动量和能量观点的综合应用
第7讲力学三大观点的综合应用
(m+ma)·
-(m+ma)· ,解得动摩擦因数μ= ,D 正确。
分析考情
明方向
突破核心 提能力
冲破瓶颈
达素养
(2023·辽宁卷,15)如图,质量 m1=1 kg 的木板静止在光滑水平
地面上,右侧的竖直墙面固定一劲度系数 k=20 N/m 的轻弹簧,弹簧处
(3)若物体(或系统)涉及位移和时间,且受到恒力作用,应考虑
使用牛顿运动定律或动能定理。
(4)若物体(或系统)涉及位移和速度,应考虑使用动能定理,系
统中滑动摩擦力做功产生热量应用摩擦力乘以相对位移,运用
动能定理解决曲线运动和变加速运动问题特别方便。
分析考情
明方向
突破核心 提能力
冲破瓶颈
达素养
(2023·全国乙卷,25)如图,一竖直固定的长直圆管内有一
-
物块反向运动,物块的加速度大小为 a=
2
2
=2 m/s ,位移为 x3= ×2×
2 m=4 m<x1+x2,即 6 s 时物块没有回到初始位置,故选项 B 错误。0~
6 s 内拉力做的功为 W=(4×9-4×3+4×4) J=40 J,故选项 D 正确。
分析考情
明方向
突破核心 提能力
图像如图乙所示,不计空气阻力,重力加速度为 g,物块 b 可视为质点,且物
块 b 始终未滑出木板 a。下列说法正确的是(
A.物块 b 的质量为 m
√
B.物块 b 的质量为 2m
C.木板 a 的长度至少为
高考物理复习:力学三大观点的综合应用
高考物理复习:力学三大观点的综合应用考点一 动力学和能量观点的应用[知能必备]1.过程分析:将复杂的物理过程分解为几个简单的物理过程,挖掘出题中的隐含条件,找出联系不同阶段的“桥梁”.2.受力及功能分析:分析物体所经历的各个运动过程的受力情况以及做功情况的变化,选择适合的规律求解.3.规律应用:选用相应规律解决不同阶段的问题,列出规律性方程.[典例剖析](2020·全国卷Ⅱ)如图,一竖直圆管质量为M ,下端距水平地面的高度为H ,顶端塞有一质量为m 的小球.圆管由静止自由下落,与地面发生多次弹性碰撞,且每次碰撞时间均极短;在运动过程中,管始终保持竖直.已知M =4m ,球和管之间的滑动摩擦力大小为4mg ,g 为重力加速度的大小,不计空气阻力.(1)求管第一次与地面碰撞后的瞬间,管和球各自的加速度大小;(2)管第一次落地弹起后,在上升过程中球没有从管中滑出,求管上升的最大高度; (3)管第二次落地弹起的上升过程中,球仍没有从管中滑出,求圆管长度应满足的条件. 解析:(1)管第一次落地弹起的瞬间,小球仍然向下运动.设此时管的加速度大小为a 1,方向向下;球的加速度大小为a 2,方向向上;球与管之间的摩擦力大小为f ,由牛顿运动定律有Ma 1=Mg +f ① ma 2=f -mg ②联立①②式并代入题给数据,得a 1=2g ,a 2=3g ③(2)管第一次碰地前与球的速度大小相同.由运动学公式,碰地前瞬间它们的速度大小均为v 0=2gH ④方向均向下.管弹起的瞬间,管的速度反向,球的速度方向依然向下.设自弹起时经过时间t 1,管与小球的速度刚好相同.取向上为正方向,由运动学公式v 0-a 1t 1=-v 0+a 2t 1⑤ 联立③④⑤式得t 1=252H g⑥ 设此时管下端的高度为h 1,速度为v .由运动学公式可得 h 1=v 0t 1-12a 1t 21⑦v =v 0-a 1t 1⑧由③④⑥⑧式可判断此时v >0.此后,管与小球将以加速度g 减速上升h 2,到达最高点.由运动学公式有h 2=v 22g⑨设管第一次落地弹起后上升的最大高度为H 1, 则H 1=h 1+h 2⑩联立③④⑥⑦⑧⑨⑩式可得H 1=1325H ⑪(3)设第一次弹起过程中球相对管的位移为x 1.在管开始下落到上升H 1这一过程中,由动能定理有Mg (H -H 1)+mg (H -H 1+x 1)-4mgx 1=0⑫ 联立⑪⑫式并代入题给数据得x 1=45H ⑬同理可推得,管与球从再次下落到第二次弹起至最高点的过程中,球与管的相对位移x 2为x 2=45H 1⑭设圆管长度为L .管第二次落地弹起后的上升过程中,球不会滑出管外的条件是x 1+x 2≤L ⑮联立⑪⑬⑭⑮式,L 应满足的条件为L ≥152125H ⑯答案:(1)2g 3g (2)1325H (3)L ≥152125H[题组精练]1.(多选)如图所示,长直杆固定放置与水平面夹角θ=30°,杆上O 点以上部分粗糙,O 点以下部分(含O 点)光滑.轻弹簧穿过长杆,下端与挡板相连,弹簧原长时上端恰好在O 点,质量为m 的带孔小球穿过长杆,与弹簧上端连接.小球与杆粗糙部分的动摩擦因数μ=33,最大静摩擦力等于滑动摩擦力,现将小球拉到图示a 位置由静止释放,一段时间后观察到小球振动时弹簧上端的最低位置始终在b 点,O 点与a 、b 间距均为l .则下列说法正确的是( )A .小球在a 点弹簧弹性势能最大B .小球在a 点加速度大小是在b 点加速度大小的2倍C .整个运动过程小球克服摩擦力做功mglD .若增加小球质量,仍从a 位置静止释放,则小球最终运动的最低点仍在b 点 解析:BC 由于O 点与a 、b 间距均为l ,所以小球在a 、b 两点的弹性势能相等,则A 错误;小球从a 运动到b 过程,由动能定理可得mg sin θ2l -W f =0,解得W f =mgl ,所以C 正确;小球在a 点有mg sin 30°+kl -μmg cos 30°=ma 1,小球在b 点有kl -mg sin 30°=ma 2,由于小球最后是在O 与b 两点间做简谐振动,则在b 点与O 点的加速度大小相等,小球在O 点有mg sin 30°=ma 3,a 2=a 3,联立解得a 2=a 3=g 2,a 1=g ,所以小球在a 点加速度大小是在b 点加速度大小的2倍,则B 正确;若增加小球质量,仍从a 位置静止释放,设小球最终运动的最低点为c ,由于小球最后是在O 与最低点c 两点间做简谐振动,则在c 点与O 点的加速度大小相等,小球在c 点有kl ′-mg sin 30°=ma 2,解得l ′=mgk,所以增大小球的质量,弹簧在最低点的形变量也会增大,则最低点位置发生了改变,所以D 错误.2.如图所示,在光滑水平地面上放置质量M =2 kg 的长木板,木板上表面与固定的竖直弧形轨道相切.一质量m =1 kg 的小滑块自A 点沿弧面由静止滑下,A 点距离长木板上表面高度h =0.6 m .滑块在木板上滑行t =1 s 后,和木板一起以速度v =1 m /s 做匀速运动,取g =10 m /s 2.求:(1)滑块与木板间的摩擦力;(2)滑块沿弧面下滑过程中克服摩擦力做的功; (3)滑块相对木板滑行的距离. 解析:(1)对木板受力分析F f =Ma 1 由运动学公式,有v =a 1t 解得F f =2 N .(2)对滑块受力分析-F f =ma 2 设滑块滑上木板时的初速度为v 0 由公式v -v 0=a 2t 解得v 0=3 m /s滑块沿弧面下滑的过程,由动能定理得 mgh -W f =12m v 20W f =mgh -12m v 20=1.5 J .(3)t =1 s 内木板的位移x 1=12a 1t 2此过程中滑块的位移x 2=v 0t +12a 2t 2故滑块相对木板滑行距离L =x 2-x 1=1.5 m . 答案:(1)2 N (2)1.5 J (3)1.5 m3.(2020·江苏卷)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h . 解析:(1)线速度v =ωr 得v =2ωR .(2)向心力F 向=2m ω2R设F 与水平方向的夹角为α,则 F cos α=F 向;F sin α=mg解得F = (2m ω2R )2+(mg )2. (3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.答案:(1)2ωR (2) (2m ω2R )2+(mg )2 (3)M +16m2Mg(ωR )2考点二 动量和能量观点的应用[知能必备]1.动量观点(1)对于不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别对于打击一类的问题,因时间短且冲力随时间变化,应用动量定理求解,即Ft =m v -m v 0.(2)对于碰撞、爆炸、反冲一类的问题,若只涉及初、末速度而不涉及力、时间,应用动量守恒定律求解.2.能量观点(1)对于不涉及物体运动过程中的加速度和时间问题,无论是恒力做功还是变力做功,一般都利用动能定理求解.(2)如果只有重力和弹簧弹力做功而又不涉及运动过程中的加速度和时间问题,则采用机械能守恒定律求解.(3)对于相互作用的两物体,若明确两物体相对滑动的距离,应考虑选用能量守恒定律建立方程.[典例剖析](2020·天津卷)长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小; (2)碰撞前瞬间B 的动能E k 至少多大?解析:(1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律,有m 1g =m 1v 2l①A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v 2A =12m 1v 2+2m 1gl ② 由动量定理,有I =m 1v A ③ 联立①②③式,得I =m 15gl ④(2)设两球粘在一起时的速度大小为v ′,A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v ′=v A ⑤要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律,有m 2v B -m 1v A =(m 1+m 2)v ′⑥ 又E k =12m 2v 2B⑦ 联立①②⑤⑥⑦式,得碰撞前瞬间B 的动能E k 至少为 E k =5gl (2m 1+m 2)22m 2⑧答案:(1)m 15gl (2)5gl (2m 1+m 2)22m 2动量和能量观点应用的四点注意(1)弄清有几个物体参与运动,并划分清楚物体的运动过程. (2)进行正确的受力分析,明确各过程的运动特点.(3)光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.(4)如含摩擦生热问题,则考虑用能量守恒定律分析.[题组精练]1.(2021·上海浦东区二模)质量M =0.6 kg 的平板小车静止在光滑水平面上,如图所示,当t =0时,两个质量都为m =0.2 kg 的小物体A 和B ,分别从小车的左端和右端以水平速度v 1=5.0 m /s 和v 2=2.0 m /s 同时冲上小车,当它们相对于小车停止滑动时,没有相碰.已知A 、B 两物体与车面的动摩擦因数都是0.20,g 取10 m /s 2,求:(1)A 、B 两物体在车上都停止滑动时的速度. (2)车的长度至少是多少?解析:(1)设物体A 、B 相对于车停止滑动时,车速为v ,根据动量守恒定律: m (v 1-v 2)=(M +2m )v v =0.6 m /s 方向向右(2)设物体A 、B 在车上相对于车滑动的距离分别为L 1、L 2,车长为L ,由功能关系 μmg (L 1+L 2)=12m v 21+12m v 22-12(M +2m )v 2解得:L 1+L 2=6.8 m L ≥L 1+L 2=6.8 m 可知L 至少为6.8 m答案:(1)0.6 m /s 方向向右 (2)6.8 m2.(2021·铜陵一模)如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ=37°,另一端点C 为轨道的最低点.C 点右侧的光滑水平面上紧挨C 点静止放置一木板,木板质量M =1 kg ,上表面与C 点等高.质量为m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m /s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.取g =10 m /s 2.求:(1)物块经过C 点时的速度v C ;(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q .解析:(1)设物块在B 点的速度为v B ,在C 点的速度为v C ,从A 到B 物块做平抛运动,有v B sin θ=v 0从B 到C ,根据动能定理有 mgR (1+sin θ)=12m v 2C -12m v 2B解得v C =6 m /s .(2)根据动量守恒定律得:(m +M )v =m v C 根据能量守恒定律有 12(m +M )v 2+Q =12m v 2C 联立解得Q =9 J . 答案:(1)6 m /s (2)9 J考点三 动力学、动量和能量观点的应用[知能必备]1.力学解题的三大观点分类规律 数学表达式 动力学 观点力的瞬 时作用牛顿第二定律 F 合=ma牛顿第 三定律F =-F ′ 能量 观点力的空间 积累作用动能定理 W 合=E k2-E k1 机械能守 恒定律 E k1+E p1=E k2+E p2 动量 观点力的时间积累作用动量定理 F 合t =m v ′-m v 动量守 恒定律m 1 v 1+m 2 v 2=m 1 v 1′+m 2 v 2′2.选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题,应选用动量守恒定律,然后再根据能量关系分析解决.3.系统化思维方法(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).[典例剖析](2021·湖南卷)如图,竖直平面内一足够长的光滑倾斜轨道与一长为L的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ.质量为m的小物块A与水平轨道间的动摩擦因数为μ.以水平轨道末端O点为坐标原点建立平面直角坐标系xOy,x轴的正方向水平向右,y轴的正方向竖直向下,弧形轨道P端坐标为(2μL,μL),Q端在y轴上.重力加速度为g.(1)若A从倾斜轨道上距x轴高度为2μL的位置由静止开始下滑,求A经过O点时的速度大小;(2)若A从倾斜轨道上不同位置由静止开始下滑,经过O点落在弧形轨道PQ上的动能均相同,求PQ的曲线方程;(3)将质量为λm(λ为常数且λ≥5)的小物块B置于O点,A沿倾斜轨道由静止开始下滑,与B发生弹性碰撞(碰撞时间极短),要使A和B均能落在弧形轨道上,且A落在B落点的右侧,求A下滑的初始位置距x轴高度的取值范围.解析:(1)若A从倾斜轨道上距x轴高度为2μL处由静止开始下滑,对A从静止释放到运动到O点的过程,由动能定理得mg×2μL-μmgL=12m v2,解得v0=2μgL.(2)在PQ曲线上任意取一点,设坐标为(x、y),设A从O点抛出的初速度为v,由平抛运动规律有x=v t,y =12gt 2, 联立解得y =12g x 2v2,设A 落在P 点时从O 点抛出的初速度为v P , 将P 点坐标代入上式,有μL =12g (2μL )2v 2P , 解得v P =2μgL ,小物块A 从倾斜轨道上不同位置由静止释放,落在曲线PQ 上的动能均相同,有12m v 2P+mg ·μL =12m v 2+mgy ,解得x 2+4y 2-8μLy =0(0≤x ≤2μL ).(3)设A 与B 碰前瞬间的速度为v 0′,A 、B 碰后瞬间的速度分别为v 1、v 2,对A 、B 组成的系统,根据动量守恒定律与机械能守恒定律有m v 0′=m v 1+λm v 2, 12m v 0′2=12m v 21+12λm v 22, 解得v 1=1-λ1+λv 0′,v 2=21+λv 0′,又因为mgh -μmgL =12m v 0′2,要使A 、B 均能落在PQ 上且A 落在B 落点的右侧,则有12m v 2P ≥12m v 21-2μmgL >12m v 22,联立解得3μL ⎝ ⎛⎭⎪⎫1+λ1-λ2+μL ≥h >2μL (1+λ)λ-3+μL . 答案:(1)2μgL (2)x 2+4y 2-8μLy =0(0≤x ≤2μL ) (3)3μL ⎝ ⎛⎭⎪⎫1+λ1-λ2+μL ≥h >2μL (1+λ)λ-3+μL [题组精练]1.一玩具厂家设计了一款玩具,模型如下.游戏时玩家把压缩的弹簧释放后使得质量m =0.2 kg 的小弹丸A 获得动能,弹丸A 再经过半径R 0=0.1 m 的光滑半圆轨道后水平进入光滑水平平台,与静止的相同的小弹丸B 发生碰撞,并在黏性物质作用下合为一体.然后从平台O 点水平抛出,落于水平地面上设定的得分区域.已知压缩弹簧的弹性势能范围为0≤E p ≤4 J ,距离抛出点正下方O ′点右方0.4 m 处的M 点为得分最大值处,小弹丸均看作质点.(1)要使得分最大,玩家释放弹簧时的弹性势能应为多少? (2)得分最大时,小弹丸A 经过圆弧最高点时对轨道的压力大小.(3)若半圆轨道半径R 可调(平台高度随之调节),弹簧的弹性势能范围为0≤E p ≤4 J ,玩家要使得落地点离O 点最远,则半径应调为多少?最远距离多大?解析:(1)根据机械能守恒定律得 E p =12m v 21+mg ·2R 0A 、B 发生碰撞的过程,取向右为正方向,由动量守恒定律有 m v 1=2m v 2 2R 0=12gt 20x =v 2t 0 解得E p =2 J(2)小弹丸A 经过圆弧最高点时,由牛顿第二定律得F N +mg =m v 21R解得F N =30 N 由牛顿第三定律知 F 压=F N =30 N(3)根据E p =12m v 21+mg ·2Rm v 1=2m v 2 2R =12gt 2x =v 2t 联立解得 x =⎝⎛⎭⎫E p mg -2R ·2R 其中E p 最大为4 J ,得R =0.5 m 时落点离O ′点最远,为 x m =1 m答案:(1)2 J (2)30 N (3)0.5 m 1 m2.(2021·潍坊二模)如图所示,一质量M =4 kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住.小车上表面由光滑圆弧轨道BC 和水平粗糙轨道CD 组成,BC 与CD 相切于C ,BC 所对圆心角θ=37°,CD 长L =3 m .质量m =1 kg 的小物块从某一高度处的A 点以v 0=4 m /s 的速度水平抛出,恰好沿切线方向自B 点进入圆弧轨道,滑到D 点时刚好与小车达到共同速度v =1.2 m /s .取g =10 m /s 2,sin 37°=0.6,忽略空气阻力.(1)求A 、B 间的水平距离x ;(2)求小物块从C 滑到D 所用时间t 0;(3)若在小物块抛出时拔掉销钉,求小车向左运动到最大位移时滑块离小车左端的水平距离.解析:(1)由平抛运动的规律得tan θ=gt v 0x =v 0t解得x =1.2 m .(2)物块在小车上CD 段滑动过程中,由动量守恒定律得m v 1=(M +m )v由功能关系得fL =12m v 21-12(M +m )v 2 对物块,由动量定理得-ft 0=m v -m v 1得t 0=1 s .(3)有销钉时mgH +12m v 20=12m v 21 由几何关系得H -12gt 2=R (1-cos θ) B 、C 间水平距离x BC =R sin θμmgL =12m v 21-12(M +m )v 2(或f =μmg ) 若拔掉销钉,小车向左运动达最大位移时,速度为0,由系统水平方向动量守恒可知,此时物块速度为4 m /s由能量守恒定律得mgH =μmg (Δx -x BC )解得Δx =3.73 m .答案:(1)1.2 m (2)1 s (3)3.73 m3.(2020·全国卷Ⅲ)如图,相距L =11.5 m 的两平台位于同一水平面内,二者之间用传送带相接.传送带向右匀速运动,其速度的大小v 可以由驱动系统根据需要设定.质量m =10 kg 的载物箱(可视为质点),以初速度v 0=5.0 m /s 自左侧平台滑上传送带.载物箱与传送带间的动摩擦因数μ=0.10,重力加速度取g =10 m /s 2.(1)若v =4.0 m /s ,求载物箱通过传送带所需的时间;(2)求载物箱到达右侧平台时所能达到的最大速度和最小速度;(3)若v =6.0 m /s ,载物箱滑上传送带Δt =1312s 后,传送带速度突然变为零.求载物箱从左侧平台向右侧平台运动的过程中,传送带对它的冲量.解析:(1)传送带的速度为v =4.0 m /s 时,载物箱在传送带上先做匀减速运动,设其加速度大小为a ,由牛顿第二定律有μmg =ma ①设载物箱滑上传送带后匀减速运动的距离为s 1,由运动学公式有v 2-v 20=-2as 1②联立①②式,代入题给数据得s 1=4.5 m ③因此,载物箱在到达右侧平台前,速度先减小至v ,然后开始做匀速运动.设载物箱从滑上传送带到离开传送带所用的时间为t 1,做匀减速运动所用的时间为t 1′,由运动学公式有v =v 0-at 1′④t 1=t 1′+L -s 1v ⑤联立①③④⑤式并代入题给数据得t 1=2.75 s ⑥(2)当载物箱滑上传送带后一直做匀减速运动时,到达右侧平台时的速度最小,设为v 1;当载物箱滑上传送带后一直做匀加速运动时,到达右侧平台时的速度最大,设为v 2.由动能定理有-μmgL =12m v 21-12m v 20⑦ μmgL =12m v 22-12m v 20⑧ 由⑦⑧式并代入题给条件得v 1=2 m /s ,v 2=43 m /s ⑨(3)传送带的速度为v =6.0 m /s 时,由于v 0<v <v 2,载物箱先做匀加速运动,加速度大小仍为a .设载物箱做匀加速运动通过的距离为s 2,所用时间为t 2,由运动学公式有v =v 0+at 2⑩v 2-v 20=2as 2⑪联立①⑩⑪式并代入题给数据得t 2=1.0 s ⑫s 2=5.5 m ⑬因此载物箱加速运动1.0 s 、向右运动5.5 m 时,达到与传送带相同的速度.此后载物箱与传送带共同匀速运动(Δt -t 2)的时间后,传送带突然停止.设载物箱匀速运动通过的距离为s 3,有s 3=(Δt -t 2)v ⑭由①⑫⑬⑭式可知,12m v 2>μmg (L -s 2-s 3),即载物箱运动到右侧平台时速度大于零,设为v 3.由运动学公式有v 23-v 2=-2a (L -s 2-s 3)⑮v 3=v -at 3⑯设载物箱通过传送带的过程中,传送带对它摩擦力的冲量为I 1,由动量定理有I 1=m (v 3-v 0)⑰联立①⑫⑬⑭⑮⑰式并代入题给数据得I 1=0⑱传送带对它支持力(大小等于重力)的冲量为I 2=mg (Δt +t 3)⑲联立⑮⑯⑲式并代入题给数据得I 2=6253N ·s ⑳ 由于I 1=0,所以传送带对它的冲量为I =I 2=6253N ·s ,方向竖直向上. 答案:(1)2.75 s (2)43 m /s 2 m /s (3)6253N ·s ,方向竖直向上 限时规范训练(九) 力学三大观点的综合应用建议用时60分钟,实际用时________一、单项选择题1.如图所示,小球a 、b (均可视为质点)用等长细线悬挂于同一固定点O .让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为θ=60°.忽略空气阻力.则两球a 、b 的质量之比m a m b为( )A .22B .2-1C .1-22 D .2+1 解析:B b 球下摆过程中,由动能定理得m b gL =12m b v 20-0,碰撞过程动量守恒,设向左为正方向,由动量守恒定律可得m b v 0=(m a +m b )v ,两球向左摆动过程中,由机械能守恒定律得12(m a +m b )v 2=(m a +m b )gL (1-cos θ),解得m a m b=2-1,故ACD 错误,B 正确. 2.如图所示,质量为3m 的物块A 与质量为m 的物块B 用轻弹簧和不可伸长的细线连接,静止在光滑的水平面上,此时细线刚好伸直且无弹力.现使物块A 瞬间获得向右的速度v 0,在以后的运动过程中,细线没有绷断,以下判断正确的是( )A .细线再次伸直前,物块A 的速度先减小后增大B .细线再次伸直前,物块B 的加速度先减小后增大C .弹簧的最大弹性势能等于38m v 20D .物块A 、B 与弹簧组成的系统,损失的机械能最多为32m v 20解析:C 细线再次伸直时,也就是弹簧再次恢复原长时,细线恢复原长的过程中,A 始终受到向左的弹力,即一直做减速运动,B 始终受到向右的弹力,即一直做加速运动,弹簧的弹力先变大后变小,故B 的加速度先增大后减小,故A 、B 错误;弹簧弹性势能最大时,弹簧压缩到最短,此时A 、B 速度相等,根据动量守恒定律可得3m v 0=(3m +m )v ,解得v =34v 0,根据能量守恒定律可得,弹性势能E pmax =12×3m v 20-12·(3m +m )v 2=38m v 20,故C 正确;整个过程中,物块A 、B 与弹簧组成的系统只有弹簧的弹力做功,系统的机械能守恒,故D 错误.3.如图(a)所示,光滑绝缘水平面上有甲、乙两个带电小球,t =0时,甲静止,乙以6 m /s 的初速度向甲运动.它们仅在静电力的作用下沿同一直线运动(整个运动过程中两球没有接触),它们运动的v t 图像分别如图(b)中甲、乙两曲线所示.则由图线可知( )A .两带电小球的电性一定相反B .甲、乙两球的质量之比为2∶1C .t 2时刻,乙球的电势能最大D .在0~t 3时间内,甲的动能一直增大,乙的动能一直减小解析:B 由题图(b)可知,乙球减速的同时,甲球正向加速,说明两球相互排斥,带有同种电荷,故A 错误;两球作用过程动量守恒m 乙Δv 乙=m 甲Δv 甲,解得m 甲m 乙=21,故B 正确;t 1时刻,两球共速,距离最近,则乙球的电势能最大,故C 错误;在0~t 3时间内,甲的动能一直增大,乙的动能先减小,t 2时刻后逐渐增大,故D 错误.4.如图所示,物体A 、B 的质量分别为m 、2m ,物体B 置于水平面上,B 物体上部半圆形槽的半径为R ,将物体A 从圆槽的右侧最顶端由静止释放,重力加速度为g ,一切摩擦均不计.则( )A .A 、B 物体组成的系统动量守恒B .A 不能到达圆槽的左侧最高点C .A 运动到圆槽的最低点时A 的速率为23gR D .A 运动到圆槽的最低点时B 的速率为 gR 3解析:D A 、B 物体组成的系统只有水平方向动量守恒,故A 错误;运动过程不计一切摩擦,系统机械能守恒,故A 可以到达圆槽的左侧最高点,且A 在圆槽的左侧最高点时,A 、B 的速度都为零,故B 错误;对A 运动到圆槽的最低点的运动过程由水平方向动量守恒得m v A =2m v B ,对A 、B 整体由机械能守恒可得mgR =12m v 2A +12×2m v 2B ,所以A 运动到圆槽的最低点时B 的速率为v B = gR 3,v A = 4gR 3,故C 错误,D 正确. 5.(2021·山东济南市高三模拟)碰碰车是大人和小孩都喜欢的娱乐活动.游乐场上,大人和小孩各驾着一辆碰碰车迎面相撞,碰撞前后两人的位移-时间图像(x t 图像)如图所示.已知小孩的质量为20 kg ,大人的质量为60 kg ,碰碰车质量相同,碰撞时间极短.下列说法正确的是( )A .碰撞前后小孩的运动方向没有改变B .碰碰车的质量为50 kgC .碰撞过程中小孩和其驾驶的碰碰车受到的总冲量大小为80 N ·sD .碰撞过程中损失的机械能为600 J解析:D 规定小孩初始运动方向为正方向,由图可知,碰后两车一起向反方向运动,故碰撞前后小孩的运动方向发生了改变,故A 错误;由图可知,碰前瞬间小孩的速度为2 m /s ,大人的速度为-3 m /s ,碰后两人的共同速度为-1 m /s ,设碰碰车的质量为M ,由动量守恒定律有(20+M )×2 kg ·m /s -(60+M )×3 kg ·m /s =(2M +20+60)×(-1) kg ·m /s ,解得M =60 kg ,故B 错误;碰前小孩与其驾驶的碰碰车的总动量为p 1=160 kg ·m /s ,碰后总动量为p 1′=-80 kg ·m /s ,由动量定理可知碰撞过程中小孩和其驾驶的碰碰车受到的总冲量为I =Δp =-240 N ·s ,故其大小为240 N ·s ,故C 错误;由能量守恒定律可得碰撞过程中损失的机械能为ΔE =12×80×22 J +12×120×(-3)2 J -12×200×(-1)2 J =600 J ,故D 正确.6.如图甲所示,一块长度为L 、质量为m 的木块静止在光滑水平面上.一颗质量也为m 的子弹以水平速度v 0射入木块.当子弹刚射穿木块时,木块向前移动的距离为s ,如图乙所示.设子弹穿过木块的过程中受到的阻力恒定不变,子弹可视为质点.则子弹穿过木块的时间为( )A .1v 0(s +L ) B .1v 0(s +2L ) C .12v 0(s +L ) D .1v 0(L +2s ) 解析:D 设子弹穿过木块的速度为v 1,木块最终速度为v 2,子弹穿过木块过程,对子弹和木块组成的系统,外力之和为零,动量守恒,以v 0的方向为正方向,有m v 0=m v 1+m v 2,设子弹穿过木块的过程所受阻力为F f ,对子弹由动能定理-F f (s +L )=12m v 21-12m v 20,由动量定理-F f t =m v 1-m v 0,对木块由动能定理F f s =12m v 22,由动量定理F f t =m v 2,联立解得t =1v 0(L +2s ),故选D .7.质量为1 kg 的物体从足够高处由静止开始下落,其加速度a 随时间t 变化的关系图像如图所示,重力加速度g 取10 m /s 2,下列说法正确的是( )A .2 s 末物体所受阻力的大小为20 NB .在0~2 s 内,物体所受阻力随时间均匀减小C .在0~2 s 内,物体的动能增大了100 JD .在0~1 s 内,物体所受阻力的冲量大小为2.5 N ·s解析:D 2 s 末物体的加速度为零,则此时阻力等于重力,即所受阻力的大小为10 N ,选项A 错误;根据牛顿第二定律有mg -f =ma ,可得f =mg -ma ,在0~2 s 内,物体加速度随时间均匀减小,则所受阻力随时间均匀增大,选项B 错误;根据物体加速度a 随时间t 变化的关系图像与坐标轴所围图形的面积表示速度变化量可知,在0~2 s 内,物体的速度增加了Δv =12×2×10 m /s =10 m /s ,即t =2 s 时速度为v =10 m /s ,则在0~2 s 内,物体的动能增大了12m v 2=12×1×102 J =50 J ,选项C 错误;在0~1 s 内,物体速度的增量Δv 1=12×(5+10)×1 m /s =7.5 m /s ,根据动量定理有mgt -I f =m Δv 1,解得I f =2.5 N ·s ,选项D 正确.8.如图甲所示,光滑水平面上有一上表面粗糙的长木板,t =0时刻,质量m =1 kg 的滑块以速度v 0=7 m /s 滑上长木板左端,此后滑块与长木板运动的v t 图像如图乙所示.下列分析正确的是( )A .长木板的质量为0.5 kgB .长木板的长度为0.5 mC .0~2 s 内滑块与长木板间因摩擦产生的热量为16 JD .0~2 s 内长木板对滑块的冲量大小为4 kg ·m /s解析:C 滑块滑上长木板后,滑块受摩擦力作用做匀减速运动,长木板做匀加速运动,由图乙可知滑块的加速度大小为a 1=Δv Δt =2 m /s 2,长木板的加速度大小为a 2=Δv Δt=1 m /s 2,。
动量定律和能量守恒定律的综合应用
动量守恒和能量守恒定律的综合应用1.解决该类问题用到的规律动量守恒定律,机械能守恒定律,能量守恒定律,功能关系等。
2.解决该类问题的基本思路(1)认真审题,明确题目所述的物理情景,确定研究对象。
(2)如果物体间涉及多过程,要把整个过程分解为几个小的过程。
(3)对所选取的对象进行受力分析,判定系统是否符合动量守恒的条件。
(4)对所选系统进行能量转化的分析。
例如,系统是否满足机械能守恒,如果系统内有摩擦则机械能不守恒,有机械能转化为内能。
(5)选取所需要的方程列式并求解。
例3.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可看做质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起。
P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ。
求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2;(2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p 。
[解析] (1)对P 1、P 2组成的系统,由动量守恒定律得m v 0=2m v 1 解得v 1=v 02 对P 1、P 2、P 组成的系统,由动量守恒定律得2m v 1+2m v 0=4m v 2 解得v 2=34v 0。
(2)对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到最终P 停在A 点,由能量守恒定律得μ·2mg (2L +2x )=12·2m v 20+12·2m v 21-12·4m v 22 解得x =v 2032μg-L 对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到弹簧压缩到最短,此时P 1、P 2、P 的速度均为v 2,由能量守恒定律得μ·2mg (L +x )+E p =12·2m v 20+12·2m v 21-12·4m v 22 解得E p =m v 2016。
专题 力学三大观点的综合应用
力学三大观点综合应用高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题1 动量和能量观点在力学中的应用例1 (2014·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B,物块与左右两边槽壁的距离如图1所示,L为 m,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为.开始时物块静止,凹槽以v0=5 m/s的初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g取10 m/s2.求:图1(1)物块与凹槽相对静止时的共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞的次数;(3)从凹槽开始运动到两者相对静止所经历的时间及该时间内凹槽运动的位移大小.答案(1) m/s (2)6次(3)5 s m解析(1)设两者间相对静止时速度为v,由动量守恒定律得mv0=2mvv= m/s.(2)解得物块与凹槽间的滑动摩擦力F f=μF N=μmg设两者相对静止前相对运动的路程为s1,由功能关系得-F f·s1=12(m+m)v2-12mv20解得s1= m已知L=1 m,可推知物块与右侧槽壁共发生6次碰撞.(3)设凹槽与物块碰前的速度分别为v1、v2,碰后的速度分别为v1′、v2′.有mv1+mv2=mv1′+mv2′1 2mv21+12mv22=12mv1′2+12mv2′2得v1′=v2,v2′=v1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为13段,凹槽、物块的v—t图象在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则v=v0+ata=-μg解得t=5 s凹槽的v—t图象所包围的阴影部分面积即为凹槽的位移大小s2.(等腰三角形面积共分13份,第一份面积为 L ,其余每两份面积和均为L .)s 2=12(v 02)t +,解得s 2= m.1.如图2所示,倾角45°高h 的固定斜面.右边有一高3h2的平台,平台顶部左边水平,上面有一质量为M 的静止小球B ,右边有一半径为h 的14圆弧.质量为m 的小球A 从斜面底端以某一初速度沿斜面上滑,从斜面最高点飞出后恰好沿水平方向滑上平台,与B 发生弹性碰撞,碰后B 从圆弧上的某点离开圆弧.所有接触面均光滑,A 、B 均可视为质点,重力加速度为g .图2(1)求斜面与平台间的水平距离s 和A 的初速度v 0; (2)若M =2m ,求碰后B 的速度;(3)若B 的质量M 可以从小到大取不同值,碰后B 从圆弧上不同位置脱离圆弧,该位置与圆心的连线和竖直方向的夹角为α.求cos α的取值范围.答案 (1) h 2gh (2)23gh (3)23≤cos α≤1解析 (1)设小球A 飞上平台的速度为v 1,小球由斜面顶端飞上平台,可看成以速度v 1反向平抛运动,由平抛运动规律得:12h =12gt 2,s =v 1t ,tan 45°=gtv 1解得:v 1=gh ,s =h由机械能守恒定律得:12mv 20=32mgh +12mv 21解得:v 0=2gh .(2)设碰后A 、B 的速度分别为v A 、v B ,由动量、能量守恒得mv 1=mv A +Mv B12mv 21=12mv 2A +12Mv 2B v B =2m m +M v 1=23gh .(3)由(2)可知,当M ≪m 时v B ≈2gh >gh 从顶端飞离则cos α=1 当M ≫m 时,v B =0,设B 球与圆弧面在C 处分离,则:Mgh (1-cos α)=12Mv 2CMg cos α=M v 2C h ,cos α=23,故23≤cos α≤11.弄清有几个物体参与运动,并划分清楚物体的运动过程. 2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题2 应用动力学、能量、动量解决综合问题例2 如图3所示,在光滑的水平面上有一质量为m =1 kg 的足够长的木板C ,在C 上放置有A 、B 两物体,A 的质量m A =1 kg ,B 的质量为m B =2 、B 之间锁定一被压缩了的轻弹簧,弹簧储存的弹性势能E p =3 J ,现突然给A 、B 一瞬时冲量作用,使A 、B 同时获得v 0=2 m/s 的初速度,速度方向水平向右,且同时弹簧由于受到扰动而解除锁定,并在极短的时间内恢复原长,之后与A 、B 分离.已知A 和C 之间的摩擦因数为μ1=,B 、C 之间的动摩擦因数为μ2=,且滑动摩擦力略小于最大静摩擦力.求:图3(1)弹簧与A 、B 分离的瞬间,A 、B 的速度分别是多大(2)已知在C 第一次碰到右边的固定挡板之前,A 、B 和C 已经达到了共同速度,求在到达共同速度之前A 、B 、C 的加速度分别是多大及该过程中产生的内能为多少(3)已知C 与挡板的碰撞无机械能损失,求在第一次碰撞后到第二次碰撞前A 在C 上滑行的距离 审题突破 (1)根据动量守恒和能量守恒列方程组求A 、B 分离时的速度;(2)由牛顿第二定律求三者的加速度,该过程中产生的内能等于系统损失的机械能,只需求出三者达到的共同速度便可以由能量守恒求解;(3)根据牛顿第二定律和运动学公式联立求解. 答案 (1)0 3 m/s (2) J m/s (3) m解析 (1)在弹簧弹开两物体的过程中,由于作用时间极短,对A 、B 和弹簧组成的系统由动量和能量守恒定律可得:(m A +m B )v 0=m A v A +m B v BE p +12(m A +m B )v 20=12m A v 2A +12m B v 2B联立解得:v A =0,v B =3 m/s.(2)对物体B 有:a B =μ2g =1 m/s 2,方向水平向左 对A 、C 有:μ2m B g =(m A +m )a 又因为:m A a <μ1m A g故物体A 、C 的共同加速度为a =1 m/s 2,方向水平向右对A 、B 、C 整个系统来说,水平方向不受外力,故由动量和能量守恒定律可得:m B v B =(m A +m B +m )v Q =12m B v 2B -12(m A +m B +m )v 2 解得:Q = J ,v = m/s.(3)C 和挡板碰撞后,先向左匀减速运动,速度减至0后向右匀加速运动,分析可知,在向右加速过程中先和A 达到共同速度v 1,之后A 、C 再以共同的加速度向右匀加速,B 一直向右匀减速,最后三者达共同速度v 2后做匀速运动.在此过程中由于摩擦力做负功,故C 向右不能一直匀加速至挡板处,所以和挡板再次碰撞前三者已经达共同速度.a A =μ1g =2 m/s 2,a B =μ2g =1 m/s 2 μ1m A g +μ2m B g =ma C ,解得:a C =4 m/s 2 v 1=v -a A t =-v +a C t解得:v 1= m/st = s x A 1=v +v 12t = m ,x C 1=-v +v 12t =- m故A 、C 间的相对运动距离为x AC =x A 1+|x C 1|= m.2.(2014·广东·35)如图4所示,的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿光滑轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案 (1)3 m/s 9 J (2)10 m/s≤v 1≤14 m/s 17 J解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:mv 1=2mv 2①解得:v 2=v 12=3 m/s碰撞过程中损失的动能为:ΔE =12mv 21-12×2mv 22②解得ΔE =9 J.(2)P 滑动过程中,由牛顿第二定律知 2ma =-2μmg③可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L =v 2t +12at2④由①③④式得v 1=6L -at2t①若2 s 时通过B 点,解得:v 1=14 m/s ②若4 s 时通过B 点,解得:v 1=10 m/s 故v 1的取值范围为:10 m/s ≤v 1≤14 m/s设向左经过A 点的速度为v A ,由动能定理知 12×2mv 2A -12×2mv 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E =17 J.根据题中涉及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果是碰撞并涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练 训练6题组1 动量和能量的观点在力学中的应用1.如图1所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,并恰好回到O 点(A 、B 均视为质点).试求:图1(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点答案 (1)123gx 0 (2)14mgx 0 (3)20+43gx 0解析 (1)设A 与B 相碰前A 的速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得3mgx 0 sin 30°=12mv 21由动量守恒定律得mv 1=2mv 2解以上二式得v 2=123gx 0.(2)设A 、B 相碰前弹簧所具有的弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12·2mv 22=2mgx 0 sin 30°解得E p =14mgx 0.(3)设物块A 与B 相碰前的速度为v 3,碰后A 、B 的共同速度为v 4 12mv 2+3mgx 0 sin 30°=12mv 23 mv 3=2mv 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则12·2mv 24+E p =12·2mv 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则12mv 25=12mv 26+2mgx 0 sin 30°+mgR (1+sin 60°)在最高点有mg =mv26R联立以上各式解得v =20+43gx 0.2.如图2所示,质量为m 1的滑块(可视为质点)自光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点,A 、B 的高度差为h 1= m .传导轮半径很小,两个轮之间的距离为L = m .滑块与传送带间的动摩擦因数μ=.右端的轮子上沿距离地面高度h 2= m ,g 取10 m/s 2.图2(1)若槽的底端没有滑块m 2,传送带静止不运转,求滑块m 1滑过C 点时的速度大小v ;(结果保留两位有效数字)(2)在m 1下滑前将质量为m 2的滑块(可视为质点)停放在槽的底端.m 1下滑后与m 2发生弹性碰撞,且碰撞后m 1速度方向不变,则m 1、m 2应该满足什么条件(3)满足(2)的条件前提下,传送带顺时针运转,速度为v = m/s.求出滑块m 1、m 2落地点间的最大距离(结果可带根号).答案 (1) m/s (2)m 1>m 2 (3)(6215-3) m解析 (1)滑块m 1滑到B 点有m 1gh 1=12m 1v 2解得v 0=5 m/s滑块m 1由B 滑到C 点有-μm 1gL =12m 1v 2-12m 1v 2解得v = m/s.(2)滑块m 2停放在槽的底端,m 1下滑并与滑块m 2弹性碰撞,则有m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 m 1速度方向不变即v 1=m 1-m 2m 1+m 2v 0>0则m 1>m 2.(3)滑块经过传送带作用后做平抛运动h 2=12gt 2当两滑块速度相差最大时,它们的水平射程相差最大,当m 1≫m 2时,滑块m 1、m 2碰撞后的速度相差最大,经过传送带后速度相差也最大 v 1=m 1-m 2m 1+m 2v 0=1-m 2m 11+m 2m 1v 0≈v 0= m/sv 2=2m 1m 1+m 2v 0=21+m 2m 1v 0≈2v 0= m/s滑块m 1与传送带同速度,没有摩擦,落地点射程为x 1=v 1t = m滑块m 2与传送带发生摩擦,有-μm 2gL =12m 2v 2′2-12m 2v 22解得v 2′=221 m/s落地点射程为x 2=v 2′t =6215mm 2、m 1的水平射程相差最大值为Δx =(6215-3) m. 题组2 应用动力学观点、能量观点、动量观点解决综合问题3.如图3所示,质量M =4 kg 的平板小车停在光滑水平面上,车上表面高h 1= m .水平面右边的台阶高h 2= m ,台阶宽l = m ,台阶右端B 恰好与半径r =5 m 的光滑圆弧轨道连接,B 和圆心O 的连线与竖直方向夹角θ=53°,在平板小车的A 处有质量m 1=2 kg 的甲物体和质量m 2=1 kg 的乙物体紧靠在一起,中间放有少量炸药(甲、乙两物体都可以看作质点).小车上A 点左侧表面光滑,右侧粗糙且动摩擦因数为μ=.现点燃炸药,炸药爆炸后两物体瞬间分开,甲物体获得5 m/s 的水平初速度向右运动,离开平板车后恰能从光滑圆弧轨道的左端B 点沿切线进入圆弧轨道.已知车与台阶相碰后不再运动(g 取10 m/s 2,sin 53°=,cos 53°=.求:图3(1)炸药爆炸使两物体增加的机械能E ; (2)物体在圆弧轨道最低点C 处对轨道的压力F ; (3)平板车上表面的长度L 和平板车运动位移s 的大小. 答案 (1)75 J (2)46 N ,方向竖直向下 (3)1 m 解析 (1)甲、乙物体在爆炸瞬间动量守恒:m 1v 1-m 2v 2=0E =12m 1v 21+12m 2v 22=75 J.(2)设甲物体平抛到B 点时,水平方向速度为v x ,竖直分速度为v yv y =2g h 1-h 2=4 m/sv x =v ytan θ=3 m/s合速度为:v B =5 m/s物体从B 到C 过程中:m 1gr (1-cos θ)=12m 1v 2C -12m 1v 2BF N -m 1g =m 1v2C rF N =46 N由牛顿第三定律可知:F =F N =46 N ,方向竖直向下. (3)甲物体平抛运动时间:t =v yg= s 平抛水平位移:x =v x t = m > m甲物体在车上运动时的加速度为:a 1=μg =2 m/s 2甲物体在车上运动时间为:t 1=v 0-v xa 1=1 s甲物体的对地位移:x 1=12(v 0+v x )t 1=4 m甲物体在车上运动时,车的加速度为:a 2=μm 1g M=1 m/s 2甲离开车时,车对地的位移:x 2=12a 2t 21= m车长为:L =2(x 1-x 2)=7 m 车的位移为:s =x 2+(x -l )=1 m.4.如图4所示,光滑的水平面AB (足够长)与半径为R = m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点的右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m/s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上.现固定乙球,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为,重力加速度g 取10 m/s 2,甲、乙两物体可看做质点.图4(1)求甲球离开弹簧时的速度.(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离.(3)甲、乙均不固定,烧断细线以后,求甲和乙能否再次在AB 面上水平碰撞若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.答案 (1)4 3 m/s (2)12 m (3)甲、乙会再次碰撞,碰撞时甲的速度为2 3 m/s ,方向水平向右,乙的速度为63m/s ,方向水平向左解析 (1)甲离开弹簧时的速度大小为v 0,运动至D 点的过程中机械能守恒: 12m 1v 20=m 1g ·2R +12m 1v 2D , 在最高点D ,由牛顿第二定律,有2m 1g =m 1v2D R联立解得:v 0=4 3 m/s.(2)甲固定,烧断细线后乙的速度大小为v 乙, 由能量守恒:E p =12m 1v 20=12m 2v 2乙,得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙的速度为零时,在传送带滑行的距离最远, 最远距离为: s =v2乙2a=12 m <20 m即乙在传送带上滑行的最远距离为12 m. (3)甲、乙均不固定,烧断细线后, 设甲、乙速度大小分别为v 1、v 2, 甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2 甲、乙弹簧组成的系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22解得:v 1=2 3 m/s ,v 2=6 3 m/s之后甲沿轨道上滑,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h = m < m则甲上滑不到同圆心等高位置就会返回,返回AB 面上时速度大小仍然是v 2=2 3 m/s乙滑上传送带,因v 2=6 3 m/s <12 m/s ,则乙先向右做匀减速运动,后向左匀加速.由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为2 3 m/s ,方向水平向右,乙的速度为6 3 m/s ,方向水平向左.。
2025高考物理总复习力学三大观点的综合应用
台最右端 N 点停下,随后滑下的 B 以 2v0 的速度与 A 发
图1
生正碰,碰撞时间极短,碰撞后 A、B 恰好落在桌面上圆盘内直径的两端。已知 A、
B 的质量分别为 m 和 2m,碰撞过程中损失的能量为碰撞前瞬间总动能的14。A 与
传送带间的动摩擦因数为 μ,重力加速度为 g,A、B 在滑至 N 点之前不发生碰撞,
答案 (1)8 N 5 N (2)8 m/s (3)0.2 m
解析 (1)当滑块处于静止时桌面对滑杆的支持力等于滑块和
滑杆的重力,即N1=(m+M)g=8 N 当滑块向上滑动时受到滑杆的摩擦力f=1 N,根据牛顿第三定
律可知滑块对滑杆的摩擦力f′=1 N,方向竖直向上,则此时桌
面对滑杆的支持力为N2=Mg-f′=5 N。
一起竖直向上运动。已知滑块的质量m=0.2 kg,滑杆的质量
M=0.6 kg,A、B间的距离l=1.2 m,重力加速度g取10 m/s2,
不计空气阻力。求:
图4
01 02 03 04
目录
提升素养能力
(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大
小N1和N2; (2)滑块碰撞前瞬间的速度大小v1; (3)滑杆向上运动的最大高度h。
该过程中弹簧对物体B冲量的大小。
答案 (1)mA 2gH mA+mB
(2)2t 2(mA+mB)gt+2mA 2gH
解析 (1)设A和B碰前瞬间的速度大小为v0,和B碰后瞬间的
速度大小为v,有 mAgH=21mAv20 v0= 2gH
01 02 03 04
目录
提升素养能力
由动量守恒定律有 mAv0=(mA+mB)v 解得 v=mmAA+2mgHB 。 (2)从碰后至返回到碰撞点的过程中,AB结合体做简谐运动。 根据简谐运动的对称性,可得运动时间t总=2t 回到碰撞点时速度大小为 vt=v=mmAA+2mgHB 方向竖直向上 取向上为正方向,由动量定理得I-(mA+mB)g·2t=(mA+mB)vt-[-(mA+mB)v] 解得 I=2(mA+mB)gt+2mA 2gH。
专题六 力学中三大观点的综合应用
(1)最终A、B、C的共同速度为多大;
(2)求运动过程中A的最小速度; (3)整个过程中A与C及B与C因摩擦所 产生的热量之比为多大? 图3
解析
(1)由动量守恒定律有 mv0+2mv0=5mv1
3 得 v1= v0 5 (2)设经时间 t,A 与 C 恰好速度相等,此时 A 的速度最小. aA=-μg aC=μg
(3)滑块经过传送带作用后做平抛运动 1 2 h2= gt3 2 当两滑块速度相差最大时,它们的水平射程相差最大,当 m1≫m2 时,滑块 m1、m2 碰撞后的速度相差最大,经过传送带后速度相差 也最大 m1-m2 v1= v0=v0=5.0 m/s m1+m2 2m1 v2= v0=2v0=10.0 m/s m1+m2
即学即练1 如图2所示,一水平面上P点左侧光滑,右侧粗糙,
质量为m的劈A在水平面上静止,上表面光滑,A右端与 水平面平滑连接,质量为M的 物块B恰好放在水平面上P点,物块B与水平面间的动摩擦 因数为μ.一质量为m的小球C位于劈A的斜面上,距水平面
的高度为h.小球C从静止开始滑下,然后与B发生正碰(碰
撞时间极短,且无机械能损失).
图2
已知M=2m,求:
(1)小球C与劈A分离时,A的速度; (2)小球C的最后速度和物块B的运动时间.
解析 (1)设小球 C 与劈 A 分离时速度大小为 v0,此时劈 A 速度
大小为 vA 小球 C 运动到劈 A 最低点的过程中,规定向右为正方向,由水平 方向动量守恒、机械能守恒有 mv0-mvA=0 1 2 1 2 mgh= mv0+ mvA 2 2 得 v0= gh,vA= gh,之后 A 向左匀速运动
即学即练2 如图4所示,圆管构成的半圆形轨道竖直固定在水
5.5动力学方法和能量观点的综合应用(解析版)
5.5动力学方法和能量观点的综合应用(解析版)5.5 动力学方法和能量观点的综合应用动力学方法和能量观点是物理学中非常重要的概念和方法。
它们在解决各种力学问题和能量转换问题中发挥着重要的作用。
本文将介绍动力学方法和能量观点的概念,并通过一系列具体例子解释其在解析问题中的综合应用。
一、动力学方法的概念和应用动力学方法是一种研究力学现象的方法,它主要涉及力、质点、运动和力学定律等内容。
通过使用牛顿第二定律、动量守恒定律和动量-时间定理等概念,我们可以解决很多力学问题。
例如,我们可以使用牛顿第二定律来计算物体的加速度。
根据该定律,物体的加速度与所受的力成正比,与物体的质量成反比。
通过求解这个力学模型,我们可以推断物体的加速度,并进一步分析它的运动状态。
此外,动力学方法还可以被应用于解决碰撞问题。
通过运用动量守恒定律和动量-时间定理,我们可以计算碰撞前后物体的速度、动量和能量变化。
这种分析方法在交通事故研究、运动员撞击分析等领域都有重要的应用。
二、能量观点的概念和应用能量观点是研究物理系统能量转化和守恒的观点。
根据能量守恒定律,一个系统的总能量在任何时刻保持不变。
能量观点可以被广泛应用于解决各种物理问题。
例如,我们可以使用能量观点来解析简谐振动问题。
在简谐振动的过程中,机械能由动能和势能组成。
通过计算系统在不同位置、不同时间点的动能和势能,我们可以分析系统的运动特性,例如振幅、周期和频率等。
此外,能量观点也适用于解析机械能转换问题。
通过应用能量转化公式,我们可以计算系统中的机械能的变化,进而分析能量的流向和转化过程。
这对于研究机械系统的效率和能量损耗等问题非常重要。
三、动力学方法和能量观点的综合应用动力学方法和能量观点是相互关联的,通过综合应用这两个方法,我们可以更全面地分析和解决物理问题。
例如,在解决物体自由落体问题时,我们可以同时使用动力学方法和能量观点。
根据牛顿第二定律,物体在受重力作用下的加速度为常数。
高中物理之动量观点解决力学问题,动量定理的运用、动量守恒定律的应用、动量和能量的综合应用
一、“解题快手”动量定理的应用题点(一) 应用动量定理解释生活中的现象[例1] 如图所示,篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以( )A .减小球的动量的变化量B .减小球对手作用力的冲量C .减小球的动量变化率D .延长接球过程的时间来减小动量的变化量[解析] 选C 篮球运动员接传来的篮球时,不能改变动量的变化量,A 、D 错误;根据动量定理,也不能改变冲量,B 错误;由于延长了作用时间,动量的变化慢了,C 正确。
题点(二) 应用动量定理求作用力和冲量[例2] (2015·重庆高考)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t+mg B.m 2gh t -mg C.m gh t +mg D.m gh t -mg[解析] 选A 方法一:设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的平均作用力为F ,由牛顿第二定律得F -mg =ma又v =at ,解得F =m 2ght +mg 。
方法二:由动量定理得(mg -F )t =0-m v ,得F =m 2gh t+mg 。
选项A 正确。
题点(三) 动量定理和F -t 图像的综合[例3] [多选](2017·全国卷Ⅲ)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动。
F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零[解析] 选AB 法一:根据F -t 图线与时间轴围成的面积的物理意义为合外力F 的冲量,可知在0~1 s 、0~2 s 、0~3 s 、0~4 s 内合外力冲量分别为2 N·s 、4 N·s 、3 N·s 、2 N·s ,应用动量定理I =m Δv 可知物块在1 s 、2 s 、3 s 、4 s 末的速率分别为1 m/s 、2 m/s 、1.5 m/s 、1 m/s ,物块在这些时刻的动量大小分别为2 kg·m/s 、4 kg·m/s 、3 kg·m/s 、2 kg·m/s ,则A 、B 项正确,C 、D 项错误。
能量和动量的综合应用(超详细)
【本讲主要内容】能量和动量的综合应用相互作用过程中的能量转化及动量守恒的问题【知识掌握】【知识点精析】1. 应用动量和能量的观点求解的问题综述:该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。
要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。
因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。
2. 有关机械能方面的综述:(1)机械能守恒的情况:例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。
等等……(2)机械能增加的情况:例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。
等等……(3)机械能减少的情况:例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析:如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。
滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。
因水平面光滑,合外力为零,以A 、B 为系统,动量守恒。
(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。
由动量守恒定律可求出共同速度0v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。
由图可知,s A ≠s B ,且s A =(s B +Δs ),根据动能定理:对A :W fA =2020202B 21)(212121)(mv m M mv m mv mv s s f -+=-=∆+- 对B :202B fB )(21021mM mv M Mv fs W +=-== 以上两式表明:滑动摩擦力对A 做负功,对B 做正功,使A 的动能减少了,使B 的动(1)撤去力F 后木块B 能够达到的最大速度是多大?(2)木块A 离开墙壁后,弹簧能够具有的弹性势能的最大值多大?分析:本题第一问,撤去力F 后木块B 只在弹簧弹力作用下运动,木块A 不动,弹簧的弹性势能转化为木块B 的动能,弹簧第一次恢复原长时,木块B 有最大速度。
第六章 第3讲 动量、动力学和能量观点综合应用的三类典型模型
牛顿第三定律
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业
首页 上页 下页 尾页
基础知识·自主梳理
(2)动量的观点 ①动量定理:I 合=Δp. ②动量守恒定律:m1v1+m2v2=m1v1′+m2v2′. (3)能量的观点 ①动能定理:W 总=ΔEk. ②机械能守恒定律:Ek1+Ep1=Ek2+Ep2. ③能量守恒定律.
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业
首页 上页 下页 尾页
高频考点·分类突破
(2)三物体组成的系统动量守恒,由动量守恒定律得 (m0+m1)v1=(m0+m1)v2+m2v3 解得 v2=8 m/s 由能量守恒可得 12(m0+m1)v12=μm2gL+12(m0+m1)v22+12m2v32 解得 L=2 m. 答案:(1)10 m/s (2)2 m
第六章 动量 第3讲 动量、动力学和能量观点综合应用的三类典型模型
C
目录
ONTENTS
基础知识·自主梳理 高频考点·分类突破 学科素养提升 4 课时作业
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业
首页 上页 下页 尾页
基础知识·自主梳理
1.研究力学问题的三大观点 (1)力的观点
速度公式:v=v0+at ①运动学公式位移公式:s=v0t+12at2
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业
首页 上页 下页 尾页
高频考点·分类突破
(2)以子弹、物体 A 和物体 B 为系统,设物体 B 的质量为 M,碰后子弹和物体 A 的速度为 v1,物体 B 的速度为 v2,由动量守恒定律有 3mv=Mv2-3mv1, 碰撞过程机械能守恒,有12·3mv2=12·3mv12+12Mv22,
专题四 动量和能量的综合运用
专题定位本专题综合应用动力学、动量和能量的观点来解决物体运动的多过程问题.本专题是高考的重点和热点,命题情景新、联系实际密切、综合性强,是高考的压轴题.应考策略本专题在高考中主要以两种命题形式出现:一是综合应用动能定理、机械能守恒定律和动量守恒定律,结合动力学方法解决运动的多过程问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子的运动或电磁感应问题.由于本专题综合性强,因此要在审题上狠下功夫,弄清运动情景,挖掘隐含条件,有针对性地选择相应的规律和方法.第1课时几个重要功能关系的应用1.常见的几种力做功的特点(1)重力、弹簧弹力、静电力做功与路径无关.(2)摩擦力做功的特点①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为内能.转化为内能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积.③摩擦生热是指滑动摩擦生热,静摩擦不会生热.(3)静电力做功一般利用W=qU来求,在匀强电场中也可以利用W=Eqs cos α求解.(4)洛伦兹力在任何情况下对运动的电荷都不做功;安培力可以做正功、负功,还可以不做功.(5)电流做功的实质是电场对移动电荷做功,即W=UIt=qU.2.几个重要的功能关系(1)重力的功等于重力势能的变化,即W G=-ΔE p.(2)弹力的功等于弹性势能的变化,即W弹=-ΔE p.(3)合力的功等于动能的变化,即W=ΔE k.(4)重力(或弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE.(5)一对滑动摩擦力做的功等于系统中内能的变化,即Q=F·s相对.(6)电场力做功等于电势能的变化,即W AB=-ΔE p.(7)电流做功等于电能的变化,即ΔE=UIt.(8)安培力做功等于电能的变化,即W安=-ΔE电.1.动能定理的应用(1)动能定理的适用情况:解决单个物体(或可看成单个物体的物体系统)受力与位移、速率关系的问题.动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用.(2)应用动能定理解题的基本思路①选取研究对象,明确它的运动过程.②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和.③明确物体在运动过程始、末状态的动能E k1和E k2.④列出动能定理的方程W合=E k2-E k1,及其他必要的解题方程,进行求解.2.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功的代数和是否为零.②用能量转化来判断,看是否有机械能转化为其他形式的能.③对一些“绳子突然绷紧”、“物体间碰撞”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.(2)应用机械能守恒定律解题的基本思路①选取研究对象——物体系统.②根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.③恰当地选取参考平面,确定研究对象在运动过程的始、末状态时的机械能.④根据机械能守恒定律列方程,进行求解.3.动能定理和能量守恒定律在处理电学中能量问题时仍然是首选的方法.题型1力学中的几个重要功能关系的应用例1(双选)如图1所示,轻质弹簧的一端与固定的竖直板P拴接,另一端与物体A相连,物体A静止于光滑水平桌面上,右端接一细线,细线绕过光滑的定滑轮与物体B相连.开始时用手托住B,让细线恰好伸直,然后由静止释放B,直至B获得最大速度.下列有关该过程的分析正确的是()图1A.B物体的机械能先增大后减小B.B物体的动能的增加量等于它所受重力与拉力做的功之和C.B物体机械能的减少量等于弹簧的弹性势能的增加量D.细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量解析把A、B和弹簧看做一个系统,该系统机械能守恒,在B下落直至B获得最大速度的过程中,A的动能增大,弹簧弹性势能增大,所以B物体的机械能一直减小,选项A错误;由动能定理知,B物体的动能的增加量等于它所受重力与拉力做的功之和,选项B正确;B物体机械能的减少量等于弹簧的弹性势能的增加量与A物体动能的增加量之和,选项C错误;对A物体和弹簧组成的系统,由功能关系得,细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量,选项D正确.答案BD以题说法 1.本题要注意几个功能关系:重力做的功等于重力势能的变化量;弹簧弹力做的功等于弹性势能的变化量;重力以外的其他力做的功等于机械能的变化量;合力做的功等于动能的变化量.2.本题在应用动能定理时,应特别注意研究过程的选取.并且要弄清楚每个过程各力做功的情况.(双选)(2013·山东·16)如图2所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()图2A.两滑块组成的系统机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功答案CD解析两滑块释放后,M下滑、m上滑,摩擦力对M做负功,M和m组成的系统机械能减小,减小的机械能等于M克服摩擦力所做的功,选项A错误,D正确.除重力对滑块M做正功外,还有摩擦力和绳的拉力对滑块M做负功,选项B错误.绳的拉力对滑块m做正功,滑块m机械能增加,且增加的机械能等于拉力做的功,选项C正确.题型2几个重要的功能关系在电学中的应用例2(双选)如图3所示,在竖直平面内有一匀强电场,其方向与水平方向成α=30°斜向上,在电场中有一质量为m、电量为q的带电小球,用长为L的不可伸长的绝缘细线挂于O点,当小球静止于M点时,细线恰好水平.现用外力将小球拉到最低点P,然后无初速度释放,则以下判断正确的是()图3A.小球再次到达M点时,速度刚好为零B.小球从P到M过程中,合外力对它做了3mgL的功C.小球从P到M过程中,小球的机械能增加了3mgLD.如果小球运动到M点时,细线突然断裂,小球以后将做匀变速曲线运动审题突破小球静止在M时,受几个力的作用?重力和电场力的大小关系是什么?小球由P到M的过程中,各力做功是多少?解析小球从P到M的过程中,线的拉力不做功,只有电场力和小球重力做功,它们的合力也是恒力,大小为3mg,方向水平向右,所以小球再次到达M点时,速度最大,而不是零,选项A错.小球从P到M过程中,电场力与重力的合力大小为3mg,这个方向上位移为L,所以做功为3mgL,选项B正确.小球从P到M过程中,机械能的增加量等于电场力做的功,由于电场力为2mg,由P到M沿电场线方向的距离为d=L sin 30°+L cos 30°=L2(1+3),故电场力做功为2mg·d=mgL(1+3),故选项C错误.如果小球运动到M点时,细线突然断裂,小球的速度方向竖直向上,所受合外力水平向右,小球将做匀变速曲线运动,选项D正确.答案BD以题说法在解决电学中功能关系问题时应注意以下几点:(1)洛伦兹力在任何情况下都不做功;(2)电场力做功与路径无关,电场力做的功等于电势能的变化;(3)力学中的几个功能关系在电学中仍然成立.(单选)如图4所示,竖直向上的匀强电场中,绝缘轻质弹簧竖直立于水平地面上,一质量为m的带正电小球在外力F的作用下静止于图示位置,小球与弹簧不连接,弹簧处于压缩状态.现撤去F,小球从静止开始运动到离开弹簧的过程中,重力、电场力、弹簧弹力对小球做的功分别为W1、W2和W3,不计空气阻力,则上述过程中()图4A .小球与弹簧组成的系统机械能守恒B .小球重力势能的变化为W 1C .小球动能的变化为W 1+W 2+W 3D .小球机械能的变化为W 1+W 2+W 3 答案 C解析 由于电场力做功,小球与弹簧组成的系统机械能不守恒,选项A 错误.重力对小球做的功为W 1,小球重力势能的变化为-W 1,选项B 错误.由动能定理可知,小球动能的变化为W 1+W 2+W 3,选项C 正确.由功能关系可知,小球机械能的变化为W 2,选项D 错误.题型3 动力学方法和动能定理的综合应用图5例3 (15分)如图5所示,上表面光滑、长度为3 m 、质量M =10 kg 的木板,在F =50 N 的水平拉力作用下,以v 0=5 m/s 的速度沿水平地面向右匀速运动.现将一个质量为m =3 kg 的小铁块(可视为质点)无初速度地放在木板最右端,当木板运动了L =1 m 时,又将第二个同样的小铁块无初速地放在木板最右端,以后木板每运动1 m 就在其最右端无初速度地放上一个同样的小铁块.(g 取10 m/s 2)求: (1)木板与地面间的动摩擦因数; (2)刚放第三个小铁块时木板的速度;(3)从放第三个小铁块开始到木板停止的过程,木板运动的距离.审题突破 木板在F =50 N 的水平拉力作用下,沿水平地面匀速运动,隐含什么条件?放上小铁块后木板的受力如何变化?解析 (1)木板做匀速直线运动时,受到地面的摩擦力设为f 由平衡条件得: F =f①(1分) 又f =μMg ②(2分) 联立①②并代入数据得:μ=0.5③(1分)(2)每放一个小铁块,木板所受的摩擦力增加μmg设刚放第三个小铁块时木板的速度为v 1,对木板从放第一个小铁块到刚放第三个小铁块的过程,由动能定理得:-μmgL -2μmgL =12M v 21-12M v 2④(5分)联立③④并代入数据得: v 1=4 m/s⑤(1分)(3)从放第三个小铁块开始到木板停止之前,木板所受的合外力大小均为3μmg .从放第三个小铁块开始到木板停止的过程,设木板运动的距离为s ,对木板由动能定理得:-3μmgs =0-12M v 21⑥(4分) 联立③⑤⑥并代入数据得s =169m ≈1.78 m⑦(1分)答案 (1)0.5 (2)4 m/s (3)1.78 m以题说法 1.在应用动能定理解题时首先要弄清物体的受力情况和做功情况.此题特别要注意每放一个小铁块都会使滑动摩擦力增加μmg .2.应用动能定理列式时要注意运动过程的选取,可以全过程列式,也可以分过程列式.如图6所示,倾角为37°的粗糙斜面AB 底端与半径R =0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m =1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.图6(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C 点,求滑块从A 点沿斜面滑下时的初速度v 0的最小值;(3)若滑块离开C 点的速度大小为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间t .答案 (1)0.375 (2)2 3 m/s (3)0.2 s解析 (1)滑块从A 点到D 点的过程中,根据动能定理有mg ·(2R -R )-μmg cos 37°·2Rsin 37°=0-0解得:μ=12tan 37°=0.375(2)若使滑块能到达C 点,根据牛顿第二定律有mg +F N =m v 2CR由F N ≥0得v C ≥Rg =2 m/s滑块从A 点到C 点的过程中,根据动能定理有-μmg cos 37°·2R sin 37°=12m v 2C -12m v 20 则v 0=v 2C +4μgR cot 37°≥2 3 m/s 故v 0的最小值为2 3 m/s(3)滑块离开C 点后做平抛运动,有x =v C ′t ,y =12gt 2由几何知识得tan 37°=2R -yx整理得:5t 2+3t -0.8=0 解得t =0.2 s(t =-0.8 s 舍去)题型4 应用动能定理分析带电体在电场中的运动例4 如图7所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:图7(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.审题突破 带电粒子在水平匀强电场中做什么运动?速度与电场方向成30°角,隐含条件是什么?解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C =1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V . 答案 (1)104 m/s (2)1.732×103 N/C (3)400 V以题说法 1.电场力做功与重力做功的特点类似,都与路径无关.2.对于电场力做功或电势差的计算,选用动能定理往往最简便快捷,但运用动能定理时要特别注意运动过程的选取.如图8所示,在光滑绝缘水平面上,用长为2L 的绝缘轻杆连接两个质量均为m 的带电小球A 和B .A 球的带电量为+2q ,B 球的带电量为-3q ,两球组成一带电系统.虚线MN 与PQ 平行且相距3L ,开始时A 和B 分别静止于虚线MN 的两侧,虚线MN 恰为AB 两球连线的垂直平分线.若视小球为质点,不计轻杆的质量,在虚线MN 、PQ 间加上水平向右的电场强度为E 的匀强电场后,系统开始运动.试求:图8(1)B 球刚进入电场时,带电系统的速度大小;(2)带电系统向右运动的最大距离和此过程中B 球电势能的变化量; (3)A 球从开始运动至刚离开电场所用的时间.答案 (1) 2qEL m (2)73L 4qEL (3)(32-2)mLqE解析 (1)设B 球刚进入电场时带电系统的速度为v 1,由动能定理得2qEL =12×2m v 21 解得:v 1= 2qELm(2)带电系统向右运动分为三段:B 球进入电场前、带电系统在电场中、A 球出电场后. 设A 球出电场后移动的最大位移为s ,对于全过程,由动能定理得 2qEL -qEL -3qEs =0解得s =L3,则B 球移动的总位移为s B =73LB 球从刚进入电场到带电系统从开始运动到速度第一次为零时的位移为43L其电势能的变化量为ΔE p =-W =3qE ·43L =4qEL(3)取向右为正方向,B 球进入电场前,带电系统做匀加速运动:a 1=2qE 2m =qE m ,t 1=v 1a 1= 2mLqE带电系统在电场中时,做匀减速运动:a 2=-qE 2m设A 球刚出电场时速度为v 2,由动能定理得:-qEL =12×2m (v 22-v 21) 解得:v 2= qELmt 2=v 2-v 1a 2=2(2-1) mL qE解得总时间t =t 1+t 2=(32-2) mLqE6.综合应用动力学和能量观点分析多过程问题审题示例(12分)如图9所示,半径为R 的光滑半圆轨道ABC 与倾角为θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直.质量为m 的小球从A 点左上方距A 点高为h 的斜面上方P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度为g ,取R =509h ,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:图9(1)小球被抛出时的速度v 0;(2)小球到达半圆轨道最低点B 时,对轨道的压力大小; (3)小球从C 到D 过程中摩擦力做的功W f . 审题模板答题模板(1)小球到达A 点时,速度与水平方向的夹角为θ,如图所示. 则有v 21=2gh① 由几何关系得v 0=v 1cot θ② 联立①②式得v 0=432gh③ (2)A 、B 间竖直高度H =R (1+cos θ)④设小球到达B 点时的速度为v ,则从抛出点到B 过程中由机械能守恒定律得 12m v 20+mg (H +h )=12m v 2⑤ 在B 点,根据牛顿第二定律有F N -mg =m v 2R ⑥联立③④⑤⑥式 解得F N =5.6mg ⑦由牛顿第三定律知,小球在B 点对轨道的压力大小是5.6mg ⑧(3)全过程应用动能定理:W f =0-12m v 20即W f =-12m v 20=-169mgh ⑨(评分标准:本题共12分,其中,⑤式2分,⑨式3分,其余每式1分)答案 (1)432gh (2)5.6mg (3)-169mgh点睛之笔 多个运动的组合实际上是多种物理规律和方法的综合应用,分析这种问题时注意要各个运动过程独立分析,而不同过程往往通过连接点的速度建立联系;有时对整个过程应用能量的观点解决问题会更简单.如图10,竖直平面坐标系xOy 的第一象限,有垂直xOy 面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B 和E ;第四象限有垂直xOy 面向里的水平匀强电场,大小也为E ;第三象限内有一绝缘光滑竖直放置的半径为R 的半圆轨道,轨道最高点与坐标原点O 相切,最低点与绝缘光滑水平面相切于N .一质量为m 的带电小球从y 轴上(y >0)的P 点沿x 轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O ,且水平切入半圆轨道并沿轨道内侧运动,过N 点水平进入第四象限,并在电场中运动(已知重力加速度为g ).图10(1)判断小球的带电性质并求出其所带电荷量; (2)P 点距坐标原点O 至少多高;(3)若该小球以满足(2)中OP 最小值的位置和对应速度进入第一象限,通过N 点开始计时,经时间t =2R /g 小球距坐标原点O 的距离s 为多远?答案 (1)正电 mg E (2)2E B Rg(3)27R解析 (1)小球进入第一象限正交的电场和磁场后,在垂直磁场的平面内做圆周运动,说明重力与电场力平衡,设小球所带电荷量为q ,则有 qE =mg① 解得:q =mgE②又电场方向竖直向上,故小球带正电.(2)设小球做匀速圆周运动的速度为v 、轨道半径为r ,由洛伦兹力提供向心力得: qB v =m v 2/r③ 小球恰能通过半圆轨道的最高点并沿轨道运动,则应满足: mg =m v 2/R④ 由②③④得:r =EBR g⑤ 即PO 的最小距离为:y =2r =2EBR g⑥(3)小球由O 运动到N 的过程中设到达N 点的速度为v N ,由机械能守恒定律得:mg ·2R =12m v 2N -12m v 2⑦ 由④⑦解得:v N =5gR ⑧ 小球从N 点进入电场区域后,在绝缘光滑水平面上做类平抛运动,设加速度为a ,则有:沿x 轴方向有:x =v N t⑨ 沿电场方向有:z =12at 2⑩由牛顿第二定律得:a =qE /m ⑪t 时刻小球距O 点为:s =x 2+z 2+(2R )2=27R(限时:45分钟)一、单项选择题1.(2013·安徽·17)质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMmr ,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( )A .GMm ⎝⎛⎭⎫1R 2-1R 1 B .GMm ⎝⎛⎭⎫1R 1-1R 2C.GMm 2⎝⎛⎭⎫1R 2-1R 1D.GMm 2⎝⎛⎭⎫1R 1-1R 2 答案 C解析 由万有引力提供向心力知G Mm r 2=m v 2r ,所以卫星的动能为12m v 2=GMm2r,则卫星在半经为r 的轨道上运行时机械能为E =12m v 2+E p =GMm 2r -GMm r =-GMm2r.故卫星在轨道R 1上运行时:E 1=-GMm 2R 1,在轨道R 2上运行时:E 2=-GMm2R 2,由能的转化和守恒定律得产生的热量为Q =E 1-E 2=GMm 2⎝⎛⎭⎫1R 2-1R 1,故正确选项为C. 2.(2013·新课标Ⅰ·16)一水平放置的平行板电容器的两极板间距为d ,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方d2处的P 点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移d3,则从P 点开始下落的相同粒子将 ( )A .打到下极板上B .在下极板处返回C .在距上极板d2处返回D .在距上极板25d 处返回答案 D解析 粒子两次落到小孔的速度相同,设为v ,下极板向上平移后由E =Ud 知场强变大,故粒子第二次在电场中减速运动的加速度变大,由v 2=2ax 得第二次减速到零的位移变小,即粒子在下极板之上某位置返回,设粒子在距上极板h 处返回,对粒子两次运动过程应用动能定理得mg (d 2+d )-qU =0,mg (d 2+h )-q U 23d ·h =0.两方程联立得h =25d ,选项D 正确.3.质量为m 的汽车在平直的路面上启动,启动过程的速度—时间图象如图1所示,其中OA 段为直线,AB 段为曲线,B 点后为平行于横轴的直线.已知从t 1时刻开始汽车的功率保持不变,整个运动过程中汽车所受阻力的大小恒为f ,以下说法正确的是( )图1 A .0~t 1时间内,汽车牵引力的数值为m v 1t 1B .t 1~t 2时间内,汽车的功率等于(m v 1t 1+f )v 2C .t 1~t 2时间内,汽车的平均速率小于v 1+v 22D .汽车运动的最大速率v 2=(m v 1ft 1+1)v 1答案 D解析 0~t 1时间内汽车的加速度大小为v 1t 1,m v 1t 1为汽车所受的合外力大小,而不是牵引力大小,选项A 错误;t 1时刻汽车牵引力的功率为F v 1=(m v 1t 1+f )v 1,之后汽车功率保持不变,选项B 错误;t 1~t 2时间内,汽车的平均速率大于v 1+v 22,选项C 错误;牵引力等于阻力时速度最大,即t 2时刻汽车速率达到最大值,则有(m v 1t 1+f )v 1=f v 2,解得v 2=(m v 1ft 1+1)v 1,选项D 正确.4.如图2所示,质量为m 的物块(可视为质点),带正电Q ,开始时让它静止在倾角α=60°的固定光滑绝缘斜面顶端,整个装置放在水平方向向左、大小为E =3mg /Q 的匀强电场中(设斜面顶端处电势为零),斜面高为H .释放后,物块落地时的电势能为ε,物块落地时的速度大小为v ,则( )图2A .ε=33mgH B .ε=-33mgH C .v =2gHD .v =2gH答案 C解析 由电场力做功等于电势能的变化可得物块落地时的电势能为ε=-QEH /tan 60°=-3mgH /3=-mgH ,选项A 、B 错误;由动能定理,mgH +QEH /tan 60°=12m v 2,解得v =2gH ,选项C 正确,D 错误. 二、双项选择题5.如图3所示,质量为m 的物体(可视为质点)以某一初速度从A 点冲上倾角为30°的固定斜面,其运动的加速度大小为34g ,沿斜面上升的最大高度为h ,则物体沿斜面上升的过程中( )图3A .物体的重力势能增加了34mghB .物体的重力势能增加了mghC .物体的机械能损失了12mghD .物体的动能减少了mgh 答案 BC解析 该过程物体克服重力做功为mgh ,则物体的重力势能增加了mgh ,选项A 错误,选项B 正确;由牛顿第二定律有f +mg sin 30°=ma ,解得f =14mg ,克服摩擦力做的功等于机械能的减少量,W f =-f ·h sin 30°=-12mgh ,选项C 正确;根据动能定理知,合外力做的功等于动能的变化量,故动能减少量为32mgh ,选项D 错误.6.如图4所示,间距为L 、电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m 、电阻也为R 的金属棒,金属棒与导轨接触良好.整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q .下列说法正确的是( )图4A .金属棒在导轨上做匀减速运动B .整个过程中金属棒克服安培力做功为12m v 2C .整个过程中金属棒在导轨上发生的位移为2qRBLD .整个过程中电阻R 上产生的焦耳热为12m v 2解析由题意可知金属棒在安培力作用下做减速运动直至静止,由于速度一直减小,故安培力的大小一直减小,金属棒的加速度减小,故金属棒做加速度减小的减速运动,选项A错误.在整个过程中,只有安培力做负功,由动能定理可知金属棒克服安培力做功为12m v2,选项B正确.由q=ΔΦR总可知q=BLs2R,解得s=2qRBL,选项C正确.由B项可知整个回路中产生的焦耳热为12m v2,电阻R上产生的焦耳热为14m v2,选项D错误.7.将带正电的甲球放在乙球的左侧,两球在空间形成了如图5所示的稳定的静电场,实线为电场线,虚线为等势线.A、B两点与两球球心的连线位于同一直线上,C、D两点关于直线AB对称,则()图5A.乙球一定带负电B.C点和D点的电场强度相同C.正电荷在A点具有的电势能比其在B点具有的电势能大D.把负电荷从C点移至D点,电场力做的总功为零答案CD解析电场线从正电荷出发指向负电荷,根据电场线知乙球左侧带负电,右侧带正电,整体带电情况不确定,A错误;电场强度是矢量,C、D两点电场强度的方向不同,B 错误;电场线的方向是电势降落最快的方向,A点的电势比B点的电势高,由电势能的定义式E p=qφ知,正电荷在A点的电势能比在B点的电势能大,C正确;C、D两点在同一等势面上,故将电荷从C点移至D点电势能不变,电场力做功是电势能变化的量度,故电场力不做功,D正确.8.如图6所示,绝缘轻弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q(可视为质点)固定在光滑绝缘斜面上的M点,且在通过弹簧中心的直线ab上.现把与Q大小相同、电性相同的小球P,从N点由静止释放,在小球P与弹簧接触到压缩至最短的过程中(弹簧始终在弹性限度内),以下说法正确的是()图6A.小球P和弹簧组成的系统机械能守恒B.小球P和弹簧刚接触时其速度最大C.小球P的动能与弹簧弹性势能的总和增大D.小球P的加速度先减小后增大。
5力学三大观点的综合应用
4.质量为 M 的小物块 A 静止在离地面高 h 的水平桌面的 边缘,质量为 m 的小物块 B 沿桌面向 A 运动并以速度 v0 与之 发生正碰(碰撞时间极短).碰后 A 离开桌面,其落地点离出发 点的水平距离为 L,碰后 B 反向运动,求 B 后退的距离.已知 B 与桌面间的动摩擦因数为μ,重力加速度为 g.
7.如图 T1-10 所示,质量 m=2 kg 的小球以初速度 v0 沿 光滑的水平面飞出后,恰好无碰撞地进入光滑的圆弧轨道,其
中圆弧 AB 对应的圆心角θ=53°,圆半径 R=0.5 m.若小球离
开桌面运动到 A 点所用时间 t=0.4 s.(sin53°=0.8,cos53°=
0.6, g=10 m/s2)
图 T1-8
解:物块在长木板上向右滑行时做减速运动,长木板做加 速运动,碰撞时物块再传递一部分能量给长木板,以后长木板 减速,物块加速直到速度相同为止.设木块和物块最后共同的 速度为v,由动量守恒定律得mv0=(m+M)v
设全过程损失的机械能为 ΔE,则 ΔE=12mv20-12(m+M)v2 因相对滑动而产生的内能为 Q=μmg·2s,在碰撞过程中损 失的机械能为 ΔE′,由能量守恒定律可得 ΔE=Q+ΔE′ 则 ΔE′=2mm+MMv20-2μmgs 代入数据得 ΔE′=2.4 J.
(舍去)
所以 v1=v0=2 μgl,v2=0.
1.有一传送装置如图 T1-5 所示,水平放置的传送带保持 以 v=2 m/s 的速度向右匀速运动.传送带两端之间的距离 L= 10 m,现有一物件以 v0=4 m/s 的初速度从左端滑上传送带,物 件与传送带之间的动摩擦因数μ=0.2.求物件从传送带的左端运 动到右端所用的时间 (取 g=10 m/s2).
高考物理动量定理和动能定理综合应用
图1高考物理动量定理和动能定理综合应用1. 动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值。
(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s 。
分别应用动量定理和动能定理求出平均力F 1和F 2的值。
(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x 。
分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的。
(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2mt kπ=程中物块所受合力对时间t 的平均值。
2.对于一些变化的物理量,平均值是衡量该物理量大小的重要的参数。
比如在以弹簧振子为例的简谐运动中,弹簧弹力提供回复力,该力随着时间和位移的变化是周期性变化的,该力在时间上和位移上存在两个不同的平均值。
弹力在某段时间内的冲量等于弹力在该时间内的平均力乘以该时间段;弹力在某段位移内做的功等于弹力在该位移内的平均值乘以该段位移。
如图1所示,光滑的水平面上,一根轻质弹簧一端和竖直墙面相连,另一端和可视为质点的质量为m 的物块相连,已知弹簧的劲度系数为k ,O 点为弹簧的原长,重力加速度为g 。
该弹簧振子的振幅为A 。
(1)①求出从O 点到B 点的过程中弹簧弹力做的功,以及该过程中弹力关于位移x 的平均值的大小F x ̅;②弹簧振子的周期公式为2π√mk ,求从O 点到B 点的过程中弹簧弹力的冲量以及该过程中弹力关于时间t 的平均值的大小F t ̅;(2)如图2所示,阻值忽略不计,间距为l 的两金属导轨MN 、PQ 平行固定在水平桌面上,导轨左端连接阻值为R 的电阻,一阻值为r 质量为m 的金属棒ab 跨在金属导轨上,与导轨接触良好,动摩擦因数为μ,磁感应强度为B 的磁场垂直于导轨平面向里,给金属棒一水平向右的初速度v 0,金属棒运动一段时间后静止,水平位移为x ,导轨足够长,求整个运动过程中,安培力关于时间的平均值的大小F t ̅。
三大力学观点的综合应用
(2)设 A 车的质量为 mA,碰后加速度大小为 aA,根据牛顿 第二定律有
μmAg=mAaA④ 设碰撞后瞬间 A 车速度的大小为 vA′,碰撞后滑行的距离 为 sA,由运动学公式有 vA′2=2aAsA⑤ 设碰撞前的瞬间 A 车速度的大小为 vA。两车在碰撞过程中 动量守恒,有 mAvA=mAvA′+mBvB′⑥ 联立③④⑤⑥式并利用题给数据得 vA=4.3 m/s。⑦
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与 小球的初始距离为 x1=1.3 m,求物块 M 在 P 处的初速度大小。
[解析] (1)碰后物块 M 做平抛运动,设其平抛运动的初速 度为 v3,平抛运动时间为 t,由平抛运动规律得
h=12gt2① x=v3t② 得:v3=x 2gh=3.0 m/s。③ (2)物块 M 与小球在 B 点处碰撞,设碰撞前物块 M 的速度 为 v1,碰撞后小球的速度为 v2,由动量守恒定律: Mv1=mv2+Mv3④
解析:(1)由题图乙可知: 长木板的加速度 a1=12 m/s2=0.5 m/s2 由牛顿第二定律可知:小物块施加给长木板的滑动摩擦力 Ff= m1a1=2 N 小物块与长木板之间的动摩擦因数:μ=mF2fg=0.2。 (2)由题图乙可知,小物块的加速度 a2=42 m/s2=2 m/s2 由牛顿第二定律可知:F-μm2g=m2a2 解得 F=4 N。
碰后小球从 B 点处运动到最高点 A 过程中机械能守恒,设 小球在 A 点的速度为 vA,则12mv22=12mvA2+2mgL⑤
小球在最高点时有:2mg=mvLA2⑥ 由⑤⑥解得:v2=6.0 m/s⑦ 由③④⑦解得:v1=mv2+MMv3=6.0 m/s⑧ 物块 M 从 P 点运动到 B 点过程中,由动能定理: -μMgx1=12Mv12-12Mv02⑨ 解得:v0= v12+2μgx1=7.0 m/s。 [答案] (1)3.0 m/s (2)7.0 m/s
第38课时动量和能量的综合问题2025届高考物理一轮复习课件
m3)3 2 =1.5 J。
−
1
(m2+
2
目录
高中总复习·物理
(3)小物块压缩弹簧的过程中弹簧具有的最大弹性势能。
答案:0.45 J
解析:设物块相对板运动的路程为s,则Q=μm3gs
解得s=1.5 m
1.5−0.6
则当弹簧压缩量最大时,物块相对板运动的路程为s'=
2
m+0.6 m=1.05 m
1
2
2
根据能量守恒定律得 m10 = m11 + m22 2
2
2
2
解得v1=v2=2 m/s。
目录
高中总复习·物理
(2)物块与长木板间因摩擦产生的热量;
答案:1.5 J
解析:设物块与平板最后的共同速度大小为v3,根据动量守恒
定律得m2v2=(m2+m3)v3
解得v3=1.5 m/s
1
根据能量守恒定律,因摩擦产生的热量Q= m22 2
1 kg的小球悬挂在O点,轻绳处于水平拉直状态。现将小球由静止
释放,下摆至最低点刚好与长木板的左端发生弹性碰撞,已知物块
与长木板间的动摩擦因数为0.1,物块与长木板相对静止时刚好停在
长木板的中点,重力加速度g取10 m/s2,所有碰撞时间忽略不计,
不计空气阻力,不计小球大小,绳长为0.8 m,挡板质量不计,求:
解得a=4 m/s2
由运动学公式有1 2 =2ax1
解得x1=0.125 m。
目录
高中总复习·物理
(2)求木板与弹簧接触以后,物块与木板之间即将相对滑动时弹簧
的压缩量x2及此时木板速度v2的大小。
答案:0.25 m
3
2
m/s
解析:木板与弹簧接触后,物块与木板先一起减速,当物块受到
专题十二 力学三大观点的综合应用
第七章 动量守恒定律专题十二 力学三大观点的综合应用核心考点五年考情命题分析预测动量与能量观点的综合应用2022:广东T13,湖北T16;2021:湖北T15;2020:山东T18力学三大观点的综合应用往往以高考压轴题的形式考查,综合性强,难度大,常与曲线运动、带电粒子在电磁场中的运动或导体棒切割磁感线等知识点相结合进行考查.预计2025年高考可能会出现三大观点应用的计算题.三大观点的综合应用2023:山东T18,广东T15,辽宁T15,浙江6月T18,浙江1月T18;2022:浙江6月T20;2021:北京T17,湖南T14题型1 动量与能量观点的综合应用1.两大观点动量的观点:动量定理和动量守恒定律.能量的观点:动能定理和能量守恒定律. 2.三种技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处,特别对于变力做功问题,就更显出它们的优越性.1.[2024江西九校联考]如图所示,质量M =4kg 的滑块套在光滑的水平轨道上,质量m =2kg 的小球通过长L =0.5m 的轻质细杆与滑块上的光滑轴O 连接,小球和轻杆可在竖直平面内绕轴O自由转动.开始时轻杆处于水平状态,现给小球一个竖直向上的初速度v 0=4m/s ,以初始时刻轴O 的位置为坐标原点,在竖直平面内建立固定的直角坐标系xOy ,取g =10m/s 2.(1)若锁定滑块,求小球通过最高点时轻杆对小球的作用力大小;(2)若解除对滑块的锁定,求小球运动到最高点时的动能E k ;(3)若解除对滑块的锁定,在平面直角坐标系xOy 中,求出小球从出发至运动到最高点的过程的轨迹方程.答案 (1)4N (2)4J (3)(32x -14)2+y 2=14解析 (1)若锁定滑块,则小球从开始运动到上升至最高点的过程,机械能守恒,有12m v 02=12m v 12+mgL小球在最高点时,设轻杆对小球的作用力大小为F ,则有mg +F =mv 12L联立解得F =4N(2)若解除对滑块的锁定,由于小球与滑块组成的系统在水平方向上不受力,因此小球与滑块组成的系统在水平方向上动量守恒.设小球通过最高点时的速度大小为v 2,此时滑块的速度大小为v ,以水平向右为正方向,则有0=mv 2-Mv运动过程中,系统的机械能守恒,则有12m v 02=12m v 22+12Mv 2+mgL又E k =12m v 22联立解得E k =4J(3)若解除对滑块的锁定,在小球上升的过程中,滑块向左运动,小球在水平方向上向右运动,设小球的位置坐标为(x ,y )时,滑块向左运动的位移大小为Δx ,则由人船模型有m (L -x )=M Δx由几何关系可知(x -Δx )2+y 2=L 2联立可得小球运动的轨迹方程为(32x -14)2+y 2=14.题型2 三大观点的综合应用1.三大基本观点动力学观点 运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题能量观点 用动能定理和能量守恒观点解题,可处理非匀变速运动问题动量观点用动量定理和动量守恒观点解题,可处理非匀变速运动问题2.三大观点的选用原则力学中首先考虑使用两个守恒定律.从两个守恒定律的表达式看出多项都是状态量(如速度、位置),所以守恒定律能解决状态问题,不能解决过程(如位移x 、时间t )问题,不能解决力(F )的问题.(1)若是多个物体组成的系统,优先考虑使用两个守恒定律.(2)若物体(或系统)涉及速度和时间,应考虑使用动量定理.(3)若物体(或系统)涉及位移和时间,且受到恒力作用,应考虑使用牛顿运动定律.(4)若物体(或系统)涉及位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,动能定理解决曲线运动和变加速运动问题特别方便.2.[三大观点的综合应用/2021湖北]如图所示,一圆心为O 、半径为R 的光滑半圆弧轨道固定在竖直平面内,其下端与光滑水平面在Q 点相切.在水平面上,质量为m 的小物块A 以某一速度向质量也为m 的静止小物块B 运动.A 、B 发生正碰后,B 到达半圆弧轨道最高点时对轨道压力恰好为零,A 沿半圆弧轨道运动到与O 点等高的C 点时速度为零.已知重力加速度大小为g ,忽略空气阻力.(1)求B 从半圆弧轨道飞出后落到水平面的位置到Q 点的距离;(2)当A 由C 点沿半圆弧轨道下滑到D 点时,OD 与OQ 夹角为θ,求此时A 所受力对A 做功的功率;(3)求碰撞过程中A 和B 损失的总动能.答案 (1)2R (2)mg sin θ√2gRcosθ (3)√10mgR解析 (1)设B 到半圆弧轨道最高点时速度为v 2',由于B 对轨道最高点的压力为零,则由牛顿第二定律得mg =mv 22'RB 离开最高点后做平抛运动,则在竖直方向上有2R =12gt 2在水平方向上有x =v 2't联立解得x =2R(2)对A 由C 到D 的过程,由机械能守恒定律得mgR cos θ=12m v D2由于对A 做功的力只有重力,则A 所受力对A 做功的功率为P =mgv D sin θ解得P =mg sin θ√2gRcosθ(3)设A 、B 碰后瞬间的速度分别为v 1、v 2,对B 由Q 到最高点的过程,由机械能守恒定律得12m v 22=12m v 22'+mg ·2R解得v 2=√5gR对A 由Q 到C 的过程,由机械能守恒定律得12m v 12=mgR解得v 1=√2gR设碰前瞬间A 的速度为v 0,对A 、B 碰撞的过程,由动量守恒定律得mv 0=mv 1+mv 2解得v 0=√2gR +√5gR碰撞过程中A 和B 损失的总动能为ΔE =12m v 02-12m v 12-12m v 22解得ΔE =√10mgR .3.[三大观点的综合应用/2023浙江6月]为了探究物体间的碰撞特性,设计了如图所示的实验装置.水平直轨道AB 、CD 和水平传送带平滑无缝连接,两半径均为R =0.4m 的四分之一圆周组成的竖直细圆弧管道DEF 与轨道CD 和足够长的水平直轨道FG 平滑相切连接.质量为3m 的滑块b 与质量为2m 的滑块c 用劲度系数k =100N/m 的轻质弹簧连接,静置于轨道FG 上.现有质量m =0.12kg 的滑块a 以初速度v 0=2√21m/s 从D 处进入,经DEF 管道后,与FG 上的滑块b 碰撞(时间极短).已知传送带长L =0.8m ,以v =2m/s 的速率顺时针转动,滑块a 与传送带间的动摩擦因数μ=0.5,其他摩擦和阻力均不计,各滑块均可视为质点,弹簧的弹性势能E p =12kx 2(x 为形变量).(1)求滑块a 到达圆弧管道DEF 最低点F 时速度大小v F 和所受支持力大小F N ;(2)若滑块a 碰后返回到B 点时速度v B =1m/s ,求滑块a 、b 碰撞过程中损失的机械能ΔE ;(3)若滑块a 碰到滑块b 立即被粘住,求碰撞后弹簧最大长度与最小长度之差Δx .答案 (1)v F =10m/s F N =31.2N (2)ΔE =0 (3)Δx =0.2m解析 (1)滑块a 以初速度v 0从D 处进入竖直圆弧管道DEF 运动,由动能定理有mg ·2R=12m v F 2-12m v 02解得v F=10m/s在最低点F ,由牛顿第二定律有F N -mg =m v F2R解得F N =31.2N(2)碰撞后滑块a 返回到B 点的过程,由动能定理有-mg ·2R -μmgL =12m v B 2-12m v a2解得v a =5m/s滑块a 、b 碰撞过程,由动量守恒定律有mv F =-mv a +3mv b解得v b =5m/s碰撞过程中损失的机械能为ΔE =12m v F 2-12m v a 2-12·3m v b 2=0(3)滑块a 碰撞b 后立即被粘住,由动量守恒定律有mv F =(m +3m )v ab解得v ab =2.5m/s滑块ab 一起向右运动,压缩弹簧,ab 减速运动,c 加速运动,当abc 三者速度相等时,弹簧长度最小,由动量守恒定律有(m +3m )v ab =(m +3m +2m )v abc解得v abc =53m/s由机械能守恒定律有E p1=12×4m v ab 2-12×6m v abc2解得E p1=0.5J由E p1=12k x 12解得最大压缩量x 1=0.1m滑块ab 一起继续向右运动,弹簧弹力使c 继续加速,使ab 继续减速,当弹簧弹力减小到零时,c 速度最大,ab 速度最小;滑块ab 一起再继续向右运动,弹簧弹力使c 减速,使ab 加速,当abc 三者速度相等时,弹簧长度最大,其对应的弹性势能与弹簧长度最小时的弹性势能相等,由弹簧的弹性势能公式可知最大伸长量x 2=0.1m所以碰撞后弹簧最大长度与最小长度之差Δx =x 1+x 2=0.2m.方法点拨深化观念、建构模型,解决力学综合难题1.[2023浙江1月]一游戏装置竖直截面如图所示,该装置由固定在水平地面上倾角θ=37°的直轨道AB 、螺旋圆形轨道BCDE 、倾角θ=37°的直轨道EF 、水平直轨道FG 组成,除FG 段外各段轨道均光滑,且各处平滑连接.螺旋圆形轨道与轨道AB 、EF 相切于B (E )处.凹槽GHIJ 底面HI 水平光滑,上面放有一无动力摆渡车,并紧靠在竖直侧壁GH 处,摆渡车上表面与直轨道FG 、平台JK 位于同一水平面.已知螺旋圆形轨道半径R =0.5m ,B 点高度为1.2R ,FG 长度L FG =2.5m ,HI 长度L 0=9m ,摆渡车长度L =3m 、质量m =1kg.将一质量也为m 的滑块从倾斜轨道AB 上高度h =2.3m 处静止释放,滑块在FG 段运动时的阻力为其重力的0.2倍.(摆渡车碰到竖直侧壁IJ 立即静止,滑块视为质点,不计空气阻力,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2)(1)求滑块过C 点的速度大小v C和轨道对滑块的作用力大小F C;(2)摆渡车碰到IJ 前,滑块恰好不脱离摆渡车,求滑块与摆渡车之间的动摩擦因数μ;(3)在(2)的条件下,求滑块从G 到J 所用的时间t .答案 (1)4m/s 22N (2)0.3 (3)2.5s解析 (1)C 点离地高度为1.2R +R cos θ+R =3R滑块从静止释放到C 点过程,根据动能定理可得 mg (h -3R )=12m v C2-0 解得v C=4m/s在最高点C 时,根据牛顿第二定律可得 F C+mg =m v C2R解得F C=22N(2)从静止释放到G 点,由动能定理可得 mgh -0.2mgL FG=12m v G2由题可知,滑块到达摆渡车右端时刚好与摆渡车共速,速度大小设为v根据动量守恒定律可得2mv =mv G由功能关系可得μmgL =12m v G 2-12×2mv 2综合解得μ=0.3(3)滑块从滑上摆渡车到与摆渡车共速过程,滑块的加速度大小为a =μg设滑块从滑上摆渡车到共速的时间为t 1,有t 1=v G -v μg=1s共速后继续向右匀速运动的时间t 2=L 0-L -12vt 1v=1.5st =t 1+t 2=2.5s .2.[2022广东]某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型.竖直放置在水平桌面上的滑杆上套有一个滑块,初始时它们处于静止状态.当滑块从A 处以初速度v 0为10m/s 向上滑动时,受到滑杆的摩擦力f 为1N.滑块滑到B 处与滑杆发生完全非弹性碰撞,带动滑杆离开桌面一起竖直向上运动.已知滑块的质量m =0.2kg ,滑杆的质量M =0.6kg ,A 、B 间的距离l =1.2m ,重力加速度g 取10m/s 2,不计空气阻力.求:(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大小N 1和N 2;(2)滑块碰撞前瞬间的速度大小v ;(3)滑杆向上运动的最大高度h .答案 (1)8N 5N (2)8m/s (3)0.2m解析 (1)滑块静止时,滑块和滑杆均处于静止状态,以滑块和滑杆整体为研究对象,由平衡条件可知N 1=(m +M )g =8N滑块向上滑动时,滑杆受重力、滑块对其向上的摩擦力以及桌面的支持力,则有N 2=Mg -f',f'=f代入数据得N 2=5N(2)解法1 碰前,滑块向上做匀减速直线运动,由牛顿第二定律得mg +f =ma 1解得a 1=15m/s 2,方向向下由运动学公式得v 2-v 02=-2a 1l代入数据得v =8m/s解法2 由动能定理得-(mg +f )l =12mv 2-12m v 02代入数据解得v =8m/s(3)滑块和滑杆发生的碰撞为完全非弹性碰撞,根据动量守恒定律有mv =(M +m )v 共代入数据得v 共=2m/s此后滑块与滑杆一起竖直向上运动,根据动能定理有-(M +m )gh =0-12(M +m )v 共2代入数据得h =0.2m.3.[2021湖南]如图,竖直平面内一足够长的光滑倾斜轨道与一长为L 的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ .质量为m 的小物块A 与水平轨道间的动摩擦因数为μ.以水平轨道末端O 点为坐标原点建立平面直角坐标系xOy ,x 轴的正方向水平向右,y 轴的正方向竖直向下,弧形轨道P 端坐标为(2μL ,μL ),Q 端在y 轴上.重力加速度为g .(1)若A 从倾斜轨道上距x 轴高度为2μL 的位置由静止开始下滑,求A 经过O 点时的速度大小;(2)若A 从倾斜轨道上不同位置由静止开始下滑,经过O 点落在弧形轨道PQ 上的动能均相同,求PQ 的曲线方程;(3)将质量为λm (λ为常数且λ≥5)的小物块B 置于O 点,A 沿倾斜轨道由静止开始下滑,与B 发生弹性碰撞(碰撞时间极短),要使A 和B 均能落在弧形轨道上,且A 落在B 落点的右侧,求A 下滑的初始位置距x 轴高度的取值范围.答案 (1)√2μgL (2)x 22y +2y =4μL (0≤x ≤2μL ) (3)3λ-1λ-3μL <h ≤μL +3μL (λ+1)2(λ-1)2解析 (1)设A 滑到O 点时速度为v 0,A 从倾斜轨道上滑到O 点过程中,由动能定理有mg ·2μL -μmgL =12m v 02解得v 0=√2μgL(2)若A 以(1)中的位置从倾斜轨道上下滑,A 从O 点抛出,假设能运动到弧形轨道上的P 点,水平方向有2μL =v 0t 1竖直方向有y P =12g t 12解得y P =μL ,假设成立所以A 落在弧形轨道时的动能E k 满足mg ·2μL -μmgL +mg ·μL =E k -0A 从O 点抛出,做平抛运动,水平方向有x =v 1t竖直方向有y =12gt 2又y =v y22g ,E k =12m (v 12+v y 2)联立解得PQ 的曲线方程为x 22y+2y =4μL (0≤x ≤2μL )(3)设A 初始位置到x 轴的高度为h ,A 滑到O 点的速度为v A 0,碰撞后的速度为v A 1,反弹后再次返回O 点时速度为v A ,A 、B 碰撞后B 的速度为v B ,A 、B 碰撞过程有mv A 0=mv A 1+λmv B12m v A02=12m v A12+12λm v B2解得v A 1=1-λ1+λv A 0,v B =21+λv A 0A 从倾斜轨道上滑到O 点的过程有mgh -μmgL =12m v A02碰后又运动到O 点过程有-μmg ·2L =12m v A 2-12m v A12又A 、B 均能落在弧形轨道上且A 落在B 点右侧应满足v B <v A ≤v 0联立求解得3λ-1λ-3μL <h ≤μL +3μL (λ+1)2(λ-1)24.[高考新题型/2023湖南]如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直.质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑.以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上.整个过程凹槽不翻转,重力加速度为g .(1)小球第一次运动到轨道最低点时,求凹槽的速度大小以及凹槽相对于初始时刻运动的距离;(2)在平面直角坐标系xOy 中,求出小球运动的轨迹方程;(3)若Mm =ba -b,求小球下降h =b2高度时,小球相对于地面的速度大小(结果用a 、b 及g表示).答案 (1)√2m 2gbM (m +M )ma M +m(2)[(M +m )x -ma ]2M 2a 2+y 2b2=1(y ≤0)(3)2b √ga+3b解析 (1)小球从静止到第一次运动到轨道最低点的过程,水平方向上小球和凹槽组成的系统动量守恒,有0=mv 1-Mv 2对小球与凹槽组成的系统,由机械能守恒定律有mgb =12m v 12+12M v 22 联立解得v 2=√2m 2gbM (m +M )根据人船模型规律,在水平方向上有mx 1=Mx 2又由位移关系知x 1+x 2=a解得凹槽相对于初始时刻运动的距离x 2=maM +m(2)小球向左运动过程中,凹槽向右运动,当小球的坐标为(x ,y )时,小球向左运动的位移x'1=a -x ,则凹槽水平向右运动的位移为x'2=mM (a -x )小球在凹槽所在的椭圆上运动,根据数学知识可知小球的运动轨迹满足(x -x '2)2a 2+y 2b2=1整理得小球运动的轨迹方程为[(M +m )x -ma ]2M 2a 2+y 2b 2=1(y ≤0)(3)若Mm =b a -b,代入(2)问结果化简可得[x -(a -b )]2+y 2=b 2即小球的运动轨迹是半径为b 的圆小球下降h =b 2高度的过程,小球与凹槽组成的系统在水平方向动量守恒,有mv'1x =Mv'2对小球与凹槽组成的系统,由机械能守恒定律有mgh =12mv'12+12Mv'22由几何关系及速度的分解得v'1sin30°=v'1x联立解得v'1=2b √g a+3b.1.[2024四川成都蓉城名校联考/多选]一次台球练习中,某运动员用白球击中彩球,白球与静止的彩球发生正碰,碰撞时间极短,碰后两球在同一直线上运动,且台球运动时所受桌面阻力保持不变,两球质量均为m =0.2kg ,碰撞后两球的位移x 与速度的平方v 2的关系如图所示,重力加速度g 取10m/s2.则下列说法正确的是( BC )A.碰撞前白球的速度为1.64m/sB.碰撞过程中,白球对彩球的冲量大小为0.2kg·m/sC.碰撞过程中,系统有机械能转化为内能D.台球所受桌面阻力为0.5N解析 由题图可知,碰后白球速度v 1=0.8 m/s ,彩球速度v 2=1.0 m/s.设碰撞前白球 速度为v 0,由动量守恒得mv 0=mv 1+mv 2,解得v 0=1.8 m/s ,故A 错误;碰撞过程中,白球对彩球的冲量I =mv 2=0.2×1.0 kg·m/s =0.2 kg·m/s ,B 正确;由于12m v 02>12m v 12+12m v 22,故碰撞过程中,系统有机械能转化为内能,C 正确;由运动学知识可知a =v 122x 1=0.642×1.28 m/s 2=0.25 m/s 2,故阻力为f =ma =0.05 N ,故D 错误.2.[2024北京海淀区期中/多选]如图所示,质量m A =1kg 、长L =9m 的薄板A 放在水平地面上,在大小为4N 、水平向右的外力F 作用下由静止开始运动,薄板与地面间的动摩擦因数μ1=0.2,其速率达到v A =2m/s 时,质量m B =1kg 的物块B 以v B =4m/s 的速率由薄板A 右端向左滑上薄板,A 与B 间的动摩擦因数μ2=0.1,B 可视为质点,重力加速度g 取10m/s 2.下列说法正确的是( AD )A.当A 的速率减为0时,B 的速率为2m/sB.从B 滑上A 到B 掉下的过程中,A 、B 所组成的系统动量守恒C.从B 滑上A 到B 掉下的过程,A 、B 和地面所组成的系统因摩擦而产生的热量为9JD.从B 滑上A 到B 掉下的过程,A 、B 所组成的系统机械能减少9J解析 B 滑上A 后,B 开始做减速运动,此时对B 由牛顿第二定律有μ2m B g =m B a B ,解得a B =1 m/s 2,对A 由牛顿第二定律有μ1(m A +m B )g +μ2m B g -F =m A a A ,解得a A =1 m/s 2,A 也开始做减速运动,假设A 速率减为0时,B 未从A 上掉下,则A 的速率减为0的时间为t 1=v Aa A=2 s ,此时B 的速度大小为v B 1=v B -a B t 1=2 m /s ,此过程A 、B 的相对位移Δx =v A22a A+v B 2−v B122a B=8 m <L ,故假设成立,A 正确;在B 滑上A 到A 速度减到零的过程中,有μ1(m A +m B )g =F ,即A 、B 所组成的系统受到的合力为零,动量守恒,当A 速度减为零时,由于μ1(m A +m B )g +μ2m B g >F ,则A 此后处于静止状态,且由平衡条件可知A 与地面间的摩擦力f <F ,A 、B 所组成的系统受到的合力不为零,动量不守恒,B 错误;从B 滑上A 到A 速度减为零的过程,A 的位移为x A =v A22a A=2 m ,此过程B 的位移为x B =v B 2−v B122a B=6 m ,结合B 项分析可知,此后A 处于静止状态,B 继续向左做匀减速运动直至掉下,则对从B 滑上A 到B 掉下的整个运动过程,A 、B 和地面所组成的系统因摩擦而产生的热量为Q =μ1(m A +m B )gx A +μ2m B gL =17 J ,C 错误;从B 滑上A 到B 掉下的过程,A 、B 所组成的系统机械能的减少量为ΔE k =Q -Fx A =9 J ,D 正确.3.[设问创新/2024重庆南开中学校考/多选]如图所示,半径为R 、质量为3m 的14圆弧槽AB 静止放在光滑水平地面上,圆弧槽底端B 点切线水平,距离B 点为R 处有一质量为3m 的小球2,其左侧连有轻弹簧.现将质量为m 的小球1(可视为质点)从左侧圆弧槽上端的A 点由静止释放,重力加速度为g ,不计一切摩擦.则下列说法正确的是( BC )A.系统(三个物体)全程动量守恒B.小球1刚与弹簧接触时,与圆弧槽底端B 点相距53RC.弹簧弹性势能的最大值为916mgRD.小球1最终的速度大小为√6gR 4解析 小球1在圆弧槽上运动时,系统在竖直方向上动量不守恒,故A 错误.小球1从圆弧槽的A 点到B 点的过程中,设小球1滑到B 点时小球1的速度为v 0,圆弧槽的速度为v ,取水平向右为正方向,小球1与圆弧槽在水平方向动量守恒有0=mv 0-3mv ,由能量守恒有mgR =12m v 02+12·3mv 2,解得v 0=3v =√3gR 2.设小球1到B 点时,小球1水平向右移动的距离为x 1,圆弧槽向左运动的距离为x 2,两者的相对位移为R ,因此有mx 1-3mx 2=0,x 1+x 2=R ,联立解得x 1=34R ,x 2=14R . 此时圆弧槽的B 点与弹簧之间的距离L =x 2+R =54R .小球1从B 点向右以v 0匀速运动,圆弧槽向左以v03匀速运动,小球1刚与弹簧接触时,与圆弧槽底端B 点的距离L'=L +v03·Lv 0=43L =53R ,故B 正确.小球1与小球2共速时,弹簧弹性势能有最大值,从小球1刚与弹簧接触到两球共速,由动量守恒有mv 0=(m +3m )v 共,由能量守恒有12m v 02=12(m +3m )v 共2+E p ,联立解得E p =916mgR ,故C 正确.从小球1刚与弹簧接触到两球分开,由动量守恒有mv 0=mv 1+3mv 2,由能量守恒有12m v 02=12m v 12+12·3m v 22,解得v 1=-12v 0,v 2=12v 0.小球1之后向左以12v 0匀速运动,因为圆弧槽此时正向左以v03匀速运动,故会再次和圆弧槽碰撞,以向左为正,碰撞前、后动量守恒有m ·v02+3m ·v03=mv 3+3mv 4,由能量守恒有12m (v02)2+12·3m (v03)2=12m v 32+12·3m v 42,解得v 3=14v 0,v 4=512v 0,最终小球1以14v 0的速度向左运动,圆弧槽以512v 0的速度向左运动,小球2以12v 0的速度向右运动,小球1最终的速度为14v 0=√6gR 8,故D 错误.4.长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小;(2)碰撞前瞬间B 的动能E k 至少多大?答案 (1)m 1√5gl (2)5gl (2m 1+m 2)22m 2解析 (1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律有m 1g =m 1v 2l ①A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v A 2=12m 1v 2+2m 1gl ②由动量定理有I =m 1v A③联立①②③式,得I =m 1√5gl ④(2)设两球粘在一起后瞬间的速度大小为v',A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v'=v A ⑤要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律有m 2v B -m 1v A =(m 1+m 2)v' ⑥又E k =12m 2v B 2 ⑦联立①②⑤⑥⑦式,得碰撞前瞬间B 的动能E k 至少为 E k =5gl (2m 1+m 2)22m 2⑧.5.[三轨推拉门/2023江苏扬州三模]有一款三轨推拉门(如图甲),门框内部宽为2.4m ,三扇相同的门板的俯视图如图乙,每扇门板宽为d =0.8m ,质量为m =20kg ,与轨道间的动摩擦因数为μ=0.01.在门板边缘凸起部位贴有尼龙扣,两门板碰后可连在一起.现三扇门板静止在最左侧,用力F 水平向右拉3号门板,一段时间后撤去.取重力加速度g =10m/s 2.(1)若3号门板左侧凸起部位恰能与2号门板右侧凸起部位接触,求力F 做的功W .(2)若F =12N ,3号门板恰好到达门框最右侧,大门完整关闭.①求3号门板与2号门板碰撞前瞬间的速度大小v 0.②求拉力F 的作用时间t .答案 (1)1.6J (2)①0.8m/s②2√63s解析 (1)根据动能定理有W -μmgd =0,解得W =1.6J(2)①设3号门板与2号门板碰撞后速度大小为v 1,碰后两门板位移大小均为d =0.8m从3号门板与2号门板碰撞后到大门完整关闭,根据功能关系有-2μmgd =-12·2m v 12碰撞过程,根据动量守恒定律有mv 0=2mv 1,解得v 0=0.8m/s②根据牛顿第二定律有F -μmg =ma根据动能定理有 Fx -μmgd =12m v 02【易错辨析】在关门过程中,拉力F 作用时间与门受到的摩擦力作用时间不同,不推荐应用动量定理列方程解答.根据运动学公式有x =12at 2解得t =2√63s.6.[2024湖南湘潭一中校考]如图是一游戏装置的简易模型,它由光滑的水平轨道和竖直平面内的光滑圆轨道组成,竖直圆轨道的半径R =0.9m ,圆轨道内侧最高点E 点装有一力传感器,且竖直圆轨道的最低点D 、D'点相互靠近且错开.水平轨道左侧放置着两个用细绳连接的物体A 和B ,其间有一压缩的轻弹簧(物体与轻弹簧不粘连),烧断细绳,物体被弹出.轨道右侧M 端与水平传送带MN 等高,并能平滑对接,传送带总长度L =5m ,传送带速度大小和方向均可调.已知A 物体质量m A =1kg ,B 物体质量可变,A 、B 间被压缩的弹簧的弹性势能为30J ,取重力加速度g =10m/s 2.(1)求测得的力传感器能显示的力的最小值;(2)要使物体A 冲上传送带后,均能到达N 点,求传送带与物体A 之间的动摩擦因数的最大值;(3)要使物体A 在圆轨道上运动时不脱离轨道,求物体B 的质量范围.答案 (1)0 (2)0.45 (3)m B ≤37kg 或m B ≥3kg解析 (1)当由重力提供向心力时,对E 点压力为0,所以测得的力传感器能显示的力的最小值F min =0(2)当物体A 恰好通过圆轨道最高点后进入传送带时速度最小,此时若传送带静止或逆时针转动,则物体A 一直在传送带上做匀减速直线运动.当物体A 到达N 点的速度为0时,则动摩擦因数最大,即对物体A 分析有m A g =m A v E2Rm A g ·2R -μm A gL =0-12m A v E2得μ=0.45.(3)物体A 不脱离圆轨道有两种情况:①过最高点的速度v E ≥√gR对物体A 从被弹簧弹出开始到到达最高点,根据动能定理有-m A g ·2R =12m A v E 2-12m A v A2得v A ≥√5gR =3√5m/s②到达圆轨道的圆心等高处时速度恰好为0,对物体A 从被弹簧弹出开始到到达圆心等高处,根据动能定理有-m A gR =0-12m A v A2得v A ≤√2gR =3√2m/s因为物体A 是通过释放弹簧的弹性势能获得速度,且A 与B 反向弹开,由动量守恒有m A v A =m B v B由机械能守恒有E p =12m A v A 2+12m B v B2得m B =v A260-v A2kg代入数据得m B ≤37kg 或m B ≥3kg.7.[2024河北唐山摸底演练]如图所示,一圆弧轨道AB 与倾角为θ的斜面BC 在B 点相接.可视为质点的两个形状相同的小球a 、b ,将小球b 置于圆弧轨道的最低点,使小球a 从圆弧轨道A 点由静止释放,两小球在最低点发生弹性正碰,整个系统固定于竖直平面内.已知圆弧轨道半径R =1m ,圆弧过A 、B 两端点的半径与竖直方向间的夹角均为θ=37°,小球a 的质量m 1=4kg ,小球b 的质量m 2=1kg ,重力加速度g =10m/s 2,不计一切阻力,sin37°=0.6,cos37°=0.8.求:(1)与小球b 碰前瞬间,小球a 的速度大小v 0;(2)碰后瞬间小球b 对轨道的压力大小F ;(3)小球b 从B 点飞出圆弧轨道后,距离斜面BC 的最远距离h ,√6.24取2.5.答案 (1)2m/s (2)20.24N (3)0.36m解析 (1)对小球a 从静止释放到与小球b 碰撞前瞬间的过程,由动能定理有m 1gR (1-cos θ)=12m 1v 02代入数据解得v 0=2m/s(2)小球a 与小球b 发生弹性正碰,则有m 1v 0=m 1v 1+m 2v 212m 1v 02=12m 1v 12+12m 2v 22对碰撞后瞬间小球b ,由牛顿第二定律有F N -m 2g =m 2v 22R联立并代入数据解得F N =20.24N由牛顿第三定律可得小球b 对轨道的压力大小F =F N =20.24N(3)对小球b 从碰撞后到飞出圆弧轨道瞬间的过程,由动能定理有-m 2gR (1-cos θ)=12m 2v 32-12m 2v 22代入数据解得v 3=2.5m/s由几何关系可知,此时小球b 的速度与斜面的夹角为α=74°小球b 在垂直斜面方向做类竖直上抛运动,则有v'0=v 3sin α,a =g cos θ对小球b 从B 点运动到距离斜面最远的过程,由运动学规律有2ah =v '02代入数据解得h =0.36m.8.[板块模型+弹簧模型+新信息/2023辽宁]如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N/m 的轻弹簧,弹簧处于自然状态.质量m 2=4kg 的小物块以水平向右的速度v 0=54m/s 滑上木板左端,两者共速时木板恰好与弹簧接触.木板足够长,物块与木板间的动摩擦因数μ=0.1,最大静摩擦力等于滑动摩擦力.弹簧始终处在弹性限度内,弹簧的弹性势能E p 与形变量x 的关系为E p =12kx 2.取重力加速度g =10m/s 2,结果可用根式表示.(1)求木板刚接触弹簧时速度v 1的大小及木板运动前右端距弹簧左端的距离x 1.(2)求木板与弹簧接触以后,物块与木板之间即将相对滑动时弹簧的压缩量x 2及此时木板速度v 2的大小.(3)已知木板向右运动的速度从v 2减小到0所用时间为t 0.求木板从速度为v 2时到之后与物块加速度首次相同时的过程中,系统因摩擦转化的内能ΔU (用t 0表示).答案 (1)1m/s 0.125m (2)0.25m√32m/s (3)(4√3t 0-8t 02)J解析 (1)小物块从滑上木板到两者共速的过程,由动量守恒定律有m 2v 0=(m 1+m 2)v 1解得v 1=1m/s两者共速前,对木板,由牛顿第二定律有μm 2g =m 1a解得a =4m/s 2由运动学公式有2ax 1=v 12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-5 动量和能量观点的综合应用
【学习目标】
1.进一步熟练应用动量守恒定律的解题方法。
2.综合应用动量和能量观点解决力学问题。
【重点难点】
解决力学问题的三个基本观点
1.力的观点:主要应用牛顿运动定律和运动学公式相结合,常涉及受力,加速或匀变速运动的问题.
2.动量的观点:主要应用动量定理或动量守恒定律求解.常涉及物体的受力和时间问题,以及相互作用的物体系问题.
3.能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及物体系内能量的转化问题时,常用能量的转化和守恒定律.
【学习过程】
一、爆炸类问题
解决爆炸类问题时,要抓住以下三个特征:
1.动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远大于受到的外力,所以在爆炸过程中,系统的动量守恒.
2.动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,因此爆炸后系统的总动能增加.
3.位置不变:爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后,物体仍然从爆炸的位置以新的动量开始运动.
例1从某高度自由下落一个质量为M的物体,当物体下落h时,突然炸裂成两块,已知质量为m的一块碎片恰能沿竖直方向回到开始下落的位置,求:
(1)刚炸裂时另一块碎片的速度;
(2)爆炸过程中有多少化学能转化为弹片的动能?
二、滑块滑板模型
1.把滑块、滑板看作一个整体,摩擦力为内力,则在光滑水平面上滑块和滑板组成的系统动量守恒.
2.由于摩擦生热,把机械能转化为内能,则系统机械能不守恒.应由能量守恒求解问题.3.注意滑块若不滑离木板,最后二者具有共同速度.
例2如图所示,光滑水平面上一质量为M、长为L的木板右端紧靠竖直墙壁.质量为m的小滑块(可视为质点)以水平速度v0滑上木板的左端,滑到木板的右端时速度恰好为零.
(1)求小滑块与木板间的摩擦力大小;
(2)现小滑块以某一速度v滑上木板的左端,滑到木板的右端时与竖直墙壁发生弹性碰撞,然后
的值.
向左运动,刚好能够滑到木板左端而不从木板上落下,试求v
v0
三、子弹打木块模型
1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.
2.在子弹打木块过程中摩擦生热,则系统机械能不守恒,机械能向内能转化.
3.若子弹不穿出木块,则二者最后有共同速度,机械能损失最多.
例3 如图2所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:
(1)子弹射入后,木块在地面上前进的距离;
(2)射入的过程中,系统损失的机械能.
四、弹簧类模型
1.对于弹簧类问题,在作用过程中,系统合外力为零,满足动量守恒.
2.整个过程涉及到弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.
3.注意:弹簧压缩最短时,弹簧连接的两物体速度相等,此时弹簧最短,具有最大弹性势能. 例4 如图所示,A 、B 、C 三个木块的质量均为m ,置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连.将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体.现A 以初速v 0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起.以后细线突然断开,弹簧伸展,从而使C 与A 、B 分离.已知C 离开
弹簧后的速度恰为v
0。
求弹簧释放的势能.答案 13mv 20
例5 如图,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。
另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。
已知最后A 恰好返回出发点P 并停止。
滑块A 和B 与导轨的滑动摩擦因数都为 ,运动过程中弹簧最大形变量为2l ,求A 从P 出发时的初速度
0v 。
例6 如图所示,质量m1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:
(1)物块在车面上滑行的时间t ;
(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v 0′不超过多少?。