风冷散热设计专题
风冷散热设计专题
风冷散热设计专题风冷散热原理:散热片的核心是同散热片底座紧密接触的,因此芯片表面发出的热量就会通过热传导传到散热片上,再由风扇转动所造成的气流将热量“吹走”,如此循环,便是处理器散热的简单过程。
散热片材料的比较:现在市面上的散热风扇所使用的散热片材料一般都是铝合金,只有极少数是使用其他材料。
学过物理的人应该都知道铝导热性并不是最好的,从效果来看最好的应该是银,接下来是纯铜,紧接着才会是铝。
但是前两种材料的价格比较贵,如果用来作散热片成本不好控制。
使用铝业也有很多优点,比如重量比较轻,可塑性比较好。
因此兼顾导热性和其他方面使用铝就成为了主要的散热材料。
不过我们使用的散热片没有百分之百纯铝的产品,因为纯铝太过柔软,如果想做成散热片一般都会加入少量的其他金属,成为铝合金(得到更好的硬度)。
风扇:单是有了一个好的散热片,而不加风扇,就算表面积再大,也没有用!因为无法同空气进行完全的流通,散热效果肯定会大打折扣。
从这个来看,风扇的效果有时甚至比散热片还重要。
假如没有好的风扇,则散热片表面积大的特点便无法充分展现出来。
挑选风扇的宗旨就是,风扇吹出来的风越强劲越好。
风扇吹出来的风力越强,空气流动的速度越快,散热效果同样也就越好。
要判断风扇是否够强劲,转速是一个重要的依据。
转速越快,风就越强,简单看功率的大小。
轴承:市面上用的轴承一般有两种,滚珠轴承和含油轴承,滚珠轴承比含油轴承好,声音小、寿命长。
但是滚珠轴承的设计比较难,其中一个工艺是预压,是指将滚珠固定到轴承套中的过程,这要求滚珠与轴承套表面结合紧密,没有间隙,以使钢珠磨损度最小。
通常在国内厂家轴承制造中,预压前上下轴承套是正对的,因为钢珠尺寸与轴承套尺寸肯定会存在一定误差,所以在预压受力后,滚珠同轴承套之间总有5—10微米的间隙,就是这个间隙,使得轴承的老化磨损程度大大增加,使用寿命缩短。
同样过程,在NSK公司的轴承制造中,预压时上下轴承套的会有一个5微米左右的相对距离,这样轴承套在受压后就会紧紧的卡住滚珠,使其间的间隙减小为零,在风扇工作中,滚珠就不会有跳动,从而使磨损降至最小,保证风扇畅通且长久高速运转。
散热技术:散热形状设计
所谓散热片,将热量散失掉是其最根本的目的,因此之前的吸热、导热设计都是为散热的目的而服务的。
不论是被动散热的空冷散热片,还是需要风扇强制导流辅助的风冷散热片,鳍片的职责都是通过与周围环境(空气)的接触将由吸热底传导来的热量散失出去。
为了履行此职责,要求鳍片满足四项要求,每项要求又对应着鳍片的一项参数:1.可迅速吸收热量,即吸热底与鳍片间的热传导,对应与吸热底的连接面积(连接比例)。
2.可大范围扩散热量,即能够将吸收的热量传导到可与环境进行热交换的每个角落,对应鳍片内部的热传导能力(横截面积、形状)。
3.散热面积大,即提供更多与环境进行热交换的场所,对应鳍片的表面积(数量)。
4.空气容积大,风阻小,即鳍片间为空气留有足够的空间,可通过足够的空气,对应鳍片的间距。
要想鳍片获得优秀的效能,此四项要求必须同时满足,但对应的参数又同时受到散热片总体积、重量以及彼此的制约。
在一体成形鳍片中,连接比例、内部导热能力与表面积得益于鳍片的横截面积与数量的增加,但难免影响到鳍片间距与重量;若限定体积,鳍片的横截面积和数量又与间距相矛盾;若限定重量,鳍片的横截面积与数量互相抵触;若鳍片形状、数量不变,增加间距则对体积提出了要求,又会降低连接比例……就算采用后续结合方式,甚至辅以热管等特殊手段,鳍片的设计中仍然难免需要处理两个甚至几个互相矛盾的因素之间的平衡问题。
正是这种令人混乱的复杂制约关系,为设计者们提供了发挥的空间,才有今天这多种多样的鳍片设计。
下面,就为大家介绍一下几种常见的鳍片形式。
鳍片形状:鳍片的设计不论多么“诡异”,基本都可归入两大类之中——片状与柱状,每一类又可根据单体形状与排列方式细分出多种不同子类,当真可称“花样百出”。
片状:片状鳍片是非常典型的形状设计。
利用片状“宽广”的侧面与“单薄”的厚度,可以在相对狭小的空间内获得更大的表面积。
平行:平行排列是片状鳍片非常典型的排列方式,是“经典中的经典”。
平行排列的鳍片,片间距离均匀,空间连贯,利于空气通过。
散热设计方案
散热设计方案随着科技的不断发展,现代电子设备的性能越来越强大,处理器、图形芯片、服务器等的功耗也在不断增加。
而高效的散热设计方案是保证设备正常运行的关键。
本文将探讨一些散热设计方案,以满足不同设备的散热需求。
1. 散热原理在谈论散热设计方案之前,我们首先需要了解散热的原理。
散热的主要方式有三种:传导、传导和对流。
热传导是指热量通过物体中的分子传播的过程。
热辐射则是指物体通过辐射热量。
最后,热对流是热量通过流体(一般是空气)的对流传递。
2. 散热设计方案的基本要素一个高效的散热设计方案需要考虑以下几个基本要素:(1) 散热器:散热器是散热设计中最重要的组件之一。
它通过增加散热表面的面积来提供更大的热量交换。
通常,散热器由金属制成,如铝或铜,因为金属能更好地导热。
(2) 风扇:风扇通过增加空气流动来加速散热器上的热量交换。
风扇的大小和转速应根据设备的散热需求进行选择。
同时,风扇的噪音和功耗也是需要考虑的因素。
(3) 散热剂:散热剂是指在散热过程中使用的介质。
常见的散热剂包括水,空气和液态金属。
选择散热剂时需要考虑其导热性、稳定性和使用环境的特殊要求。
3. 不同设备的由于不同设备的功耗和散热需求不同,其散热设计方案也会有所不同。
以下是几种常见设备的散热设计方案:(1) 个人电脑:个人电脑通常采用散热器和风扇的组合来散热。
在高性能游戏机箱中,设计师通常会使用大型散热器和两个或更多的风扇来确保足够的散热。
(2) 服务器:服务器使用散热塔来提供更大的散热表面积。
服务器散热器通常由许多薄片组成,以增加热量交换效果。
此外,服务器通常采用双风扇设计,以确保足够的空气流动。
(3) 汽车发动机:汽车发动机的散热设计方案通常包括散热器、风扇和循环液。
散热器通过将发动机冷却液流过散热器来散热。
风扇可以通过增加空气流动来加速散热。
循环液则用于在发动机和散热器之间传递热量。
4. 创新的随着科技的进步,一些创新的散热设计方案正在不断涌现。
icepak应用分析-强迫风冷散热器
icepak应⽤分析-强迫风冷散热器应⽤icepak分析强迫风冷散热器1 引⾔本⽂所叙述的风冷散热器,总功率为500W,设计进风温度为50℃,要求冷板最⾼点温度≤85℃,由于条件较苛刻,因此对散热器设计提出了较⾼的要求。
我们⾸先⽤⼀般数学计算⽅法(借助计算机)对散热器进⾏计算,得到较佳的散热器参数(散热齿⾼度、厚度、间距)及需要的风量,初选风机;然后⽤专业热分析软件icepak建⽴模型、进⾏仿真分析;最后⽤了散热器优化软件Qfin对散热器进⾏了优化,再根据优化结果,确定散热器参数。
本⽂叙述了对散热器进⾏分析、优化的过程和结果,通过这些软件的综合应⽤、相互映证,可以提⾼计算精度、优化结构参数,使散热器满⾜设计要求,并尽量达到最佳的散热效果,提⾼设备可靠性。
2 组成与结构散热器的组成与结构如图1所⽰。
图1 散热器结构该散热装置主要由以下部分组成:发热器件两个,散热器,风机两个,通风风道。
处于散热器上⾯的为发热器件1,总功率为400W,主要集中在前⾯,即前⾯部分360W,其余部分40W;处于散热器下⾯的为发热器件2,功率100W,均匀分布。
3 确定散热器基本参数根据已知条件、借助经验设定散热器尺⼨参数、风机风量,通过公式对散热器性能进⾏计算,可得到散热器基板平均温度,然后根据计算结果调整尺⼨参数及风量,再计算,通过反复⼏次计算就可以得到⼀组满⾜散热条件、且散热性能较好的散热器参数,并选定风机。
4 icepak计算模型根据散热器结构及初步计算、分析得出的散热器参数,建⽴icepak计算模型如图2所⽰。
openingFan1Fan2图2 icepak计算模型计算模型包括以下部分:a.热源(sources):发热器件1简化成两个热源,⼀个为360W(source 1),尺⼨60mm×120mm,另⼀个为40W(source 2),尺⼨60mm×180mm,此两个热源紧贴在⼀个块(block 1)上,block 1紧贴在散热器的散热齿顶⾯;发热器件2简化成⼀个热源(source 3),功率100W,尺⼨150mm×330mm,紧贴散热器基板上。
强迫风冷散热器设计计算
1.风机选择计算:q =1.4×QC p ρair ∆T air×60Τm 3min.注:1.∆T air 小功率取10,中功率取15,大功率取202.一般按经验系数1.4来选择风机风机输入参数:1.风量q :1Τm 3min.=35.318CFM2.风压P :1Incℎ.H 2O =249.1Pa3.P-Q 公式:P =a ∗q +b Pa注:轴流风机一般工作在后1/3段,将其看作线性段算出斜率a 与常数b 用来计算实际工作的风量与风压2.系统阻力计算:∆P =ξ1+ξ2+4∗f L d e×ρair V 22Pa局部收缩ξ1=0.5×1−ΤA 0A 1ΤA 0A 1:通风面积比局部放大ξ2=1−ΤA 0A 12沿程阻力系数f 莫迪图紊流的经验公式较多,选择其中较准的两个公式,计算结果差异较大时参考莫迪图较准层流f =Τ64Re 雷诺数Re =d e Vυair ≤2800V 使用风机最大风量紊流:f =0.0055×1+20×Kd e+1×106Re13Re 3×103~1×106紊流(柯尔布鲁克):1√f=2log 10d eK+1.14−2log 101+9.35d eKRe√f 粗糙度K =0.0015×10−3m散热器长度L 当量直径d e =2W s H f W s +H fm风速VP-Q 公式:∆P =c ×q 2进出风口面积(开孔面积)无风机侧>有风机侧3.风机工作点计算:利用公式P =a ∗q +b & ∆P =c ×q 2求出风机的实际工作点1.风量q 1:2.风压P 1:3.风速V 1:4.散热器热阻计算:R =R 1+R 2=H b λA 2+1ℎA 3ηΤK W导热热阻R 1:基板厚度H b m & 基板面积A 2m 2& 散热器导热系数λW/m ∙K 对流换热热阻R 2:换热表面积A 3=A 3′+A 3′′=Ws L(N f −1)+(2H f +W f )LN f m 2换热总效率η=A 3′+ηf A 3′′A 3ηf =tanh mH fmH fm =H f U λA lU =2(L +W f )A l =LW f对流换热系数:ℎ=N μλ/d e准则方程层流N μ=1.86Re 1P r d e L Τ13μl μw0.14Re 1=d e V 1υair准则方程紊流N μ=0.023Re 10.8P r 0.4∆T =QR5.输出结果:1.风量q 1& 风压P 1&.风速V 1:2.基板温度T w1利用模块的热阻参数以及接触热阻计算T j 确认其低于设定值。
浅谈风冷多联机空调室外机通风散热刘祺
浅谈风冷多联机空调室外机通风散热刘祺发布时间:2021-08-24T08:37:03.758Z 来源:《建筑监督检测与造价》2021年第5期作者:刘祺[导读] 随着风冷多联机空调广泛应用,越来越多的项目,多联机室外机安装在凹槽、室内机房、连廊内等相对密闭的空间,室外机排风侧设置了通风百叶对室外机进行遮挡,对室外机的通风散热造成了一定的影响,有些项目因为室外机位置、通风百叶设置不合理导致出现室外机散热不良,影响空调的稳定运行和空调效果,因此有必要对风冷室外机的通风散热要求进行分析研究,总结经验,用于指导室外机安装位置的设计。
摘要正文:随着风冷多联机空调广泛应用,越来越多的项目,多联机室外机安装在凹槽、室内机房、连廊内等相对密闭的空间,室外机排风侧设置了通风百叶对室外机进行遮挡,对室外机的通风散热造成了一定的影响,有些项目因为室外机位置、通风百叶设置不合理导致出现室外机散热不良,影响空调的稳定运行和空调效果,因此有必要对风冷室外机的通风散热要求进行分析研究,总结经验,用于指导室外机安装位置的设计。
本文根据室外机通风系统的理论计算,结合室外机CFD热气流模拟分析,以及部分案例室外机通风散热的设计应用,对室外机平台位置的要求、通风百叶的做法、进排风风速进行了分析,总结得出室外机通风散热的设计要求,可简单总结如下:1、室外机排风和进风不短路,保证室外机进风温度不过高(过低);2、室外机有充足的通风面积,室外机进风风速小,对排风气流的回流影响小;3、室外机通风阻力不超出室外机的机外静压要求,保证室外机的循环风量不大幅衰减。
关键词:风冷多联机室外机平台通风百叶通风面积 CFD热压模拟1、前言随着近年来市场的发展和对多联机空调系统的认可,越来越多的高层商业写字楼、高端住宅采用了多联机空调系统,由于多联机系统分散独立、室内外机受管长、高差限制、地面、屋面无充足摆放空调室外机的空间等原因,很多项目室外机无法集中摆放在地面、屋面,需要分层摆放或分区摆放在裙房屋面、避难层、塔楼屋面。
风冷散热的设计及计算
风冷散热的设计及计算 The document was finally revised on 2021风冷散热的设计及计算风冷散热原理:散热片的核心是同散热片底座紧密接触的,因此芯片表面发出的热量就会通过热传导传到散热片上,再由风扇转动所造成的气流将热量“吹走”,如此循环,便是处理器散热的简单过程。
散热片材料的比较:现在市面上的散热风扇所使用的散热片材料一般都是铝合金,只有极少数是使用其他材料。
学过物理的人应该都知道铝导热性并不是最好的,从效果来看最好的应该是银,接下来是纯铜,紧接着才会是铝。
但是前两种材料的价格比较贵,如果用来作散热片成本不好控制。
使用铝业也有很多优点,比如重量比较轻,可塑性比较好。
因此兼顾导热性和其他方面使用铝就成为了主要的散热材料。
不过我们使用的散热片没有百分之百纯铝的产品,因为纯铝太过柔软,如果想做成散热片一般都会加入少量的其他金属,成为铝合金(得到更好的硬度)。
风扇:单是有了一个好的散热片,而不加风扇,就算表面积再大,也没有用!因为无法同空气进行完全的流通,散热效果肯定会大打折扣。
从这个来看,风扇的效果有时甚至比散热片还重要。
假如没有好的风扇,则散热片表面积大的特点便无法充分展现出来。
挑选风扇的宗旨就是,风扇吹出来的风越强劲越好。
风扇吹出来的风力越强,空气流动的速度越快,散热效果同样也就越好。
要判断风扇是否够强劲,转速是一个重要的依据。
转速越快,风就越强,简单看功率的大小。
轴承:市面上用的轴承一般有两种,滚珠轴承和含油轴承,滚珠轴承比含油轴承好,声音小、寿命长。
但是滚珠轴承的设计比较难,其中一个工艺是预压,是指将滚珠固定到轴承套中的过程,这要求滚珠与轴承套表面结合紧密,没有间隙,以使钢珠磨损度最小。
通常在国内厂家轴承制造中,预压前上下轴承套是正对的,因为钢珠尺寸与轴承套尺寸肯定会存在一定误差,所以在预压受力后,滚珠同轴承套之间总有5—10微米的间隙,就是这个间隙,使得轴承的老化磨损程度大大增加,使用寿命缩短。
电动车风冷散热系统解析
电动车风冷散热系统解析电动车风冷散热系统解析电动车风冷散热系统是为了解决电动车在高负荷运行时产生的热量而设计的。
下面将按步骤解析电动车风冷散热系统的工作原理。
第一步是热量的产生。
当电动车在高速行驶或承载重物时,电动机和电池可能会产生大量热量。
这些热量需要及时散发,否则会对电动车的性能和寿命产生负面影响。
第二步是热量的传导。
电动车的电机和电池通常位于车辆的底部,这意味着它们与周围环境之间的接触面积有限。
因此,必须通过散热系统来提高热量的传导效率。
第三步是热量的传导介质。
散热系统通常使用散热器作为传导介质。
散热器通常由金属制成,具有良好的导热性能。
电动车的散热器通常位于车辆底部或后部,以最大限度地增加与周围环境的接触面积。
第四步是热量的传导路径。
电动车的散热系统通过风扇和进气口与外界空气进行热量交换。
风扇通常位于散热器后面,通过吸入冷空气并将其引导到散热器中,加速热量的传导。
而进气口则用于引导空气流向散热器。
第五步是热量的散发。
一旦冷空气流经散热器,它会吸收热量并变热。
然后,热空气将通过散热器的另一侧排出,以确保热量能够尽快散发到周围环境中。
第六步是热量的循环。
为了进一步提高散热效率,一些电动车散热系统还采用了循环风的设计。
这种设计通过在散热器前方安装风道,将热空气重新引导到散热器前面,从而形成循环流动,提高热量的散发效率。
总的来说,电动车风冷散热系统通过热量产生、传导介质、传导路径、热量散发和循环等步骤,确保电动车在高负荷运行时能够及时有效地散发热量,保证车辆的性能和寿命。
这种设计在提高电动车的可靠性和稳定性方面起到了重要作用。
风冷散热的设计与计算
风冷散热的设计及计算风冷散热原理:散热片的核心是同散热片底座紧密接触的,因此芯片表面发出的热量就会通过热传导传到散热片上,再由风扇转动所造成的气流将热量“吹走”,如此循环,便是处理器散热的简单过程。
散热片材料的比较:现在市面上的散热风扇所使用的散热片材料一般都是铝合金,只有极少数是使用其他材料。
学过物理的人应该都知道铝导热性并不是最好的,从效果来看最好的应该是银,接下来是纯铜,紧接着才会是铝。
但是前两种材料的价格比较贵,如果用来作散热片成本不好控制。
使用铝业也有很多优点,比如重量比较轻,可塑性比较好。
因此兼顾导热性和其他方面使用铝就成为了主要的散热材料。
不过我们使用的散热片没有百分之百纯铝的产品,因为纯铝太过柔软,如果想做成散热片一般都会加入少量的其他金属,成为铝合金(得到更好的硬度)。
风扇:单是有了一个好的散热片,而不加风扇,就算表面积再大,也没有用!因为无法同空气进行完全的流通,散热效果肯定会大打折扣。
从这个来看,风扇的效果有时甚至比散热片还重要。
假如没有好的风扇,则散热片表面积大的特点便无法充分展现出来。
挑选风扇的宗旨就是,风扇吹出来的风越强劲越好。
风扇吹出来的风力越强,空气流动的速度越快,散热效果同样也就越好。
要判断风扇是否够强劲,转速是一个重要的依据。
转速越快,风就越强,简单看功率的大小。
轴承:市面上用的轴承一般有两种,滚珠轴承和含油轴承,滚珠轴承比含油轴承好,声音小、寿命长。
但是滚珠轴承的设计比较难,其中一个工艺是预压,是指将滚珠固定到轴承套中的过程,这要求滚珠与轴承套表面结合紧密,没有间隙,以使钢珠磨损度最小。
通常在国内厂家轴承制造中,预压前上下轴承套是正对的,因为钢珠尺寸与轴承套尺寸肯定会存在一定误差,所以在预压受力后,滚珠同轴承套之间总有5—10微米的间隙,就是这个间隙,使得轴承的老化磨损程度大大增加,使用寿命缩短。
同样过程,在NSK公司的轴承制造中,预压时上下轴承套的会有一个5微米左右的相对距离,这样轴承套在受压后就会紧紧的卡住滚珠,使其间的间隙减小为零,在风扇工作中,滚珠就不会有跳动,从而使磨损降至最小,保证风扇畅通且长久高速运转。
散热方案设计
散热方案设计散热方案设计是建筑、电力、能源等领域中不可或缺的一部分。
它的热学计算和方案设计,有着多方面的应用。
为确保建筑物的安全、节能、稳定运行,散热方案设计是必须要进行的工作。
一、散热方案设计中的重要性建筑物在使用过程中,由于自身存在损耗和外界环境的影响,会产生较高的热量。
通过合理的散热方案设计,减少热量对建筑物和周围环境的影响,保证建筑物稳定运行。
另外,对于某些高温设备,由于产生过多的热量,必须通过散热方案设计进行降温,并将热量排出。
这类设备包括工业生产中的加工设备、冷却塔、空调机组等等。
所以,散热方案设计的重要性不容忽视。
二、散热方案设计的要素(一)散热族群散热族群是指需要使用散热器、散热风扇等器材进行散热的设备和系统。
散热族群中,还可分为制冷设备和制热设备。
(二)散热器散热器是散热方案设计中重要的组成部分。
它通过内外通道和管道的对应关系,实现热传递的目的。
散热器的材料、结构和位置的不同,对其散热效率有着显著的影响。
(三)气流与温度分布气流和温度分布是散热方案设计中的要素,对散热器的放置、数量和大小都有着影响。
(四)散热支持部件散热方案设计还需要考虑散热支持部件,包括散热风扇、散热减震器、电路板等等。
三、如何进行(一)根据散热族群进行分类分类有助于确定每种设备所需散热器的数量和大小。
在分类的基础上,通过选择散热器和确定散热器的放置位置、数量和大小等,来实现散热方案的设计。
(二)选用合适的散热器散热器的选用应该考虑到散热器的材料、结构和散热面积,以及与之配套的散热风扇和管道的匹配。
为最优化散热方案,应该强调散热效率和能耗情况。
(三)考虑气流分布与温度分布散热器的放置、数量和大小,会对气流和温度分布产生影响。
为确保良好的气流分布与温度分布,可通过实验室模拟仿真和现场实测来确定实际情况,并进行相应的调整。
(四)进行完整的散热系统设计散热系统设计也是散热方案设计中的重要部分。
合适的散热风扇、管道、电路板等支持部件,需要与散热器进行匹配,构成合适的散热系统。
风冷散热的设计及计算
风冷散热的设计及计算风冷散热原理:散热片的核心是同散热片底座紧密接触的,因此芯片表面发出的热量就会通过热传导传到散热片上,再由风扇转动所造成的气流将热量“吹走”,如此循环,便是处理器散热的简单过程。
散热片材料的比较:现在市面上的散热风扇所使用的散热片材料一般都是铝合金,只有极少数是使用其他材料。
学过物理的人应该都知道铝导热性并不是最好的,从效果来看最好的应该是银,接下来是纯铜,紧接着才会是铝。
但是前两种材料的价格比较贵,如果用来作散热片成本不好控制。
使用铝业也有很多优点,比如重量比较轻,可塑性比较好。
因此兼顾导热性和其他方面使用铝就成为了主要的散热材料。
不过我们使用的散热片没有百分之百纯铝的产品,因为纯铝太过柔软,如果想做成散热片一般都会加入少量的其他金属,成为铝合金(得到更好的硬度)。
风扇:单是有了一个好的散热片,而不加风扇,就算表面积再大,也没有用!因为无法同空气进行完全的流通,散热效果肯定会大打折扣。
从这个来看,风扇的效果有时甚至比散热片还重要。
假如没有好的风扇,则散热片表面积大的特点便无法充分展现出来。
挑选风扇的宗旨就是,风扇吹出来的风越强劲越好。
风扇吹出来的风力越强,空气流动的速度越快,散热效果同样也就越好。
要判断风扇是否够强劲,转速是一个重要的依据。
转速越快,风就越强,简单看功率的大小。
轴承:市面上用的轴承一般有两种,滚珠轴承和含油轴承,滚珠轴承比含油轴承好,声音小、寿命长。
但是滚珠轴承的设计比较难,其中一个工艺是预压,是指将滚珠固定到轴承套中的过程,这要求滚珠与轴承套表面结合紧密,没有间隙,以使钢珠磨损度最小。
通常在国内厂家轴承制造中,预压前上下轴承套是正对的,因为钢珠尺寸与轴承套尺寸肯定会存在一定误差,所以在预压受力后,滚珠同轴承套之间总有5—10微米的间隙,就是这个间隙,使得轴承的老化磨损程度大大增加,使用寿命缩短。
同样过程,在NSK公司的轴承制造中,预压时上下轴承套的会有一个5微米左右的相对距离,这样轴承套在受压后就会紧紧的卡住滚珠,使其间的间隙减小为零,在风扇工作中,滚珠就不会有跳动,从而使磨损降至最小,保证风扇畅通且长久高速运转。
CPU风冷散热设计毕业论文
毕业论文声明本人郑重声明:1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。
除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。
对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。
本人完全意识到本声明的法律结果由本人承担。
2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。
本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。
3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。
4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。
论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。
论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。
对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。
学位论文作者(签名):年月关于毕业论文使用授权的声明本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。
本人完全了解大学有关保存,使用毕业论文的规定。
同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。
本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。
如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。
本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。
本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。
风冷散热设计及验算方案
风冷散热设计及验算方案12020年4月19日22020年4月19日风冷散热设计及验算方案一、散热器的选配1、选用散热器的依据电力半导体器件(以下简称器件)的耗散功率、热阻(结壳热阻与接触热阻之和)和冷却介质的入口温度等,是选用散热器的基本依据。
器件被应用在各种各样的工况,在选用散热器时应该正确识别散热器、绝缘件和紧固件的型号和含义,了解不同散热器的散热能力和范围。
一般,一种器件仅从参数看,可能有两、三种散热器都能满足要求,但应结合自己的应用情况,诸如:冷却、安装、通用互换和经济性来综合考虑选取一种最佳的散热器。
2、散热器选用计算方法散热器的配置目的,是必须保证它能将元件的热损耗有效地传导至周围环境,并使其热源即结点的温度不超过j T ,取环境温度a T ,用公式表示为:P Q < ‥…‥…‥…‥…①()/j a Q T T R =-‥…‥…②其中:P ,元件的损耗功率;Q ,耗散功率,散热结构的散热能力;32020年4月19日j T ,元件工作结温,即元件允许的最高工作温度极限,取j T =125°C ;a T ,环境温度,水冷时规定为35°C ,风冷时规定为40°C 。
R ,热阻,热量在媒质之间传递时,单位功耗所产生的温升; jc cs sa R R R R =++‥…‥…③jc R ,结点至管壳的热阻,Rjc 与元件的工艺水平和结构有很大关系由制造商给出,范围一般为 0.8~2.0 K/W ;cs R ,管壳至散热器的热阻,与管壳和散热器之间的填隙,介质接触面的粗糙度平面度以及安装的压力等密切相关,影响接触热阻的因素较多,迄今没有一个普遍适用的经验公式加以归纳,因此工程设计中都是根据实验或参考实测数据来选择接触热阻,表1为某些典型接触面的接触热阻值;sa R ,散热器至空气的热阻,是散热器选择的重要参数,它与材质材料的形状和表面积体积以及空气流速等参量有关。
基于flotherm的风冷机箱散热设计及优化分析
优化,得到冷板翅片参数的最优组合,使热源温度降低了 5 ℃ 。 通过对优化结果数据的分析,
得到以下结论:在结构尺寸允许范围内及考虑了加工难易程度情况下,尽量增加翅片高度对散
热是有益的;冷板翅片厚度与翅片个数对散热效果的影响是相关联的,并不是翅片越多越好,
5 W / cm 2 时多采用风冷的冷却 方 式。 相 比 于 液 冷 冷
备的热设计是十分重要的。 随着微电子工艺技术的不
且不需要冷却液输入输出,电子机箱可以独立工作。
电子设备需要在合适的温度范围内才能正常工
升高 10 ℃ ,其可靠性就会降低 50%” 。 因此,电子设
断进步,功率器件向着轻、薄、短、小型化发展,并且发
热功率也越来越大,导致发热热流密度成倍增加。 器
性能是影响产品可靠性的重要因素。[1]
电子机箱内,冷板上电子元件发热热流密度低于
却,风冷冷却的结构相对简单,安全系数相对较高,并
众所周知,热量是通过热传导、热对流和热辐射 3
种方式传递的。[2] 电子设备的散热设计就是基于这 3
收稿日期:2019⁃08⁃09;修回日期:2019⁃08⁃25
对于常用的 1 ~ 2.5 mm 厚的冷板翅片,其最优的翅片间隙在 4 mm 左右。
关键词:风冷机箱;冷板;散热设计;优化分析
中图分类号:TN957.8 文献标志码:A 文章编号:1009⁃0401(2019)04⁃0036⁃05
Thermal design and optimization analysis of an air⁃cooled
种原理,通过尽量减少热流通路上的热阻来进行的。
在电子设备的热设计中,对于热传导的运用,通常是将
IGBT散热器风冷散热优化设计与评估
IGBT散热器风冷散热优化设计与评估作者:陈俊杰周雷秋雨豪来源:《工业技术创新》2020年第06期摘要:绝缘栅双极型晶体管(IGBT)模块功耗持续增加,对风冷散热提出了更高要求。
以某大型冷水机组变频器为研究对象,结合仿真模拟和试验测试,提出IGBT散热器优化方案:一是将散热器翅片间距从3.0 mm减小到2.5 mm,增大换热面积;二是给每个IGBT模块增加2根热管,突破肋效率带来的瓶颈问题。
优化后进行验证,IGBT的工作结温从149.9℃降到127.2℃,达到了IGBT最高工作结温控制在130℃以内的设计要求;同时对热管相容性和寿命进行评估,表明热管工作介质不会对管壳材料造成腐蚀或者溶解,热管寿命可达到21万3 414 小时,能够保证变频器和IGBT模块的长期可靠运行。
关键词: IGBT散热器;风冷散热;热管;肋效率;工作结温;相容性;可靠性中图分类号:TN305.94 文献标识码:A 文章编号:2095-8412 (2020) 06-045-05工业技术创新 URL: http:// DOI: 10.14103/j.issn.2095-8412.2020.06.008引言随着电子科学技术的发展,电子元器件的体积越来越小,功耗和散热成为瓶颈问题,使得电子元器件本身和使用电子元器件设备的热流密度不断增大。
据统计,电子产品发生故障的主要原因就是冷却系统设计不良。
因此,电子元器件的散热设计直接决定使用该电子元器件的设备能否可靠工作、持久耐用。
以绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)模块为例,对其进行的失效机理研究表明:其各层材料的热膨胀系数在封装时往往不一致。
在长时间高温工作环境下,这种不一致性可能会导致铝键合线脱落甚至断裂、焊料层发生老化、栅极氧化层受到损坏等,甚至使得整个芯片失效。
因此,散热设计对于IGBT模块来说也是尤为重要的。
当前通用电子设备散热方式包括空气自然对流、强迫空气/液体冷却、冷板/热管散热、相变冷却等,是比较成熟的。
风冷散热_精品文档
风冷散热风冷散热:优化计算机散热性能的关键技术引言:随着计算机技术的迅猛发展,高性能计算机的普及和应用日益广泛。
然而,高性能计算机在运行过程中经常会产生大量的热量,这不仅会导致计算机硬件的损耗,还会影响计算机的性能和稳定性。
因此,有效地进行散热成为了高性能计算机设计与应用中至关重要的一环。
本文将重点探讨风冷散热技术,介绍其原理、优势以及应用实践。
一、风冷散热技术的原理风冷散热技术是通过利用气流来降低计算机内部的温度,从而实现散热的一种方法。
其原理主要包括两个方面:热传导与热对流。
1. 热传导:计算机内部的散热元件,如散热片、散热器等,通过热传导将产生的热量传导到散热元件表面。
散热元件表面与环境接触时,热量会被传导到周围的空气中。
2. 热对流:当散热元件表面与周围环境接触后,空气会受到热量的影响而产生温度差异。
由于热空气的密度较低,会上升形成热对流,而冷空气则会下沉取代上升的热空气,实现传热的过程。
二、风冷散热技术的优势相比于其他散热技术,风冷散热技术具有以下几个明显优势:1. 成本低廉:风冷散热技术不需要复杂的设计和制造工艺,成本较低。
与水冷散热相比,风冷散热不需要额外的冷却系统,减少了维护和运营成本。
2. 易于维护:风冷散热技术中使用的散热元件较为简单,易于维护和更换。
用户可以根据实际需求进行灵活调整和升级,提高了计算机的可维护性。
3. 散热效果好:风冷散热技术在传热效率上表现出色。
通过合理设计散热元件,可以大幅降低计算机内部的温度,确保计算机在高负载运行情况下的稳定性。
4. 适用性广泛:风冷散热技术适用于各种规模和类型的计算机。
无论是家用台式机、工作站还是大型服务器,风冷散热技术都可以满足其散热需求。
三、风冷散热技术的应用实践风冷散热技术在实际应用中得到了广泛的应用和验证。
以下是两个典型的应用实践案例:1. 电脑主机风冷散热方案电脑主机是个人计算机的核心部分,其散热性能对计算机的整体性能和寿命起着重要影响。
风冷散热器设计方法
风冷散热器设计方法随着电子设备的不断发展和普及,散热问题成为了一个亟待解决的挑战。
而风冷散热器作为一种常见的散热解决方案,其设计方法显得尤为重要。
本文将介绍一种有效的风冷散热器设计方法,以帮助读者更好地理解和应用。
风冷散热器的设计需要考虑散热效率和噪音控制两个方面。
在散热效率方面,我们可以通过优化散热器的结构和材料来提高其散热性能。
例如,增加散热片的数量和表面积,采用高导热材料,以提高散热效果。
此外,合理设计散热器的通风道路,确保空气能够顺畅地流过散热器,也是提高散热效率的关键。
噪音控制是风冷散热器设计中需要考虑的另一个重要因素。
散热器在工作时会产生一定的噪音,而过高的噪音会对用户的使用体验造成不良影响。
为了降低噪音,我们可以采用一些措施,如增加散热器的散热面积,减小风扇的转速,改善风扇叶片的设计等。
此外,合理布置散热器和其他设备之间的距离,避免共振和震动也是降低噪音的有效手段。
在风冷散热器的设计过程中,我们还需要考虑散热器的尺寸和重量。
尺寸过大会占用过多的空间,而尺寸过小则可能导致散热不足。
因此,我们需要根据实际需求和限制,合理确定散热器的尺寸。
同时,散热器的重量也需要考虑,过重的散热器可能会给设备带来额外的负担,甚至影响设备的正常运行。
除了上述因素,风冷散热器的设计还需要考虑材料的选择和制造工艺。
合适的材料可以提高散热器的散热性能和耐久性。
常见的散热器材料包括铝合金、铜等,它们具有良好的导热性能和机械强度。
而制造工艺的选择则直接影响到散热器的成本和质量。
因此,在设计过程中,我们需要综合考虑材料的性能和制造工艺的可行性,以达到最佳的设计效果。
总结起来,风冷散热器的设计方法需要综合考虑散热效率、噪音控制、尺寸和重量、材料选择和制造工艺等多个因素。
通过合理优化这些因素,我们可以设计出性能优良、稳定可靠的风冷散热器,以满足不同设备的散热需求。
希望本文所介绍的设计方法能够对读者在实际应用中有所帮助,提高散热器的设计水平和效果。
风冷散热设计及验算方案
风冷散热设计及验算方案一、散热器的选配1、选用散热器的依据电力半导体器件(以下简称器件)的耗散功率、热阻(结壳热阻与接触热阻之和)和冷却介质的入口温度等,是选用散热器的基本依据。
器件被应用在各种各样的工况,在选用散热器时应该正确识别散热器、绝缘件和紧固件的型号和含义,了解不同散热器的散热能力和范围。
通常,一种器件仅从参数看,可能有两、三种散热器都能满足要求,但应结合自己的应用情况,诸如:冷却、安装、通用互换和经济性来综合考虑选取一种最佳的散热器。
2、散热器选用计算方法散热器的配置目的,是必须保证它能将元件的热损耗有效地传导至周围环境,并使其热源即结点的温度不超过j T ,取环境温度a T ,用公式表示为:P Q < ‥…‥…‥…‥…① ()/j a Q T T R =-‥…‥…②其中:P ,元件的损耗功率;Q ,耗散功率,散热结构的散热能力;j T ,元件工作结温,即元件允许的最高工作温度极限,取j T =125°C ; a T ,环境温度,水冷时规定为35°C ,风冷时规定为40°C 。
R ,热阻,热量在媒质之间传递时,单位功耗所产生的温升; jc cs sa R R R R =++‥…‥…③jc R ,结点至管壳的热阻,Rjc 与元件的工艺水平和结构有很大关系由制造商给出,范围一般为 0.8~2.0 K/W ;cs R ,管壳至散热器的热阻,与管壳和散热器之间的填隙,介质接触面的粗糙度平面度以及安装的压力等密切相关,影响接触热阻的因素较多,迄今没有一个普遍适用的经验公式加以归纳,因此工程设计中都是根据实验或参考实测数据来选择接触热阻,表1为某些典型接触面的接触热阻值;sa R ,散热器至空气的热阻,是散热器选择的重要参数,它与材质材料的形状和表面积体积以及空气流速等参量有关。
综合①②③,得到:()/sa j a jc cs R T T P R R ⎡⎤<---⎣⎦‥…‥…④参见(JB/T9684-2000 电力半导体器件用散热器选用导则)根据④式计算的热阻值,如果选用标准散热器,则查询散热器标准(GB/T8446.1电力半导体器件用散热器),标准中热阻值与sa R 计算值相同,或小于又接近于计算值的散热器即为所选用的散热器;如果为非标准型散热器,需要厂家提供散热器的热阻,该热阻值应小于sa R (并且比较接近)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风冷散热设计专题风冷散热原理:散热片的核心是同散热片底座紧密接触的,因此芯片表面发出的热量就会通过热传导传到散热片上,再由风扇转动所造成的气流将热量“吹走”,如此循环,便是处理器散热的简单过程。
散热片材料的比较:现在市面上的散热风扇所使用的散热片材料一般都是铝合金,只有极少数是使用其他材料。
学过物理的人应该都知道铝导热性并不是最好的,从效果来看最好的应该是银,接下来是纯铜,紧接着才会是铝。
但是前两种材料的价格比较贵,如果用来作散热片成本不好控制。
使用铝业也有很多优点,比如重量比较轻,可塑性比较好。
因此兼顾导热性和其他方面使用铝就成为了主要的散热材料。
不过我们使用的散热片没有百分之百纯铝的产品,因为纯铝太过柔软,如果想做成散热片一般都会加入少量的其他金属,成为铝合金(得到更好的硬度)。
风扇:单是有了一个好的散热片,而不加风扇,就算表面积再大,也没有用!因为无法同空气进行完全的流通,散热效果肯定会大打折扣。
从这个来看,风扇的效果有时甚至比散热片还重要。
假如没有好的风扇,则散热片表面积大的特点便无法充分展现出来。
挑选风扇的宗旨就是,风扇吹出来的风越强劲越好。
风扇吹出来的风力越强,空气流动的速度越快,散热效果同样也就越好。
要判断风扇是否够强劲,转速是一个重要的依据。
转速越快,风就越强,简单看功率的大小。
轴承:市面上用的轴承一般有两种,滚珠轴承和含油轴承,滚珠轴承比含油轴承好,声音小、寿命长。
但是滚珠轴承的设计比较难,其中一个工艺是预压,是指将滚珠固定到轴承套中的过程,这要求滚珠与轴承套表面结合紧密,没有间隙,以使钢珠磨损度最小。
通常在国内厂家轴承制造中,预压前上下轴承套是正对的,因为钢珠尺寸与轴承套尺寸肯定会存在一定误差,所以在预压受力后,滚珠同轴承套之间总有5—10微米的间隙,就是这个间隙,使得轴承的老化磨损程度大大增加,使用寿命缩短。
同样过程,在NSK公司的轴承制造中,预压时上下轴承套的会有一个5微米左右的相对距离,这样轴承套在受压后就会紧紧的卡住滚珠,使其间的间隙减小为零,在风扇工作中,滚珠就不会有跳动,从而使磨损降至最小,保证风扇畅通且长久高速运转。
强迫风冷设计当自然风冷不能解决问题时,需要用强迫空气冷却,即强迫风冷。
强迫风冷是利用风机进行鼓风或抽风,提高设备的空气流动速度,达到散热目的。
强迫风冷在中大功率的电子设备中应用广泛,因为它具有比自然风冷多几倍的热转移能力。
与其他形势强迫风冷比较有结构简单,费用低,维护简便等优点。
整机强迫风冷有两种形式:鼓风冷却和抽风冷却。
鼓风冷却特点是风压大,风量集中。
适用于单元内热量分布不均匀,风阻较大而元器件较多的情况。
当单元内风阻较大,需要单独冷却的元件和热敏元件较多,且各单元间热损相差有较大时,建议用凤管冷却,以便控制各单元风量的需要。
当旨在机柜底层具有风阻较大元件,中上层五热敏元件的情况下,建议用无风管形式来降低成本。
抽风冷却特点是风量大,风压小,风量分布比较均匀,在强迫风冷中应用更广泛。
他也可分为有管道和无管道两种情况。
对无管道的机框抽风,整个机框相当于一个大风管,要求机柜四周密封好,侧壁也不应开空,只允许有进出风口,考虑热空气上升,抽风机常装在机框上部或顶部,出风口面对大气,进风口装在机柜底部,这种无管道风冷方式常用于机柜内各元件冷却表面风阻较小的设备。
对于在气流上升部位又热敏元件或不耐热元件则要必须用风管使气流弊开,并沿需要的方向流动,其进风口通常在机框侧面,出风口在机柜顶部。
对某些发热较大的功率管,整流管等器件可以单独风冷或用管道风冷。
由于在强迫风冷时灰尘,油雾,水蒸气和烟等会被气流带进设备而滋生内部污染,以及如何提高制冷效果等,因此,在进行强迫风冷设计时,应遵循以下基本要求;1.强迫空气的流动方向应于自然对流空气的流动方向尽量一致。
2.在气流通道上,应尽量减小阻力,并避免大型元器件阻塞奇六。
要将气流合理分配给给单元和元器件。
使所有元器件,部件都能顺利冷却,并使其谏缘陀诙疃ㄎ露认鹿ぷ鳎 衫 梅至髌 偷髡 蛊 髦苯恿鞴 ⑷仍?3.要合理排列元器件,应尽可能把不发热与发热小的和耐热性能低的及热敏的元件排在冷空气的上游(靠近进风口),其余元件尽量按他们的温度高低以递增的顺序排列,对那些发热量大而导热性差的器件必须暴露在冷却空气中,必要时进行单独冷却。
4.在不影响电性能的前提下,将发热量大的元器件集中在一起排列,并与其他元器件热绝缘,这样可以减少风量,风压,而减少风机功率。
5.赠机通风系统的近出风口应尽量远离,要避免气流短路,且入口空气温度与出口温度之差一般不要超过14度。
6.用于冷却电子设备内部元器件的空气,必须经过过滤,要安装防尘口。
7.在湿热环境下,为避免潮湿空气对元器件直接影响,可采用空芯印制板组装结构。
8.为保证通风系统安全可靠工作,必要时要在冷却系统中社控制保护装置。
9.应尽量减少强迫风冷系统的气流噪声和风机的噪声。
10.通风孔应满足电磁兼容性及安全性要求。
11.在一些大型电子设备中为提高电子线路对电磁干扰的屏蔽能力常将多块印制板在一个用金属板构成的密封小盒内,让元件产生的热量通过盒内的对流,传导,和辐射传给盒壁,再有盒壁传给冷却空气把热量散掉。
12.当机柜或机箱内有多块印制板平行排列时,印制板的间距不宜相差太大,否则,气流将直接从间距大的地方流过,而降低对其印制板的冷却效果。
13.再强迫风冷冷却的设计中,正确选择风机很重要。
风机有离心式和轴流式,其中离心式风机特点是风压高,风量集中,风量小;轴流式风机是风压小,风量大。
选择风机时要根据空气流量,风压大小,风道的阻力特性,体积,重量和噪声等等进行综合分析。
有关强迫风冷方面的一些看法:1、风机的先择:选择风机时,应考虑的因素包括:风量,风压,效率,空气流速,系统或风道的阻力特性,应用环境条件,噪声,以及体积,重量等,其中风量和风压是主要参数,要求风量大,风压低的设备,尽量采用軸流式风机,(反之,则选用离心式风机);所选风机的风量或风压不能满足要求时,可以采用串联或并联的方式来满足要求。
2、风机的安装:A, 外壳进风孔(或出风孔)的总面积要不小于风机总的通风面积;B, 风机不论是抽风还是鼓风,安装时都最好不要直接贴装在开孔的钣金上;3、风道的设计:风道要短而直,拐弯要少;在结构尺寸不受影响时,增大风道面积可减小压力损失,同时可降低风机的噪声;当风道进口需要安装防尘时,在防尘的效果和流体阻力之间要权衡;元件应按叉排列方式,这样可以提高气流的紊流程度,增强散热能力。
风路设计方法v 自然冷却的风路设计Ø设计要点ü 机柜的后门(面板)不须开通风口。
ü 底部或侧面不能漏风。
ü 应保证模块后端与机柜后面门之间有足够的空间。
ü 机柜上部的监控及配电不能阻塞风道,应保证上下具有大致相等的空间。
ü 对散热器采用直齿的结构,模块放在机柜机架上后,应保证散热器垂直放置,即齿槽应垂直于水平面。
对散热器采用斜齿的结构,除每个模块机箱前面板应开通风口外,在机柜的前面板也应开通风口。
风路设计方法v 自然冷却的风路设计Ø设计案例风路设计方法v 自然冷却的风路设计Ø典型的自然冷机柜风道结构形式风路设计方法v 强迫冷却的风路设计Ø设计要点ü 如果发热分布均匀,元器件的间距应均匀,以使风均匀流过每一个发热源. ü 如果发热分布不均匀,在发热量大的区域元器件应稀疏排列,而发热量小的区域元器件布局应稍密些,或加导流条,以使风能有效的流到关键发热器件。
ü 如果风扇同时冷却散热器及模块内部的其它发热器件,应在模块内部采用阻流方法,使大部分的风量流入散热器。
ü 进风口的结构设计原则:一方面尽量使其对气流的阻力最小,另一方面要考虑防尘,需综合考虑二者的影响。
ü 风道的设计原则风道尽可能短,缩短管道长度可以降低风道阻力;尽可能采用直的锥形风道,直管加工容易,局部阻力小;风道的截面尺寸和出口形状,风道的截面尺寸最好和风扇的出口一致,以避免因变换截面而增加阻力损失,截面形状可为园形,也可以是正方形或长方形;风路设计方法v 强迫冷却的风路设计Ø典型结构风路设计方法v 强迫冷却的风路设计Ø电源系统典型的风道结构-吹风方式风路设计方法热设计的基础理论v 自然对流换热Ø大空间的自然对流换热Nu=C(Gr.Pr)n.定性温度:tm=(tf+tw)/2定型尺寸按及指数按下表选取散热器的设计方法v 散热器冷却方式的判据Ø对通风条件较好的场合:散热器表面的热流密度小于0.039W/cm2,可采用自然风冷。
Ø对通风条件较恶劣的场合:散热器表面的热流密度小于0.024W/cm2,可采用自然风冷。
v 散热器强迫风冷方式的判据Ø对通风条件较好的场合,散热器表面的热流密度大于0.039W/cm2而小于0.078W/cm2,必须采用强迫风冷。
Ø对通风条件较恶劣的场合:散热器表面的热流密度大于0.024W/cm2而小于0.078W/cm2,必须采用强迫风冷。
散热器的设计方法通常散热器的设计分为三步1:根据相关约束条件设计处轮廓图。
2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化。
3:进行校核计算。
散热器的设计方法v 自然冷却散热器的设计方法Ø考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,如果散热器齿高低于10mm,可按齿间距≥1.2倍齿高来确定散热器的齿间距。
Ø自然冷却散热器表面的换热能力较弱,在散热齿表面增加波纹不会对自然对流效果产生太大的影响,所以建议散热齿表面不加波纹齿。
Ø自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热。
Ø由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于5mm以上。
散热器的设计方法v 强迫冷却散热器的设计方法Ø在散热器表面加波纹齿,波纹齿的深度一般应小于0.5mm。
Ø增加散热器的齿片数。
目前国际上先进的挤压设备及工艺已能够达到23的高宽比,国内目前高宽比最大只能达到8。
对能够提供足够的集中风冷的场合,建议采用低温真空钎焊成型的冷板,其齿间距最小可到2mm。
Ø采用针状齿的设计方式,增加流体的扰动,提高散热齿间的对流换热系数。
Ø当风速大于1m/s(200CFM)时,可完全忽略浮升力对表面换热的影响。
散热器的设计方法v 在一定冷却条件下,所需散热器的体积热阻大小的选取方法v 在一定的冷却体积及流向长度下,确定散热器齿片最佳间距的大小的方法散热器的设计方法v 不同形状、不同的成型方法的散热器的传热效率比较散热器的设计方法v 散热器的相似准则数及其应用方法v 机箱的热设计计算Ø密封机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔTØ对通风机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT+1000uAΔTØ对强迫通风机箱WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT+ 1000QfΔT热设计的计算方法热设计的计算方法v 自然冷却时进风口面积的计算在机柜的前面板上开各种形式的通风孔或百叶窗,以增加空气对流,进风口的面积大小按下式计算:Sin=Q/(7.4×10-5 H×Δt 1.5)s-通风口面积的大小,cm2Q-机柜内总的散热量,WH-机柜的高度,cm,约模块高度的1.5-1.8倍,Δt=t2-t1-内部空气t2与外部空气温度t1 之差,℃出风口面积为进风口面积的1.5-2倍热设计的计算方法v 强迫风冷出风口面积的计算Ø模块有风扇端的通风面积:Sfan=0.785(φin2-φhub2)无风扇端的通风面积S=(1.1-1.5) SfanØ系统在后面板(后门)上与模块层对应的位置开通风口,通风口的面积大小应为: S=(1.5-2.0)(N×S模块)N---每层模块的总数S模块---每一个模块的进风面积v 实际冷却风量的计算方法q`=Q/(0.335△T)q`---实际所需的风量,M3/hQ----散热量,W△T-- 空气的温升,℃,一般为10-15℃。