高考数学考点汇总WPS文字 文档
2024年高考数学知识点总结整理
2024年高考数学知识点总结整理一、函数与方程1. 函数的概念和性质- 函数的定义:函数是一个将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则。
- 函数的表示:函数可以用函数式表示、图像表示、数据表格表示等。
- 函数的性质:奇偶性、周期性、单调性、极值、零点等。
2. 平面直角坐标系- 坐标系的建立:确定坐标轴的正方向和原点的位置。
- 直角坐标的表示法:点在平面上的位置可以用有序数对表示。
- 直线的方程:点斜式、两点式、截距式等。
3. 一元二次方程- 一元二次方程的定义:形如ax^2 + bx + c = 0的代数方程,其中a、b、c都是已知的实数,a ≠ 0。
- 一元二次方程的解:实数解、复数解、无解等。
- 一元二次方程的求解方法:配方法、公式法、图解法等。
4. 不等式- 不等式的概念:比大小关系不是等号的代数式。
- 不等式的性质:加减、乘除等运算规则。
- 不等式的解集:解集可以用数轴图、区间表示等。
二、数列与数学归纳法1. 等差数列- 等差数列的定义:数列中相邻两项之差相等。
- 等差数列的通项公式:an = a1 + (n - 1)d,其中an是第n项,a1是首项,d是公差。
- 等差数列的性质:求和公式、前n项和等。
2. 等比数列- 等比数列的定义:数列中相邻两项之比相等。
- 等比数列的通项公式:an = a1 * r^(n - 1),其中an是第n项,a1是首项,r是公比。
- 等比数列的性质:求和公式、前n项和等。
3. 数列的求和- 等差数列的前n项和公式:Sn = n/2 * (a1 + an),其中Sn是前n项和,a1是首项,an是第n项。
- 等比数列的前n项和公式:Sn = (a1 * (1 - r^n))/(1 - r),其中Sn是前n项和,a1是首项,r是公比。
4. 数学归纳法- 数学归纳法的基本思想:证明某个命题对于一切自然数n 都成立,先证明对n=1成立,然后假设对n=k成立,再证明对n=k+1成立。
高考数学全套知识点(共42页,Word版)
高考数学全套知识点1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==,4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。
5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_。
2024年高考数学知识点归纳总结
2024年高考数学知识点归纳总结1. 函数与方程- 函数的定义与性质:定义域、值域、奇偶性、单调性等- 初等函数与非初等函数:幂函数、指数函数、对数函数、三角函数等- 函数的图像与性质:平移、反射、缩放等- 一元二次方程:求解方法、解的性质、根与系数的关系等- 二元一次方程组:解的存在唯一性、解的判别、解的性质等2. 三角函数与解析几何- 三角函数的定义与性质:正弦函数、余弦函数、正切函数等- 三角函数的图像与性质:周期性、对称性、增减性等- 三角函数的运算:和差化积、积化和差、倍角公式等- 解析几何的基本概念:点、直线、平面、距离、角度等- 解析几何中的基本定理:垂直定理、平行定理、相交定理等3. 概率与统计- 随机事件与概率:样本空间、事件的概率、事件的运算等- 概率的计算方法:古典概型、几何概型、排列组合等- 离散型随机变量与概率分布:离散型随机变量、概率质量函数、期望、方差等- 正态分布与标准正态分布:正态分布的性质、标准化、概率计算等- 统计与抽样:样本、总体、样本统计量、抽样分布等4. 数列与数列极限- 数列的定义与性质:有界性、单调性、极限等- 等差数列与等比数列:通项公式、求和公式、递推公式等- 数列的极限:极限存在性、夹逼定理、单调有界准则等- 无穷级数与数列项数的关系:收敛性、发散性、级数求和等- 函数极限:无穷小与无穷大、连续性、导数等5. 导数与微分- 导数的定义与性质:导数的计算、导数与函数的关系、高阶导数等- 函数的极值与最值:驻点、强弱单调性、极值判定等- 导数的应用:函数与图像的性质、曲线的弧长、曲率、斜率等- 微分与中值定理:微分的定义、中值定理的应用、不等式等- 函数的逼近与泰勒展开:泰勒公式、泰勒展开、误差估计等通过对以上知识点的归纳总结可以发现,2024年高考数学考试的重点主要集中在函数与方程、三角函数与解析几何、概率与统计、数列与数列极限以及导数与微分等方面。
高考数学核心考点
高考数学核心考点一、选择、填空题1、解不等式:一元二次不等式;分式不等式;指数不等式、对数不等式(化为同底). 2、集合的交;并;补运算. 3、充分必要条件的判断(确定互推关系). 4、 四种命题的表达;全称命题、特称命题的否定表达(一改换、二否定);及其真假性判断;或、且、非命题的真假判断。
5、复数的加、减、乘、除运算;模的计算. 6、 向量的加、减、数乘、数量积的坐标运算;模的计算;定义运算;平行、垂直的关系式运用;几何意义的运算(三角形法则,平行四边形法则)。
7、线性规划:求目标函数的最大最小值. 8、古典概型、几何概型的计算. 9、 编读程序框图.10、 求分段函数值. (综合指数式、对数式运算).11、 求定义域(分母0≠、真数0>、偶数根式的被开方数0≥).12、 函数单调性、奇偶性的判断(特殊值法、定义法).13、 函数图像的判断: ①利用变换作图,②性质法(利用定义域、值域、单调性、奇偶性、周期性,过定点)14、 利用零点存在性定理判断零点(即方程的根)所在区间.15、 利用导数求切线方程;求单调区间;求极值;求最值.16、 同角三角函数关系公式;诱导公式;两角和与差公式;二倍角公式的综合运算.17、 三角函数sin()y A x ωϕ=+图像的伸缩、平移的变换,及其性质(周期,对称轴、对称中心、单调区间、最值)18、 等差、等比数列常规量的计算(列方程组求首项和公差或公比;利用性质求解).19、 根据三视图求体积、表面积、侧面积;多面体的外接球与内切球的问题.20、 空间点、线、面位置关系的判断(借助正方体或长方体找反例排除).21、 求直线与圆的方程;直线被圆截得的弦长;及其位置关系(两点间距离、点到线距离公式、两平行线距离公式).22、 求圆锥曲线的方程;及其几何性质(离心率、渐近线等).二、解答题23、 数列:(1) 求通项公式(公式法、累加法、累乘法、构造法).(2) 求前n 项和(公式法、分组求和法、错位相减法、裂项相消法).(3) 证明等差、等比数列(定义法).24、 三角函数与解三角形:(1) 利用正弦定理、余弦定理、勾股定理、内角和定理解三角形,求面积.(2) 化归sin()y A x ωϕ=+形式.(3) 求T A ωϕ、、、值.(4) 给值求值(同角三角函数关系公式、诱导公式、两角和与差公式、二倍角的运用).(5) 求最大最小值(或给定x 的范围),及其对应的x 的集合.(6)求单调区间(当0,0A ω>>时,求增代增,求减代减)25、 统计与概率:(1) 抽样方法:系统抽样(等间距抽样);分层抽样(等比例抽样).(2) 数字特征:众数、中位数、平均数、方差、标准差、极差.(3) 数据分析:茎叶图、频率直方图;回归分析;独立性检验.(4) 从频率直方图估计:众数、中位数、平均数、方差.26、 空间立体几何:(1) 线面平行、面面平行的证明.(2) 线线垂直、线面垂直、面面垂直的证明.(3) 求体积(先证明高、后计算高及底面积、代公式求得体积).(4) 翻折问题.27、 平面解析几何:直线、圆、圆锥曲线的综合运用.28、 用导数研究函数.(恒成立问题,存在性问题)29、 极坐标与参数方程(转化法、数形结合法).。
(完整word版)高考数学知识点归纳总结,推荐文档
高中数学必修 + 选修知识点概括必修 1 数学知识点第一章:会合与函数观点1、会合三因素:确立性、互异性、无序性。
2、常有会合:正整数会合:N*或N,整数会合:Z ,有理数会合: Q,实数会合: R.3、并集 . 记作:A B.交集.记作: A B.全集、补集C U A { x | x U ,且 x A}(C U A)∩( C U B) = C U(A∪B) (C U A)∪( C U B) = C U(A∩B);A B B B A;简略逻辑:或:有真为真,全假为假。
且:有假为假,全真为真。
非:真假相反原命题互逆逆命题若 p则 q互若 q 则 p否为互逆互否为逆否否互否命题逆否命题若┐q则┐p若┐p则┐q互逆原命题:若 P则 q;抗命题:若q 则 p;否命题:若┑ P 则┑q;逆否命题:若┑ q 则┑ p。
常用变换:① f ( x y) f ( x) f ( y) f ( x y) f ( x).f ( y)证f ( x y)f ( y)f( )[()]() ( )f ( x)x f x y y f x y f y② f (x) f ( x) f (y) f (x y) f ( x) f ( y)y证:x xf()f()f() f (y)yy4、设 A、B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合A中的随意一个数 x ,在会合B中都有唯一确立的数 f x和它对应,那么就称 f : A B 为会合A到会合B的一个函数,记作: y f x , x A .分母不等于零5、定义域被开方大于等于零对数的幂大于零,底大于零不等于1值域:利用函数单一性求出所给区间的最大值和最小值,6、函数单一性:(1)定义法:设x1、x2[ a, b], x1 x2那么f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是增函数;f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是减函数.步骤:取值—作差—变形—定号—判断(2)导数法:设函数 y f ( x) 在某个区间内可导,若f (x) 0 ,则f ( x)为增函数;若f ( x)0 ,则 f ( x)为减函数 .7、奇偶性f x 为偶函数:f x f x 图象对于y 轴对称.函数 f x 为奇函数f x f x 图象对于原点对称 .若奇函数y f x 在区间0,上是递加函数,则y f x 在区间,0 上也是递加函数.若偶函数 yf x 在区间 0,上是递加函数,则yf x 在区间 ,0 上是递减函数.函数的几个重要性质:① 如 果 函 数 yf x 对 于 一 切 x R , 都 有f ax f ax 或 f ( 2a-x ) =f ( x ),那函数 y f x 的图象对于直线 x a 对称 .②函数 yf x 与函数 y fx 的图象对于直线x 0对称;函数 yf x 与函数 y f x 的图象对于直线y 0 对称;函数 yf x 与函数 yf x的图象对于坐标原点对称 .二、函数与导数1、几种常有函数的导数① C '0 ;② ( x n )' nx n 1 ;③ (sin x) ' cos x ; ④ (cos x) ' sin x ; ⑤ ( a x ) 'a xln a ; ⑥ ( e x) 'e x; ⑦ (log a x)'1 ;⑧ (ln x) ' 1x ln ax2、导数的运算法例( 1) (u v)'u ' v '.( 2) (uv)' u 'v uv ' .( 3) ( u)'u 'v uv ' (v 0) .vv 23、复合函数求导法例复合函数 yf (g (x)) 的导数和函数y f (u), u g ( x) 的导数间的关系为 y x y u u x , 即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积 .解题步骤 :分层—层层求导—作积复原导数的应用:1、 yf ( x) 在点 x 0 处的导数的几何意义 :函数 yf (x) 在点 x 0 处的导数是曲线yf ( x) 在P(x 0 , f (x 0 )) 处的切线的斜率 f (x 0 ) ,相应的切线方程是 yy 0 f (x 0 )(xx 0 ) .切线方程 : 过点 P x 0 , y 0 的切线方程,设切点为x 1, y 1 ,则切线方程为 y y 1 f ' x 1 x x 1 ,再将 P 点带入求出 x 1 即可 2、函数的极值 (---- 列表法 )(1) 极值定义:极值是在 x 0 邻近全部的点,都有f ( x) < f ( x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极大值;极值是在 x 0 邻近全部的点,都有 f ( x) > f (x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极小值 .(2) 鉴别方法:①假如在 x 0 邻近的左边 f ' (x) > 0,右边 f ' (x) < 0,那么 f ( x 0 ) 是极大值;②假如在 x 0 邻近的左边 f ' (x) < 0,右边 f ' (x) > 0,那么 f ( x 0 ) 是极小值 .3、求函数的最值(1) 求 y f (x) 在 (a, b) 内的极值(极大或许极小值)(2) 将 y f (x) 的各极值点与 f (a), f (b) 比较,此中最大的一个为最大值,最小的一个为极小值。
高考数学必考知识点归纳全
高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。
以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。
- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。
- 函数的表示:函数的图象、函数的解析式。
二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。
- 幂运算:幂的运算法则、根式。
- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。
三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。
- 绝对值不等式:绝对值的定义、绝对值不等式的解法。
四、数列- 等差数列:等差数列的定义、通项公式、求和公式。
- 等比数列:等比数列的定义、通项公式、求和公式。
- 数列的极限:数列极限的概念、极限的运算。
五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。
- 解三角形:正弦定理、余弦定理、三角形的面积公式。
六、解析几何- 直线:直线的方程、直线的位置关系。
- 圆:圆的方程、圆与直线的位置关系。
- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。
七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。
- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。
八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。
- 统计初步:数据的收集、整理、描述。
九、导数与微分- 导数的概念:导数的定义、几何意义。
- 基本导数公式:常见函数的导数公式。
- 微分的概念:微分的定义、微分的应用。
十、积分与应用- 不定积分:不定积分的概念、基本积分公式。
- 定积分:定积分的概念、定积分的计算方法。
- 积分的应用:面积、体积、物理量等的计算。
十一、复数- 复数的概念:复数的定义、复数的运算。
- 复数的几何表示:复平面、复数的模和辐角。
十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。
高考数学知识点归纳总结表
高考数学知识点归纳总结表一、代数部分1. 一次函数- 定义与性质- 直线图象与斜率- 解一次方程与不等式- 应用问题2. 二次函数- 定义与性质- 平移与伸缩- 求解二次方程与不等式- 抛物线图象与最值- 应用问题3. 绝对值与不等式- 定义与性质- 解绝对值方程与不等式- 绝对值函数与图象- 应用问题4. 等比数列- 定义与性质- 通项与求和公式- 应用问题5. 三角函数- 弧度与角度的转换- 正弦、余弦、正切函数- 特殊角的值与图象- 解三角函数方程与不等式 - 应用问题6. 指数与对数- 定义与性质- 指数函数与对数函数的图象 - 指数方程与对数方程- 应用问题二、几何部分1. 平面几何- 点、线、面的基本概念- 形状与性质:三角形、四边形、多边形、圆等 - 平行、垂直、相似、全等等关系- 面积与周长计算2. 空间几何- 直线、平面与空间的关系- 空间中的直线相交关系- 空间几何体的形状与性质:球、柱、锥等- 体积与表面积计算3. 三角关系- 同角三角比- 正弦定理、余弦定理与正弦定理的应用- 直角三角形的特殊关系与性质4. 解析几何- 平面直角坐标系- 点、直线、圆的方程- 直线与圆的位置关系三、概率与统计部分1. 概率基础- 随机事件与样本空间- 概率的定义与性质- 古典概型与几何概型2. 排列与组合- Permutation与Combination- 应用问题3. 统计与数据分析- 数据收集与整理- 数据的表示与分析:频率分布表、频率直方图等 - 平均数、中位数、众数的计算与应用四、三角函数部分1. 基本概念与关系- 弧度与角度的关系- 正弦、余弦、正切的定义与关系- 同角三角比2. 特殊角的计算- 30°、45°、60°及其倍角的值计算- 特殊角的简化3. 解三角函数方程与不等式- 基本解与普通解- 解三角函数方程与不等式的步骤与技巧以上是高考数学知识点的归纳总结表,包括代数部分、几何部分、概率与统计部分以及三角函数部分。
高考数学知识点大全
高考数学知识点大全一、集合与常用逻辑用语。
1. 集合。
- 集合的概念:元素与集合的关系(属于、不属于),集合的表示方法(列举法、描述法、韦恩图)。
- 集合间的关系:子集、真子集、相等集合的定义与判断。
- 集合的运算:交集、并集、补集的定义、性质及运算规律。
例如:A∩B={xx∈ A且x∈ B},A∪ B = {xx∈ A或x∈ B}。
2. 常用逻辑用语。
- 命题:命题的概念,真命题、假命题的判断。
- 四种命题:原命题、逆命题、否命题、逆否命题的相互关系,互为逆否命题的真假性相同。
- 充分条件与必要条件:若pRightarrow q,则p是q的充分条件,q是p的必要条件;若pLeftrightarrow q,则p是q的充分必要条件。
- 逻辑联结词:“且”(∧)、“或”(∨)、“非”(¬)的含义及命题真假的判断。
例如:p∧ q为真当且仅当p,q都为真;p∨ q为真当且仅当p,q至少一个为真;¬ p与p真假相反。
二、函数。
1. 函数的概念。
- 函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→ B为从集合A到集合B的一个函数。
- 函数的三要素:定义域、值域、对应关系。
求函数定义域的常见情况,如分式分母不为零,偶次根式被开方数非负等。
- 函数的表示方法:解析法、图象法、列表法。
2. 函数的基本性质。
- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1 < x_2时,有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。
判断函数单调性的方法有定义法、导数法等。
- 奇偶性:对于函数y = f(x)的定义域内任意一个x,都有f(-x)=f(x)(偶函数)或f(-x)= - f(x)(奇函数)。
高考高三数学总复习知识点归纳总结
高考高三数学总复习知识点归纳总结一、函数与方程1. 一次函数- 定义及性质- 斜率公式- 常见应用2. 二次函数- 定义及性质- 抛物线及图像特点- 判别式与根的情况- 常见应用3. 指数函数与对数函数- 定义及性质- 指数函数的图像特点- 对数函数的定义与性质- 常见应用4. 三角函数- 基本概念及性质- 常用三角函数的周期性、奇偶性、函数值范围- 三角函数的图像特点- 常见应用5. 方程与不等式- 一元一次方程与一元一次不等式- 一元二次方程与一元二次不等式- 三角方程与三角不等式- 常见应用二、数列与数学归纳法1. 等差数列- 定义及性质- 常见应用2. 等比数列- 定义及性质- 常见应用3. 斐波那契数列- 定义及性质- 常见应用4. 数学归纳法- 原理及应用步骤- 常见应用三、几何与三角形1. 直线与角- 基本概念及性质- 常见应用2. 三角形- 定义及性质- 各类三角形的特点- 常见应用3. 圆- 基本概念及性质- 圆的切线与切点- 弧度制- 常见应用4. 三角函数与解三角形- 正弦定理- 余弦定理- 解三角形的步骤与技巧- 常见应用四、概率与统计1. 随机事件与概率- 基本概念及性质- 概率计算方法- 常见应用2. 排列与组合- 基本概念及性质- 常见应用3. 统计与统计图- 数据的收集与整理- 统计图的绘制与分析- 常见应用五、导数与微分1. 导数的概念与性质- 导数的定义- 常见函数的导数- 常见应用2. 微分的概念与性质- 微分的定义- 高阶导数- 常见应用3. 函数的极值与最值- 极值与最值的概念- 极值与最值的判定条件- 常见应用总结本文档对高考高三数学总复习的知识点进行了归纳总结,涵盖了函数与方程、数列与数学归纳法、几何与三角形、概率与统计、导数与微分等内容。
希望能帮助您系统复习数学知识,取得优异的成绩!。
高考数学知识点全归纳
高考数学知识点全归纳
一、函数与方程
1.一次函数与二次函数的性质及应用
2.指数函数与对数函数的性质及应用
3.三角函数的性质及应用
4.常用函数及其图像
5.函数的定义与性质
6.方程与不等式的解法
7.方程与不等式的应用
二、数列与数学归纳法
1.数列的概念与性质
2.等差数列与等比数列的性质及应用
3.递推数列与通项公式
4.数学归纳法的原理与应用
三、平面几何
1.平面图形的性质与判定
2.平面图形的面积与周长
3.空间几何的基本概念与性质
4.空间几何的体积与表面积
5.空间几何的投影与旋转
四、立体几何
1.空间几何的基本概念与性质
2.空间几何的体积与表面积
3.空间几何的投影与旋转
4.立体几何的组合图形
5.立体几何的体积计算
五、概率与统计
1.概率的基本概念与性质
2.事件与概率的计算
3.概率的应用与问题解决
4.统计的基本概念与性质
5.统计的数据处理与分析
六、解析几何
1.平面直角坐标系与距离计算
2.点、线、平面的位置关系与性质
3.曲线的方程与性质
4.二次曲线的方程及性质
5.解析几何的应用与问题解决
七、数论与离散数学
1.整数与整数运算
2.素数与最大公约数、最小公倍数
3.同余与模运算
4.离散数学的基本概念与性质
5.离散数学的应用与问题解决
八、数学思维与证明
1.数学思维与问题解决方法
2.定理、引理、推论的证明方法
3.逻辑与证明的基本概念与性质
4.数学思想与发展历程。
高考数学259个核心考点
高考数学259个核心考点高考数学的核心考点共有259个,以下是详细的列表:1. 实数与代数基础- 实数的性质与运算- 代数式与多项式的基本概念与运算- 一元一次方程与一元一次不等式- 二次根式与二次方程- 分式与分式方程- 绝对值与不等式2. 函数与图像- 一元函数的概念与性质- 一元函数的图像与性质- 一元函数的运算与复合函数- 一元函数的应用(包括函数的最值、函数的增减性、函数的奇偶性等)3. 三角函数与解三角形- 三角函数的基本概念与性质- 三角函数的图像与性质- 三角函数的运算与复合函数- 三角函数的应用(包括解三角形、三角函数的最值等)4. 平面向量与解析几何- 平面向量的基本概念与运算- 平面向量的数量积与向量积- 平面向量的应用(包括向量的共线、垂直、平行等)5. 空间几何与立体几何- 空间几何的基本概念与性质- 空间几何的运算与判断- 空间几何的应用(包括立体几何的体积、表面积等)6. 数列与数学归纳法- 数列的概念与性质- 等差数列与等比数列- 数列的通项公式与求和公式- 数学归纳法的应用7. 极限与导数- 极限的概念与性质- 极限的运算与判断- 导数的概念与性质- 导数的运算与应用(包括函数的最值、函数的单调性、函数的凹凸性等)8. 积分与微分方程- 积分的概念与性质- 积分的运算与应用(包括定积分、不定积分、曲线的长度、曲线的面积等)- 微分方程的基本概念与解法9. 概率与统计- 概率的基本概念与性质- 概率的运算与应用(包括事件的概率、条件概率、独立事件等)- 统计的基本概念与应用(包括样本调查、数据处理与分析等)10. 数学思想方法与证明- 数学思想方法(包括抽象思维、逻辑推理、归纳与演绎等)- 数学证明的基本方法与技巧以上是高考数学的259个核心考点,掌握这些考点将有助于应对高考数学考试。
高考数学知识点归纳(完整版)
高考数学知识点归纳(完整版)高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。
主要考察对定理的熟悉程度、运用程度。
第七,解析几何高考的难点,运算量大,一般含参数。
高考数学知识点高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考数学必考知识点大全
高考数学必考知识点大全1.代数运算
-同底数幂的乘除法
-倍数关系与比例
-有理数的概念与运算法则
-一元一次方程的解法
-二次函数的三种表示形式
2.平面几何
-圆的基本概念与性质
-圆心角、弧度制与弧长的关系
-相似三角形的性质和判定方法
-平行线的性质和判定方法
-三角形的基本性质与判定方法
3.立体几何
-正方体、长方体、棱柱、棱锥、棱台的计算公式-圆锥的体积、曲面积的计算公式
-球的表面积、体积的计算公式
-空间向量的运算法则
-平面与立体图形的位置关系
4.概率论与数理统计
-随机事件的概念与性质
-事件的关系与运算法则
-事件的概率计算方法
-抽样调查与统计分析的基本方法-随机变量与概率分布的概念与性质5.函数与导数
-函数的概念与性质
-函数的求值与运算法则
-一元函数的最大值与最小值问题-导数的概念与基本性质
-导数的计算方法和应用
6.数列与数学归纳法
-等差数列与等比数列的概念与性质-数列的通项公式与前n项和公式-数列极限的概念与性质
-递推数列与其计算公式
-数学归纳法的基本原理和应用
7.三角函数与解三角形
-三角函数的基本性质与计算方法
-三角函数的图像与性质
-三角函数的运算法则
-解三角形的基本原理和方法
-解三角形的应用问题和求解技巧
8.数与图的关系
-数据的收集和整理方法
-数据的分析和解释方法
-数据的图表表示与分析
-数据统计和概率的计算方法
-利用图表解决实际问题的技巧与方法。
高考数学的知识点大全总结
高考数学的知识点大全总结一、函数与导数1. 函数的概念2. 函数的性质3. 函数的图像4. 函数的运算5. 函数的奇偶性6. 函数的周期性7. 导数的概念8. 导数的计算9. 函数的极值10. 函数的微分与微分中值定理二、平面向量1. 向量的概念2. 向量的加减法3. 向量的数量积4. 向量的夹角5. 向量的方向角6. 向量的共线条件7. 向量的投影8. 向量的线性运算9. 平面向量的运用10. 平面向量的应用题三、三角函数1. 弧度制与角度制2. 三角函数的概念3. 三角函数的性质4. 三角函数图像5. 三角恒等式6. 三角函数的变换7. 三角函数的应用8. 三角函数的周期性9. 三角函数的图像10. 三角函数的导数与积分四、数列与数学归纳法1. 数列的概念2. 等差数列3. 等比数列4. 通项公式与前n项和5. 数学归纳法的概念6. 数学归纳法的应用7. 数列的极限五、集合与不等式1. 集合的概念2. 集合的运算3. 集合的性质4. 不等式的概念5. 不等式的解法6. 不等式的性质7. 不等式的应用8. 绝对值不等式六、概率与统计1. 概率的基本概念2. 随机事件的概念3. 概率的计算4. 条件概率与独立性5. 排列组合6. 概率分布7. 统计参数的估计8. 正态分布9. 抽样调查10. 统计图表分析七、平面几何1. 点、线、面的概念2. 角的性质3. 三角形的性质4. 四边形的性质5. 圆的性质6. 三角形的相似性7. 圆的相似性8. 圆锥曲线的概念9. 平面几何证明10. 平面几何应用题八、空间几何1. 空间点、直线、平面的位置关系2. 空间直角坐标系3. 球、圆柱、锥的性质4. 空间向量的运算5. 空间几何证明6. 空间几何应用题九、解析几何1. 解析几何基本概念2. 直线、圆的方程3. 在直线外一点到直线的距离4. 直线与圆的位置关系5. 直线、圆的参数方程6. 解析几何证明7. 解析几何应用题十、函数与导数1. 函数与导数的基本概念2. 导数的概念与计算3. 复合函数的导数4. 隐函数的导数5. 参数方程的导数6. 函数与导数的应用以上就是高考数学的知识点大全的总结,希望对大家备考有所帮助!。
高考数学必考知识点总结归纳
高考数学必考知识点总结归纳高考数学的必考知识点主要包括以下几个方面:1.函数与方程:(1)函数的概念:定义域、值域、图像、奇偶性、单调性等;(2)初等函数的性质:幂函数、指数函数、对数函数、三角函数等的图像、性质和变换;(3)一次函数、二次函数及其图像性质;(4)方程与不等式的解法:一次方程、二次方程、绝对值方程、分式方程等;(5)不等式的解法:一元一次不等式、一元二次不等式、复合不等式等。
2.三角函数与解三角形:(1)三角函数的基本关系式:正弦定理、余弦定理、正切定理等;(2)解三角形:已知两边与夹角、已知两角与边等情况下,利用三角函数求解边长和角度;(3)三角函数的简化:辅助角(倍角、半角公式)、和差化积等;(4)平面向量的运算:加减、数乘、数量积、向量积等。
3.解析几何:(1)二维坐标系和直线方程:点的坐标、距离、斜率、两点间距离公式等;(2)圆的方程及性质:圆心半径方程、圆的一般方程、切线方程等;(3)直线与圆的位置关系:相离、相切、相交等情况下的几何解法;(4)空间解析几何:空间直线和平面的交点、直线与平面的位置关系等。
4.数列与数算:(1)常数列和等差数列的通项和求和公式;(2)几何数列和等比数列的通项和求和公式;(3)递推数列和特殊数列的性质和求和公式;(4)概率与统计:排列组合、概率计算、随机变量和分布等。
5.三角函数与导数:(1)三角函数的导数和变化率;(2)导数的定义和性质:函数的极限、导数的四则运算、导函数的应用等;(3)函数的极值与最值:极值点、最大值最小值和最值问题的解法;(4)函数的图像与最优化问题:函数图像的性质和最优化问题的求解。
以上是高考数学的必考知识点的总结和归纳。
在备考过程中,除了熟练掌握这些知识点外,还需要通过大量的习题练习和考前模拟题的训练,提高解题能力和应试技巧。
最后,希望每位考生都能取得优异的成绩。
高考数学重要知识点归纳总结
高考数学重要知识点归纳总结一、函数与方程1. 函数的概念和性质- 定义:函数是一种关系,每个自变量都对应唯一的因变量。
- 性质:可逆性、奇偶性、周期性等。
2. 四则运算与复合函数- 加法、减法、乘法、除法的运算规则。
- 复合函数的构成和求值方法。
3. 一次函数和二次函数- 一次函数:形如y = kx + b的函数,其特点和图像。
- 二次函数:形如y = ax^2 + bx + c的函数,其特点和图像。
4. 指数与对数函数- 指数函数:形如y = a^x的函数,指数规律和图像特点。
- 对数函数:形如y = loga(x)的函数,对数规律和图像特点。
5. 三角函数- 正弦、余弦、正切函数的定义和性质。
- 周期性、图像特点和恒等式。
二、空间几何1. 平面与立体图形- 二维平面图形:三角形、四边形、圆等的性质和计算公式。
- 三维立体图形:长方体、正方体、圆柱体等的性质和计算公式。
2. 空间直线和平面- 空间直线的方程和性质。
- 平面方程的表示方法和性质。
3. 空间向量- 向量的定义和表示方法。
- 向量的加法、减法和数量积的计算方法。
4. 空间几何应用- 距离公式和角度计算。
- 位置关系、相交关系和投影关系的判定方法。
三、概率与统计1. 随机事件与概率- 随机事件的定义和性质。
- 概率的定义和计算方法。
2. 概率统计- 频率和概率的关系和计算方法。
- 抽样调查和数据分析的基本概念。
3. 正态分布和抽样分布- 正态分布的特点和应用。
- 抽样分布的概念和统计推断方法。
4. 统计图表和误差分析- 数据的整理和统计图表的绘制方法。
- 误差来源和误差分析方法。
四、解析几何1. 平面直角坐标系与曲线方程- 坐标系的建立和曲线方程的表示。
- 直线、圆、抛物线、椭圆、双曲线方程的特点和图像。
2. 参数方程与极坐标方程- 参数方程的概念和表示方法。
- 极坐标方程的概念和性质。
3. 弧长、曲率和切线方程- 弧长的计算方法和性质。
高考数学必考知识点归纳总结
高考数学必考知识点归纳总结一、函数与方程1. 一次函数及其表示法一次函数的定义:形如y=kx+b(k≠0)的函数叫一次函数,其中k称为比例系数,b称为常数项。
一次函数的图象:y=kx+b的图象是一条直线,叫做一次函数的图象。
2. 一元二次方程一元二次方程的定义:形如ax²+bx+c=0(a≠0)的方程叫做一元二次方程。
一元二次方程的解:求解一元二次方程ax²+bx+c=0( a≠0 )时,可以使用下列两个公式:(1)根的判别式:Δ=b²-4ac,当Δ=0时,方程有两个相等的实根x1=x2=−b2a;当Δ>0时,方程有两个不相等的实根x1=−b−Δ2a,x2=−b+Δ2a;当Δ<0时,方程无实根。
(2)求根公式:x1=−b−Δ2a,x2=−b+Δ2a。
3. 对数函数对数函数的定义:设a>0且a≠1,且a≠1,那么函数y=loga(x)a>0且a≠1 称为对数函数。
其中a叫底数,x叫实参。
对数函数的基本性质:(1)loga(1)=0;(2)loga(a)=1;(3)loga(xy)=loga(x)+loga(y);(4)loga(x/y)=loga(x)−loga(y);(5)loga(x^n)=nloga(x)。
4. 复合函数复合函数的定义:设y=f(u),u=g(x),函数y=f[g(x)]称为由函数f和g复合而成的复合函数。
复合函数的求导法则:(1)f[g(x)]的导函数:(f[g(x)])′=f′[g(x)]⋅g′(x)。
5. 三角函数三角函数的基本性质:(1) sin(-θ)=-sinθ;(2) cos(-θ)=cosθ;(3) sin(π-θ)=sinθ;(4) cos(π-θ)=-cosθ(5) sin(π/2-θ)=cosθ(6) cos(π/2-θ)=sinθ二、空间几何1. 空间几何基本定理平行公理,在一个平面外一点到平面之间有且只有一条直线与该平面平行;平行公理的逆命题,在一个平面外一点到平面之间不可能有两条以上的直线与该平面平行;平行公理的复合命题,如果一直线与两个不同的平面平行,则这两个平面平行。
数字高考必备知识点总结
数字高考必备知识点总结一、函数1. 函数的概念和特性2. 一次函数和二次函数的性质3. 指数函数和对数函数的性质4. 三角函数和周期性函数的性质二、数列1. 等差数列和等比数列的概念和性质2. 数列的通项公式和求和公式3. 等差数列和等比数列的应用三、平面向量1. 向量的概念和性质2. 向量的数量积和向量积的性质与应用3. 向量的线性运算和平面向量的应用四、三角函数1. 弧度制和角度制的概念和转化2. 三角函数的定义和性质3. 三角函数的图像和性质4. 三角函数的基本关系式和应用五、概率统计1. 随机事件和概率的概念和性质2. 频率分布和统计的基本概念3. 随机变量和概率分布函数4. 一些常见的离散型和连续型概率分布六、导数与微分1. 导数的概念和性质2. 函数的求导法则3. 高阶导数和隐函数求导4. 微分的概念和性质5. 微分中值定理和泰勒公式七、几何1. 直线和圆的性质与解题技巧2. 三角形和多边形的性质与解题技巧3. 圆锥曲线的概念和性质4. 空间几何和向量的应用八、立体几何1. 空间几何图形的特征和性质2. 空间几何图形的体积和表面积的计算3. 空间几何的应用与解题技巧九、数学证明1. 数学证明的基本概念和方法2. 数学归纳法的原理和应用3. 数学证明题的解题技巧十、数学建模1. 数学建模的基本概念和方法2. 数学建模中常用的数学工具和技巧3. 数学建模题的解题技巧以上这些知识点是高考数学的重点和难点,掌握了这些知识点,就能在高考数学考试中取得不错的成绩。
当然,要想在高考数学中取得优异成绩,还需要不断地练习和总结,多做一些真题和模拟题,提高自己的应试能力和解题技巧。
希望每一位考生都能在高考数学中发挥出自己的潜力,取得优异的成绩,实现自己的理想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学考点(139个)
必修(115个)
一、集合、简易逻辑(14课时,8个)
1.集合;
2.子集;
3.补集;
4.交集;
5.并集;
6.逻辑连结词;
7.四种命题; 8.充要条件.
二、函数(30课时,12个)
1.映射;
2.函数;
3.函数的单调性;
4.反函数;
5.互为反函数的函数图象间的关系;
6.指数概念的扩充;
7.有理指数幂的运算; 8.指数函数; 9.对数;
10.对数的运算性质; 11.对数函数. 12.函数的应用举例.
三、数列(12课时,5个)
1.数列;
2.等差数列及其通项公式;
3.等差数列前n项和公式;
4.等比数列及其通顶公式;
5.等比数列前n项和公式.
四、三角函数(46课时17个)
1.角的概念的推广;
2.弧度制;
3.任意角的三角函数;
4,单位圆中的三角函数线; 5.同角三角函数的基本关系式;
6.正弦、余弦的诱导公式’
7.两角和与差的正弦、余弦、正切;
8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;
10.周期函数; 11.函数的奇偶性; 12.函数的图象;
13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理; 16余弦定理; 17斜三角形解法举例.
五、平面向量(12课时,8个)
1.向量
2.向量的加法与减法
3.实数与向量的积;
4.平面向量的坐标表示;
5.线段的定比分点;
6.平面向量的数量积;
7.平面两点间的距离; 8.平移.
六、不等式(22课时,5个)
1.不等式;
2.不等式的基本性质;
3.不等式的证明;
4.不等式的解法;
5.含绝对值的不等式.
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率;
2.直线方程的点斜式和两点式;
3.直线方程的一般式;
4.两条直线平行与垂直的条件;
5.两条直线的交角;
6.点到直线的距离;
7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;
10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.
八、圆锥曲线(18课时,7个)
1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程;
4.双曲线及其标准方程;
5.双曲线的简单几何性质;
6.抛物线及其标准方程;
7.抛物线的简单几何性质.
九、(B)直线、平面、简单何体(36课时,28个)
1.平面及基本性质;
2.平面图形直观图的画法;
3.平面直线;
4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质;
6.三垂线定理及其逆定理;
7.两个平面的位置关系;
8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示;
10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角;
13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质; 16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角; 19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离;
22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体;
25.棱柱; 26.棱锥; 27.正多面体; 28.球.
十、排列、组合、二项式定理(18课时,8个)
1.分类计数原理与分步计数原理.
2.排列;
3.排列数公式’
4.组合;
5.组合数公式;
6.组合数的两个性质;
7.二项式定理; 8.二项展开式的性质.
十一、概率(12课时,5个)
1.随机事件的概率;
2.等可能事件的概率;
3.互斥事件有一个发生的概率;
4.相互独立事件同时发生的概率;
5.独立重复试验.
选修Ⅱ(24个)
十二、概率与统计(14课时,6个)
1.离散型随机变量的分布列;
2.离散型随机变量的期望值和方差;
3.抽样方法;
4.总体分布的估计;
5.正态分布;
6.线性回归.
十三、极限(12课时,6个)
1.数学归纳法;
2.数学归纳法应用举例;
3.数列的极限;
4.函数的极限;
5.极限的四则运算;
6.函数的连续性. 十四、导数(18课时,8个)
1.导数的概念;
2.导数的几何意义;
3.几种常见函数的导数;
4.两个函数的和、差、积、商的导数;
5.复合函数的导数;
6.基本导数公式;
7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值. 十五、复数(4课时,4个)
1.复数的概念;
2.复数的加法和减法;
3.复数的乘法和除法;
4.数系的扩充.赞同1| 评论。