二次函数的应用面积最大问题教学设计
二次函数的应用——最大面积问题教学设计
二次函数的应用——最大面积问题的教学设计一、学情分析:众所周知,二次函数与解析几何是初中数学的两个难点,而在中考中往往都是将二者融合形成综合性问题,当然也是学生一直感觉头疼的一个问题。
新课程标准指出,学生对有关的数学内容进行探索、实践和思考的过程就是数学学习的过程,也是学生获得数学活动经验的过程。
将时间还给学生、以学生为主体是每一节课的追求。
通过学生自主学习在反比例函数中求三角形时所用到的方法分享,对其中分割法中的竖直高乘以水平宽的一半进行着重分析,探究其基本原理,从而用此通法解决二次函数中三角形最大面积问题,当然重点分析此发的同时也鼓励一题多解、多解归一。
二、教学目标1、借助反比例函数中三角形面积的几种计算方法总结得出通法:“水平宽乘以竖直高的一半”。
2、通过自主学习小组合作讨论,从特殊的图形出发、层层深入让学生在探索过程中体会“水平宽乘以竖直高的一半”这一方法。
从而从本质理解“水平宽乘以竖直高的一半”。
3、运用“水平宽乘以竖直高的一半”表示出二次函数中基本三角形的面积结合二次函数的最值思想求出三角形面积的最值问题。
三、教学重难点:教学重点:运用“水平宽乘以竖直高的一半”表示出二次函数中基本三角形的面积结合二次函数的最值思想求出三角形面积的最值问题教学难点:从特殊的图形出发、层层深入让学生在探索过程中体会“水平宽乘以竖直高的一半”这一方法。
从而从本质理解“水平宽乘以竖直高的一半”。
四、教学设计【自主学习】学生课前自主完成、并在上课时小组讨论、交流并与大家分享。
的图象都引例:如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=mx经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.方法提炼:补:补成矩形减去三个直角三角形。
补:延长CA与y轴交于点D,用三角形BCD面积减去三角形BAD面积。
二次函数应用几何图形的最大面积问题教学课件
求解极值点
通过求导数并令其为0,找到函 数的极值点。
确定最大面积
根据极值点和单调性,确定几 何图形的最大面积对应的点。
05
练习题与答案解析
练习题
01
02
03
题目1
一个矩形ABCD的面积为 12,其中AB=2,求BC的 最大值。
题目2
一个直角三角形ABC的面 积为6,其中∠C=90°, AC=3,求BC的最大值。
详细描述
首先设定三角形的底和高为二次函数 的变量,然后根据二次函数的性质, 找到使面积最大的底和高的值。
利用二次函数求圆形面积的最大值
总结词
通过设定圆的半径为二次函数的变量 ,利用二次函数的性质求圆的最大面 积。
详细描述
首先设定圆的半径为二次函数的变量 ,然后根据二次函数的性质,找到使 面积最大的半径的值。
02
几何图形可以由二次函数图像与x 轴、y轴的交点确定,进而形成三 角形、矩形、平行四边形等。
二次函数的最值与几何图形面积的关系
二次函数的最值出现在顶点处,此时 对应的x值为函数的零点或对称轴。
几何图形面积的最大值或最小值出现 在二次函数最值处,可以通过求导数 或配方法找到最值点。Βιβλιοθήκη 02常见几何图形面积公式
题目3
一个等腰三角形ABC的面 积为10,其中AB=AC, ∠B=45°,求BC的最大值 。
答案解析
解析1
设BC=x,则矩形的面积可以表 示为2x=12,解得x=6。由于AB 已经给定为2,所以BC的最大值
为6。
解析2
设BC=x,则直角三角形的面积 可以表示为1/2×3x=6,解得 x=4。由于AC已经给定为3,所
北师大版九年级下册第二章二次函数第二章:面积最大是多少教学设计
北师大版九年级下册第二章二次函数第二章:面积最大是多少教学设计一、教学目标1.了解二次函数中面积最大问题的基本概念和解法2.掌握求二次函数面积最大值的方法3.能够通过解决问题提高自己的解决问题的能力和思维能力二、教学内容1.二次函数中面积最大问题的基本概念2.二次函数面积最大值的方法3.实际问题的应用三、教学方法1.结合具体问题进行讲解,注重考点强化2.独立思考、小组合作、展示汇报等多种教学方法结合使用3.多媒体辅助教学,图文并茂四、教学过程1. 导入(5分钟)•老师介绍本节课的主题及重要性,并让学生提出面积最大问题的相关问题或想法,引导学生进入课程主题。
2. 讲授面积最大问题的基本概念(10分钟)•通过举例讲解面积最大问题的定义、分类、特点等基本概念。
•帮助学生理解面积最大问题与实际生活密切相关。
3. 介绍二次函数面积最大值的求解方法(20分钟)•让学生通过举例理解二次函数面积最大值的求解方法。
•具体讲解求解过程及方法。
4. 案例分析(30分钟)•分组进行实际问题探究和解决,组长为负责人,组员分工合作•团队协作、独立思考找出最大面积•每组在黑板上汇报,总结出结论5. 总结(5分钟)•回顾课堂重点内容,复习二次函数面积最大值的求解方法。
•总结今天的收获,展示个人的学习收获。
五、教学评估•通过实际问题分析和答题,评估学生对面积最大问题及二次函数面积最大值求解的理解、掌握程度。
•通过展示汇报等方式,评估学生的动手能力和团队协作成果。
六、教学反思•在今后的教学中,要注重和学生联系实际问题,让学生主动参与其中,提高课堂效果和学生的学习积极性。
•需加强评估和反馈,针对学生的不足点及时纠正,才能进一步提高教学效果。
二次函数的应用——面积最大问题》说课稿—获奖说课稿
二次函数的应用——面积最大问题》说课稿—获奖说课稿22.过程与方法:培养学生利用所学知识构建数学模型,解决实际问题的能力,掌握建模思想,熟练掌握最值问题的解法。
23.情感态度与价值观:通过实际问题的应用,让学生感受到数学在生活中的实际应用价值,培养学生对数学的兴趣和热爱。
本节课的重点是最值问题的解法和建模思想的培养,难点是对实际问题的分析和建模思想的掌握。
三、教学方法的选择本节课采用“引导发现、归纳总结、启发式教学”等多种教学方法,其中引导发现法是本节课的核心教学方法,通过引导学生发现实际问题中的规律和模式,培养学生独立思考和解决问题的能力;归纳总结法是巩固知识的有效方法,通过对学生已有的知识进行梳理和总结,加深对知识的理解和记忆;启发式教学法则是在教学中采用启发式问题,激发学生的思考和求知欲,提高学生的研究兴趣和积极性。
四、教学过程的设计本节课的教学过程分为四个环节:导入、讲授、练、归纳总结。
导入环节通过引入实际问题,激发学生的兴趣和求知欲,让学生认识到最值问题的实际应用价值;讲授环节通过具体例子和图像分析,讲解最值问题的解法和建模思想;练环节则通过多种形式的练,巩固学生的知识和技能;归纳总结环节则对本节课的知识点进行总结和梳理,加深对知识的理解和记忆。
五、教学效果预测通过本节课的教学,学生将能够掌握最值问题的解法和建模思想,能够熟练应用所学知识解决实际问题,同时也能够感受到数学在生活中的实际应用价值,培养学生对数学的兴趣和热爱,为学生今后的研究打下坚实的理论和思想方法基础。
2、___要在一块长为20米、宽为15米的空地上建一个长方形花园,他想让花园的面积最大,你能帮他算一下最大面积是多少吗?3、某公司生产一种产品,销售价格为每个10元,生产成本为每个5元,每天能生产1000个,你能帮助他们算一下每天的最大利润是多少吗?设计思路]通过这三个问题,引导学生发现实际问题中的最值问题,从而引出二次函数的最值问题。
九年级数学上册《二次函数的应用》教案、教学设计
-通过动画展示二次函数图像的平移、伸缩等变换,使学生直观地感受图像的性质。
3.设计具有梯度的问题,引导学生逐步深入地掌握二次函数的知识。
-从简单的二次函数图像识别,到求解实际问题中的二次函数,逐步提高问题的难度。
4.采用小组合作、讨论交流的学习方式,促进学生之间的思维碰撞,共同解决难题。
5.学会运用二次函数的知识,解决生活中的实际问题,提高数学应用能力。
(二)过程与方法
在本章节的学习过程中,学生将通过以下方法培养数学思维与解决问题的能力:
1.通过小组合作、讨论交流,培养学生的合作意识和团队精神。
2.利用数形结合的方法,引导学生观察、分析二次函数的图像,培养学生直观想象和逻辑推理能力。
5.反思与总结:
-请同学们在作业本上写下本节课的学习心得,包括对二次函数的理解、学习过程中的困惑以及解题方法的总结。
-教师在批改作业时,应及时给予反馈,鼓励学生持续反思,不断提高。
4.通过小组合作,培养学生互相尊重、团结协作的品质,增强集体荣誉感。
5.引导学生认识到数学知识在实际生活中的重要性,培养学生的社会责任感和使命感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了线性方程、不等式等知识,对于函数的概念也有初步的理解。在此基础上,学生对二次函数的学习将面临以下挑战:
-完成课后作业中的基础题,旨在让学生通过实际操作,加深对二次函数图像特征的理解。
2.提高作业:
-选做课本第chapter页的提高题,涉及二次函数在实际问题中的应用,如最值问题、面积计算等,以提升学生解决问题的能力。
-设计一道综合性的应用题,要求学生运用本节课所学知识,结合生活实际,解决实际问题。
二次函数的应用教案(教学设计) (2)
教课基本信息课题二次函数的应用学科数学学段:初中年级九年级有关领域二次函数、本质应用指导思想与理论依照世界有名的数学教育家弗赖登塔尔以为,“数学教育要指引学生认识四周的世界,四周的世界应当是学生研究的源泉,而数学课本从构造上应当从与学生生活体验亲密有关的问题开始,发现数学看法和解决本质问题,实现数学化。
”法国有名数学家笛卡儿所说:“我们所解决的每一个问题,将成为一个模式,以用于解决其余问题”。
经过模型从而利用一次函数或反比率函数或二次函数、方程(组)、不等式、三角函数等知识设计不一样的方案,或拟订一个最正确方案解决本质问题。
它既切合素质教育提出的“培育学生应企图识”的新要求,同时也有益于培育学生剖析问题和解决问题的能力,解这种数学应用题的要点是经过对问题原始形态的剖析、联想和抽象,将本质问题转变为一个数学识题,即建立一个函数数学模型。
数学课程的设计,充足考虑本阶段的学生学习数学的特色,切合学生的认知规律和心理特色,有益于激发学生的学习兴趣,引起学生的数学思虑;充足考虑数学自己的特色,表现数学的本质;在表现作为知识与技术的数学的结果的同时,重视学生的已有经验,使学生体验从本质背景中抽象出数学识题,建立数学模型、追求结果、解决问题的过程。
为了适应时代对人材培育的需要,数学课程还要特别着重发展学生的模型思想与应企图识和创新意识。
本节课是学习了二次函数后的一个研究建模课,学生小组合作,实地操作,研究投篮时的篮球运动轨迹,也为学生供给一些丈量工具,踊跃指引学生利用所学知识设计解决问题的方案。
从分享学生丈量、研究篮球运动轨迹是哪一种曲线(课前已经实地丈量估量),这一世活情境激发学生兴趣导入;再到利用二次函数成立模型,对提高本质投篮命中率进行剖析,提出建议,步步深入。
使学生形成把本质问题经过成立数学模型,变换成数学识题进行求解的思想,使学生领会到数形联合、数学建模思想、转变等数学思想方法的本质意义,同时培养学生研究知识,理论联系本质的能力,培育发展学生的模型思想与应企图识和创新意识,确实领会数学根源于生活,同时服务于生活的真理。
初中数学_二次函数应用面积最值问题教学设计学情分析教材分析课后反思
二次函数的应用—面积最值问题教学设计【学习目标】:1、能根据不同的实际问题,建立二次函数数学模型,进一步发展数学建模应用意识;2、会求几何图形面积的最值,并能注意到自变量对最值的影响;3、体会数学建模、转化、数形结合等数学思想方法。
【学习重点】:应用二次函数数学模型解决实际问题中的面积最值问题。
【学习难点】:把实际问题转化成二次函数的数学模型;自变量对最值的影响。
【学习过程】:一、热身展身手(学好数学,用好数学)问题1:在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边)若设AB=x,则BC=花园面积y= (写顶点式),x的取值范围是,当x= 时,y有最值是㎡。
问题:2:如图,在△ABC 中,∠C=90°,AC=6cm ,BC=8cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),求运动过程中,△CPQ 的面积最大值。
.二、动手又动脑 (合作探究,体验成功)例题学习:例1、如图,抛物线的图象与x 轴交于A 、B 两点,与y 轴交于C 点,点M 是第四象限抛物线上一点,求四边形MAOC 的面积的最大值.A B 213222y x x =--自变量的取值范围对最值的影响问题1的变式训练:例2、在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),若在P处有一棵树与墙CD,AD的距离分别是6m 和15m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积y的最大值和最小值.巩固练习:问题2变式训练如图,在△ABC 中,∠C=90°,AC=6cm ,BC=4cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),若运动时间为t ,求运动过程中,△CPQ 的面积y 最大值.*2. 巩固提升已知:如图,在RT △ABC 中,∠C=90°,AC =8cm ,BC =6cm .点P 由B 出发沿BA 的方向向点A 匀速平移,速度为1cm/s ;同时点Q 从点A 出发,沿AC 方向匀速运动,速度为2cm/s ,连接PQ,当其中一点停止,另一点也停止运动.⑴求△APQ 面积的最大值;C A B⑵求四边形BPQC 面积的最小值.三、总结见提升 (分享所得,提高更大!)你在知识和方法上有哪些收获和提高?你还有什么需要继续请教的地方?四、成果展示 (收获硕果,满载而归!)1、如图,矩形ABCD 的两边长AB =18cm ,AD =4cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC方向以每秒1cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围;(2)求△PBQ 的面积的最大值. C A BPQ*2、如图,现要用长度为6m的材料制作上部为两个正方形,下部为一个矩形组成的矩形窗户,求窗户的最大面积.五、课后作业整理补充导学案.二次函数的应用面积最值问题学情分析1、学生年龄特点:初四学生具有丰富的想象力、好胜心理。
二次函数的应用_——最大面积问题教学设计.doc
《二次函数的应用——面积最大问题》教学设计二次函数的应用——面积最人问题。
所用教材是山东教育出版社材九年级上册第三章第六节二次函数的应用,本节共需四课时,面积最大是笫一节。
下而我将从教材内容的分析、教学H标、重点、难点的确定、教学方法的选择、教学过程的设计和教学效果预测几方而对木节课进行说明。
一、教学内容的分析1、地位与作用:二次函数的应用本身是学习二次函数的图象与性质后,检验学牛应用所学知识解决实际问题能力的一个综合考查。
新课标屮要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活屮利用二次函数知识解决蝕常见、最冇实际应用价值的问题Z-,它生活背景丰富,学生比较感兴趣,対丁•面积问题学生易于理解和接受,故而在这儿作专题讲座,为求解最大利润等问题奠定基础。
冃的在于让学生通过掌握求面积最大这一类题,学会川建模的思想去解决其它和两数有关的应用问题。
此部分内容是学习一次函数及具应用后的巩固与延伸,乂为高屮乃至以后学习更多函数打下坚实的理论和思想方法基础。
2、课时安排教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运动中的二次函数、综合应用四课时,本节是第一课时。
3 •学情及学法分析学生由简单的二次函数y=x?学习开始,然后是y=ax2, y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k, y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和图像的性质。
对函数的思想已冇初步认识,对分析问题的方法已会初步模仿,能识别图彖的增减性和最值, 但在变量超过两个的实际问题屮,还不能熟练地应用知识解决问题,本节课正是为了弥补这-•不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力, 这也符合新课标中知识与技能呈螺旋式上升的规律。
初中数学_二次函数应用面积最值问题教学设计学情分析教材分析课后反思
二次函数的应用—面积最值问题教学设计【学习目标】:1、能根据不同的实际问题,建立二次函数数学模型,进一步发展数学建模应用意识;2、会求几何图形面积的最值,并能注意到自变量对最值的影响;3、体会数学建模、转化、数形结合等数学思想方法。
【学习重点】:应用二次函数数学模型解决实际问题中的面积最值问题。
【学习难点】:把实际问题转化成二次函数的数学模型;自变量对最值的影响。
【学习过程】:一、热身展身手(学好数学,用好数学)问题1:在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边)若设AB=x,则BC=花园面积y= (写顶点式),x的取值范围是,当x= 时,y有最值是㎡。
问题:2:如图,在△ABC 中,∠C=90°,AC=6cm ,BC=8cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),求运动过程中,△CPQ 的面积最大值。
.二、动手又动脑 (合作探究,体验成功)例题学习:例1、如图,抛物线的图象与x 轴交于A 、B 两点,与y 轴交于C 点,点M 是第四象限抛物线上一点,求四边形MAOC 的面积的最大值.A B 213222y x x =--自变量的取值范围对最值的影响问题1的变式训练:例2、在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),若在P处有一棵树与墙CD,AD的距离分别是6m 和15m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积y的最大值和最小值.巩固练习:问题2变式训练如图,在△ABC 中,∠C=90°,AC=6cm ,BC=4cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),若运动时间为t ,求运动过程中,△CPQ 的面积y 最大值.*2. 巩固提升已知:如图,在RT △ABC 中,∠C=90°,AC =8cm ,BC =6cm .点P 由B 出发沿BA 的方向向点A 匀速平移,速度为1cm/s ;同时点Q 从点A 出发,沿AC 方向匀速运动,速度为2cm/s ,连接PQ,当其中一点停止,另一点也停止运动.⑴求△APQ 面积的最大值;C A B⑵求四边形BPQC 面积的最小值.三、总结见提升 (分享所得,提高更大!)你在知识和方法上有哪些收获和提高?你还有什么需要继续请教的地方?四、成果展示 (收获硕果,满载而归!)1、如图,矩形ABCD 的两边长AB =18cm ,AD =4cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC方向以每秒1cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围;(2)求△PBQ 的面积的最大值. C A BPQ*2、如图,现要用长度为6m的材料制作上部为两个正方形,下部为一个矩形组成的矩形窗户,求窗户的最大面积.五、课后作业整理补充导学案.二次函数的应用面积最值问题学情分析1、学生年龄特点:初四学生具有丰富的想象力、好胜心理。
北师大九年级数学下 2.4 二次函数的应用第1课时 图形面积的最大值 教案
2.4 二次函数的应用第1课时图形面积的最大值1.能根据实际问题列出函数关系式,并根据问题的实际情况确定自变量取何值时,函数取得最值;(重点)2.通过建立二次函数的数学模型解决实际问题,培养分析问题、解决问题的能力,提高用数学的意识,在解决问题的过程中体会数形结合思想.(难点)一、情境导入如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为x m,花圃的面积为y m2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:利用二次函数求图形面积的最大值【类型一】利用二次函数求矩形面积的最大值如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积.解析:(1)根据AB为x m,则BC为(24-4x)m,利用长方形的面积公式,可求出关系式;(2)由(1)可知y和x为二次函数关系,根据二次函数的性质即可求围成的长方形花圃的最大面积及对应的AB的长;(3)根据BC的长度大于0且小于等于8列出不等式组求解即可.解:(1)∵AB =x ,∴BC =24-4x ,∴S =AB ·BC =x (24-4x )=-4x 2+24x (0<x <6);(2)S =-4x 2+24x =-4(x -3)2+36,∵0<x <6,∴当x =3时,S 有最大值为36;(3)∵⎩⎪⎨⎪⎧24-4x ≤8,24-4x >0,∴4≤x <6.所以,当x =4时,花圃的面积最大,最大面积为32平方米.方法总结:根据已知条件列出二次函数式是解题的关键.但要注意不要漏掉题中自变量的取值范围.变式训练:见《学练优》本课时练习“课堂达标训练” 第8题【类型二】 利用割补法求图形的最大面积在矩形ABCD 的各边AB ,BC ,CD ,DA 上分别选取点E ,F ,G ,H ,使得AE =AH =CF =CG ,如果AB =60,BC =40,四边形EFGH 的最大面积是( )A .1350B .1300C .1250D .1200解析:设AE =AH =CF =CG =x ,四边形EFGH 的面积是S .由题意得BE =DG =60-x ,BF =DH =40-x ,则S △AHE =S △CGF =12x 2,S △DGH =S △BEF = 12(60-x )(40-x ),所以四边形EFGH 的面积为S =60×40-x 2-(60-x )(40-x )=-2x 2+100x =-2(x -25)2+1250(0<x ≤40).当x =25时,S 最大值=1250.故选C.方法总结:考查利用配方法求二次函数的最值,先配方,确定函数的对称轴,再与函数的自变量的取值范围结合即可求出四边形EFGH 的面积最大值.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 动点问题中的最值问题如图,在矩形ABCD 中,AB =m (m是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连接DE ,作EF ⊥DE ,垂足为E ,EF 与线段BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式; (2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若y =12m,要使△DEF 为等腰三角形,m 的值应为多少?解析:(1)利用互余关系找角相等,证明△BEF ∽△CDE ,根据对应边的比相等求函数关系式;(2)把m 的值代入函数关系式,再求二次函数的最大值;(3)∵∠DEF =90°,只有当DE =EF 时,△DEF 为等腰三角形,把条件代入即可.解:(1)∵EF ⊥DE ,∴∠BEF =90°-∠CED =∠CDE .又∠B =∠C =90°,∴△BEF ∽△CDE ,∴BF CE =BE CD ,即y x =8-xm ,解得y =8x -x 2m;(2)由(1)得y =8x -x 2m ,将m =8代入,得y =-18x 2+x =-18(x 2-8x )=-18(x -4)2+2,所以当x =4时,y 取得最大值为2; (3)∵∠DEF =90°,∴只有当DE =EF 时,△DEF 为等腰三角形,∴△BEF ≌△CDE ,∴BE =CD =m ,此时m =8-x .解方程12m =8x -x 2m,得x =6,或x =2.当x =2时,m =6;当x =6时,m =2.方法总结:在解题过程中,要充分运用相似三角形对应边的比相等的性质建立函数关系式,是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】 图形运动过程中的最大面积问题如图,有一边长为5cm 的正方形ABCD 和等腰△PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一条直线l 上,当C 、Q 两点重合时,等腰△PQR 以1cm/秒的速度沿直线l 按箭头所示方向开始匀速运动,t 秒后正方形ABCD 与等腰△PQR 重合部分的面积为S cm 2.解答下列问题:(1)当t =3秒时,求S 的值; (2)当t =5秒时,求S 的值; (3)当5秒≤t ≤8秒时,求S 与t 的函数关系式,并求出S 的最大值.解析:当t =3秒和5秒时,利用三角形相似求出重合部分的面积.当5秒≤t ≤8秒时,利用二次函数求出重合部分面积的最大值.解:(1)如图①,作PE ⊥QR ,E 为垂足.∵PQ =PR ,∴QE =RE =12QR =4cm.在Rt △PEQ 中,PE =52-42=3(cm).当t =3秒时,QC =3cm.设PQ 与DC 交于点G .∵PE ∥DC ,∴△QCG ∽△QEP .∴SS △QEP =(34)2.∵S △QEP =12×4×3=6,∴S =(34)2×6=278(cm 2);(2)如图②,当t =5秒时,CR =3cm.设PR 与DC 交于G ,由△RCG ∽△REP ,可求出CG =94,∴S △RCG =12×3×94=278(cm 2).又∵S △PQR =12×8×3=12(cm 2),∴S =S △PQR -S △RCG =12-278=698(cm 2);图③(3)如图③,当5秒≤t ≤8秒时,QB =t -5,RC =8-t .设PQ 交AB 于点H ,PR 交CD 于点G .由△QBH ∽△QEP ,EQ =4,∴BQ ∶EQ =(t -5)∶4,∴S △BQH ∶S △PEQ =(t -5)2∶42,又S △PEQ =6,∴S △QBH =38(t -5)2.由△RCG ∽△REP ,同理得S △RCG =38(8-t )2,∴S =12-38(t -5)2-38(8-t )2=-34t 2+394t -1718.当t =-3942×(-34)=132时,S 最大,S 的最大值=4ac -b 24a =16516(cm 2).方法总结:本题是一个图形运动问题,解题的方法是将各个时刻的图形分别画出,由“静”变“动”,再设法求解,这种分类画图的方法在解动态的几何问题时非常有效.探究点三:利用二次函数解决拱桥问题一座拱桥的轮廓是抛物线形(如图①),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图②),求抛物线的解析式;(2)求支柱EF 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶三辆宽2m 、高3m 的汽车(汽车间的间隔忽略不计)?请说明你的理由.解析:(1)根据题目可知A ,B ,C 的坐标,设出抛物线的解析式代入可求解;(2)设F 点的坐标为(5,y F ),求出y F ,即可求出支柱EF 的长度;(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.作GH ⊥AB 交抛物线于点H ,求出点H 的纵坐标,判断是否大于汽车高度即可求解.解:(1)根据题目条件,A ,B ,C 的坐标分别是(-10,0),(10,0),(0,6).设抛物线的解析式为y =ax 2+c ,将B ,C 的坐标代入y =ax 2+c ,得⎩⎪⎨⎪⎧6=c ,0=100a +c ,解得⎩⎪⎨⎪⎧a =-350,c =6.所以抛物线的解析式为y =-350x 2+6;(2)可设F 点的坐标为(5,y F ),于是y F =-350×52+6=4.5,从而支柱EF 的长度是10-4.5=5.5(米);(3)如图②,设DN 是隔离带的宽,NG 是三辆车的宽度和,则G 点坐标是(7,0).过G 点作GH ⊥AB 交抛物线于H 点,则y H =-350×72+6=3.06>3.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.方法总结:利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计图形面积的最大值1.求函数的最值的方法2.利用二次函数求图形面积的最大值 3.利用二次函数解决拱桥问题由于本节课的内容是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的.。
二次函数与实际问题(面积最值问题)教学设计
[教学设计] 二次数学的实际运用——图形面积的最值问题【知识与技能】:通过复习让学生系统性地掌握并认识如何用函数的思想解决几何问题中面积最值问题,培养其整体性思想。
【过程与方法】:能通过设置的三个问题,概括出二次函数解决这类问题的基本思路和基本方法,并学会用数学问题的结论,分析是否是实际问题的解,掌握类比的数学思想方法。
【情感态度与价值观】:体会函数建模思想的同时,体会数学与现实生活的紧密联系,培养学生认真观察,不断反思,主动纠错的能力和乐于思考,认真严谨、细心的好习惯。
感受多媒体的直观性和愉悦感。
【重点】:如何利用二次函数的性质解决实际问题——图形面积的最值问题【难点】:如何探究在自变量取值范围内求出实际问题的解【教学过程】【活动1】:导入引言:二次函数在实际问题中的应用常见类型有抛物线形问题和最值问题。
而最值问题考试类型有两类(1)利润最大问题;(2)几何图形中的最值问题:面积的最值,用料的最佳方案等,本节课,我们学习如何用二次函数解决实际问题中图形面积的最值问题。
【活动2】:师生互动,合作学习我们来看一道简单的例题例1:李大爷要借助院墙围成一个矩形菜园ABCD,用篱笆围成的另外三边总长为24米,则矩形的长宽分别为多少时,围成的矩形面积最大?师(让学生思考):题目中已知量是什么?未知量是什么?如何理解“矩形面积最大”问题?是什么影响了矩形面积的变化呢?我们一起来看下面的动画演示(通过动画演示,让学生感受量的变化)师:在演示中你们看到了什么?想到了什么?你能列出函数解析式吗?学生解决:若设矩形一边长为X,当X在变长时,另一边变短,当X变短时,另一边变长,则面积S也随之发生了变化;设宽AB为X米,则长为24-2X (m)所以面积S=X(24-2X)=-2X2+24X=-2(X-12)2 +288师:分析归纳解函数问题的一般步骤是什么?(板书: 第一步,正确理解题意,分析问题中的常量和重量;第二步,巧设未知数,用未知数表示已知量和未知量,列二次函数解析式表示它们的关系;第三步,计算,将一般式转化为顶点式,求出数学问题的最值。
北师大九年级数学下 2.4 二次函数的应用第1课时 图形面积的最大值 精选教案1(2)
☆ 合作探究 ☆
问题:某商场的一批衬衣现在的售价是 60 元,每星期可买出 300 件,市 场调查反映:如果调整价格,每涨价 1 元,每星期要少卖出 10 件;每降价 1 元,每星期可多卖出 20 件,已知该衬衣的进价为 40 元,如何定价才能使利 润最大?
①问题中定价有几种可能?涨价与降价的结果一样吗?
②设每件衬衣涨价 x 元,获得的利润为 y 元,则定价
元 ,每件
利润为
元 ,每星期少卖
件,实际卖出
件。所以 Y=
。(0<X<30)何时有最大利润,最大利润为多少元?
教学思路 ③设每件衬衣降价 x 元,获得的利润为 y 元,则定价为
元 ,每
(纠错栏) 件利润为
☆ 达标检测 ☆
1、用长为 6m 的铁丝做成一个边长为 xm 的矩形,设矩形面积是 ym2,,则 y 与
x 之间函数关系式为
,当边长为
时矩形面积最大.
2、蓝天汽车出租公司有 200 辆出租车,市场调查表明:当每辆车的日租金为 300 元时可全部租出;当每辆车的日租金提高 10 元时,每天租出的汽车会相 应地减少 4 辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多 的收入?
分析:这是一个求最值的问题。要想解决这个问题,就要首先将实际问题 转化成数学问题。
在前面的教学中我们已经知道,这个问题中的水面长 x 与面积 S 之间的满 足函数关系式 S=-x2+20x。通过配方,得到 S=-(x-10)2+100。由此可以看出, 这个函数的图象是一条开口向下的抛物线,其顶点坐标是(10,100)。所以, 当 x=10m 时,函数取得最大值,为 S 最大值=100(m2)。
《与二此函数有关的面积最值问题》教学设计
《与二此函数有关的面积最值问题》教学设计《与二此函数有关的面积最值问题》教学设计一、教学目标1、知识与技能通过实际问题与二次函数关系的探究,让学生掌握利用顶点坐标解决面积最大值(或最小值)问题的方法。
2、过程与方法通过对实际问题的研究,体会数学知识的现实意义。
进一步认识如何利用二次函数的有关知识解决实际问题。
渗透转化及分类的数学思想方法。
3、情感态度价值观(1)通过巧妙的教学设计,激发学生的学习兴趣,让学生感受数学的美感。
(2)在知识教学中体会数学知识的应用价值。
二、教学重点:探究利用二次函数的最大值(或最小值)解决面积最值问题的方法三、教学难点:如何将面积最值问题转化为二次函数的问题四、解决问题的突破点:反复读题,理解清楚题意,对模糊的信息要反复比较。
加强对实际问题的分析,加强对几何关系的探求,提高自己的分析能力。
注意实际问题对自变量取值范围的影响,进而对函数图象的影响。
注意检验,养成良好的解题习惯。
五、教学过程问题与情境师生活动设计意图一、创设情境引入课题问题1:用60米长的篱笆围成长方形的养鸡场,怎样围可使小鸡的活动范围较大?教师提出问题,教师引导学生先考虑:(1)若矩形的长为6米,它的面积为多少?(2)若矩形一边长分别为12米、15米、25米时,它的面积分别为多少?(3)一边长为32米时呢(4)从上三问同学们发现了什么?关注学生是否发现两个变量,是否发现矩形的长的取值范围。
学生积极思考,回答问题。
通过矩形面积的探究,激发学生学习兴趣。
二、分析问题解决问题问题2你能找到篱笆围成的矩形的最大面积吗?教师引导学生分析与矩形面积有关的量,参与学生讨论。
学生思考后回答。
解:设矩形的长为x米,则宽为(30-x)米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为:y=-x2+30x(0<x<30)当x=-30/2×(-1)=15时,Y有最大值:-302/4×(-1)=225答:当矩形的边长都是15米时,小鸡的活动范围最大是225平方米。
《二次函数在面积最值问题中的应用》示范教学方案
第二十一章二次函数与反比例函数21.4二次函数的应用第1课时二次函数在面积最值问题中的应用一、教学目标1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数的性质,建立二次函数的数学模型求实际问题中的最大值或最小值.二、教学重点及难点重点:利用二次函数求实际问题的最值.难点:对实际问题中数量关系的分析.三、教学用具多媒体课件四、相关资料《实际问题与二次函数(一)》微课五、教学过程【情景引入】孙大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S 平方米.当x为何值时,S有最大值?并求出最大值.【探究新知】解决最大值问题的方法步骤:1.看题目中是否给出问题中变量之间的二次函数关系式.若未给出,则通过问题中各量间的关系或者根据图形构建函数关系列出因变量和自变量之间的二次函数关系式,并将其写成一般式;2. 由一般式y =ax 2+bx +c (a ≠0)化为顶点式y =a (x -h )2+k .先对一次项和二次项进行提取公因式,使得二次项的系数为1;再在括号里加上一次项系数一半的平方,并减去“一次项系数一半的平方;将括号写成和(差)的平方形式,并将括号外进行化简;3.根据函数y =a (x -h )2+k 的图象与性质得出在自变量取值范围内的最大值或最小值. 在任意实数范围内:若a >0,则当x =h 时y 有最小值为k ; 若 a <0,则当x =h 时,y 有最大值为k .但是在实际问题中要考虑x =h 是否在自变量的取值范围内,若不是则还要结合二次函数中y 随x 的变化情况判断出何时取最大值或最小值.本图片是微课的首页截图,本微课资源针对《实际问题与二次函数(一)》进行讲解,并结合具体例题,提高知识的应用能力,有利于启发教师教学或学生预习或复习使用.若需使用,请插入微课【知识点解析】实际问题与二次函数(一).【新知运用】探究点:利用二次函数求最大面积【类型一】 利用二次函数求最大面积例1 小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x ,则另一边长为60-2x 2,从而表示出面积;(2)利用配方法求出顶点坐标.解:(1)根据题意,得S =60-2x 2·x =-x 2+30x .自变量x 的取值范围是0<x <30; (2)S =-x 2+30x =-(x -15)2+225,因为a =-1<0,所以S 有最大值,即当x =15(米)时,S 最大值是225(平方米).方法总结:二次函数与日常生活中的例子还有很多,体现了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系.【类型二】 利用二次函数判断面积取值成立的条件例2 用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解析:(1)先表示出矩形的另一边长,再利用矩形的面积公式表示出函数关系式;(2)已知矩形的面积,可以转化为解一元二次方程;(3)判断能否围成,其实就是利用根的判别式判断一元二次方程是否有实数根,也可用配方法判断.解:(1)y =x (16-x )=-x 2+16x (0<x <16);(2)当y =60时,-x 2+16x =60,解得x 1=10,x 2=6.所以当x =10或6时,围成的养鸡场的面积为60平方米;(3)方法一:当y =70时,-x 2+16x =70,整理,得x 2-16x +70=0,由于Δ=256-280=-24<0,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法二:当y =70时,-x 2+16x =70,整理,得x 2-16x +70=0,配方,得(x -8)2=-6,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程.【类型三】 利用二次函数确定最大面积的条件例3 现有一块矩形场地,如图所示,长为40m ,宽为30m ,要将这块地划分为四块分别种植:A.兰花;B.菊花;C.月季;D.牵牛花.(1)求出这块场地中种植B 菊花的面积y 与B 场地的长x 之间的函数关系式,并写出自变量的取值范围;(2)当x是多少时,种植菊花的面积最大?最大面积是多少?解析:这是花草种植面积的最优化问题,先根据矩形的面积公式列出y与x之间的函数关系式,再利用配方法或公式法求得最大值.解:(1)由题意知,B场地宽为(30-x)m,∴y=x(30-x)=-x2+30x,自变量x的取值范围为0<x<30;(2)y=-x2+30x=-(x-15)2+225,当x=15m时,种植菊花的面积最大,最大面积为225m2.【随堂检测】1.在半径为5cm的圆中挖去一个半径为x cm的圆面,剩下的圆环的面积为y cm2,则y与x 之间的函数关系式为()。
二次函数的实际应用面积最大(小)值问题教案
26.3.2二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.一、知识回顾1、二次函数)0(2≠++=a c bx ax y 的顶点坐标是_______ 对称轴是_______ 最值为_______2、二次函数1422++=x x y 的顶点坐标是____,对称轴是____,该函数有最__值,最值为__。
3、一个长方形的长是宽的2倍,写出这个长方形的面积和宽之间的函数关系式___________二、新知学习[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?变式练习:如图,在△ABC 中,∠B=90º,AB=12mm ,BC=24mm ,动点P 从点A 开始沿边AB 向B 以2MM/S 的速度移动,动点Q 从点B 开始沿边BC 向C 以4mm/s的速度移动 已知P 、Q 分别从A\B 同时出发,求三角形PBQ 的面积S 与出发时间t 的函数关系式。
并求出t 的取值范围。
[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?变式练习:某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园x的一边靠墙,另三边用总长为40m的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y与x之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x取何值时,花园的面积最大,最大面积是多少?[例3]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE 和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.(1)判断图(2)中四边形EFGH是何形状,并说明理由;(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?变式练习1:如图点E、F、G、H分别位于正方形ABCD的四条边上,四边形EFGH也是正方形,当点E位于何处时,正方形EFGH的面积最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的应用——面积最大问题教学设计
房山区良乡三中 杨 素 芳
各位评委:你们好!
我是良乡三中的杨素芳,很高兴有机会参加这次说课比赛,并能得到各位专家的指导,我说课的课题是:二次函数的应用——面积最大问题。
所用教材是北京市义务教育课程改革实验教材九年级上第20章第五节二次函数的应用,本节共需四课时,面积最大是第一节。
下面我将从教材内容的分析、教学目标、重点、难点的确定、教学方法的选择、教学过程的设计和教学效果预测几方面对本节课进行说明。
一、教学内容的分析
1、地位与作用:
二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。
新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,故而在这儿作专题讲座,为求解最大利润等问题奠定基础。
目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关的应用问题。
此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
2、课时安排:
教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运动中的二次函数、综合应用四课时,本节是第一课时。
3.学情及学法分析
对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
二、教学目标、重点、难点的确定
结合本节课的教学内容和学生现有的学习水平,我确定本节课的教学目标如下:
1.知识与技能:通过本节学习,巩固二次函数y=
2ax bx c ++(a ≠0)的图象与性质,理解顶点与最值的关系,会求解最值问题。
2. 过程与方法:通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。
3.情感、态度与价值观:通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值。
教学重点:利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题
教学难点:1、正确构建数学模型
2、对函数图象顶点、端点与最值关系的理解与应用
三、教学方法与手段的选择
由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启
发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。
为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
四、教学流程
(一)复习引入: 复习引入阶段我设计了三个问题:
1.复习二次函数y =2ax bx c ++(a ≠0)的图象、顶点坐标、对称轴和最值。
2.(1)求函数y = 2x 2+2x -3的最值。
(2)求函数y =x 2+2x -3的最值。
(0≤x ≤ 3)
3、抛物线在什么位置取最值?
[设计思路]通过复习题1让学生回忆二次函数的图象和顶点坐标与最值,通过做练
习2复习求二次函数的最值方法---公式法、配方法、图象法,练习2(1)的设计中,定义域为x ∈R ,学生求最值容易想到顶点,无论是配方、还是利用公式都能解决;(2)中给了定义域0≤x ≤3,学生求最值时可能还会利用顶点公式求,忽略定义域的限制,设计此题就是为了提醒学生注意求解函数问题不能离开定义域这个条件才有意义,因为任何实际问题的定义域都受现实条件的制约,做完练习后及时让学生总结出了取最值的点的位置往往在顶点和两个端点之间选择,为学习新课做好知识铺垫。
(二)讲解新课
新课分为在创设情境中发现问题、在解决问题中找出方法、在巩固与应用中提高
技能几个环节
1、在创设情境中发现问题
[做一做]:请你画一个周长为40厘米的矩形,算算它的面积是多少?再和同学
比比,发现了什么?谁的面积最大?
做一做中,我让每一个同学动手画周长固定的矩形,然后比较谁的矩形面积最大,目的一是为激发学生的学习兴趣,二是为了引出想一想。
学生通过画周长一定的矩形,会发现矩形长、宽、面积不确定,从而回想起常量与变量的概念,最值又与二次函数有关,进而自己联想到用二次函数知识去解决,而不是老师告诉他用函数。
周长固定、要画一个面积最大的矩形,这个问题本身对学生来说具有很大的趣味性和挑战性,学生既感到好奇,又乐于探究它的结论,从而很自然地从复习旧知识过渡到新知识的学习。
2、在解决问题中找出方法
这一环节我设计了:
[想一想]:某工厂为了存放材料,需要围一个周长40米的矩形场地,问矩形的长
和宽各取多少米,才能使存放场地的面积最大?
我把前面矩形的周长40厘米改为40米,变成一个实际问题,目的在于让学生体
会其应用价值——我们要学有用的数学知识。
学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础。
解决完想一想之后及时让学生总结方法,为应用阶段打下思想方法基础。
3、在巩固与应用中提高技能
例1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD究竟应为多少米才能使花圃的面积最大?
例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。
(三)分层评价
这一阶段,我设计了三组练习题让学生选做,每一组题做对都能得到一百分,共三百分,学生自由选择完成,使不同层次的学生都能够体会到成功的喜悦。
A层:(你能行!)我设计了两道题,学生只要仔细观察基本上都能完成,尝试到成功之后,他们肯定会向更高层次发起进攻。
指出下列函数的最大或最小值
(1)y= -3(x-1)2+5 (2)
B层:(你肯定行!)我选择了学生感兴趣的最佳下料问题
有一块三角形余料如图所示,∠C=90°,AC=30cm,BC=40cm,要利用这块余料如图截出一个矩形DEFC,设DE=xcm,矩形的面积ycm2 。
问矩形的边长分别是多少时,矩形的面积最大?
D
C
B
F
此题目有一定难度,但刚刚学完相似形,教师给出了自变量,大部分同学应该能想到解决办法。
C 层(你一定是最棒的!)
在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 出发,沿AB 边向点B 以1cm/秒的速度移动,同时,点Q 从点B 出发沿BC 边向点C 以2cm/秒的速度移动。
如果P 、Q 两点在分别到达B 、C 两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,△PBQ 的面积等于8cm 2?
(2)设运动开始后第t 秒时,五边形APQCD 的面积为Scm 2,写出S 与t 的函数关系式,并指出自变量t 的取值范围;
(3)t 为何值时S 最小?求出S 的最小值。
此题设计了一个动点问题,而且求最小值,对优等生来说需要思考,但有(1)、(2)作铺垫,应该能自己解决。
(四)、师生小结
本阶段,让学生总结这节课的收获、利用函数知识解决实际问题的方法以及要注意的问题,体会科学就是生产力这句话的含义,激发学生学数学用数学的信心。
(五)、布置作业:
假设篱笆(虚线)的长度为15米,两面靠墙围成一个矩形,要求面积最大,如何围才能使矩形的面积最大?
2.如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。
回答下面的问题:
(1)设每个小矩形一边的长为xm ,设四个小矩形的总面积为ym 2,请写出用x 表示y 的函数表达式。
(2)你能利用公式求出所得函数的图象的顶点坐标,并说出y 的最大值吗?
(3)若墙的长度为10米,x 取何值时,养兔场的面积最大?
3.有一块三角形土地如图,他的底边BC=100米,高AD=80米,某单位沿着BC 修一座底面是矩形的大楼,当这座大楼的地基面积最大时,这个矩形的长和宽各是多少米?
A
B D C
(六)板书设计。