行充分的测试和验证。

只有通过不断地优化和改进,才能实现一个高效、稳定的交通灯系统。

基于单片机的交通信号灯的控制系统设计

基于单片机的交通信号灯的控制系统设计

基于单片机的交通信号灯的控制系统设计交通信号灯是城市交通管理中非常重要的一部分,它通过灯光信号来指示道路上车辆和行人的行动。

基于单片机的交通信号灯控制系统可以实现对交通信号的自动控制,并能根据实际交通情况和时间变化进行灵活调整,提高道路交通的效率和安全性。

1.系统设计需求分析:
-实现红、黄、绿三种信号灯的循环显示,时间可设定;
-根据实际交通情况和时间变化,动态调整红、黄、绿三种信号灯的显示时间;
-配备感应器,检测行人和车辆的存在,根据情况自动调整信号灯时间。

2.系统硬件设计:
-选择合适的单片机,如AT89C52;
-使用LED灯作为信号灯显示器件;
-选择适当的传感器,如红外传感器用于检测行人,光敏电阻用于检测车辆;
-选择适当的电路板进行连接。

3.系统软件设计:
-编写单片机的控制程序,实现红、黄、绿三种信号灯的循环显示;
-设定初始的信号灯显示时间;
-利用定时器和中断控制程序,实现对信号灯显示时间的控制,可以根据设定的时间进行调整;
-设定感应器的检测程序,当检测到行人或车辆时,调整信号灯显示时间。

4.系统工作流程:
(1)初始化系统,设定初始的信号灯显示时间;
(2)通过定时器和中断控制程序实现循环显示红绿黄信号灯;
(3)检测行人和车辆的存在,根据情况调整信号灯显示时间;
(4)循环执行步骤2和步骤3,实现自动控制交通信号灯。

5.系统优化方案:
-根据实际交通数据和研究结果,优化信号灯显示时间;
-利用流量监测技术,实时监测道路交通情况,进一步优化信号灯的控制策略;
-可以加入数据通信模块,将采集到的交通数据上传到中央交通管理系统,实现更智能化的交通信号灯控制。

单片机红绿灯程序完整版

单片机红绿灯程序完整版

通灯设计交通灯设计方案:1:实现东西路----南北路红绿灯的交通指示。

2:东西路灯变化----红绿黄一南北路灯变化----绿黄红> T3:红灯延时时间---25S绿灯延时时间---20S黄灯延时时间一3S4:数码管显示:红灯---前20S不显示,只在最后5S开始倒计时显示。

绿灯---前15S不显示,只在最后5S开始倒计时显示。

黄灯---3S倒计时显示(若东西路为黄灯,南北路为红灯,那么南北绿的数码管也显示3S)。

5:交通应急事件处理:利用中断分别实现东西路---南北路的交通应急事件处理。

6:延时程序的使用:用循环延时和定时器计时的方法。

注:P1.0---北路绿灯,P1.1--北路黄灯,P1.2---北路红灯cP1.3--东路绿灯,P1.4---东路黄灯,P1.5----东路红灯。

【交通灯流程图】开始延时20秒5秒倒计时结束其他灯不变南北路绿灯亮,红,黄灯灭东西路红灯亮,绿,黄灯灭南北路绿灯数码管开始倒计时5秒南北路绿灯灭,黄灯亮且数码管开始倒计时3秒东西路红灯——数码管开始倒计时3秒3秒倒计时结束延时25秒5秒倒计时结束东西路绿灯亮,黄灯,红灯灭南北路红灯亮,黄灯,绿灯灭东西路数码管开始倒计时5秒其他灯不变东西路绿灯灭,黄灯亮且数码管开始倒计时3秒南北路红灯一一数码管开始倒计时3秒3秒倒计时结束程序如下:ORG 0000HLJMP LOOPORG 000BHLJMP WZDOORG 0013HLJMP WZD1ORG 0030HLOOP:MOV R3,#5MOV R4,#5MOV R2,#20l=LIfc=ER;定时器0中断,实现交通应急事件;下载可编辑亮 oMOV SP,#70H MOV IE,#85HMOV TMOD,#01H ;置T0为工作方式1MOV TH0,#3CH;置T0定时初值50msMOV TL0,#0B0HCLRTF0SETBTR0;启动定时器T0SETB P1.1 ;东---红灯亮,北---绿灯亮SETB P1.2CLR P1.0SETB P1.3SETB P1.4CLR P1.5ACALL DEL30SACALL Y ELLOW1 ; 北---绿灯转黄灯,东---红灯亮 ACALL DEL3S ;延时后北---黄灯火SETB P1.0;东:红灯火,绿灯亮,北:黄灯火,红灯CLR P1.2SETB P1.4SETB P1.5ACALL DEL55S ; 北---红灯不变,东---绿灯转黄灯ACALL Y ELLOW2ACALL DEL3SSJMP LOOPYELLOW1: ; 北---绿灯转黄灯,东---红灯不变SETB P1.0SETB P1.2CLR P1.1SETB P1.3CLR P1.5SETB P1.4RETYELLOW2: ; 东---绿灯转黄灯,北---红灯不变SETB P1.0SETB P1.1CLR P1.2SETB P1.3CLR P1.4RETWZD0: ;实现南北路交通应急事件CLR P1.0 ;(南北路保持畅通,东西路停止通行)SETB P1.1SETB P1.2SETB P1.3SETB P1.4CLR P1.5JNB P3.2,WZD0RETIWZD1: ;实现东西路交通应急事件CLR P1.3 ;(东西路保持畅通,南北路停止通行)CLR P1.2SETB P1.1SETB P1.0SETB P1.4SETB P1.5JNB P3.3,WZD1RETIDEL30S: J红绿灯延时DEL25S:JNB TF0QEL25S ;查询50ms到否CLR TFOMOV TH0,#3CH ;恢复T0定时初值50msMOV TL0,#0B0HDJNZ R2,DEL25S ;判断1s到否?未到继续状态MOV R2,#20 ;置50ms计数初值DJNZ R4,DEL25S ;状态1维持25s取数延时DEL5S:5MOV R2,#6DEL5:MOV A,R2ACALLST ;取数MOV P0,A ;实现数码管显示ACALL DEL1S ;每隔1S减1DJNZ R2,DEL5RETDEL3S:MOV R2,#4HDEL3:MOV A,R2ACALL ST ;取数MOV P2,AMOV P0,A ;数码管显示ACALL DEL1SDJNZ R2,DEL3RETDEL55S:ACALL DEL20SMOV R2,#6 ;倒计时5S DEL55:ACALL DEL1SMOV A,R2ACALLSTMOV P2,A ;数码管显示DJNZ R2QEL55RETDEL1S: ;1S 延时子程序MOV R5,#0BHST1:MOV R6,#0DAH下载可编辑ST2:MOV R7,#0CFHDJNZ R7,$DJNZ R6,ST2DJNZ R5,ST1RETDEL20S: ;20S延时子程序MOV R5,#0BH;#0DCHST3:MOV R6,#0DAHST4:MOV R7,#0CFHDJNZ R7,$DJNZ R6,ST4DJNZ R5,ST3RETST: ;取数MOV DPTR,#TABMOVC A,@A+DPTRRETTAB:DB 0FFH,0FFH,0F9H,0A4H,0B0H,99H,92HEnd.专业.整理.。

8单片机交通灯远程控制系统设计和制作

8单片机交通灯远程控制系统设计和制作

8单片机交通灯远程控制系统设计和制作单片机交通灯远程控制系统是一种利用单片机技术和无线通信技术实现对交通灯的远程控制的系统。

本文将详细介绍该系统的设计和制作。

设计思路:1.系统整体架构:系统由交通灯控制器、无线通信模块、远程控制终端和交通灯组成。

其中,交通灯控制器通过单片机控制交通灯的开关,无线通信模块负责和远程控制终端建立连接并传输控制指令。

2.硬件设计:a.交通灯控制器:使用单片机作为控制核心,通过IO口输出控制信号控制交通灯的亮灭。

可以使用基于AVR、STM32等单片机的开发板。

b.无线通信模块:选择一种合适的无线通信模块,如WiFi模块、蓝牙模块或者射频模块,用于和远程控制终端进行通信。

c.远程控制终端:可以是一台电脑、智能手机或者单片机终端设备。

通过用户界面发送控制指令给交通灯控制器。

3.软件设计:a.单片机控制程序:编写单片机上的控制程序,根据接收到的命令控制交通灯的亮灭状态。

可以使用C语言或者汇编语言编写。

b.无线通信程序:编写无线通信模块上的程序,用于建立和维持与远程控制终端的通信连接,并将接收到的控制指令传送给单片机控制程序。

c.远程控制终端程序:编写远程控制终端上的程序,用于发送控制指令给交通灯控制器。

可以选择适合的编程语言和界面设计工具。

4.制作过程:a.制作交通灯控制器:根据设计思路,选择合适的单片机和开发板,连接交通灯,并编写控制程序,完成交通灯控制器的制作。

b.制作无线通信模块:选择合适的无线通信模块,根据其提供的开发文档进行接线和程序编写,完成无线通信模块的制作。

c.制作远程控制终端:根据设计要求,制作远程控制终端,安装相应程序,并实现与交通灯控制器的通信。

d.进行整体测试:将交通灯控制器、无线通信模块和远程控制终端进行连接,测试系统的功能是否正常,并对系统进行调试和优化。

5.系统功能:a.远程控制交通灯的亮灭状态:用户可以通过远程控制终端向交通灯控制器发送控制指令,实现对交通灯的开关操作。

单片机控制交通灯

单片机控制交通灯

单片机控制交通灯要实现单片机控制交通灯,首先需要了解交通灯的工作原理和控制方式。

一般的交通灯控制有三种状态:红灯、黄灯和绿灯。

红灯表示停车,黄灯表示准备停车或准备起步,绿灯表示行驶。

下面是一个基本的单片机控制交通灯的程序示例:```c#include<reg52.h>//定义LED端口sbit redLight = P1^0;sbit yellowLight = P1^1; sbit greenLight = P1^2;//定义延时时间#define delayTime 1000void delay(unsigned int ms){ unsigned int i,j;for(i=ms;i>0;i--)for(j=110;j>0;j--);}void init(){//清零redLight = 0;yellowLight = 0;greenLight = 0;}void mn(){init(); //初始化while(1){//红灯redLight = 1;yellowLight = 0; greenLight = 0; delay(delayTime);//黄灯redLight = 0;yellowLight = 1; greenLight = 0; delay(delayTime);//绿灯redLight = 0;yellowLight = 0; greenLight = 1; delay(delayTime); }}```上面的代码使用了8051单片机的开发环境,通过定义三个LED端口,分别控制红、黄、绿三种交通灯的状态。

通过设置不同的IO口状态来控制交通灯的亮灭。

在`init()`函数中,先将所有LED端口设置为低电平,即熄灭状态。

在`mn()`函数中,使用循环控制交通灯额亮灭状态。

先点亮红灯,延时一段时间后熄灭。

然后点亮黄灯,延时一段时间后熄灭。

最后点亮绿灯,延时一段时间后停止。

单片机控制交通信号灯

单片机控制交通信号灯

北京XX毕业设计论文题目:单片机控制交通信号灯姓名:XX学号:XX专业:电气自动化班级:电气化指导老师:XX概要 (1)第一章原理 (2)第一节单片机概述 (2)1.单片机及单片机系统 (2)2.MSC-51芯片简介 (3)3.8255芯片简介 (6)4.74LS373简介 (7)第二章系统硬件设计 (8)第一节系统总概图 (8)第二节模块电路 (8)1.电源模块 (8)2.主控模块 (9)3.驱动电路 (10)4.显示模块 (11)5.硬件抗干扰 (11)第三章控制器的软件设计 (12)第一节每秒钟的设定 (12)第二节时间及信号灯的显示 (12)1.显示原理 (12)2.8255PA口输出信号接信号灯 (12)3.8255输出信号与数码管的连接 (12)4.8255与8051的连接 (13)第三节程序设计 (13)1.流程图 (13)2.程序源代码 (14)第四章系统检测与调试 (19)第一节硬件调试 (19)1.静态调试 (19)2.动态调试 (19)第二节软件调试 (19)第五章设计总结及心得 (20)设计总结: (20)设计心得: (20)参考文献 (21)近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。

本系统采用MCS-51系列单片机ATSC51和可编程并行I/O接口芯片8255A 为中心器件来设计交通灯控制器,采用并行扩展结构,以双色LED发光管箭头作为直行和左右拐弯指示,以LED数码管作为倒计时指示,以双色LED点阵作为行人通行的指示,系统基本的交通灯的功能,实现了能根据实际车流量通过8051芯片的P1口设置红、绿灯燃亮时间的功能,系统除基本交通灯功能外,还具有倒计时、时间设置、紧急情况处理、分时段调整信号灯的点亮时间以及根据具体情况手动控制等功能。

显示时间直接通过8255的PA、PB口输出;交通灯信号通过PC口输出;交通灯的点亮采用VT双向晶闸管来控制、直接采用220V交流电源驱动,系统具有易于扩张、成本低廉、工作稳定行强等特点。

单片机控制交通灯

单片机控制交通灯

单片机控制交通灯标题:单片机控制交通灯交通信号灯作为城市交通管理的重要组成部分,通过控制红绿灯的变化来引导车辆和行人的通行,起到维护交通秩序、提高交通效率的作用。

在现代城市中,越来越多的交通信号灯采用了单片机技术来进行控制,本文将介绍单片机控制交通灯的原理和实现方法。

一、交通灯控制原理交通信号灯一般采用红、黄、绿三种颜色,分别表示停止、警告和通行。

在单片机控制下,交通信号灯的控制可以通过三个IO口实现。

其中,一个IO口控制红灯,一个IO口控制黄灯,一个IO口控制绿灯。

通过控制这三个IO口的高低电平状态,可以实现交通灯的变化。

二、单片机控制交通灯的实现方法为了实现交通灯的自动切换,可以使用定时器中断和状态机两种方法。

1. 定时器中断方法定时器中断方法是通过设置一个定时器,在规定的时间间隔内触发中断,从而实现交通灯的切换。

具体实现步骤如下:(1)初始化定时器:设置定时器的工作模式和计数值,使其在固定时间内触发一次中断。

(2)设置中断优先级:为了确保定时器中断能够正常执行,需要设置中断优先级。

(3)编写中断服务函数:中断服务函数中通过改变IO口的电平状态,来控制交通灯的切换。

2. 状态机方法状态机方法是通过一个状态机来记录当前交通灯的状态,并根据一定的规则不断切换状态,实现交通灯的自动切换。

具体实现步骤如下:(1)定义状态枚举:定义一个枚举类型,用于表示交通灯的不同状态,例如红灯、黄灯、绿灯。

(2)初始化状态机:将状态机的初始状态设置为红灯。

(3)编写状态切换规则:根据交通灯的切换规则,编写代码来实现状态的切换。

(4)控制交通灯:根据状态机的当前状态,通过改变IO口的电平状态,来控制交通灯的切换。

三、单片机控制交通灯的优势相比传统的交通灯控制方法,单片机控制交通灯具有以下几个优势:1. 精确控制:单片机具有较高的计算精度和处理能力,可以精确控制交通灯的时间和变化方式。

2. 灵活性:通过编程修改程序和参数,可以很容易地调整交通灯的控制策略,适应不同的交通状况。

单片机控制的交通灯C语言编程

单片机控制的交通灯C语言编程

单片机控制的交通灯红灯停,绿灯行,黄灯闪烁提示行人红绿灯即将切换。

四个方向各有一个红、黄、绿显示和两个数码管。

东西道为人行道(20秒),南北道为车行道(60秒),黄灯延时最后三秒时,闪烁并切换。

三、硬件电路设计此电中路设计采用AT89C51单片机,74LS47(数码管驱动)74LS373(数码管驱动输出锁存),8个数码管显示其延时值,四个红、黄、绿指示灯。

硬件设计关键在于,延时显示时,要考虑到当个位数字显示时,要确保十位数字显示输出的不变。

因此,可加输出锁存器。

在延时最后三秒时,要让黄灯进行闪烁,并同时显示数字(这一步在软件设计上很关键)。

四、软件程序(C语言)以下是整个设计的软件程序,直接可以编译成*。

Hex代码。

通过以上电路,下载到单片机,可直接运行。

//*****************************////程序名:十字路口交通灯控制//编写人:黄庭剑//初写时间:2009年1月2日//程序功能:南北为车行道,延时60秒;东西方向为人行道,延时20秒,且在最后3秒黄灯显示2秒钟再实现切换.//CPU说明:AT89C51型单片机; 24MHZ晶体振荡器//完成时间:2009年1月6日//*****************************//#include<stdio.h>#include<reg51.h>#include<intrins.h>sfr p0 = 0x80;sfr p1 = 0x90;sfr p2 = 0xA0;sfr p3 = 0xb0; //这部分内容其实在“#include<reg51.h>”里已经有,但里面定义的必须区分大小写,在这里,因为我程序采用的是小写,reg51.h里对各个端口与寄存器的定义都是大写,所以在编译连接时,会报错,所以,在本设计程序里,我只用到了端口,在这里也就只定义了四个,而没有去改reg51.h里面的内容。

单片机课程设计(交通灯、秒表)

单片机课程设计(交通灯、秒表)

单片机课程设计
在单片机课程设计中,学生通常会接触到各种实际的应用场景,比如交通灯控
制和秒表功能。

这些实际项目既能帮助学生巩固所学的理论知识,又能培养他们的实际动手能力和解决问题的能力。

交通灯设计
项目简介
交通灯控制是一个常见的单片机应用项目,通过控制红绿灯的亮灭顺序,模拟
实际道路的交通流量控制。

学生可以通过这个项目了解控制流程和时序控制。

设计思路
在这个项目中,学生可以设计一个简单的交通灯系统,包括红灯、黄灯和绿灯。

他们需要考虑如何控制各个灯的亮灭顺序,以及红绿灯的时间间隔。

实现步骤
1.设计红绿灯的控制逻辑,确定各个灯的亮灭顺序。

2.编写程序,实现控制逻辑。

3.测试程序,检查红绿灯的切换顺序和时间间隔是否符合要求。

秒表设计
项目简介
秒表是用来计时的工具,通常用于测量短暂时间间隔。

在单片机课程设计中,
学生可以通过设计秒表项目来巩固定时器的使用和计时逻辑。

设计思路
学生可以设计一个简单的秒表系统,通过单片机的定时器功能实现计时功能。

他们需要考虑如何初始化计时器、开始计时、暂停计时和重置计时。

实现步骤
1.初始化定时器,设置时间间隔。

2.编写计时功能的程序,包括开始、暂停和重置功能。

3.测试程序,检查计时功能是否准确。

总结
通过交通灯和秒表项目的设计,学生可以巩固单片机的编程技能和实际应用能力。

这些项目不仅有助于加深对单片机工作原理的理解,还可以培养学生解决实际问题的能力。

希望学生在完成这些项目的过程中,能够不断学习和进步,成为优秀的单片机工程师。

单片机实验设计----交通信号灯控制

单片机实验设计----交通信号灯控制

实验十交通信号灯控制一、实验目的:(1)掌握外部中断源的扩展方法;(2)掌握编程控制交通信号灯的方法;(3)掌握用Keil实现软件调试的方法;(4)掌握用Proteus实现电路设计,程序设计和仿真的方法。

二、实验内容:P1口做输出口控制交通信号灯,P3口做输入口接三只控制开关,设计一个交通信号灯控制系统。

晶振频率6MHZ。

设计要求如下:A车道与B车道交叉组成十字路口,A是主道,B是支道;正常情况下,A,B两车道轮流放行。

具体放行时间如下:(1)A车道放行50s,其中绿灯亮44s,绿灯闪烁3s(用于警告),黄灯常亮3s(用于警告)。

(2)B车道放行30s,其中绿灯常亮24S,绿灯闪烁3s(用于警告),黄灯常亮3s(用于警告)。

在交通繁忙时,交通信号灯控制系统应有的手控开关,可人为地改变信号灯的状态,以缓解交通拥挤状况,控制要求如下:(1)在B车道放行期间,若A车道有车而B车道无车,按下开关使A车道放行15s。

(2)在A车道放行期间,若B车道有车而A车道无车,按下开关使B车道放行15s。

(3)有紧急车辆通过时,按下开关使A,B车道均为红灯,禁行15s。

三、实验参考电路:用发光二极管替代交通信号灯,P1口接发光二极管的阴极,P1口的管脚输出低电平时对应的发光二极管点亮;控制开关的信号全部通过P3口送人单片机,控制系统实验电路如下图:四、实验参考程序:ORG 0000HLJMP MAIN 转向主程序;ORG 0003HLJMP INT00 转向紧急车辆中断服务程序;ORG 0013HLJMP INT11 转向有车车道放行中断服务程序;ORG 0030HMAIN: SETB PX0 置外部中断0为高优先级中断;MOV TCON,#00H 置外部中断0,1为电平触发;MOV IE,#85H 开CPU中断,外部中断0,1中断;LOOP: MOV P1,#0F3H A道绿灯亮,B道红灯亮;MOV R1,#88 44s延时的循环次数;AP1: LCALL DELAY 调用0.5s延时子程序;DJNZ R1,AP1 44s不到,继续循环;MOV R1,#6 3s延时的循环次数AP2: CPL P1.2 A道绿灯闪烁LCALL DELAYDJNZ R1,AP2 3s未到,继续循环;MOV P1,#0F5H A道黄灯亮,B道红灯亮;MOV R1,#6AP3: LCALL DELAYDJNZ R1,AP3 3s未到,继续循环;MOV P1,#0DEH A道红灯亮,B道绿灯亮;MOV R1,#48BP1: LCALL DELAYDJNZ R1,BP1 24s未到,继续循环;MOV R1,#6BP2: CPL P1.5 B道绿灯闪烁;LCALL DELAYDJNZ R1,BP2 3s未到,继续循环;MOV P1,#0EEH A道红灯亮,B道黄灯亮;MOV R1,#6BP3: LCALL DELAYDJNZ R1,BP3 3s未到,继续循环;SJMP LOOP 循环;ORG 0200HINT00: PUSH P1 保护P1口数据;MOV P1,#0F6H A道红灯亮,B道红灯亮;MOV R2,#30 15s延时的循环次数;DELAY0: LCALL DELAYDJNZ R2,DELAY0 15s未到,继续循环;POP P1 恢复P1口数据;RETI 返回主程序;ORG 0300HINT11: CLR EA 关中断;PUSH P1 保护现场;PUSH 04HPUSH 05HPUSH 06HSETB EA 开中断;JNB P3.0,AP0 A道无车,转向判断B道;MOV P1,#0F3H A道绿灯亮,B道红灯亮;SJMP DEL1 转向15s延时程序;AP0: JNB P3.1,EXIT B道无车。

用单片机实现交通灯的控制

用单片机实现交通灯的控制

用单片机实现交通灯的控制1 系统设计1.1系统设计要求(1)正常情况下,A、B道(A、B道交叉组成十字路口,A是主道,B 是支道)轮流放行,A 道放行60s(其中5s 用于警告),B 道放行30s(其中5s 用于警告)。

(2)一道有车而另一道无车(用按键开关s1、s2 模拟)时,使有车车道放行。

(3)有紧急车辆通过(用按键开关so模拟)时,A、B均为红灯。

1.2系统硬件电路实现(见图1)1.3软件设计(1)软件设计任务:主程序采用查询方式定时,由R2寄存器确定调用0.5s 延时子程序的次数,从而获得交通灯的各种时间。

子程序采用定时器1 方式1 ,查询式定时,定时器定时50ms,R3 寄存器确定50ms循环10次,从而获取0.5s的延时时间。

一道有车另一道无车的中断服务程序首先要保护现场,因需用到延时子程序和P1 口,帮需保护的寄存器有R3、P1、THI 和TL1,保护现场时还需关中断,以防止高优先级中断(紧急车辆通过所产生的中断)出现时导致程序混乱。

然后,开中断,由软件查询P3.0 和P3.1 口.判别哪一道有车,再根据查询情况执行相应的服务。

待交通灯信号出现后,保持5s 的延时,然后关中断,恢复现场,再开中断,返回主程序。

紧急车辆出现时的中断服务程序也需要保护现场,但无需关中断(因其为高优先级中断) ,然后执行相应的服务,待交通灯信号出现后延时20s,确保紧急车辆通过,然后恢复现场,返回主程序。

(2) 源程序设计ORG 0000HAJMP MAINORG 0003HAJMP AAOORG 0013HAJMP AA1ORG0100HMAIN:SETB PXOMOV TCO,N#00HMOV TMO,D#10HMOV IE,#85HDISP:MOV P1,#0F3HMOV R,2 #6EHDISPl :ACALL DELAYDJNZ R2,DISP1 MOV R,2 #06H WARN:l CPL P1.2 ACALLDELAY DJNZ R2,WARN1 MOV Pl,#0F5H MOV R,2 #04HYEL1:ACALL DELAY DJNZ R2,YEL1 MOV P1,#0DEH MOV R,2 #32H DISP2:ACALL DELAY DJNZ R2,DlSP2 MOV R,2#06H WARN:2 CPL P1.5 ACALL DELAY DJNZ R2,WARN2 MOV P1,#0EEH MOV R,2 #04H YEL2:ACALL DELAY DJNZ R2,YEL2 AJMP DISPAA0:PUSH P1PUSH 03HPUSH TH1PUSH TL1MOV P1,#0F6HMOV R,5 #28HDELAY:O ACALL DELAYDJNZ R5,DELAYOPOP TL1POP TH1POP 03HPOP P1RETIAA1:CLR EAPUSH P1PUSH 03HPUSH TH1PUSH TL1SETB EAJNB P3.0 ,BPMOV P1,#0F3HSJMP DELAY1BP:JNB P3.1 ,EXIT MOV P1,#ODEH DELAY:1 MOV R,6 #OAH NEXT:ACALL DELAY DJNZ R6,NEXT EXIT:CLR EAPOP TL1POP TH1POP 03HPOP P1 SETB EARETIDELAY:MOV R3,#0AH MOV TH,1 #3CHMOV TL1,#0BOHSETB TR1LP1:JBC TF1,LP2SJMP LP1LP2:MOV TH,1 #3CH MOV TL1.#OBOH DJNZ R3,LP1RETEND2 结束语用单片机控制的交通灯控制系统比模拟电路有明显优势,即不用对电路有大改动就可以适应新的工作条件,升级也很方便,只需对CPU重新刷写一次程序就可以了。

基于单片机的交通灯

基于单片机的交通灯
交通灯状态控制程序:根据预设的时序,控制红、 绿、黄三种LED灯的状态切换
按键处理程序:检测按键开关的状态,实现手动控 制交通信号的切换
报警处理程序:在系统异常时,控制蜂鸣器和LED指 示灯发出报警
3系统实现ຫໍສະໝຸດ 3 系统实现代码实现
基于51单片机的交通灯控制系统的代码实现主要采用C语言。下面是一个简单的示例代码 ,用于实现基本的交通灯控制逻辑
基于51单片机的交通 灯‘
--
1 引言 2 系统设计 3 系统实现
1
引言
1 引言
2
系统设计
2 系统设计
硬件设计
基于51单片机的交通灯控制系统硬件部分主要由单片机、电源模块、LED灯模块、按键模 块和报警模块组成。具体设计如下
单片机:采用8051单片机,负责处理和控制系统的各个模块 电源模块:为整个系统提供稳定的工作电压,一般采用5V直流电源
3 系统实现
调试与测试
在代码实现后,需要对系统进行 调试和测试,以确保交通灯控制 逻辑和人机交互功能的正确性。 具体的调试和测试方法可以包括 :连接硬件进行实际操作、观察 LED灯的状态、按键测试和报警 测试等。通过这些测试,可以确 认系统的稳定性和可靠性,为实 际应用提供保障
--
20XX
感谢您的聆听
ADD YOUR TITLE ADD YOUR TITLE HERE.ADD YOUR TITLE.ADD YOUR TITLE. HERE.ADD YOUR TITLE.ADD YOUR TITLE
2 系统设计
LED灯模块:包括红、绿、黄 三种颜色的LED灯,用于模拟 交通信号
按键模块:包含按键开关, 用于手动控制交通信号的切 换
报警模块:包含蜂鸣器和LED 指示灯,用于在系统异常时 发出报警

单片机课程设计—十字路口交通灯

单片机课程设计—十字路口交通灯

十字路口交通灯控制一、设计任务及题目要求利用JD51开发板上彩色LED灯做出符合普通十字路口通行逻辑的交通灯,1.东西绿-南北红、东西红-南北绿;2.LED绿-红切换时,黄灯亮并延时3秒;3.数码管前两位显示东西向量倒计时,后两位显示南北向量倒计时。

二、工作原理及设计思路在JD51电路板上有红、绿、黄三种颜色LED灯,自定义选取两组彩灯对其进行逻辑控制。

工作时,先南北绿灯16S、东西红灯19S,然后,南北绿灯转黄灯3S;接着,东西绿灯15S,南北红灯18S,东西绿灯转黄灯3S。

在LED亮的同时两个方向的数码管显示倒计时,东西向一组数码管,南北向一组数码管。

三、硬件电路设计及描述使用JD51电路板上P1^7口的红色LED,P1^6口的黄色LED,P1^5口的绿色LED表示东西向指示灯,P1^4口的红色LED,P1^3口的黄色LED,P1^2口的绿色LED表示南北向指示灯,四位数码管的前两位显示东西向量倒计时,后两位显示南北向量倒计时。

四、软件设计流程及描述五、程序和注释C语言程序:#include<reg52.h>#define uchar unsigned char#define uint unsigned int//定义位变量sbit RED_A=P1^7; //东西向指示灯sbit YELLOW_A=P1^6;sbit GREEN_A=P1^5;sbit RED_B=P1^4; //南北向指示灯sbit YELLOW_B=P1^3;sbit GREEN_B=P1^2;sbit en=P2^5; //573片选使能uchar code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};//共阳0-9不带小数点数表uchar code table_d[]={0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10}; //共阳0-9带小数点数表uchar time[4]={0,0,0,0};//数码管显示00.00初值uchar timec[4]={1,6,1,9};//南北绿初值 16.19uchar timeb[4]={1,5,1,8};//东西绿初值15.18 红灯比绿灯长三秒uchar cp=0;//计数初值int n=0;//C语言延时程序void DelayMS(uint x){ uchar i;while(x--)for(i=0;i<120;i++);//数码管动态扫描程序void display(uchar *p){int i,j=0xFE;//第一位选通for(i=0;i<4;i++){P2=j;P0=*p;DelayMS(3);j=(j<<1)|0x01;//第二位选通if(j==0xEF);p++;}}//中断初始化函数void timer0_initialize(void){ EA=0;//关闭中断TR0=0;//停止计数TMOD=0x01;//T0工作在方式一TL0=0x00;//装入低八位初值TH0=0xEE;//装入低八位初值,定时器溢出产生中断5msPT0=1;//T0中断优先级调制最高ET0=1;//开启T0中断EA=1;//开启总中断TR0=1;//开始计数}//中断服务函数void timer0_isr(void) interrupt 1{ int k;//控制亮灯时间k++;if ((k>=200)&&(k<200*(16+1)))//1秒到16秒,东西绿16秒,南北红16秒{ RED_A=1;YELLOW_A=1;GREEN_A=0;RED_B=0;YELLOW_B=1;GREEN_B=1;}if ((k>=200*(16+1))&&(k<200*(16+4+1)))//16秒到19秒,东西黄3秒,南北红3秒{ RED_A=1;YELLOW_A=0;GREEN_A=1;RED_B=0;YELLOW_B=1;GREEN_B=1;}if ((k>=200*(16+4+1))&&(k<200*(16+4+1+15))) //接下来15秒,东西红15秒,南北绿15秒{ RED_A=0;YELLOW_A=1;GREEN_A=1;RED_B=1;YELLOW_B=1;GREEN_B=0;}if ((k>=200*(16+4+1+15)))//接下来3秒,东西红3秒,南北黄3秒{ RED_A=0;YELLOW_A=1;GREEN_A=1;RED_B=1;YELLOW_B=0;GREEN_B=1;if ((k==200*(16+4+1+18))){ k=0;}}TR0=0;cp++;//数码管逻辑判断if(cp==200){cp=0;if( (time[0]!=0)&&(time[2]!=0)&&(time[1]==0)&&(time[3]==0) ) //非0位-1,为0位变9{time[1]=9;time[3]=9;time[0]--;time[2]--;}else if((time[0]!=0)&&(time[2]!=0)&&(time[1]==0)&&(time[3]!=0)){time[1]=9;time[3]--;time[0]--;}else if((time[0]!=0)&&(time[2]!=0)&&(time[1]!=0)&&(time[3]==0)) {time[1]--;time[3]=9;time[2]--;}else if((time[1]!=0)&&(time[3]!=0)){time[1]--;time[3]--;}else if((time[3]!=0)&&(time[0]==0)&&(time[1]==0)&&(time[2]==0))//熄灭的灯为3. 0变成3{time[0]=0;time[1]=3;time[1]--;time[3]--;}else if((time[3]!=0)&&(time[0]!=0)&&(time[1]==0)&&(time[2]==0)){time[0]--;time[1]=9;time[2]=0;time[3]--;}else if((time[3]!=0)&&(time[0]!=0)&&(time[1]==0)&&(time[2]==0)){time[0]--;time[1]=9;time[2]=0;time[3]--;}else if((time[3]==0)&&(time[0]==0)&&(time[1]!=0)&&(time[2]!=0)){time[0]=0;time[1]--;time[2]--;time[3]=9;}else if((time[3]==0)&&(time[0]==0)&&(time[1]!=0)&&(time[2]==0)) {time[1]--;time[3]=3;time[3]--;}//东西绿与南北绿的转换else if((time[3]==0)&&(time[0]==0)&&(time[1]==0)&&(time[2]==0)) {if(n==0){ time[0]=timec[0];time[1]=timec[1];time[2]=timec[2];time[3]=timec[3];n++;}else if(n==1){time[0]=timeb[0];time[1]=timeb[1];time[2]=timeb[2];time[3]=timeb[3];n=0;}}else{while(1);}}timer0_initialize();}//主函数void main (void){uchar i,dpldata[4];timer0_initialize();en=1;while(1){ for(i=0;i<4;i++) //数码管第二位用带小数点的数表,隔开东西与南北的倒计时{ if(i==1){dpldata[i]=table_d[time[i]];}else{dpldata[i]=table[time[i]];}}display(dpldata);}}汇编语言程序:ORG 0000HJMP MAIN//中断入口地址ORG 000BHMOV TL0,#0B0H//装入初值MOV TH0,#3CHDJNZ R2,EXIT_T0//用寄存器R2装溢出的次数MOV R2,#20 //溢出20次为1秒DEC R3//东西方向计数寄存器DEC R4 //南北方向计数寄存器EXIT_T0:RETIMAIN:MOV TMOD,#01H//T0工作在方式一MOV TH0,#3CH//装入初值MOV TL0,#0B0HMOV R2,#20//设置R2初值为20SETB TR0 //开始计数SETB ET0 //开启T0中断SETB EA//开启总中断MOV SP,#60H//堆栈指针的地址N_B:MOV P1,#0CFH//设置P1口的值MOV R3,#16 //南北绿16SMOV R4,#19 //东西红19SNB_W1:CJNE R3,#0,NB_DISP//判断南北方向绿灯倒计时是否结束,不为0跳到数码管显示SJMP N_B_YNB_DISP:CALL DISPLAYSJMP NB_W1N_B_Y:CPL P1.5//熄灭南北绿灯NB_W2:MOV R3,#0CJNE R4,#0,NB_DISP2//判断东西红灯是否结束JMP D_XNB_DISP2:CPL P1.6CALL DISPLAYSJMP NB_W2D_X:MOV P1,#07BHMOV R3,#18 //东西红18sMOV R4,#15 //南北绿15SDX_W1:CJNE R4,#0,DX_DISPSJMP D_X_YDX_DISP:CALL DISPLAYSJMP DX_W1D_X_Y:CPL P1.2DX_W2:MOV R4,#0CJNE R3,#0,DX_DISP2JMP N_BDX_DISP2:CPL P1.3CALL DISPLAYSJMP DX_W2DISPLAY:MOV DPTR,#TAB1 //数表中的值送入DPTR MOV A,R3MOV B,#10DIV AB//倒计时/10MOVC A,@A+DPTR//数表送到A中MOV P0,A//A送到P0SETB p2^0//实现位选SETB p2^2MOV P2,#0FEHMOV P2,#0FFHMOV A,BMOVC A,@A+DPTRMOV P0,ASETB p2^0SETB p2^2MOV P2,#0FDHMOV P2,#0FFHMOV A,R4MOV B,#10DIV ABMOVC A,@A+DPTRMOV P0,ASETB p2^0SETB p2^2MOV P2,#0FBHMOV P2,#0FFHMOV A,BMOVC A,@A+DPTRMOV P0,ASETB p2^0SETB p2^2MOV P2,#0F7HMOV P2,#0FFHSETB p2^0SETB p2^2RETTAB1://数码管数表DB 0C0H,0F9H,0A4H,0B0H,99HDB 92H,82H,0F8H,80H,90HEND六、实验结果七、实验心得“纸上得来终觉浅,绝知此事要躬行。

单片机交通灯实验报告

单片机交通灯实验报告

引言:随着城市交通的发展,交通灯作为交通管理的重要组成部分,起着至关重要的作用。

为了研究和实践交通灯的基本原理和实现方法,本文进行了单片机交通灯实验。

本实验通过使用单片机来模拟和控制交通灯的运行,以实现交通流畅和安全。

概述:交通灯是城市交通管理的重要组成部分,通过控制交通灯的信号变化,可以实现不同车辆和行人的交通流畅和安全。

单片机作为实验的控制器,可编程控制交通灯的运行,增强交通流畅性。

正文:一、单片机交通灯实验的背景和意义1.单片机交通灯实验的背景交通灯在城市交通管理中具有重要的地位和作用,通过控制交通灯的信号变化,可以实现车辆和行人的有序通行。

单片机交通灯实验为进一步研究交通灯原理和实现方式提供了实践基础。

2.单片机交通灯实验的意义单片机交通灯实验可以帮助学生理解并掌握交通灯的基本原理和控制方式,培养学生的创新思维和动手能力,并为进一步研究和改进交通灯系统提供参考。

二、单片机交通灯实验的设计和实施1.设计交通灯的硬件结构a.硬件元件选择和连接方式b.单片机选择和编程2.实施交通灯的控制逻辑和操作a.基本的交通灯控制逻辑b.交通灯的运行和状态转换三、单片机交通灯实验的分析和评价1.对交通流畅性的影响分析a.不同信号时间间隔对交通流量的影响b.交通灯控制方式对交通流畅性的影响2.对交通安全性的评价a.不同交通灯参数对交通安全的影响b.交通灯设施对行人安全的影响3.对实验结果的分析和总结a.实验数据的收集和处理b.结果的呈现和解释四、单片机交通灯实验的改进和优化方向1.优化交通灯的控制算法a.基于流量的自适应控制算法b.基于信号的智能预测算法2.改进交通灯的硬件设计a.使用更高效的电子元件和材料b.结合无线通信技术和传感器技术进行实时监测和控制五、单片机交通灯实验的应用和展望1.在城市交通管理中的应用前景a.提高交通流畅性和安全性的需求b.单片机交通灯技术的潜在优势2.可能的进一步研究方向a.基于互联网的智能化交通灯系统b.基于算法的全自动交通控制系统总结:通过本次单片机交通灯实验,我们对交通灯的原理和实现方法有了更深入的了解。

基于单片机交通灯的控制

基于单片机交通灯的控制

基于单片机交通灯的控制交通灯是城市交通中最常见和最重要的控制信号装置,用于指示道路交通的正常通行、减缓交通流量、指挥交通等作用,是保障城市道路交通安全和畅通的必要措施。

随着单片机技术的快速发展,基于单片机交通灯的控制方案已经被广泛应用于城市交通管理中。

本文将详细介绍基于单片机交通灯的控制的相关知识。

一、单片机交通灯的控制原理单片机交通灯的控制原理分为两个部分:信号控制和定时控制。

信号控制:信号控制是交通灯控制的重点,在交通灯控制中有三组信号灯,分别是红灯、黄灯和绿灯。

红灯指示交通信号禁止通行,黄灯指示交通信号即将变为红色,警示车辆停车或减速,绿灯指示交通信号可以通行。

在信号控制中,单片机通过数字信号输出口控制红灯、黄灯、绿灯的点亮和熄灭顺序,实现交通道路的正常通行。

定时控制:定时控制是交通灯控制的关键,通过定时控制可以确保交通信号灯按规定时间间隔依次点亮和熄灭。

在单片机控制系统中,通过定时器和定时中断方式来实现交通灯控制的定时功能。

二、单片机交通灯的控制系统单片机交通灯的控制系统由下列四个部分组成:单片机系统、信号控制器、信号灯组和电源系统。

1、单片机系统:在单片机控制系统中,单片机是主控制器,控制信号控制器和信号灯组的运行。

单片机需要通过编程控制信号控制器和信号灯组的照明和熄灭。

2、信号控制器:信号控制器是指用于控制信号灯的电路,其接收单片机发出的命令来控制交通信号灯的点亮和熄灭,实现交通信号灯的正常运行。

3、信号灯组:信号灯组是指在交通灯控制中的红灯、黄灯和绿灯,其通过灯罩和信号控制器形成成品交通灯,用于指示车辆和行人的行驶或行走指导,保障道路交通的安全畅通。

4、电源系统:电源系统包括直流电源和备用电源,其为交通灯控制系统提供稳定、安全、有效的电能,保障交通信号灯的正常运转。

三、单片机交通灯的控制程序单片机交通灯控制程序主要分为三个部分:定时程序、信号控制程序和主程序。

1、定时程序:定时程序主要用于实现交通灯控制的时间间隔,通过定时器和定时中断方式实现控制,控制红灯、黄灯和绿灯的运行。

单片机课程设计指导红绿灯控制

单片机课程设计指导红绿灯控制

控制器:单片 机或微控制器
输入设备:传 感器,如红外 传感器、超声
波传感器等
输出设备: LED灯,用于 显示红绿灯状

电源:提供系 统所需的电源
电压
通信接口:用 于与上位机或 其他设备进行
通信
保护电路:如 过流保护、过 压保护等,确 保系统安全运

软件架构:模块化设计,易于维护和扩展 功能模块:包括交通信号灯控制、交通流量检测、交通信息发布等 通信协议:采用TCP/IP协议进行通信,保证数据传输的稳定性和可靠性 用户界面:提供友好的用户界面,方便用户进行操作和设置
特点:单片机具有体积 小、功耗低、可靠性高、 编程灵活等特点,广泛 应用于各种电子设备中。
应用领域:单片机广 泛应用于工业控制、 智能家居、汽车电子、 医疗电子等领域。
发展趋势:随着科技 的发展单片机的发展历程: 从早期的4位单片 机到现代的32位单 片机
智能交通系统:利用单片机实现交通信号控制、车辆定位、交 通信息管理等功能
添加项标题
发展趋势:随着物联网、大数据等技术的发展,单片机在智能 交通系统中的应用将更加广泛和深入
添加项标题
应用前景:单片机在智能交通系统中的应用可以提高交通效率、 减少交通事故、降低交通污染,具有广阔的应用前景
添加项标题
作用:单片机广泛应用于各种电子设备中,如家电、汽车、工业控制等领域,可以实现各种复杂的控制功能。
特点:单片机具有体积小、功耗低、可靠性高、编程灵活等特点,可以方便地实现各种控制功能。
应用:在红绿灯控制中,单片机可以实时检测交通流量,根据交通状况自动调整红绿灯的切换时间,提高交通效 率和安全性。
单片机分类:根据功能、 性能、应用领域等不同, 可以分为8位、16位、 32位等不同类型。

交通灯工作原理单片机控制

交通灯工作原理单片机控制

交通灯工作原理单片机控制
交通灯的工作原理主要是通过单片机控制的。

首先,交通灯系统中会有一个单片机主控制器。

该主控制器负责接收来自传感器等输入设备的信号,并根据预设的逻辑控制交通灯的信号显示。

具体来说,单片机主控制器会通过一系列的输入/输出口与外部设备进行连接。

例如,它可以接收来自车辆和行人传感器的信号,以便了解当前交通流量和行人行走情况。

基于接收到的信号,单片机主控制器会根据交通规则预设的逻辑进行判断和计算。

它会根据当前交通流量和行人行走情况,判断哪些方向需要停车,哪些方向可以通行。

然后,主控制器将相应的信号输出到交通灯的显示器上。

通过控制输出信号的状态,单片机主控制器可以控制交通灯显示红灯、绿灯或黄灯等不同的状态。

这样,交通灯就可以根据实际情况来合理地引导交通流动,确保道路安全。

总的来说,交通灯工作原理的核心是通过单片机控制器接收传感器的信号,根据预设的逻辑判断交通流量和行人行走情况,然后控制交通灯的显示状态,以实现安全有序的交通流动。

单片机控制的交通灯设计

单片机控制的交通灯设计

单片机控制的交通灯设计
一、引言
交通灯是控制交通流量的有效途径,它能有效减少交通拥堵,提高交
通安全。

现代交通灯基本要求有简单的控制逻辑,因此可以利用单片机来
控制交通灯。

单片机控制的交通灯由单片机、绿灯、黄灯、红灯和控制电
路等组成,可以根据设定的定时、定周期等各种状态开关控制,从而有效
控制交通流量,提高交通安全。

本文重点介绍了单片机控制的交通灯原理、构成、工作原理和应用,为实现对交通灯的自动化控制提供依据。

二、单片机控制的交通灯原理
单片机控制的交通灯是以单片机为核心,由绿灯、黄灯和红灯这三个
部件为标志牌,以及智能控制电路为辅助构成的一套交通灯系统。

其原理
简单说来,就是将一定的信号变成一定的控制信号来控制交通灯的开关信号,以达到自动化控制的效果。

三、单片机控制的交通灯构成
单片机控制的交通灯由单片机、绿灯、黄灯、红灯和控制电路等组成。

单片机作为核心,用于接收输入信号,并将信号转换为相应的控制信号;
绿灯、黄灯和红灯分别为标志牌,用以指示车辆前行、慢行或停止;控制
电路用于控制绿黄红灯的亮灭,实现整套交通灯的控制。

四、单片机控制的交通灯工作原理。

单片机控制红绿灯系统方案

单片机控制红绿灯系统方案

一、方案论证1.1 设计任务设计基于单片机的智能交通灯控制系统,需要通过按钮或遥控器设置系统参数。

系统运行时,可通过数码管或点阵发光管显示“倒计时等信息”。

设计应考虑交通灯控制的难易程度。

操作和智能。

硬件基于单片机最小系统设计,软件采用汇编语言或C语言设计。

通过本次设计,培养学生分析和解决问题的能力,掌握Mcs51单片机的软硬件设计方法,从而将所学的理论知识应用到实践中,为社会在未来的发展打下良好编制依据。

未来。

东西(A)和南北(B)的主干道在一个路口相交,每条主干道都有一组红、黄、绿三个指示灯,用于引导车辆和行人安全通过。

红灯亮时禁止通行,绿灯亮,黄灯亮时车辆和行人小心通过。

红灯设计为45秒,绿灯为40秒,黄灯为5秒,黄灯亮时蜂鸣器响。

1.2 程序介绍采用子模块设计思想,程序设计和实现的基本思想是计数器,选择单片机,其部分是计数,即十六进制计数器。

模块化后通过设置或程序清零来实现状态转换,因为每个模块的计数不一样。

这里的模块是通过预设数量和计数器计数来实现的。

因此,有必要考虑增加一个集号模块。

其主要功能细分为,对应不同的状态输入状态下一个状态的预设编号,例如图中的通道A和通道B,分别是副通道的编号选择和主通道的编号选择,分别。

2、红绿灯系统硬件设计2.1 单片机概述单片机由五个基本部分组成:运算器、控制器、存储器、输入设备和输出设备。

单片机将运算器、控制器、少量内存、最基本的输入输出端口电路、串口电路、中断和定时电路集成在一个芯片上,体积有限。

通常,单片机由单个集成电路芯片组成,其中包含计算机的基本功能部件:中央处理器、存储器和I/O接口电路。

因此,单片机只需与适当的软件和外部设备相结合,即可成为单片机控制系统。

2.2 系统配置一块电路板,一个AT89S51单片机,两个7448芯片,八个七段数码管。

6个LED(2个绿色,2个红色,2个黄色),20个100欧姆电阻,2个按钮,2个开关,2个51K欧姆电阻,1个5V稳定电源,3个电容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业论文设计题目: 专业: 姓名: 学号: 指导老师:目录一摘要 (3)二引言 (3)三概要设计 (4)3.1设计思路 (4)3.2总体设计框图 (4)四硬件设计 (5)4.1LED循环路设计 (5)4.2倒计时显示电路 (8)五软件设计 (10)5.1程序流程图 (10)5.2LED红绿灯显示 (11)5.3倒计时显示 (11)5.4急通车显示 (11)5.5程序代码(附录二) (11)六总结 (11)七致谢 (12)参考文献 (12)附录一 (13)附录二 (13)一摘要:在日常生活中,交通信号灯的使用,市交通得以有效管理,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。

交通灯控制系统由80C51单片机、键盘、LED 显示、交通灯延时组成。

系统除具有基本交通灯功能外,还具有时间设置、LED信息显示功能,市交通实现有效控制。

关键词:交通灯,单片机,自动控制Abstract: in the daily life, traffic lights, the municipal transportation to the use of effective management, for relieves traffic flow, improve traffic capacity, reduce the number of traffic accidents have obvious effect. Traffic lights 80C51 SCM control system consists, keyboard, LED display, traffic delay composition. System is in addition to the basic traffic lights function outside, still have time setting, the LED display function, the city traffic realize effective control.Keywords: the lights, microcontroller, automatic control二引言当今,红绿灯安装在个个道口上,已经成为疏导交通车辆最常见和最有效的手段。

但这个技术在19世纪就已经出现了。

1858年,在英国伦敦主要街头安装了以燃煤气为光源的红、蓝两色的机械般手势信号灯,用以指挥马车通行。

这是世界上最早的交通信号灯。

1868年,英国机械工程师纳伊特在伦敦威斯敏斯特区的会议大厦前的广场上,安装了世界上最早的煤气红绿灯。

它由红绿两以旋转方式玻璃提灯组成,红色表示“停止”,绿色表示“注意”。

1869年1月2日,煤气灯爆炸,是警察受伤,遂被取消!电气启动的红绿灯出现在美国,这种红绿灯由红黄绿三色圆形的投光器组成,1914年始装于纽约市5号大街的一座高塔上。

红灯亮表示“停止”,绿灯亮表示“通行”。

信号灯的出现,使得交通得以有效的管理,对于疏导交通流量、提高道路通行能力、减少交通事故有明显效果。

1968年,联合国《道路交通和道路标志信号协定》对各种信号灯的含义作了规定。

绿灯时通行信号灯,面对绿灯的车辆可以直行,左转弯和右转弯,除非两一种标志禁止某一种转向。

左右转弯车辆必需让合法的正在路口内行驶的车辆和过人行横线的行人优先通行。

红灯是禁行信号灯,面对红灯的车辆必需在交叉路口的停车线后停车。

黄灯是警告信号,面对黄灯的车辆不能越过停车线,但车辆已经十分接近停车线而不能安全停车的可以进入交叉路口!三概要设计3.1 设计思路利用单片机实现交通灯的控制,该任务分以下几个方面:a 实现红、绿、黄灯的循环控制。

要实现此功能需要表示三种不同颜色的LED灯分别接在P1个管脚,用软件实现。

b 用数码管显示倒计时。

可以利用动态显示或静态显示,串行并出或者并行并出实现。

C 实现急通车。

这需要人工实现,编程时利用到中断才能带到目的,只要有按钮按下,那么四个方向全部显示红灯,禁止以诶车辆通行。

当情况解除,让时间回到只能隔断处继续进行。

3.2总体设计框图见图一:交通灯循环最小系统倒计时显示强通车控制图一四硬件设计4.1LED循环电路设计4.1.1 89cs51单片机概述MCS-51单片机内部结构:89CS51是MCS-51系列单片机的典型产品,我们以这一代表性的机型进行系统的讲解。

89CS51单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等极大单元及数据总线、地址总线和控制总线等三大总线,现在分别加以说明。

*中央处理器:中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统的工作,完成运算和控制输入输出等操控。

*数据存储器(RAM):89CS51内部有128个8位用户数及存储单元和128个寄存器单元,他们是统一编址的,专营寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据,所以,用户能使用的RAM只有128个,可存放读写的数据,运算的中间结果或用户自定义的字型表。

*程序存储器(ROM):89CS51共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。

*定时/计数器(ROM):89CS51有两个16位的可编程定时/计数器,一时想定时或计数产生中断用于控制程序转向。

*并行输入输出(I/O)口:89CS51共有4组8位I/O口(P0、P1、P2或P3),用于对外数据传输。

*全双工串行号:89CS51内置一个全双行串行通信口,用于与其它设备间的串行数据传输,该串行口既可以用作异步通信收发器,也可以当同步移位器使用。

中断系统:89CS51具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串行中断,客满著不同的控制要求,并具有2级优先级别选择。

*时钟电路:89CS51内置最高频率高达12Hz 的时钟电路,用于产生整个单片机运行的脉冲时序,但89CS51单片继续外置震荡电容。

单片机的结构有两种类型,一种是程序存储器和数据存储器分开的形式,即哈佛(Harvard )结构,另一种是采用通用计算机广泛使用的程序存储器与数据存储器合二为一的结构,即普林斯顿(Princeton )结构。

MCS-51系统的引脚说明:MCS-51系列单片机中的8031、8051及8751均采用40Pin 封装的双列直接DIP 结构,图二是它们的引脚配置,40个引脚中,正电源和底线两根,外置石英振荡器的时钟线两根,4组8位共32个I/O 口,中断口线与P3口线复用图二P1.0P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 RST RXD/P3.0 TXD/P3.1 INT0/P3.2 INT1/P3.3 T0/P3.4 Y1/P3.5 WR/P3.6 RD/P3.7 XTAL2 XTAL1 GNDPDIPVCC P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 EA/VPP ALE/PROG PESN P2.7/A15 P2.6/A14 P2.5/A13 P2.4/A12 P2.3/A11 P2.2/A10 P2.1/A9 P2.0/A840 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 211 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 208951的复位方式可以自动复位,也可以是手动复位,见下图。

除此之外,RESET/Vpd 还是一复位脚,Vcc掉电其间,此脚可以接上没用电源,以保证单片机内部RAM的数据不丢失。

在编程时,EA/Vpp脚还需加上21V的编程电压。

4.1.2 LED循环说明东西、南北两干道交于一个十字路口,各干道有一组红、绿、黄三色的指示灯,指挥车辆和行人的安丘按通行。

红灯禁止通行,绿灯亮允许通行。

黄灯亮提示人们注意红、绿灯的状态即将切换,且黄灯燃亮时间为东西,南北两干道的公共停车时间。

25s 3s 2s 25s 3s 2s东西通道红灯亮红灯亮红灯亮绿灯亮绿灯闪黄灯亮南北通道绿灯亮绿灯闪黄灯亮红灯亮红灯亮红灯亮上表说明东西路口哈珀能够灯亮,南北路口绿灯亮,同时开始25s倒计时。

25s倒计时结束后开始5s倒计时,南北铝扣绿灯闪烁,计时至最后2s时,南北路口黄灯亮。

完成一次这样的循环要30s。

30s结束,南北路口红灯亮,东西路口绿灯亮,并重新30s倒计时,依次循环。

电路图如图三所示。

图三4.2 倒计时显示电路4.2.1 74LS164芯片74LS164用于扩展并行输出口。

用89CS51串行口外接164串入-并出移位寄存器扩展8位并行口。

8位并行口的每位分别接到数码显示管的不同显示端。

74LS164芯片管脚排列如下图,管脚1、2相连共同接单片机管脚RXD,8管脚接单片机管脚TXD,9管脚接高电平,7管脚接地,14管脚接高电平,其他管脚依次接数码显示管管脚。

图四4.2.2 共阴极数码显示管这里列出了共阴和共阳数码管的管脚平排列和内部结构。

数码管3、8管脚内部连在一起。

如果是共阳极则将其接到高电平。

如果是共阴极则将其接地。

为了数码显示管的安全这里用三个二极管与其串联来降压。

图五4.2.3 倒计时电路倒计时显示电路如图六。

利用两个74LS164芯片并联后,其1、2管脚至单片机RXD 管脚8管脚至单片机TXD管脚。

然后其他管脚依次接至数码管个管脚。

对于数码管其3、8管脚经过三个串联的二极管接地。

图六4.2.4 急通车电路为了实现此功能,利用单片机中断达到目的。

利用一个手动按钮开关接至单片机外部中断0,同时在软件设计时将其设为最高优先级。

当有按键按下,四方全为红灯,同时将终端位置的PSW、ACC进栈保护。

当再按下按钮,将PSW、ACC出栈,回到原来的位置继续执行,电路图如下图七。

图七五软件设计5.1 程序流程图:如图八所示。

图八5.2 LED红绿灯显示如图三所示,当P1端口输出高电平,即P1各端口=1时,根据发光二极管的单向导电性可知,这是发光二极管熄灭;当P1个端口输出低电平,即P1各端口=0时,发光二极管亮。

我们可以使用SETB指令使P1各端口输出高电平,使用CLR指令时P各端口输出低电平。

至于循环需要软件控制,程序见附录。

5.3倒计时显示此处采用LED静态显示方式,当显示器显示某个字符时,相应的段恒定的导通或截止,直到显示另个字符为止。

89C51的串行口RXD和TXD为一个全双工串行通信口,但工作在方式0下可作同步移位寄存器,其数据由RXD端串行输出或输入;而同步移位时钟由TXD端串行输出,在同步时钟的作用下,实现由串行到并行的数据通信。

相关文档
最新文档