2014学年第二学期期终考试八年级数学试卷(6)
2013-2014学年度第一学期初二期中考试数学试卷(含答案)
2013-2014学年度第一学期初二期中考试数学试卷一、选择题:(每题3分,共15分)1.如图所示,图中不是轴对称图形的是 ( ).2.如图,AB 与CD 交于点O ,OA =OC ,OD =OB ,∠A=50°,∠B=30°, 则∠AOD 的度数为 ( ). A .50° B .30°C .80°D .100°3.点M (3,5)关于X 轴对称的点的坐标为 ( ) A 、(-3,-5) B 、(-3,5) C 、(3,-5) D 、(5,-3)4.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上(如图),可以证明,得ED =AB ,因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是( )A 、“边角边”B 、“角边角”C 、“边边边”D 、“斜边、直角边”5.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若1129∠=︒,则2∠的度数为 ( )(A )50° (B )51° (C )61° (D )71°第5题二、填空题:(每题4分,共20分)6.等腰三角形的底角是70°,则它的顶角是___________. 7.正方形有 条对称轴,正五边形有 条对称轴.8.如图,在△ABC 中,BC=5,BC 边上的垂直平分线 DE 交BC 、AB 分别于点D 、E ,△AEC 的周长是11 则△ABC 的周长等于 。
O DCBA第2题ACED B第8题9.如图,等边△ABC 的边长为2 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长..为 cm .10.在直角坐标系中,已知A (-3,3),在x 轴上确定一点P ,使△AOP 为等腰三角形,符合条件的点P 共有_________个。
宁波八年级下期中考试数学试题及答案
宁波地区2014-2015学年第二学期区域八年级数学期中试卷(本试卷满分120分,时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,一元二次方程的是( )A .022=-x xB .3(x ﹣2)+x =1C .03222=--y xy xD .0312=+-x x2. 下面这几个图形中,是中心对称图形而不是轴对称图形的共有( )A .1个B .2个C .3个D .4个 3.把方程2470x x --=化成()2x m n -=的形式,则m 、n 的值是( )A .2, 7B .-2,11C .-2,7D .2,11 4.若一个多边形的内角和等于720度,则这个多边形的边数是( )A .5B .6C .7D .8 5.一元二次方程220x x ++=的根的情况( )A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根6.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:输入汉字个数(个)132133134135136137甲班人数(人)102412乙班人数(人)014122通过计算可知两组数据的方差分别为0.22=甲S ,7.22=乙S ,则下列说法:①两组数据的平均数相同;②甲组学生比乙组学生的成绩稳定;③两组学生成绩的中位数相同;④两组学生成绩的众数相同。
其中正确的有( )A .1个B .2个C .3个D .4个7.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件: ①A D∥BC;②AD=BC;③OA=OC ;④OB=OD 从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( )A .6种 B.5种 C.4种 D.3种8.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( ) A.182)1(502=+x B .182)21(50)1(5050=++++x x C.182)21(50=+x D .182)1(50)1(50502=++++x x9.如图,ABCD 的对角线AC 、BD 相交于O ,EF 过点O与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( ) A .16 B .14 C .12 D .1010.已知点D 与点(5,0)A -,B (0,12),C (a ,a )是一平行四边形的四个顶点,则CD 长的最小值为( )A .13 B.1322C .1722D .12二、填空题:(本大题共10小题,每小题3分,共30分) 11.数据2,4,4,5,3,9,4,5,1,8的中位数为12.若关于x 的方程2230x x c -+=的一个根是1,则c 的值是 。
八年级第二学期期中考试数学试卷(人教版)
OABCD初二第二学期数学期中试卷一、选择题(本题共24分,每小题2分) 1.点A(6,-5)所在象限是( )A .第一象限 B.第二象限 C.第三象限 D.第四象限2.在平面直角坐标系中,点P (2,-3)关于x 轴对称的点的坐标是() A.(-2,-3) B.(2,3) C.(-2,3) D.(2,-3)3.下列有序实数对表示的各点在.函数42y x =-的图象上的是( ) A .(0,4) B .(1,-2) C .(1, 2) D .(2, 0) 4.如图,E 、F 是DABCD 对角线AC 上两点.且AE=CF , 连结DE 、BF ,则图中共有全等三角形的对数是( ) A .1对 B. 2对 C .3对 D .4对5.关于函数x y 21=,下列结论正确的是()A .函数图像必经过点(1,2)B .函数图象经过二、四象限C .y 随x 的增大而增大D .y 随x 的增大而减小 6.矩形具有而平行四边形不.具有的性质是(). A. 对角线相等 B. 对角相等 C . 对角线互相平分 D. 两组对边分别相等7.已知一次函数b kx y +=中,0>k ,0<b ,则这个一次函数的图象大致是( )8.已知函数()265y k x =-+是关于x 的一次函数,且y 随x 增大而增大,那么k 的取值范围是 A .k ≠0B .k ≥3C .k >3D .k <39.已知点(1,y 1),(-2,y 2)都在直线y=3x +2上,则y 1、y 2大小关系是() A . y 1> y 2 B . y 1 = y 2 C .y 1< y 2 D .不能比较10.如图,矩形ABCD ,对角线AC 、BD 交于点O ,∠AOB =60°,AB=4,则 AD 的长是().A. 8B. 4C. 34D.2411.将一张正方形纸沿对角线对折再对折(如图),然后沿着图中的虚线剪下,剪下的三角形展开后得到的平面图形是().A .三角形B .菱形C .矩形D .梯形BD AEF C(1)(2)12.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的速度注水,下面能大致表示水的最大深度h (水不注满水池)与时间t 之间的关系的图像是()二、填空题(本题共24分,每小题2分) 1.函数y=2xx +中,自变量x 的取值范围是__________________. 2.八边形内角和是°3.在□ABCD 中, AE ⊥CD 于点E ,∠B =70°,则∠DAE=.4.一次函数31y x =+的图象与x 轴的交点坐标为 ,与y 轴的交点坐标为 . 5.在直角三角形中两直角边分别为3、4,则斜边上的中线为 __________. 6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm 2. 7.如图,E 、F 是平行四边形ABCD 对角线BD 上的两点,请你添上一个适当的条件: _____________________,使四边形AECF 为平行四边形。
江苏省盐城市建湖县2013-2014学年八年级下学期期中考试数学试题全国通用
2013~2014学年度第二学期期中考试八年级数学试卷友情提醒:1.解答本试卷试题不得使用计算器.2.本试卷满分120分,在100分钟内完成. 相信你一定会有出色的表现!一、选择题 本大题共10小题.每小题3分,共30分.将下列各题四个选项中唯一正确选项的字母序号填在相应题后括号内.1.下列调查中,适合用抽样调查的是 ………………………………………………【 】 A .了解报考军事院校考生的视力 B .旅客上飞机前的安检C .对招聘教师中的应聘人员进行面试D .了解全市中小学生每天的零花钱 2.某县有近6千名考生参加中考,为了解本次中考的数学成绩,从中抽取100名考生的数学成绩进行统计分析,以下说法正确的是…………………………………【 】 A .这100名考生是总体的一个样本 B .近6千名考生是总体 C .每位考生的数学成绩是个体 D .100名学生是样本容量3.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是……………………………………………………【 】 A .摸到红球是必然事件 B .摸到白球是不可能事件 C .摸到红球与摸到白球的可能性相等 D .摸到红球比摸到白球的可能性大 4.下列命题中,假命题是………………………………………………………………【 】 A .一组邻边相等的矩形是正方形B .有一个角是直角的四边形是矩形C .对角线互相平分的四边形是平行四边形D .一组邻边相等的平行四边形是菱形 5.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边的正方形ACEF 的周长为【 】 A .14 B .15C .16D .176. 如图,在△ABC 中,E 、D 、F 分别是AB 、BC 、CA 的中点,AB =6,AC =4,则四边形AEDF •的周长是 ……………………………………………………………………………【 】 A .10B .20C .30D .407.如图,□ABCD 绕点A 逆时针旋转30°,得到□AB′C′D′(点B′与点B 是对应点,点C′与点C 是对应点,点D′与点D 是对应点),点B ′恰好落在BC 边上,则∠C =【 】 A .155° B .170° C .105° D .145° 8.在1000个数据中,用适当的方法抽取50个为样本进行统计,频率分布表中54.5~57.5(第5题图) (第6题图) (第7题图)60°ABDEF CABCDFEABDCB′D ′C ′这一组的频率是0.12,那么估计总体数据在54.5~57.5之间的约有…………【 】 A .120个 B .60个 C .12个 D .6个 9. 如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点, 且DE =AF ,AE 与BF 交于O ,下列结论:(1)AE =BF ; (2)AE ⊥BF ;(3)AO =OE ;(4)S △AOB =S 四边形DEOF 中, 正确的有………………………………………【 】 A .4个 B .3个 C .2个 D .1个 10.如图,在Rt △ABC 中,∠C =90°,AC =BC =6cm ,点P 从点B 出发,沿BA 方向以每秒 2 cm 的速度向 终点A 运动;同时,动点Q 从点C 出发沿CB 方向以 每秒1cm 的速度向终点B 运动,将△BPQ 沿BC 翻折, 点P 的对应点为点P ′,设Q 点运动的时间t 秒,若四 边形QPBP ′为菱形,则t 的值为……………【 】 A .2 B . 2 C .2 2 D .4二、填空题 本大题共8小题,每小题2分,共16分.将结果直接填写在横线上. 11.“从超市货架上任意取一盒月饼进行检验,结果合格”这一事件是 .(选填“必然事件”或“不可能事件”或“随机事件”)12.在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在0.15左右,则口袋中红色球可能有___ __个.215.如图,菱形ABCD 的对角线AC 、BD 交于点O ,AB =8,E 是CD 的中点,则OE 的长等于 .16.如图,□ABCD 的对角线相交于点O ,且AB ≠AD ,过O 作OE ⊥BD 交BC 于点E .若△CDE 的周长为8cm ,则□ABCD 的周长为cm .17.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1:2,那么表示参加“其它”活动的人数占总人(第9题图)E FOACDB(第10题图)A(第14题图) (第15题图)ABCDOABOED C其它篮球跳绳踢毽(第16题图) (第17题图) (第18题图)A BCED O l 3l 2l 1A B CD数的 %.18.如图,已知正方形ABCD ,直线1l 、2l 、3l 分别通过A 、B 、C 三点,且1l ∥2l ∥3l ,若1l 与2l 的距离为3,2l 与3l 的距离为5,则正方形ABCD 的面积等于 . 三、解答题 本大题共9小题,共74分.解答写出必要的解题过程、演算步骤或文字说明. 19.(本题8分)如图,方格纸中每个小正方形的边长为1,△ABC 的顶点均在格点上. 根据下列要求,利用直尺画图(不写作法): (1)画出△ABC 绕着点C 按顺时针方向旋转90°后的△A 1B 1C ;(2)画出△ABC 关于原点O 对称的△A 2B 2C 2.20.(本题8分)如图,在□ABCD 中,点E 、F 在BD 上,BE =DF ,求证:AE=CF .21. (本题8分)如图,点O 是菱形ABCD 对角线的交点,DE ∥AC ,CE ∥BD ,连接OE .求证:OE =BC .22.(本题6分)为了保证中小学生每天锻炼1小时,某校开展了形式多样的体育活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图1和图2. (1)请根据所给信息在图1中将表示“乒乓球”项目的图形补充完整; (2)扇形统计图2中表示”足球”项目扇形的圆心角度数为 .23.(本题7分)在一个不透明的口袋里装有若干个质地相同的红球, 为了估计袋中红球的数量,某学习小组做了摸球实验, 他们将30个与红球大小形状完全相同的白球装入袋中,图1 图2其它乒乓球足球篮球40%O E D CBA AE BCDF搅匀后从中随机摸出一个球并记下颜色, 再把它放回袋中, 多次重复摸球. 下表是多次活动汇总后统计的数据:摸球的次数S 150 200 500 900 1000 1200 摸到白球的频数n 5164156275303361摸到白球的频率0.34 0.32 0.312 0.306 0.303 0.301(1)请估计:当摸球次数S 很大时, 摸到白球的频率将会接近 ;假如你去摸一次,你摸到红球的概率是 ;(精确到0.1). (2)试估算口袋中红球有多少只?24.(本题8分)如图,四边形ABCD 中,E 、F 、G 、H 分别是BC 、AD 、BD 、AC 的中点. (1)求证:EF 与GH 互相平分;(2)当四边形ABCD 的边满足条件 时,EF ⊥GH .25.(本题9分)如图1,△ABC 和△DBC 都是边长为2的等边三角形。
2014—2015学年度第二学期期中考试初二年级数学试卷附答案
OABCD2014—2015学年度第二学期期中考试初二年级数学试卷考试时间:100分钟 满分:100分一、选择题 (每小题3分,共30分)1.下列各组长度的线段能组成直角三角形的是( ) A .a =2,b =3,c =4 B .a =4,b =4,c =5 C .a =5,b =6,c =7 D .a =5,b =12,c =132.下面各条件中,能判定四边形是平行四边形的是( )A.对角线互相垂直B.对角线互相平分C.一组对角相等D.一组对边相等3.直角三角形一条直角边长为8 cm ,它所对的角为30°,则斜边为( ) A. 16 cm B. 4cm C. 12cm D. 8 cm 4.用配方法解方程0262=+-x x 时,下列配方正确的是( )A .9)3(2=-xB .7)3(2=-xC .9)9(2=-xD . 7)9(2=-x 5.顺次连结菱形各边中点所围成的四边形是( )A .一般的平行四边形B .矩形C .菱形D .等腰梯形6.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为( )A .6B .3C .33D .637.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形8.如图,□ABCD 中,∠DAB 的平分线AE 交CD 于E ,AB=5, BC=3,则EC 的长( ) A. 1 B. 1.5 C. 2 D. 39.直角三角形两直角边的长度分别为6和8,则斜边上的高为( )CBAED年级 班级 姓名 学号装 订 线3A.10B.5C. 9.6D.4.810.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围 是 ( )A.1k >-B. 1k >-且0k ≠C.1k <D. 1k <且0k ≠二、填空题(每小题3分,共30分)11.命题“菱形是对角线互相垂直的四边形”的逆命题是 . 12.梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 米. 13.如果菱形的两条对角线长为cm 10与cm 12,则此菱形的面积______2cm . 14.在ABC ∆中,∠C=090,AC=12,BC=5,则AB 边上的中线CD= . 15.一个正方形的面积为81cm 2,则它的对角线长为 cm.16. 已知□ABCD 的周长是24,对角线AC 、BD 相交于点O ,且△OAB 的周长比△OBC 的周长大4,则AB= .17.若关于x 的一元二次方程 220x x k -+=的一个实数根为2,则k 的值为________.18.如下图,已知OA=OB ,那么数轴上点A 所表示的数是____________.19.若(m -2)22-m x+x -3=0是关于x 的一元二次方程,则m 的值是______.20. 如图,⊿ABC 的周长为16,D, E, F 分别为AB, BC, AC1-30-1-2-4231B A A的中点,M, N, P 分别为DE, EF, DF 的中点,则⊿MNP 的周长为 。
2013-2014学年江苏省南通市海门中学初中部能仁中学八年级下期中考试数学试题及答案【苏科版】
海门中学初中部能仁中学2013—2014学年度第二学期期中考试八年级数学试题一、选择题(每题2分,共18分)1、要想了解10万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A、这1000名考生是总体的一个样本B、每位考生的数学成绩是个体C、10万名考生是个体D、1000名考生是是样本的容量2、某校测量了初二(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如下频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为7人B.该班身高最高段的学生数为7人C.该班身高最高段的学生数为20人D.该班身高低于160.5cm的学生数为15人3、平行四边形的对角线长为x、y,一边长为12,则x、y的值可能是()A.8和14 B.10和14 C.18和20 D.10和344、下列调查的样本具有代表性的是()A、利用当地的七月份的日平均最高气温值估计当地全年的日最高气温B、在农村调查市民的平均寿命C、利用一块实验水稻田的产量估水稻的实际产量D、为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验5、下列说法中的错误的是( ).A、一组邻边相等的矩形是正方形B、一组邻边相等的平行四边形是菱形C、一组对边相等且有一个角是直角的四边形是矩形D 、一组对边平行且相等的四边形是平行四边形6、矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是( )A 、6 B 、32 C 、2(1+3) D 、1+37. 袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球;B .摸出的三个球中至少有一个球是白球.C .摸出的三个球中至少有两个球是黑球;D .摸出的三个球中至少有两个球是白球.8.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度(cm)h 与注水时间(min)t 的函数图象大致为( )9、如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADF 的面积为S1,△CEF 的面积为S2,若S △ABC=9,则S1-S2=( )A 、12 B 、1 C 、32D 、2 二、填空题(每题2分,共16分)10、□ABCD 的周长为30cm,它的对角线AC 和BD 相交于O,且△AOB的周长(第8题)A .B .C .D .比△BOC 的周长大5cm,则AB= 。
北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)
人大附中2023~2024学年度第二学期初二年级数学期中练习说明:1.本试卷共6页,共两部分,三道大题,24道小题,满分100分,考试时间90分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.第一部分 选择题一、选择题(共24分,每题3分)1. 以下列长度的三条线段为边能组成直角三角形的是( )A. 6,7,8B. 2,3,4C. 3,4,6D. 6,8,10【答案】D【解析】【分析】根据勾股定理逆定理即两短边的平方和等于最长边的平方逐一判断即可.【详解】解:.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,能构成直角三角形,故本选项正确.故选:.【点睛】本题考查的是勾股定理逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.2. 如图,中,于点,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】由在□ABCD 中,∠EAD =35°,得出∠D 的度数,根据平行四边形的对角相等,即可求得∠B 的度数,继而求得答案.【详解】解:∵∠EAD =35°,AE ⊥CD ,∴∠D =55°,A 222678+≠ ∴B 222234+≠ ∴C 222346+≠ ∴D 2226810+= ∴D a b c 222+=a b c ABCD Y AE CD ⊥E 35EAD ∠=︒B ∠35︒55︒65︒125︒∴∠B =55°,故选:B .【点睛】此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3. 下列各式中,运算正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了算术平方根,二次根式的加减运算.熟练掌握算术平方根,二次根式的加减运算是解题的关键.根据算术平方根,二次根式的加减运算求解作答即可.【详解】解:AB .,错误,故不符合要求;C .D,错误,故不符合要求;故选:A .4. 在菱形中,点分别是的中点,若,则菱形的周长是( )A. 12B. 16C. 20D. 24【答案】D【解析】【分析】根据三角形中位线定理可得,再根据菱形的周长公式列式计算即可得到答案.【详解】解:点分别是的中点,是的中位线,,菱形的周长,=3=2=2=-=3=≠2+≠22=≠-ABCD E F ,AC DC ,3EF =ABCD 26AD EF == E F ,AC DC ,EF ∴ACD 2236AD EF ∴==⨯=∴ABCD 44624AD ==⨯=【点睛】本题主要考查了三角形中位线定理,菱形性质,熟练掌握三角形的中位线等于第三边的一半及菱形的四条边都相等,是解题的关键.5. 如图,正方形的边长为2,是的中点,,与交于点,则的长为( )A. B. C. D. 3【答案】A【解析】【分析】由正方形的性质得出∠DAF =∠B =90°,AB =AD =2,由E 是BC 的中点,得出BE =1,由勾股定理得出AEADF ≌△BAE(ASA ),即可得出答案.【详解】∵四边形ABCD是正方形,∴∠DAF =∠B =90°,BC =AB =AD =2,∴∠BAE +∠2=90°,∵AB =2,E 是BC 的中点,∴BE =1,∴AE ,∵AD ∥BC ,∴∠1=∠2,∵DF ⊥AE ,∴∠1+∠ADF =90°,∴∠ADF =∠BAE ,在△ADF 和△BAE 中,,的ABCD E BC DF AE ⊥AB F DF =DAF B AD ABADF BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△BAE (ASA ),∴DF =AE故选:A .【点睛】此题主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.6. 一个正方形的面积是22.73,估计它的边长大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间【答案】C 【解析】【分析】设正方形的边长为,根据其面积公式求出的值,估算出的取值范围即可.【详解】解:设正方形的边长为,正方形的面积是22.73,,,,它的边长大小在4与5之间,故选:C .【点睛】本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7. 要判断一个四边形是否为矩形,下面是4位同学拟定的方案,其中正确的是 ( )A. 测量两组对边是否分别相等B. 测量两条对角线是否互相垂直平分C. 测量其中三个内角是作都为直角D. 测量两条对角线是否相等【答案】C【解析】【分析】根据矩形的判定和平行四边形的判定以及菱形的判定分别进行判断,即可得出结论.【详解】解:矩形的判定定理有①有三个角是直角的四边形是矩形,②对角线互相平分且相等的四边形是矩形,③有一个角是直角的平行四边形是矩形,、根据两组对边分别相等,只能得出四边形是平行四边形,故本选项错误;a a a a a ∴=1622.7325<< <<45<<∴A、根据对角线互相垂直平分得出四边形是菱形,故本选项错误;、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;、根据对角线相等不能得出四边形是矩形,故本选项错误;故选:.【点睛】本题考查了矩形的判定、平行四边形和菱形的判定,主要考查学生的推理能力和辨析能力.8. 如图,点A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,,,,连接DE ,设,,,给出下面三个结论:①;②;.上述结论中,所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③【答案】D【解析】【分析】此题考查了勾股定理,全等三角形的判定与性质,完全平方公式的应用,熟记勾股定理是解题的关键.①根据直角三角形的斜边大于任一直角边即可;②在三角形中,两边之和大于第三边,据此可解答;③将用和表示出来,再进行比较.【详解】解:①过点作,交于点;过点作,交于点.∵,,,又,,B C D C AB BC <90A C ∠=∠=︒EAB BCD ≌△△AB a =BC b =DE c =a b c +<a b +>)a b c +>c a b D DF AC ∥AE F B BG FD ⊥FD G DF AC ∥AC AE ⊥DF AE ∴⊥BG FD ⊥ BG AE ∴四边形为矩形,同理可得,四边形也为矩形,,在中,则,故①正确,符合题意;②∵,,在中,,,故②正确,符合题意;③∵,,,又,,.,,,,,.故③正确,符合题意;故选:D第二部分 非选择题二、填空题(共24分,每题3分)∴ABGF BCDG FD FG GD a b ∴=+=+∴Rt EFD DF ED<a b c +<EAB BCD ≌△△AE BC b ∴==Rt EAB△BE ==AB AE BE +>a b ∴+>EAB BCD ≌△△AEB CBD ∠∠∴=BE BD =90AEB ABE ∠+∠=︒ 90CBD ABE ∴∠+=∠︒90EBD ∴∠︒=BE BD = 45BED BDE ∴∠=∠=︒sin 45BE c ∴==⋅︒=c ∴= 22222222()2(2)2()42()a b a ab b a b ab a b +=++=++>+∴)a b +>∴)a b c +>9.有意义,则实数x 的取值范围是______.【答案】【解析】【分析】本题主要考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式被开方数为非负数.有意义,∴,解得:,故答案为:.10. 如图,在中,若,点D 是的中点,,则的长度是_____.【答案】2【解析】【分析】本题考查了直角三角形的性质,利用直角三角形斜边上的中线等于斜边的一半可得的长度.【详解】解:∵在中,,点D 是的中点,,∴.故答案为:2.11. 如图,在数轴上点 A 表示的实数是_____.【解析】【分析】根据勾股定理求得的长度,即可得到的长度,根据点的位置即可得到点表示的数.【详解】解:如图,1x ≥10x -≥1x ≥1x ≥ABC 90ACB ∠=︒AB 4AB =CD CD ABC 90ACB ∠=︒AB 4AB =114222CD AB ==⨯=BD AB B A根据勾股定理得:,,点【点睛】本题考查了实数与数轴,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.12. 如图,在四边形中,对角线相交于点O .如果,请你添加一个条件,使得四边形成为平行四边形,这个条件可以是______________________.【答案】(答案不唯一)【解析】【分析】本题考查了平行四边形的判定.熟练掌握平行四边形的判定是解题的关键.根据平行四边形的判定作答即可.【详解】解:由题意知,可添加的条件为,∵,,∴四边形平行四边形,故答案为:.13. 如图,矩形的对角线相交于点O ,,,则矩形对角线的长为___________,边的长为___________.【答案】①. 8 ②. 【解析】【分析】本题主要考查了矩形的性质,等边三角形的性质与判定,勾股定理,先由矩形对角线相等且互相是BD ==∴AB BD ==∴A ABCD AC BD ,AB CD ∥ABCD AD BC ∥AD BC ∥AD BC ∥AB CD ∥ABCD AD BC ∥ABCD AC BD ,60AOB ∠=︒4AB =BD BC平分得到,再证明是等边三角形,得到,则,据此利用勾股定理求出的长即可.【详解】解:∵四边形是矩形,∴,∵,∴是等边三角形,∴,∴,在中,由勾股定理得故答案为:8;14. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示的菱形,并测得,对角线的长为,接着活动学具成为图2所示的正方形,则图2中对角线的长为________.【答案】【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明△ABC 是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .如图1中,∵AB =BC ,∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =30,在图2中,∵四边形ABCD 是正方形,2290AC BD OA BD ABC ====︒,∠AOB 4OA OB AB ===28AC BD OB ===BC ABCD 2290OA OB AC BD OA BD ABC =====︒,,∠60AOB ∠=︒AOB 4OA OB AB ===28AC BD OB ===Rt ABC △BC ===60B ∠︒AC 30cm AC cm∴AB =BC ,∠B =90°,∵AB =BC =30cm ,∴AC =cm ,故答案为:.【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15. 如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠ECF 的度数是________.【答案】40°【解析】【分析】根据题意由折叠的性质可得∠BCE =∠FCE ,BC =CF ,由菱形的性质可得BC ∥AD ,BC =CD ,可求∠BCF =∠CFD =80°,即可求解.【详解】解:∵将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,∴∠BCE =∠FCE ,BC =CF ,∵四边形ABCD 是菱形,∴BC ∥AD ,BC =CD ,∴CF =CD ,∴∠CFD =∠D =80°,∵BC ∥AD ,∴∠BCF =∠CFD =80°,∴∠ECF =40°.故答案为:40°.【点睛】本题考查翻折变换以及菱形的性质,熟练掌握并运用折叠的性质是解答本题的关键.16. 图1中的直角三角形有一条直角边长为3,将四个图1中的直角三角形分别拼成如图2,图3所示的正方形,其中阴影部分的面积分别记为,,则的值为___________.【答案】9【解析】【分析】设直角三角形另一直角边为,然后分别用表示出两个阴影部分的面积,最后求解即可.本题主要考查了三角形和正方形面积的求法,解题的关键在于能够熟练地掌握相关的知识点.【详解】解:设直角三角的另一直角边为,则,,,.故答案为:9三、解答题(共52分,第17题8分,第18-19题,每题5分,第20题6分,第21题5分,第22题6分,第23题7分,第24题10分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1);(2).【答案】(1(2)【解析】【分析】本题考查了利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算.熟练掌握利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算是解题的关键.(1)先利用二次根式的性质进行化简,然后进行加减运算即可;1S 2S 12S S -a a a 2211(3)4392S a a a =+-⨯⨯=+22S a a a =⋅=221299S S a a ∴-=+-=(1-(2)先分别计算二次根式的乘除,然后进行加减运算即可.【小问1详解】解:【小问2详解】解:.18. 如图,四边形为平行四边形,,是直线上两点,且,连接,.求证:.【答案】见详解【解析】【分析】本题考查平行四边形的性质、平行线的性质、全等三角形的判定与性质,根据可得,再根据平行四边形的性质可得,且,即,即可证明,即可得到结论.【详解】证明:∵,∴,∴,∵四边形为平行四边形,∴,且,∴,在和中,2=⨯=(32=+1=-ABCD E F BD BE DF =AF CE AF CE =BE DF =ED FB =AB DC =AB DC =EDC FBA ∠∠()SAS DEC BFA ≌BE DF =BE BD DF BD +=+ED FB =ABCD AB DC =AB DC =EDC FBA ∠∠DEC BFA V,∴,∴.19. 已知,求的值.【答案】11【解析】【分析】本题考查了已知式子的值求代数式的值,平方差公式,先整理,再代入计算,即可作答.【详解】解:依题意,20. 如图,在中,点D 是线段的中点.求作:线段,使得点E 在线段上,且.作法:①连接,②以点A 为圆心,长为半径作弧,再以C 为圆心,长为半径作弧,两弧相交于点M ;③连接,交于点E ;所以线段即为所求的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接∵,,∴四边形是平行四边形.(①)(填推理的依据)∵交于点E ,∴,即点E 是的中点.(② )(填推理的依据)DE BF EDC FBA DC AB =⎧⎪∠=∠⎨⎪=⎩()SAS DEC BFA ≌AF CE=1x =-227x x ++()22727x x x x ++=++()))2272711751711x x x x ++=++=⨯++=-+=ABC AB DE AC 12DE BC =CD CD AD DM AC DE AM CM ,,AM CD =AD CM =ADCM AC DM ,AE CE =AC∵点D 是AB 的中点,∴.(③ )(填推理的依据)【答案】见详解【解析】【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)根据几何语言画出对应的几何图形即可;(2)先证明四边形是平行四边形,得出点E 是的中点,再结合然后点D 是的中点,即三角形中位线性质得到.【详解】解:(1)如图,;(2)证明:连接AM ,CM ,∵,,∴四边形是平行四边形.(①两组对边分别相等的四边形是平行四边形)(填推理的依据)∵AC ,DM 交于点E ,∴,即点E 是中点.(②平行四边形的对角线互相平分)(填推理的依据)∵点D 是的中点,∴(③中位线的性质).故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;中位线的性质.21. 如图,四边形中,,,.的12DE BC =-ADCM AC AB 12DE BC =AM CD =AD CM =ADCM AE CE =AC AB 12DE BC =ABCD 90BAD ∠=︒AB AD ==4BC =CD =(1)求的度数;(2)求四边形的面积.【答案】(1)(2)5【解析】【分析】(1)由题意得,,由勾股定理得,,由,可得是直角三角形,且,根据,计算求解即可;(2)根据,计算求解即可.【小问1详解】解:∵,∴,由勾股定理得,,∵,∴,∴是直角三角形,且,∴,∴的度数为;【小问2详解】解:由题意知,,∴四边形的面积为5.【点睛】本题考查了三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理等知识.熟练掌握三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理是解题的关键.ABC ∠ABCD 135︒1802BADABD ADB ︒-∠∠=∠=2BD =222BD BC CD +=BCD △90CBD ∠=︒ABC ABD CBD ∠=∠+∠1122ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯ 四边形90BAD ∠=︒AB AD ==180452BAD ABD ADB ︒-∠∠=∠==︒2BD ==(2222420+==222BD BC CD +=BCD △90CBD ∠=︒135ABC ABD CBD ∠=∠+∠=︒ABC ∠135︒11522ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯= 四边形ABCD22. 在中,,点D 是边上的一个动点,连接.作,,连接.(1)如图1,当时,求证:;(2)当四边形是菱形时,①在图2中画出四边形,并回答:点D 的位置为 .②若,,则四边形的面积为 .【答案】(1)见解析,(2)①见解析,为的中点;②【解析】【分析】(1)由,,可证四边形是平行四边形,由,可证四边形是矩形,进而结论得证;(2)①由题意作图如图2,由四边形是菱形,可得,则,由,可得,则,,即为的中点;②如图2,记的交点为,则,,,由勾股定理求,则,根据,计算求解即可.【小问1详解】证明:∵,,∴四边形是平行四边形,∵,∴,∴四边形是矩形,∴;【小问2详解】①解:如图2,Rt ABC △90ACB ∠=︒AB CD AE DC ∥CE AB ∥DE CD AB ⊥AC DE =ADCE ADCE 10AB =8DE =ADCE D AB 24AE DC ∥CE AB ∥AECD 90CDA ∠=︒AECD ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O 5AD =142DO DE ==AC DE ⊥3AO =26AC AO ==12ADCE S AC DE =⨯四边形AE DC ∥CE AB ∥AECD CD AB ⊥90CDA ∠=︒AECD AC DE =∵四边形是菱形,∴,∴,∵,∴,∴,∴,∴为的中点;②解:如图2,记的交点为,∵四边形是菱形,为的中点,,,∴,,,由勾股定理得,,∴,∴,故答案为:.【点睛】本题考查了矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理等知识.熟练掌握矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理是解题的关键.23. 如图,四边形中,,,对角线平分,过点A 作的垂线,分别交,于点E ,O ,连接.(1)求证:四边形菱形;(2)连接,若,,求的长.是ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O ADCE D AB 10AB =8DE =5AD =142DO DE ==AC DE⊥3==AO 26AC AO ==1242ADCE S AC DE =⨯=四边形24ABCD AD BC ∥90BCD ∠=︒BD ABC ∠BD AE BC BD DE ABED CO 3AB =2CE =CO【答案】(1)见解析(2)【解析】【分析】(1)先证明,再由等腰三角形的性质得,然后证,得,则四边形是平行四边形,然后由菱形的判定即可得出结论;(2)由勾股定理得,根据直角三角形斜边上的中线等于斜边的一半,即可得出【小问1详解】证明:∵,∴,∵平分,∴,∴,∴,∵,∴,∵,在和中,,,,四边形是平行四边形,又,平行四边形为菱形;【小问2详解】解:∵四边形为菱形,∴,,CO =AB AD =OB OD =()ASA OBE ODA ≌OE OA =ABED CD =BD =CO =AD BC ∥ADB DBE ∠=∠BD ABC ∠ABD DBE ∠=∠ABD ADB ∠=∠AB AD =AE BD ⊥BO DO =AD BC ∥OBE △ODA V DBE ADB OB ODBOE DOA ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA OBE ODA ∴ ≌OE OA ∴=∴ABED AB AD = ∴ABED ABED 3BE DE AB ===BO DO =∵,,,∴在中,根据勾股定理得:,∵,为直角三角形,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等腰三角形的性质以及勾股定理、直角三角形斜边上的中线等于斜边的一半,二次根式的混合运算等知识,熟练掌握菱形的判定与性质是解题的关键.24. 在中,,,点D 为射线上一动点(不与点B 、C 重合),点B 关于直线的对称点为E ,作射线,过点C 作的平行线,与射线交于点F .连接(1)如图1,当点E 恰好在线段上时,用等式表示与的数量关系,并证明;(2)如图2,当点D 在线段的延长线上时,①依题意补全图形;②用等式表示和的数量关系,并证明.【答案】(1),证明见详解(2)①见详解②,证明见详解【解析】【分析】本题考查了全等三角形的判定与性质、正方形的性质与判定,矩形的性质,轴对称性质,正确掌握相关性质内容是解题的关键.(1)先由轴对称性质,得出再证明,因为,得出得证即可作答.90BCD ∠=︒CD =∴=325BC BE CE =+=+=Rt BCDBD ===BO DO =BCD△12CO BD ==ABC 90ABC ∠=︒AB BC =BC AD DE AB DE AE AF ,.AC DF BD BC ADB ∠AFE ∠2DF BD =45ADB AFE ∠+︒=∠AB AE BD ED ==,,()SSS ADE ADB ≌CF AB ∥45ECD ECF ∠=∠=︒,()ASA CED CEF ≌,(2)①根据题意的描述作图即可;②易得,过点作于点,四边形是正方形,证明,则,再通过角的运算,即可作答.【小问1详解】解:,证明如下:如图:当点E 恰好在线段上时,∵在中,∴,∵点B 关于直线的对称点为E ,∴在和中,∴,∴,∴,,∵,∴在和中,∴ADE ADB ≌A AG CF ⊥G ABCG ()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2DF BD =AC ABC 90ABC AB BC∠=︒=,45BAC ACB ∠=∠=︒AD AB AE BD ED ==,,ADE V ADB AE AB ED BD AD AD =⎧⎪=⎨⎪=⎩,()SSS ADE ADB ≌90AED ABD ∠=∠=︒AC DF ⊥90CED CEF ∠=∠=︒CF AB ∥45ECF BAC ∠=∠=︒,45ECD ECF ∴∠=∠=︒,CED △CEF △CED CEF CE CEECD ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA CED CEF ≌,∴ ∴,即有;【小问2详解】解:当点在线段的延长线上时①依题意补全图形如下②用等式表示和的数量关系是,证明如下∵点关于直线的对称点为E ,∴,∴,过点作于点,如上图,则,∵,∴∴四边形是矩形,∵,∴四边形是正方形,∴,在和中,∴,∴,即有,12DE EF DF ==,12BD DE DF ==2DF BD =D BC ADB ∠AFE ∠45ADB AFE ∠+︒=∠B AD ADE ADB ≌90AE AB AEF ABC =∠=∠=︒,12EAD BAD BAE ∠=∠=∠,A AG CF ⊥G 90AGF AGC ∠=∠=︒CF AB ∥90BAG AGF ABC AGC∠=∠=︒=∠=∠ABCG AB BC =ABCG AG AB AE ==Rt AFG △Rt AFE AG AE AF AF=⎧⎨=⎩()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2EAG FAE ∠=∠∵∴,∴,∴∴在中,,∴∴.人大附中2023~2024学年度第二学期初二年级数学期中练习附加题说明:1.附加题共4页,共两道大题,9道小题,满分40分,考试时间30分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.一、填空题(共15分,第1题4分,第2-4题,每题3分,第5题2分)25. 矩形中,,,点E 是边上一点,连接,将沿折叠,使点B 落在点处,连接.(1)如图1,当时,的长为___________.(2)如图2,当点恰好在矩形的对角线上,则的长为___________.【答案】①. 4 ②. 【解析】【分析】(1)由矩形性质得,由折叠得:,,由平行线的性质得:,,进而得出:,,即;90AFE FAE ∠+∠=︒90FAE AFE ∠=︒-∠21802EAG FAE AFE ∠=∠=︒-∠2702BAE BAG EAG AFE∠=∠+∠=︒-∠135.BAD BAE AFE ∠=∠=︒-∠Rt △ABD 90ADB BAD ∠+∠=︒13590ADB AFE ∠+︒-∠=︒45ADB AFE ∠+︒=∠ABCD 6AB =8BC =BC AE ABE AE B 'CB 'CB AE '∥BE B 'ABCD ACAE 90ABE ∠=︒B E BE '=AEB AEB '∠=∠AEB ECB '∠=∠AEB EB C ''∠=∠ECB EB C ''∠=∠B E EC '=142BE EC BC ===(2)利用勾股定理可得,由折叠得:,,,设,则,,利用勾股定理建立方程求解即可;本题是矩形综合题,考查了矩形的性质,折叠变换的性质,勾股定理等,熟练掌握相关知识,学会添加辅助线是解题关键.【详解】解:(1)四边形是矩形,,由折叠得:,,,,,,,,,,故答案为:4;(2)如图,点恰好在矩形的对角线上,四边形是矩形,,,,,由折叠得:,,,,,设,则,,在中,,10AC ===AB AB '=B E BE '=90AB E ABE '∠=∠=︒BE x =B E x '=8CE x =- ABCD 90ABE ∴∠=︒B E BE '=AEB AEB '∠=∠CB AE ' AEB ECB '∴∠=∠AEB EB C ''∠=∠ECB EB C ''∴∠=∠B E EC '∴=12BE EC BC ∴==8BC = 4BE ∴=B 'ABCD AC ABCD 90ABC ∴∠=︒=6AB 8BC=10AC ∴===AB AB '=B E BE '=90AB E ABE '∠=∠=︒1064B C AC AB ''∴=-=-=18090CB E AB E ''∠=︒-∠=︒BE x =B E x '=8CE x =-Rt CB E '△222B E B C CE ''+=,解得:,,在中,;故答案为:4,26. 如图,四边形中, ,的平分线交于点E ,连接.在以下条件:①平分;②E 为中点;③中选取两个作为题设,另外一个作为结论,组成一个命题.(1)请写出一个真命题:题设为___________,结论为___________.(填序号)(2)可以组成真命题的个数为___________.【答案】①. ②, ②. ③, ③. 6【解析】【分析】(1)根据挑选题设为②,结论为③,结合,的平分线交这个两个条件,先证明,再进行边的等量代换,即可作答.(2)注意分类讨论以及逐个分析,不管取哪个作为条件都可以证明,从而利用全等三角形的性质进行边的等量代换或者角的等量代换,即可作答.【详解】解:(1)题设为②,结论为③;理由如下:延长交的延长线于点,∵∴,()22248x x ∴+=-3x =3BE ∴=Rt ABEAE ===ABCD AD BC ∥BAD ∠CD BE BE ABC ∠CD AD BC AB +=AD BC ∥BAD ∠CD ()AAS AED FEC ≌AED FEC △≌△AE BC F AD BC∥DAE F ∠=∠∵E 为中点,∴,在和中,∴,∴,,∵的平分线交于点E ,∴,∴∴∴(2)由(1)知,题设为②,结论为③是真命题,同理:题设为③,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵∴∴∵CD DE CE =AED △FEC DAE F DEA CEFDE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AED FEC ≌CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=AD BC AB+=AD BC AB BF+==AD CF=AD BC∥∴∵∴∴即E 为中点;当题设为①,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵平分∴∵∴∴即E 为中点;同理:当题设为②,结论①为是真命题,同理,∴,,∵的平分线交于点E ,∴,∴∴∴DAE F∠=∠DEA CEF∠=∠ ≌DEA CEFDE CE=CD AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=BE ABC∠EB AF AE EF⊥=,DEA CEF DAE F∠=∠∠=∠, ≌DEA CEFDE CE=CD CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=则当题设为①,结论为③是真命题,同理:当题设为③,结论为②是真命题,综上共有6个命题:分别是题设为②,结论为③;题设为③,结论为②;题设为①,结论为②;题设为②,结论①;题设为①,结论为③,题设为③,结论为②.【点睛】本题考查了全等三角形的判定与性质、真命题,等腰三角形的判定与性质,角平分线的定义,正确掌握相关性质内容是解题的关键.27. 如图,在正方形中,,点E 为对角线上的动点(不与A ,C 重合),以为边向外作正方形,点P 是的中点,连接,则的取值范围为___________.【解析】【分析】先取的中点O,结合正方形的性质,得证,当时,有最小值,在中,,计算即可作答.【详解】解:如图,取的中点O ,连接,∵四边形、是正方形,∴,,∴,则在和中ABCD 4AB =AC DE DEFG CD PG PG PG ≤<AD ()SAS ODE PDG ≌OEAC ⊥OE Rt AOE △2224OE AE AO +==AD OE DEFG ABCD 90ODE EDC ︒∠+∠=90PDG EDC ∠+∠=︒ODE PDG ∠=∠ODE PDG △OD OP ODE PDGDE DG =⎧⎪∠=∠⎨⎪=⎩,∴,当时,有最小值,此时为等腰直角三角形,,∵,∴,在中,,即,解得,∴.当点运动到点的时候,如图:此时即为点H 的位置,此时正方形的边长最大且为则的值最大,此时∴则.【点睛】本题考查了正方形性质,全等三角形的判定与性质,垂线段最短,勾股定理等知识,正确掌握相关性质内容是解题的关键.28.如图,正方形ABCD 边长为2,点E 是射线AC 上一动点(不与A ,C 重合),点F 在正方形ABCD 的外角平分线CM 上,且CF=AE ,连接BE , EF , BF 下列说法:①的值不随点E 的运动而改变的()SAS ODE PDG ∴ ≌OE PG =OE AC ⊥OE AOE △OE AE =4AD AB ==122AO AB ==Rt AOE △2224OE AE AO +==224OE =OE =OE E C G DEFG 4CD AD ==PH PH ===PG PG ≤<PG ≤<②当B ,E , F 三点共线时,∠CBE=22.5°;③当△BEF 是直角三角形时,∠CBE=67.5°;④点E 在线段AC 上运动时,点C 到直线EF 的距离的最大值为1;其中正确的是__________(填序号).【答案】①②④【解析】【分析】连接、,由正方形的对称性可知,,,证明,得出,,证出,证出是等腰直角三角形得出,因此,得出①正确;当,,三点共线时,证出,,,四点共圆,由圆周角定理得出,证出,得出,求出,②正确;当是直角三角形时,证出,得出,,③不正确;当点在线段上运动时,过点作于,则,最大时,与重合,即,证出是的中位线,得出,④正确;即可得出结论.【详解】解:连接、,如图1所示:由正方形的对称性可知,,四边形是正方形,,,点是正方形外角平分线上一点,,,在和中,,,,,ED DF BE DE =CBE CDE ∠=∠()ABE CDF SAS ∆≅∆BE DF =ABE CDF ∠=∠DE DF =EDF∆EF=EF B E F E C F D BFC CDE ∠=∠CDE CBE =∠∠CBF CFB ∠=∠22.5CBF ∠=︒BEF ∆9045135BED ∠=︒+︒=︒1(36013590)67.52CBE ∠=︒-︒-︒=︒67.5CBF ∠<︒E AC C CQ EF ⊥Q CQ CH …CQ CQ CH CD EF ⊥QE ACD ∆112CQ DQ CD ===ED DF BE DE =CBE CDE∠=∠ ABCD AB CD ∴=45BAC ∠=︒ F ABCD CM 45DCF ∴∠=︒BAC DCF ∴∠=∠ABE ∆CDF ∆AB CD BAC DCF AE CF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴∆≅∆BE DF ∴=ABE CDF ∠=∠,,,即,是等腰直角三角形,,的值不随点的运动而改变,①正确;当,,三点共线时,如图2所示:,,,,四点共圆,,,,,,,,②正确;当是直角三角形时,如图3所示:是等腰直角三角形,,DE DF ∴=90ABE CBE ∠+∠=︒ 90CDF CDE ∴∠+∠=︒90EDF ∠=︒EDF∴∆EF ∴=EF ∴=∴EF BEE B EF 90ECF EDF ∠=∠=︒ E ∴C F D BFC CDE ∴∠=∠ABE ADE ∠=∠ 90ABC ADC ∠=∠=︒CDE CBE ∴∠=∠CBF CFB ∴∠=∠45FCG CBF CFB ∠=∠+∠=︒ 22.5CBF ∴∠=︒BEF ∆EDF ∆ 9045135BED ∴∠=︒+︒=︒,,③不正确;当点在线段上运动时,如图4所示:过点作于,则,最大时,与重合,即,当时,,,是的中位线,,④正确;综上所述,①②④正确;故答案为:①②④.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、四点共圆、圆周角定理等知识;本题综合性强,有一定难度.29. 如图,在平行四边形中,,,,在线段上取一点E ,使,连接,点M ,N 分别是线段上的动点,连接,则的最小值为___________.1(36013590)67.52CBE ∴∠=︒-︒-︒=︒67.5CBF ∴∠<︒E AC C CQ EF ⊥Q CQ CH …CQ ∴CQ CH CD EF ⊥CD EF ⊥//EF AD CF CE AE ==QE ∴ACD ∆112CQ DQ CD ∴=== ABCD 3AB =4BC =60ABC ∠=︒AD 1DE =BE AE BE ,MN 12MN BN +【解析】【分析】如图,作于,于,于,则四边形是矩形,,由题意可求,,,则,,由,可知当三点共线且时,最小,为,求的长,进而可求最小值,【详解】解:如图,作于,于,于,则四边形是矩形,∴,∵平行四边形中,,,,,∴,,∴,∴,∴,∴,∴当三点共线且时,最小,为,∵,∴,由勾股定理得,,∴,【点睛】本题考查了平行四边形的性质,矩形的判定与性质,含的直角三角形,等边对等角,勾股定理NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG AH 12MN BN +NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =ABCD 3AB =4BC =1DE =60ABC ∠=︒3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG =30BAH ∠︒1322BH AB ==AH ==12MN BN +30︒等知识.明确线段和最小的情况是解题的关键.二、解答题(共25分,第6题5分,第7题4分,第8-9题,每题8分)解答应写出文字说明、演算步骤或证明过程.30. 如图是由小正方形组成的网格,每个小正方形的边长为,其顶点称为格点,四边形的四个顶点都在格点上,请运用课本所学知识,仅用无刻度的直尺,在给定网格中按要求作图.(1)①线段的长为 个单位长度;②在图1中求作边的中点E ;(2)在图中求作边上一点,使平分.注:保留作图痕迹,同时标出必要的点;当你感觉方法比较复杂时,可用文字简要说明作法.【答案】(1)①;②作图见解析;(2)见解析.【解析】【分析】(1)①利用勾股定理即可求解;②取格点、,连接交于点,则点为所求;(2)取格点、,连接、相交于点,作射线交于点,则点为所求.【小问1详解】解:①,故答案为:;②如图,点为所求作图形,【小问2详解】解:如图,点为所求,87⨯1ABCD CD CD 2AB F CF BCD ∠5M N MN AC E E G H AQ DH Q CF AB FF 5CD ==5E F。
2013—2014学年第二学期八年级数学期末试题(含答案)
2013—2014学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.) 1x 的取值范围是A.3x 2≥B. 3x 2>C. 2x 3≥ D. 2x 3>2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是 A.平行四边形 B. 菱形 C.正方形 D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限 7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是 A .1.65米是该班学生身高的平均水平 B .班上比小华高的学生人数不会超过25人 C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3第4题图第10题图 B D二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
江苏省无锡市羊尖中学八年级数学下学期期中试题 苏科
ODCBA2014~2015学年第二学期期中考试试卷八年级数学一、精心选一选(本大题共有8小题,每小题3分,共24分) 1.下列图形中,是轴对称图形又是中心对称图形的是( ) A .B .C .D .2.下列各式:()22214151 ,, ,,232x x y a x x b yπ-+--其中分式共有( ) A .2个 B .3个 C .4个 D .5个3.如图,等边△ABC 中,点D 、E 分别为边AB 、AC 的中点,则∠DEC 的度数为( )A . 30°B . 60°C . 120°D . 150°4. 下列说法中不正确的是( )A . 抛掷一枚硬币,硬币落地时正面朝上是随机事件B . 把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C . 任意打开七年级下册数学教科书,正好是97页是确定事件D . 一个盒子中有白球m 个,红球6个,黑球n 个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是65.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能..判定四边形ABCD 为平行四边形的是( )A . AB ∥CD ,AD ∥BC B . OA =OC ,OB =OD C . AD =BC ,AB ∥CD D . AB =CD ,AD =BC6.若分式方程2233x mx x --=--有增根,则m 的值为( ) A. 1- B. 1 C. 0 D.以上都不对7.“清明”期间,几名同学包租一辆面包车前往“宜兴竹海”游玩,面包车的租价为600元,出发时,又增加了4名学生,结果每个同学比原来少分担25元车费,设原来参加游玩的同学为x 人,则可得方程( ) A .600600254x x -=+ B .600600254x x-=+ 第3题图第5题图班级 姓名 考试号 .第8题图C .600600254x x -=- D .600600254x x -=- 8.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 6的坐标是( )A .(63,32)B .(64,32)C .(63,31)D .(64,31)二、填空题(本大题共8小题,每空2分,共18分,请把答案直接填在题中的横线上)9.若分式211x x -+的值为零,则x 的值为____ ___;10.计算:(1) y 26x ÷y 3x = ;(2) a -2a -1-2a -3a -1= .11.分式2123a a-的值为负数,则a 的取值范围是__________.12.一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是 .13.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的 中点,PO =5,则菱形ABCD 的周长是 .14.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是 .15.如图,在平面直角坐标系中,已知点A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A→B→C→D→A…的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是 .16.如图,AB =12,AB ⊥BC 于点B ,AB ⊥AD 于点A ,AD =5, BC =10,E 是CD 的中点,则AE 的长是____ ___. 三、解答题(本大题共有10小题,共58分) 17. (本题满分6分)计算: (1) ÷; (2) (1+)÷AD C BO P第12题图第14题图第13题图第15题图第16题图18、(本题满分7分)解方程: (1)2102x x-=- (2)2216124x x x --=+-19.(本题满分6分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC 的三个顶点A (﹣2,2),B (0,5),C (0,2). (1)将△ABC 以点C 为旋转中心旋转180°, 得到△A 1B 1C ,请画出△A 1B 1C 的图形.(2)平移△ABC,使点A 的对应点A 2坐标为 (﹣2,﹣6),请画出平移后对应的△A 2B 2C 2的图形.(3)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标____________________.20. (本题满分5分) 某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克。
无锡市滨湖区2013-2014学年八年级(下)期中数学试题(含答案)
8.如图,已知正方形 ABCD 的边长为 8,点 E 在 DC 上,且 DE=2, N 是 AC 上的一动点,则 DN+EN 的最 小值是 A.6 B.8 C.10 ( )
D.8 2
- 1 -
A
D N E
B
C
第 5 题图
第 6 题图
第 7 题图
第 8 题图
k (x>0) x
9.如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,如图,A、B 两点在函数 y= 的图像上,则图中阴影部分(不包括边界)所含格点的个数为 ( A.1 B.2 C.3 D. 4 )
1 (1)当 P 在 AB 上,t 为何值时, APE 的面积是矩形 ABCD 面积的 ? 3
(2)在整个运动过程中,t 为何值时, APE 为等腰三角形?
A
D
E P B C
图1
A
D
E B C
图2
- 6 -
26.(本题满分 8 分)(1)如图 1,等腰直角三角板的一个锐角顶点与正方形 ABCD 的顶点 A 重合,将 此三角板绕点 A 旋转, 使三角板中该锐角的两条边分别交正方形的两边 BC、 DC 于点 E、 F, 连结 EF. 猜 想 BE、EF、DF 三条线段间的数量关系,并证明你的结论; (2)如图 2,将 Rt ABC 沿斜边 AC 翻折得到 Rt ADC,E、F 分别是 BC、CD 边上的点,∠EAF=
- 2 -
为 10cm,则 CDE 的周长为
E C
A E
cm.
D
F A 第 14 题图 B
B P
F
R C
第 15 题图
第 16 题图
17 .设函数 y
1 1 2 与 y x 1 的图像的交点坐标为( a , b),则 的值为 a b x
八年级数学第二学期期中考试试卷及答案
第二学期期中试卷八年级数学班级姓名学号成绩一、 单项选择题(本题共10小题,在每小题给出的四个选项中,只有一项最符合题意。
每小题3分,共30分)1.要使√a −2在实数范围内有意义,则a 的取值范围是( ) A.a ≥2B.a >2C.a ≠2D.a <22.下面各组数中,以它们为边长的线段能构成直角三角形的是( ) A.2,3,4B.6,8,9C.6,12,13D.7,24,253.平行四边形的周长为10cm ,其中一边长为3cm,则它的邻边长为( ) A.2 cm B.3cmC.4cmD.7cm4.下列各式正确的是( )A.√9=±3B.√(−2)2=−2C.√8+√2=√10D.√8×√2=45.平行四边形ABCD 中,∠A +∠C=110°,则∠B = ()A.70°B.110°C.125°D.130°6.又进一步进行练习:如图,设原点为点O ,在数轴上找A到坐标为2的点A ,然后过点A 作AB ⊥OA ,且AB =3. 以点O 为圆心,OB 为半径作弧,设与原点右侧数轴交点为点P ,则点P 的位置在数轴上( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间 7.在数学活动课上,老师和同学判断教室中的瓷砖是否为菱形,下面是某小组拟定的4种方案,其中不正确...的是( )A.测量两条对角线是否分别平分两组内角 B.测量四个内角是否相等C.测量两条对角线是否互相垂直且平分D.测量四条边是否相等8.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm ,内壁高12cm .若这支铅笔长为18cm ,则这只铅笔在笔筒外面部分长度不可能...的是( )A .3cm B .5cm C .6cm D .8cm9.如图,平行四边形ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果△C DM 的周长为8,那么平行四边形ABCD 的周长是( ) A. 8 B .12 C .16D .2010.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等(如图所示阴影长方形)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证,则下列说法不一定...成立的是( ) A .ABC ADC S S ∆∆= B. ANF NFGD S S ∆=矩形C.NFGD EFMBS S =矩形矩形 D. AEF ANFS S ∆∆=二、填空题(本题共8小题,每小题2分,共16分) 11. 周长为 8cm 的正方形对角线的长是 cm. 12.在湖的两侧有A ,B 两个观湖亭,为测定它们之间的距离,小明在岸上任选一点C ,并量取了AC 中点D 和BC 中点E 之间的距离为50米,则A ,B 之间的距离应为 米.E DCBA13.若√x −1+(y +2)2=0,则(x +y )2022=.14.如图,矩形 ABCD 中,对角线 AC ,BD 交于点O ,如果∠ADB=30°,那么∠AOB 的度数为 .15.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则四边形ABCD 的面积为 ..16.如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若8=AB ,3=OM ,则线段OB 的长为__________.14题图 15题图 16题图17.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在BC 边上的点F 处,则CE 的长是 . 18.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点A 坐标为(3,0),顶点B 的横坐标为−1,点E 是AD 的中点,则OE = .17题图 18题图DCBAO三、解答题(本题共9小题,其中19、20题每题5分,21题6分,22题8分,23题6分,24题8分,25题6分,26题4分,27题6分,共54分)19.√8+√12−(3√3−√12)20.(√3−√2)(√3+√2)+(√2+1)221. 已知x=√2+1,y=√2−1,求1x +1y的值.22.在平面直角坐标系xOy中,点A(2,1),B(3,−1),(1)在平面直角坐标系中描出点A,B;(2)OA=,OB=.(3)判断△OAB的形状,并说明理由(4)△OAB的面积为.23.如图,在四边形ABCD中,AD∥BC,∠ABC=∠BCD=90 °.对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)CD=2,∠COD=60 °.求△BED的面积.(1)作出y 与x 的函数y =2|x |的图象①自变量x 的取值范围是; ②列表并画出函数图象:③当自变量x 的值从1增加到2时,则函数y 的值增加了.(2)在一个变化的过程中,两个变量x 与y 之间可能是函数关系,也可能不是函数关系.下列各式中, y 是x 的函数的是__. ①x +y =1; ② |x +y |=1③xy =1;④x 2+y 2=1;25.学习了《平行四边形》一章以后,小东根据学习平行四边形的经验,对平行四边形的判定问题进行了再次探究. 以下是小东的探究过程,请补充完整:(1)如图,在四边形ABCD 中,对角线AC 与BD 相交于点O .若AB ∥CD ,补充下列条件中的一个,能判断四边形 ABCD 是平行四边形的是 ;(只写出一个你认为正确选项的序号);(A )BC =AD (B )∠BAD =∠BCD (C )AO =CO(2)将(1)中补充好的命题用文字语言表述为:①命题1:;②写出命题1的证明过程;(3)小东进一步探究发现:若一个四边形 ABCD 的三个顶点A ,B ,C 且这个四边形满足CD =AB ,∠B =∠D ,但四边形 ABCD 不是 平行四边形,请.画出..符合题意的四边形 ABCD (不要求尺规.....).进而小东发现:命题2“一组对边相等,一组对角相等的四边 形是平行四边形 ”是一个假命题....A赵爽根据图1利用面积关系证明了勾股定理.(1)小明在此图的基础上,将四个全等的直角三角形变为四个全等的四边形即可得到以下数学问题的解决方案:问题:四边形AMNB 满足∠MAB =38°, ∠NBA =52°,AB =4,MN =2,AM =BN ,求四边形AMNB 的面积.解决思路:① 如图2,将四个全等的四边形围成一个以AB 为边的正方形ABCD ,则四边形MNPQ 的形状是(填一种特殊的平行四边形);②求得四边形AMNB 的面积是 _____ . (2)类比小明的问题解决思路,完成下面的问题:如图3,四边形AMNB 满足∠MAB =27°, ∠NBA =33°,AB =6,MN =2,AM =BN ,补全图3,四边形AMNB 的面积 _____ .图1图2图327.已知△ABC 和△DBC 是等边三角形,M 在射线AB 上,点E 在射线BC 上,且EM =ED .(1)求证:AD ⊥BC ;(2)如图,点M 在线段AB 的延长线上,点E 在线段BC 上,判断△DEM 的形状,并给出证明;(3)当点M 在线段AB 上(不与端点A,B 重合),点E 在线段BC 的延长线上,用等式直接写出线段BM,BE,BD 之间的数量关系.MB卷(共20分)1.(6分)观察下列各等式:√223=2√23,√338=3√38,√4415=4√415,根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在带分数,它的等于它的整数部分与分数部分的的积.(2)填空:√55()=5√5();(3)请你再写一个带分数,使得它具有上述等式的特征(写出完整的等式):.(4)若用x表示满足具有上述等式的带分数的整数部分,y表示其分数部分的分母,则y与x之间的关系可以表示为.2.(7分)如图,在正方形ABCD中,点P在边BC上(异于点B,C),作线段AP的垂直平分线分别交AB,CD,BD,AP于点M,N,Q,H,(1)补全图形;(2)证明:AP=MN;(3)用等式表示线段HQ,MN之间的数量关系,并证明你的结论.3.(7分)在平面直角坐标系xOy 中,给定线段MN 和图形F ,给出如下定义: 平移线段MN 至M′N′,使得线段M′N′上的所有点均在图形F 上或其内部,则称该变换为线段MN 到图形F 的平移重合变换,线段MM′的长度称为该次平移重合变换的平移距离,其中,所有平移重合变换的平移距离中的最大值称为线段MN 到图形F 的最大平移距离,最小值称为线段MN 到图形F 的最小平移距离. 如图1,点A (1,0),P(−1,√3),Q(5,√3),(1)① 在图1中作出线段OA 到线段PQ 的平移重合变换(任作一条平移后的线段O′A′);②线段OA 到线段PQ 的最小平移距离是,最大平移距离是 .(2)如图2,作等边△PQR (点R 在线段PQ 的上方),①求线段OA 到等边△PQR 最大平移距离.②点B 是坐标平面内一点,线段OB 的长度为1,线段OB 到等边△PQR 的最小平移距离的最大值为_________,最大平移距离的最小值为__________.图1图2期中试卷八年级数学(答案)一、单项选择题(本题共10小题,在每小题给出的四个选项中,只有一项最符合题意。
天津市河东区2023-2024学年八年级下学期期中数学试题(解析版)
2023-2024学年度第二学期八年级数学期中考试试卷一、选择题:本题共12小题,每小题3分,共36分.1. 下列各式一定是二次根式的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了二次根式的定义,关键是正确理解二次根式的定义.根据“一般地,我们把形如的式子叫做二次根式”判断即可.详解】解:A 、当无意义,故此选项不合题意;B是二次根式,故此选项符合题意;C 、,该代数式无意义,故此选项不合题意;D的根指数是3,不是二次根式,故此选项不合题意;故选:B.2. 下列二次根式中,是最简二次根式的是( )A. B.C. D. 【答案】D【解析】【分析】根据最简二次根式的定义判断即可.【详解】解:不是最简二次根式,不符合题意;不是最简二次根式,不符合题意;D.故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不能含有开得尽方的因数或因式;熟练掌握最简二次根式必须满足的两个条件是解题的关键.3. 下列各数属于勾股数的是( )A. 、、B. 、、C. 、、D. ,,【)0a ≥0x <70-<2===1.52 2.568103465a 12a 13a【答案】B【解析】【分析】本题考查的是勾股数.根据勾股定理一一计算两个较小的数的平方和是否等于最大数的平方即可.【详解】解: A .因为不是整数,所以不是勾股数,故本选项不符合题意.B .,是勾股数,故本选项符合题意.C .,不是勾股数,故本选项不符合题意.D .因为不一定是整数,所以不一定是勾股数,故本选项不符合题意.故选:B .4. 如图,字母B 所代表的正方形的面积是( )A. 12B. 15C. 144D. 306【答案】C【解析】【分析】根据勾股定理求出字母B 所代表的正方形的边长,根据正方形的性质即可求出面积答案.【详解】解:如图,在中,由勾股定理得,,字母代表的正方形的边长为,字母B 所代表的正方形的面积为:.故选C .【点睛】本题考查的是勾股定理的应用、正方形的面积,熟知如果直角三角形的两条直角边长分别是和,斜边长为,那么是解决问题的关键.2226810+=222546+≠2cm 2cm 2cm 2cm Rt DEF△12EF cm ===∴B 12cm ∴22212144cm EF ==a b c 222+=a b c5. 在平行四边形中,,则( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了平行四边形的性质,根据平行四边形对边平行得到,再根据已知条件求出的度数即可得到答案.【详解】解;∵四边形是平行四边形,∴,∴,∵,∴,∴,故选:D .6. 如图,在四边形中,对角线、相交于点,下列条件不能判定四边形为平行四边形的是( )A. B. C. D. 【答案】B【解析】【分析】根据平行四边形的判定定理逐项分析判断即可求解.【详解】A、根据两组对边分别平行的四边形是平行四边形,可以判定,不符合题意;ABCD 23A B ∠∠=::D ∠=36︒60︒72︒108︒180A D A B +=+=︒∠∠∠∠A ∠ABCD AB CD AD BC ∥,∥180A D A B +=+=︒∠∠∠∠23A B ∠∠=::21807232A =︒⨯=︒+∠108D ∠=︒ABCD AC BD O ABCD ,AB CD AD BC∥∥,AD BC AB CD =∥,OA OC OB OD==,AB CD AD BC==B 、无法判定,四边形可能是等腰梯形,也可能是平行四边形,符合题意;C 、根据对角线互相平分的四边形是平行四边形,可以判定,不符合题意;D 、根据两组对边分别相等的四边形是平行四边形,可以判定,不符合题意;故选:B .【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定定理是解题的关键.7. 下列计算结果正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据算术平方根的定义对A 进行判断;根据二次根式的乘法法则对B 、C 、D 进行判断.【详解】解:A,故错误;BC,故错误;D 、,故错误;故选:B .【点睛】本题考查了二次根式的乘法运算及算术平方根的定义,正确运用二次根式的乘法法则及识别平方根与算术平方根的区别是解题的关键.8. 如图,一棵大树在一次强台风中在距地面处折断,倒下后树顶着地点A 距树底B 的距离为,则这棵大树在折断前的高度为( )A. 10B. 17C. 18D. 20【答案】C【解析】【分析】根据大树的折断部分与未断部分、地面恰好构成直角三角形,再根据勾股定理求出AC 的长,进而可得出结论.【详解】解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC =5m ,AB =12m ,5=±=16=26=5==4==212=5m 12m∴,∴这棵树原来的高度为:BC +AC =5+13=18(m ),即:这棵大树在折断前的高度为18m ,故C 正确.故选:C .【点睛】本题考查了勾股定理的应用,熟知直角三角形斜边的平方等于两直角边的平方和是解答此题的关键.9. 已知实数a 、b 在数轴上的位置如图所示,化简|a +bA. B. 2a C. 2b D. 【答案】A【解析】=|a|,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】此题主要考查了二次根式=|a|.10. 如图,矩形的对角线,相交于点,若,则四边形的周长为( )的()13m AC ===2a-2b-ABCD AC BD O ,CE BD DE AC ∥∥4AC =OCEDA. B. C. D. 【答案】C【解析】【分析】本题考查了菱形的判定和性质,矩形的性质.根据矩形的性质,判定四边形是菱形,故其周长为计算即可.【详解】因为,所以四边形是平行四边形.因为四边形是矩形,所以,所以四边形是菱形,所以周长为,故选:C .11. 如图,点E ,F ,G ,H 分别是四边形边,,,的中点.则下列说法:①若,则四边形为矩形;②若,则四边形菱形;③若四边形是平行四边形,则与互相平分;④若四边形是正方形,则与互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】A 为46810OCED 42OC AC =,CE BD DE AC ∥∥OCED ABCD OD CO =OCED 428OC AC ==ABCD AB BC CD DA AC BD =EFGH AC BD ⊥EFGH EFGH AC BD EFGH AC BD【解析】【分析】本题考查了三角形中位线定理,平行四边形的判定及性质,特殊四边形的判定及性质;由三角形中位线定理及平行四边形的判定方法得四边形是平行四边形,再根据特殊四边形的判定及性质逐一判断即可求解;掌握特殊四边形的判定方法及性质是解题的关键.【详解】解:点E ,F ,G ,H 分别是四边形边,,,的中点,,,,,四边形是平行四边形,①若,则四边形为菱形;结论错误,不符合题意;②若,则四边形为矩形;结论错误,不符合题意;③若四边形是平行四边形,则与不一定互相平分;结论错误,不符合题意;④若四边形是正方形,则与互相垂直且相等;结论正确,符合题意.故选:A .12. 如图,菱形,点、、、均在坐标轴上,,点,点是的中点,点是上的一动点,则的最小值是( )A. 3B. 5C.D. 【答案】A【解析】【分析】直线AC 上的动点P 到E 、D 两定点距离之和最小属“将军饮马”模型,由D 关于直线AC 的对称点B ,连接BE ,则线段BE 的长即是PD +PE 的最小值.【详解】如图:连接BE,EFGH ABCD AB BC CD DA EH BD FG ∴∥∥EF AC GH ∥∥12EH FG BD ==12EF GH AC ==∴EFGH AC BD =EFGH AC BD ⊥EFGH EFGH AC BD EFGH AC BD ABCD A B C D 120ABC ∠=︒()30A -,E CD P OC PD PE+,∵菱形ABCD ,∴B 、D 关于直线AC 对称,∵直线AC 上的动点P 到E 、D 两定点距离之和最小∴根据“将军饮马”模型可知BE 长度即是PD +PE 的最小值.,∵菱形ABCD ,,点,∴,,∴∴△CDB 是等边三角形∴∵点是的中点,∴且BE ⊥CD , ∴故选:A .【点睛】本题考查菱形性质及动点问题,解题关键是构造直角三角形用勾股定理求线段长.二、填空题:本题共6小题,每小题3分,共18分.13.有意义,则x 的取值范围为____________.【答案】x ≥8【解析】【分析】根据被开方数大于等于0列式计算即可得解.∴x ﹣8≥0,的120ABC ∠=︒()30A -,60,30CDB DAO ∠=︒∠=︒3OA =OD AD DC CB ====BD =E CD 12DE CD ==3BE ==解得:x≥8故答案为x≥8【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的被开方数为非负数的性质是解题关键.14. 已知|a=0,则a +b =___.【答案】3【解析】【分析】根据非负性即可求出a ,b ,故可求解.【详解】根据题意得:a +2=0,b ﹣5=0,解得:a =﹣2,b =5,∴a +b =﹣2+5=3.故答案为:3.【点睛】此题主要考查代数式求值,解题的关键是熟知绝对值与二次根式的非负性.15. 菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.【答案】20【解析】【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD .∴△AOB 是直角三角形.∴.∴此菱形的周长为:5×4=20故答案为:20.16. 如图,正方形ODB C 中,OC =1,OA =OB ,则数轴上点A 表示的数是____.12125AB ===【答案】【解析】,结合数轴即可求解.【详解】∵正方形ODBC 中,OC =1,∴BC =OC =1,∠BCO =90°.∵在Rt△BOC 中,根据勾股定理得,OB .∴OA =OB .∵点A 在数轴上原点的左边,∴点A 表示的数是.【点睛】本题考查了实数与数轴,勾股定理,数形结合是解题关键.17. 如图,点O 是矩形的对角线的中点,点E 是的中点,连接,.若,,则矩形的面积为_______【答案】【解析】【分析】利用直角三角形斜边上中线等于斜边的一半得到,利用中位线定理得到,利用勾股定理得到,即求得矩形的面积.【详解】解:∵四边形是矩形,∴,∵点O 是矩形的对角线的中点,的=ABCD BD BC OA OE 2OA =1OE =ABCD 4BD =22CD OE ==BC =ABCD ABCD 90,BAD BCD ∠=∠=︒AB CD =ABCD BD∴,∴,∵点E 是的中点,∴是的中位线,∴∵,∴,∴,∴矩形的面积为故答案为:【点睛】此题考查了矩形的性质、直角三角形的性质、勾股定理、三角形中位线定理等知识,熟练掌握直角三角形的性质和三角形中位线定理是解题的关键.18. 如图,矩形,,,点在轴正半轴上,点在轴正半轴上.当点在轴上运动时,点也随之在轴上运动,在这个运动过程中,点到原点的最大距离为 __.##【解析】【分析】取 的中点 ,连接, ,由勾股定理可求 的长,由直角三角形的性质可求 的长,由三角形的三边可求解.【详解】如图,取的中点,连接,,122AO BD ==4BD =BC OE BCD △12OE CD =1OE =22CD OE ==BC ===ABCD 2BC CD ⋅==ABCD 1AB =2BC =A x D y A x D y C O 1+1AD H CH OH CH OH AD H CH OH矩形,,,,,点是的中点,,,点是的中点,,在中,,当点在上时,,的最大值为,.【点睛】本题考查了矩形的性质,直角三角形的性质,三角形的三边形关系,勾股定理等知识,添加恰当辅助线构造三角形是解题的关键.三、计算题:本大题共1小题,共6分.19. 计算:(1;(2)【答案】(1)(2)【解析】【分析】(1)先化简二次根式,然后计算加减法.(2)先去利用完全平方公式和平方差公式去括号,然后计算加减法.ABCD1AB=2BC=1CD AB∴==2AD BC==H AD1AH DH∴==CH∴===90AOD∠=︒H AD112OH AD∴==OCH∆CO OH CH<+H OC CO OH CH=+CO∴1OH CH+=+123-+))2233-++5-【小问1详解】;【小问2详解】解:.【点睛】本题主要考查了二次根式的加减计算,二次根式的混合计算,乘法公式,正确计算是解题的关键.四、解答题:本题共5小题,共40分.解答应写出文字说明,证明过程或演算步骤.20. 某开发区有一空地,如图所示,现计划在空地上种草皮,经测量,,,,,,求(1)此四边形空地的面积.(2)若每种植平方米草皮需要元,问总共需要投入多少元?【答案】(1)36平方米(2)3600元【解析】【分析】本题考查了勾股定理,勾股定理逆定理:(1)如图,连接,由勾股定理得,,由,可得是直角三角形,且,根据,求面积即可;23-+(33=--+33=-++=))2233++5459=-++-5=-ABCD 90B Ð=°3m AB =4m BC =12m AD =13m CD =1100AC 5AC =22222251216913AC AD CD +=+===ACD 90CAD ∠=︒ABC ACD ABCD S S S =+四边形△△(2)根据,计算求解即可.【小问1详解】解:如图,连接,∵,,,∴由勾股定理得,,∵,,∴,∴是直角三角形,且,∴.【小问2详解】解:由(1)得共需要投入元,答:共需要投入元.21. 如图,在平行四边形中,对角线,交于点,过点任作直线分别交、于点、.(1)求证:;(2)若,,,求四边形的周长.【答案】(1)见解析(2)15【解析】【分析】此题考查了平行四边形的性质以及全等三角形的判定与性质.(1)根据平行四边形的性质得出,求出,根据推出,即可得出答案;100ABCD S ⨯四边形AC 90B Ð=°3m AB =4m BC=5m AC ==12m AD =13m CD =22222251216913AC AD CD +=+===ACD 90CAD ∠=︒()211113451236m 2222ABC ACD ABCD S S S AB BC AC AD =+=⨯⨯+⨯⨯=⨯⨯+⨯⨯= 四边形361003600⨯=3600ABCD AC BD O O AB CD E F OE OF =6CD =5AD =2OE =AEFD ,AB CD OA OC =∥EAO FCO ∠=∠ASA AEO CFO △△≌(2)由,可得,继而求得答案.【小问1详解】证明:四边形是平行四边形,,,,在和中,,,;【小问2详解】解:,∴,四边形的周长.22. 如图,矩形中,,,是边上一点,将沿直线折叠,点的对应点恰好落在边上,求的长.【答案】3【解析】【分析】本题主要考查了矩形与折叠问题,勾股定理与折叠问题,先由矩形的性质和折叠的性质得到,,,,再利用勾股定理求出,则,设,则,在中,由勾股定理得,解方程即可得到答案.【详解】解:四边形是矩形,将沿直线折叠,点的对应点恰好落在边上AEO CFO △△≌24,6EF OE DF AF AB ==+== ABCD AB CD ∴ OA OC =EAO FCO ∴∠=∠AEO △CFO △OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA AEO CFO ∴ ≌OE OF ∴=OAE OCF △≌△AE CF=24,6EF OE DF AE DF FC CD ∴==+=+==∴AEFD 56415AD DF AE EF =+++=++=ABCD 8AB =10AD =E AB BCE CE B F AD AE 8AB CD ==10BC AD FC ===90D A ∠=∠=︒BE EF =6DF =4AF =AE x =8BE FE x ==-Rt AEF ()22248x x +=- ABCD BCE CE B F AD,,,,,,设,则,在中,由勾股定理得∴,解得,.23. 在中,,C 是的中点,过点D 作,且,连接交于F .(1)求证:四边形是菱形;(2)若,菱形的面积为40,求的长.【答案】(1)见解析;(2)10.【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,得到,证明即可.(2)根据,计算即可.【小问1详解】证明:,且,∴四边形是平行四边形,∵,C 是的中点,∴,∴平行四边形是菱形.【小问2详解】解:∵四边形是菱形,8AB CD ∴==10BC AD FC ===90D A ∠=∠=︒BE EF=6DF ∴===1064AF ∴=-=AE x =8BE FE x ==-Rt AEF 222AE AF EF +=()22248x x +=-3x =3AE ∴=Rt BDE △90BDE ∠=︒BE AD BE AD BC =AE CD ABCD 8DB =ABCD DE DC BC =12BDE ABCD S S BD DE ==菱形AD BE AD BC =ABCD 90BDE ∠=︒BE DC CB CE ==ABCD ABCD∴,在和中,∵,∴,∴,∵,∴,∴,∴,∴,∴.【点睛】本题考查了平行四边形的判定,菱形的判定,直角三角形的性质,三角形全等的判定和性质,熟练掌握菱形的判定,直角三角形的性质是解题的关键.24. 如图,在矩形中,,,点从点出发向点运动,运动到点停止,同时,点从点出发向点运动,运动到点停止,点,的速度都是每秒个单位长度,连接,,设点,运动的时间为秒.(1)当为何值时,四边形是矩形?(2)当时,判断四边形的形状,并说明理由.(3)整个运动当中,线段扫过的面积是多少?【答案】(1)8(2)四边形为菱形,理由见解析(3)64AB BC CD DA ===ABD △CDB △AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩()SSS ABD CDB ≌ABD CBD S S = BC CE =CDE CBD S S = ABD CBD CDE S S S == 12BDE ABCD S S BD DE == 菱形18402DE ⨯⨯=10DE =ABCD 8AB =16BC =P D A A Q B C C P Q 1PQ AQ .CP P Q t t ABQP 6t =AQCP PQ AQCP【解析】【分析】本题主要考查了矩形的性质与判定,勾股定理,菱形的判定:(1)先由矩形的性质得到,,根据题意可得,则,再由当时,四边形为矩形,得到,据此可得答案;(2)当时,,,再证明四边形是平行四边形,利用勾股定理推出,据此可得结论;(3)连接,,与相交于点,则整个运动当中,线段扫过的面积是的面积的面积,即为矩形的面积的一半,据此求解即可.【小问1详解】解:在矩形中,,,,.由已知可得,∴,在矩形中,,,∴当时,四边形为矩形,∴,解得,当时,四边形是矩形.【小问2详解】解:四边形为菱形,理由如下:当时,,,∵四边形是矩形,∴,∴四边形是平行四边形,在中,由勾股定理得,∴,16BC AD ==8AB CD ==BQ DP t ==16AP CQ t ==-BQ AP =ABQP 16t t =-6t =6BQ DP ==10AP CQ ==APCQ AP AQ =AC BD AC BD E PQ AED △BEC +△ABCD ABCD 8AB =16BC =16BC AD ∴==8AB CD ==BQ DP t ==16AP CQ t ==-ABCD 90B Ð=°AD BC ∥BQ AP =ABQP 16t t =-8t =∴8t =ABQP AQCP 6t =6BQ DP ==10AP CQ ==ABCD 90,B AD BC ∠=︒∥APCQ Rt ABQ10AQ ==AP AQ =∴四边形为菱形;【小问3详解】解:连接,,与相交于点,则整个运动当中,线段扫过的面积是的面积的面积,.,整个运动当中,线段扫过的面积.AQCPAC BD AC BD E PQ AED△BEC+△12AED BEC ABCDS S S+=△△矩形∴PQ118166422AB BC=⨯⨯=⨯⨯=。
江苏省南京外国语学校2013-2014学年度八年级第二学期期中考试数学试题全国通用
E O DC A 南京外国语学校2013—2014学年度第二学期期中初二年级数 学 试 题命题人:张学萍 审核人:杨 磊请将答案写在答卷纸上,否则无效...............一、选择题(每题2分,共20分)1. 下列各式221(1)(2),,,,22a b a b a x x x a x π+++-++中, 分式有( )A .2个B .3个C .4个D .5个2.为了了解南京市2013年中考数学学科各分数段成绩分布情况,从中抽取1000名考生的中考数学成绩进行统计分析.在这个问题中,样本是指( )A .1000B .被抽取的1000名考生C .被抽取的1000名考生的中考数学成绩D .南京市2013年中考数学成绩3. 掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数( ) A .一定是6 B .一定不是6C .是6的可能性大于是1~5中的任意一个数的可能性D .是6的可能性等于是1~5中的任意一个数的可能性4.下列分式中,与分式ba a--的值相等的是( ) A .b a a --- B .b a a + C .b a a -- D .ab a --5.如果分式22+-a a 的值为零,则a 的值为( )A. 2± B .2 C .2- D .以上全不对6.如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连结AB 、AD 、CD ,则四边形ABCD 一定是( ) A .平行四边形 B .矩形 C .菱形 D .正方形7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O , OE ⊥AB ,垂足为E ,若 ∠ADC =130°,则∠AOE 的大小为( ) A .75° B .65° C .55° D .50°第6题图 第7题图 8.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,图中矩形AM KP 的面积是1S ,矩形QCNK 的面积是2S ,1S 与2S 的大小关系是( ) A .12S S = B .12S S > C .12S S < D .无法确定9.“六一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是( )aFEDCBACBA F ED CBAEODBN MF E P C B AB .假如你去转动转盘一次,获得铅笔的概率大约是0.70C .如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D .转动转盘10次,一定有3次获得文具盒 10.如图,在△ABC 中,∠BAC =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 的中点,则AM 的最小值为( )A .1B .1.2C .1.3D .1.5第8题图 第9题图 第10题图 二、填空题(每题2分,共26分)11.任意选择电视的某一频道,正在播放动画片,这个事件是_____________.(填“必然事件”、“不可能事件”或“随机事件”)12.在1至100中,随意抽出一个数,它是2的倍数的可能性____________它是5的倍数的可能性(填“大于”、“等于”或“小于”).13.当x =_______时,分式321x -无意义;当x =21-时,分式的值是_______.14.把分式yx yx 5.15.01.0+-的分子和分母中各项系数都化为整数为_______________.15.约分:324344______,_______.92x a a x a-+==-- 16.如图,是八年级(1)班学生参加课外兴趣小组人数的扇形统计图,如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人 数是_______人.17.在一个不透明的布袋中装有红色、白色玻璃球共40个,这些玻璃球除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在0.15左右,则口袋中红色球可能有__________个.18.已知:如图,在口ABCD 中,AB =2cm ,AD =5cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF = cm .19.如图,菱形ABCD 的一条对角线BD 上有一点O ,点O 到菱形一边AB 的距离为2,那么点O 到另外一边BC 的距离为________.20.如图,直线a 经过正方形ABCD 的顶点A ,分别过此正方形的顶点B 、D 作BF ⊥a 于点F 、DE ⊥a 于点E ,若DE =7,BF =4,则EF 的长为 .21.如图,矩形ABCD 中,AB =3,BC =5,过对角线交点O 作OE ⊥AC 交 AD 于点E ,则AE 的长是_________.第18题图 第19题图 第20题图 第21题图22.我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.....。
2013-2014学年扬州中学教育集团树人学校八年级第二学期期中考试数学试卷及答案【苏科版】
扬州中学教育集团树人学校2013–2014学年第二学期期中考试八年级数学试卷 2014.4(满分:150分 时间:120分钟)1.下列调查中,适合用普查方式的是A.了解一批炮弹的杀伤半径B.了解扬州电视台《关注》栏目的收视率C.了解长江中鱼的种类D.了解某班学生对“扬州精神”的知晓率2.在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是 A .51 B .31 C .83 D .85 3.下列式子是分式的是 A.2x B.1+x x C. y x +2 D. 3x 4.计算1a -1 – aa -1的结果为 A.1+aa -1B. -a a -1C.-1 D.1-a5.菱形具有而矩形不一定具有的性质是A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补 6.已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是A.12cm2B.24cm 2C.48cm 2D.96cm 27.如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上, 若矩形ABCD 和矩形AEFC 的面积分别是S 1、S 2的大小关系是 A.S 1>S 2 B.S 1=S 2 C.S 1<S 2 D.3S 1=2S 2 8.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论中正确结论的个数是①△ABG ≌△AFG ; ②BG =GC ; ③AG ∥CF ; ④S △FGC =3. A.1B.2C.3D.4二、填空题(每题3分,共30分) 9.当x 时,分式1有意义.10.一组按规律排列的式子:, (7),5,3,18642a a a a 则第n 个式子是 . 11.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 .12.顺次连接对角线相等的四边形的四边中点,所得的四边形一定是 . 13.若关于x 的分式方程2+=mx 有增根,则m = . 第16题 第17题 的解是正数,则m 的取值范围是 上的点,沿CE 折叠后,点第18题南门街校区 初二( )班 姓名___________________ 学号____________21.(本题6分)先化简,再求值:)211(342--⋅--a a a ,其中3-=a22.(本题8分)孙老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题: (1)此次调查的总体是 . (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?23.(本题10分)如图,在平行四边形ABCD 中,对角线AC,BD交于点O,经过点O 的直线交AB 于E ,交CD 于F. 求证:OE=OF.24.(本题8分)某商场进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据: ⑴完成上述表格; ⑵请估计当n 很大时,频率将会接近 ,假如你去转动该转盘一次,你获得“可乐”的概率约是 ;(结果精确到0.1) ⑶转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?25.(本题12分)用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅ (1) 计算11111++++= . 南门街校区 初二( )班 姓名___________________ 学号____________28.(本题14分)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠A BC=60°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(4分)(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在给出的网格图上找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并.画出..相应的和谐四边形;(4分)(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.(6分)参考答案二、填空题9. x≠3 10. 11. 12. 菱形 13. 8 14. 9 15.16. 17. 5 18.三、解答下列各题19. (1) (2) x+620. (1) x=3 (2) 原方程无解21. 原式=a+2=-122. (1)该班学生上学路上花费时间的全体。
福建福州市福清市2024年八年级下学期期中考试数学试卷答案
2023-2024学年第二学期八年级校内期中质量检测数学试卷参考答案一、选择题题号12345678910答案CDBDACACBD二、填空题三、解答题17.(本小题满分8分)解:(1)原式=662-....................................................................................................................................2分=6................................................................................................................................................4分(2)原式=51053722⨯--)(....................................................................................................................2分=79--分=2-......................................................................................................................................4分18.(本小题满分8分)证明:∵四边形ABCD 是矩形,∴∠A=∠D=90°,AB =DC .........................................................................................................................2分∵E 为AD 的中点,∴AE =DE ......................................................................................................................................................4分在△ABE 与△DCE 中,AE DE A D AB DC =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE ,......................................................................................................................................6分∴EB =EC ...................................................................................................................................................8分19.(本小题满分8分)解:∵AB 是圆锥底面圆O 的直径,∴OA=OB =2.................................................................................................................................................2分∵SA =SB ,∴SO ⟂AB ,.....................................................................................................................................................4分在Rt △SOA 中,由勾股定理,得5322=-=OA SA SO ,............................................................................................................................6分∴11422SAB S AB SO =⋅⋅=⨯⨯=△2).........................................................................................8分20.(本小题满分8分)解:当25+=x 时,2242(2)6x x x --=--...............................................................................................................................3分2226=+--).....................................................................................................................5分56=-..........................................................................................................................................7分1=-..............................................................................................................................................8分另解:当25+=x 时,原式22)42)2=+-⨯+-..........................................................................................................2分5482=+--................................................................................................................6分1=-....................................................................................................................................................8分21.(本小题满分8分)解:(1)AB =22..............................................................................................................................................2分(2)找出点C ..............................................................................................................................................4分∵AB 2+BC 2=222322)()(+=26,AC 2=226(=26,..................................................................6分∴AB 2+BC 2=AC 2,................................................................................................,..............................7分∴△ABC 为直角三角形....................................................................................................................8分另解:如图所示,∵AD =DB =2,BE =EC =3,∴∠DAB=∠DBA ,∠EBC=∠ECB ...............................................................................................5分∵∠ADB=∠BEC=90°,∴∠DBA =∠EBC=45°.....................................................................................................................6分∴∠ABC =180°-∠DBA -∠EBC =180°-45°-45°=90°,..................................................................7分∴△ABC 为直角三角形...................................................................................................................8分22.(本小题满分10分)解:(1)作图3分,下结论1分........................................................................................................................4分【作法多样,不同作图请参照给分】(2)四边形AFCE 的形状是矩形,理由如下:.......................................................................................5分∵四边形ABDE 是平行四边形,∴DB =EA ,DB ∥EA ........................................................................................................................6分∵BF =DC ,∴DC +DF =BF +DF ,∴CF =DB ,∴CF =EA .又∵DB ∥EA ,即CF ∥EA ,∴四边形AFCE 是平行四边形.........................................................................................................7分∵CF ∥EA ,∴∠BCE+∠AEC =180°.∵∠BCE =∠AEC ,∴∠BCE =11802︒⨯=90°,∴□AFCE 为矩形,............................................................................................................................8分∴∠AFC =90°,CE =AF ..∵∠BAC =90°,AB =6,AC =8,∴10CB ==................................................................................................................9分∵1122ABC S AC AB CB AF ∆=⋅=⋅,∴684.810AC AB AF BC ⋅⨯===,........................................................................................................10分∴ 4.8CE AF ==.23.(本小题满分11分)解:(1)四边形CDEF 是菱形,理由如下:∵△CDE 沿着CE 翻折至△CFE ,∴DE =FE ,DC =FC ,∠ECF =∠ECD ...........................................................................................2分∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ECF =∠CED ,...........................................................................................................................3分∴∠ECD =∠CED ,∴DE =DC ,.........................................................................................................................................4分∴DE =FE =DC =FC ,∴四边形CDEF 是菱形.......................................................................................................................5分(2)过点C 作CG ⊥BE ,则∠CGF =90°,.∵四边形ABCD 是平行四边形,∴CD =AB =8,AD ∥BC ,∴∠CED =∠ECB ...............................................................................................................................6分∵△CDE 沿着CE 翻折至△CFE ,∴∠BEC =∠CED =∠ECB ,CF =CD =8,∠CFE =∠D =60°,................................................7分∴BE =BC =13,.................................................................................................................................8分∠FCG =180°-∠FGC -∠CFE =30°,∴FG =21CF =4,...............................................................................................................................9分∴CG =,∴BG 11==,∴1147BF BG FG =-=-=,.........................................................................................................10分∴1376EF BE BF =-=-=,∴6DE EF ==..................................................................................................................................11分【解法多样,不同解法请参照给分】解:(1)延长AC 交MN 于Q .由题可知,AC ∥l ,AP ∥BC ∥MN ,∴AP ∥QN ,AQ ∥PN .∴四边形APNQ 是平行四边形.又∵MN ⊥l ,即∠MNP =90°,∴四边形APNQ 矩形........................................................................................................................1分∴∠AQN =∠AQM =90°,AQ =PN =6,QN =AP =1.6........................................................................2分∵BC ∥MN ,∴∠QMA =∠CBA =30°......................................................................................................................3分在Rt △AQM 中,∠AMQ =30°,∴AM =2AQ =12,.................................................................................................................................4分∴MQ 6 1.7310.38=≈⨯=...................................................................................5分∴MN =MQ +QN 10.38 1.611.9812(m)≈+=≈..................................................................................6分∴旗杆的高约为12m .(2)解法1:如图,设旗杆高度MN =x m ,用卷尺测得DN =a m .将绳子拉直使其末端接触地面于点E ,用卷尺测得EN =b m ........................................................9分∴EM =a+x .在Rt △EMN 中,由勾股定理得222MN EN ME +=,即:222()x b a x +=+,......................................................................................................................10分解得222b a x a -=,................................................................................................................................11分∴旗杆高度222b a MN a-=(m).解法2:如图,设旗杆高度设旗杆高度MN =x m ,用卷尺测得DN =a m .将绳子拉直至点E ,用卷尺测得点E 离地面点G 高度EG =b m ,用卷尺测得点G 至旗杆底部点N 的距离GN =c m ,.........................................................................9分∴绳长EM =a+x .过E 作EF ⊥MN 于点F ,即∠EFN =90°.由题可知,EG ⊥l ,MN ⊥l ,∴∠EGN =∠FNG =90°,∴四边形EGNF 是矩形,∴EG =NF =b ,GN =EF =c ,∴MF MN NF x b =-=-.在Rt △EMF 中,由勾股定理得222MF EF ME +=,即222()()x b c a x -+=+,.................................................................................................................10分解得22222b c a x a b +-=+.........................................................................................................................11分∴旗杆高度22222b c a MN a b+-=+(m).【注:方案及图示共3分,其中图示占1分】(1)证明:∵四边形ABCD是正方形,∴OB=OC,∠EBO=∠FCO=45°,∠BOC=90°,.......................................................................1分∴∠BOF+∠FOC=90°.∵OE⟂OF,∴∠BOE+∠BOF=90°,∴∠BOE=∠FOC,.........................................................................................................................2分∴△EBO≌△FCO,........................................................................................................................3分∴OE=OF.....................................................................................................................................4分(2)AE2+BE2=2OE2............................................................................................................................................6分(3)①解法1:取CE中点H,连接OH.∵四边形ABCD是正方形,∴OA=OC,∠BOC=90°,∠OAB=45°,∴OH∥AB,AE=2OH...........................................................................................................7分∵AE=2BE,∴BE=OH,∴四边形BEOH是平行四边形.,∴OE∥BH,∴∠2=∠3.................................................................................................................................8分∵Rt△BCE中,∠EBC=90°,H为CE中点,∴12HB CE HC==,∴∠HBC=∠HCB...................................................................................................................9分∵∠OBC=∠OCB=45°,∴∠1=∠3,∴∠1=∠2,即∠BOE=∠ACE..........................................................................................10分解法2:延长AB到点G,使BG=BE,连接CG,∵AE=2BE,BG=BE,∴AE=EG..................................................................................................................................7分∵四边形ABCD是正方形,∴OA=OC,∠BOC=90°,∠OCB=45°,CB⊥AB,∴OE∥CG,CE=CG,.............................................................................................................8分∴∠3=∠4,∴∠BOE=180°-∠BOC-∠OCB-∠4=45°-∠3=∠ACE..................................................................................................................10分解法3:延长EO,交CD于点G,过点G作GH⟂AB.∵四边形ABCD是正方形,∴AB∥CD,OB=OD,∠BAD=∠CDA=∠GHA=90°,∴∠BEO=∠DGO,∠EBO=∠GDO,∴△EBO ≌△DGO ,..................................................................................................................7分∴BE =DG ,AH =DG .∵AE =2BE ,∴AH =HE =BE ,HG =BC ,∴△HEG ≌△BEC ,..................................................................................................................8分∴∠HGE =∠BCE .∵HG ∥BC ,∴∠BMH =∠MBC =45°,∴∠BOE =∠DOG =∠BMH -∠HGE =45°-∠BCE =∠ACE ......................................10分解法4:如图,过程略,评分标准同解法3解法5:取AE 中点K ,连接OK .证得∠3=∠1,.........................................................................................................................8分证得△AOK ≌△BOE ,............................................................................................................9分证得∠2=∠3=∠1...............................................................................................................10分②解法1:设AE =x ,延长FB 到点M ,使BM =BF .∵四边形ABCD 是正方形,OF ⊥OE ,∴OA =OB ,∠OAE=∠OBF=45°,∠AOB=∠EOF=90°,∴∠5=∠BOF ,∴△AOE ≌△BOF ,∴BM =BF =AE =x ,OE =OF ,∴∠FEO =45°,∴∠6=∠BEO -∠FEO =∠BEO -45°=∠5............................................................................11分∵BM =BF ,BE ⊥MF ,∴∠MEF =2∠AOE .∵∠BCE =2∠AOE ,∴∠MEF =∠BCE ,∴∠CEM =∠EFB =∠M ,.....................................................................12分∴CE =CM =8+x ,∴可列方程222(8)8(8)x x -+=+,解得x=2,..............................................................................................................................13分∴22222226240EF EB BF OE =+==+=,∴OE =............................................................................................................................14分解法2:延长FB到点N,使BN=BC,连接EN.证得∠6=∠5,.........................................................................................................................11分证得等腰三角形NEF,...........................................................................................................12分求得BF=AE=2,......................................................................................................................13分求得OE .....................................................................................................................14分解法3:延长EB到点P,使BP=BE,延长EO交PC的延长线于点Q.设∠AOE=x,则∠PEQ=x+45°,∠P=∠PEC=90°-2x,∴∠Q=180°-∠PEQ-∠P=∠PEQ,则可得等腰三角形PEQ和等腰三角形CRQ,即可有与解法1类似的求解过程.证得等腰三角形PEQ,...........................................................................................................11分证得等腰三角形CRQ,...........................................................................................................12分求得BF=AE=2,......................................................................................................................13分求得OE=.......................................................................................................................14分【说明:本题方法诸多,其它方法请参照给分】。
黑龙江省牡丹江市2023-2024学年八年级下学期期中数学试题(含答案)
2023-2024学年度第二学期八年级期中考试数学试卷考生注意:1.考试时间90分钟2.全卷共分三道大题,总分120分3请在答题卡上作答,在试卷上作答无效一、选择题(每小题3分,满分30分)1.下列根式是最简二次根式的是( )A .9B .12C .0.1D .32.下列各式中,运算正确的是( )A .2(2)2-=-B .284⨯=C .2810+=D .222-= 3.下列条件中,不能判定四边形为平行四边形的是( )A .AB //CD ,AD =BCB .∠A =∠C ,∠B =∠D C .AB =CD ,AD =BCD .AB //CD ,AB =CD 4.下列命题的逆命题是真命题的是( ) A .对顶角相等 B .等边三角形是锐角三角形C .矩形的对角线相等D .平行四边形的对角线互相平分 5.如图:在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF //BC 交AC 于M ,若CM =5,则CE 2+CF 2等于( )A .75B .100C .120D .1256.如图,在矩形COED 中,点D 的坐标是(1,3),则CE 的长是( )A .3B .22C 10D .47.已知a <b ,则化简二次根式3a b -的正确结果是( ) A .a ab -- B .a ab - C .a ab D .a ab -8.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE =CF ,连接EF ,BF ,EF 与对角线交于点O ,且BE =BF ,∠BEF =2∠BAC , FC =2,则AB 的长为( )A .83B .8C .43D .69.如图,在△ABC 中,AE ⊥BC 于点E ,BD ⊥AC 于点D ;点F 是AB 的中点,连接DF ,EF ,设∠DFE =x °,∠ACB =y °,则( )A .y =xB .y =-12x +90C .y =-2x +180D .y =-x +9010.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,AE 平分∠BAD ,分别交BC ,BD 于点E ,P ,连接OE ,∠ADC =60°,AB =12BC =1,则下列结论: ①∠CAD =30°;②BD =7;③ABCD S AB AC =⋅;④OE =14AD ;⑤38APO S =,正确的个数是( )A .2B .3C .4D .5二、填空题(每小题3分,共30分)11.1x +x 的取值范围是 . 12.如图,已知四边形ABCD 的对角线AC 与BD 相交于点O ,∠DAC =∠BCA ,添加一个条件 ,使四边形ABCD 为平行四边形(填一个即可).13.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足2694|5|0a a b c -++-+-=,则△ABC 的形状是 三角形.14.计算:152+= . 15.如图,在矩形ABCD 中,AB =5,AD =3,动点 P 满足 13PAB ABCD SS =矩形,则点 P 到A 、B 两点距离之和P A +PB 的最小值为 .16.如图,每个小正方形的边长为1,在△ABC 中,点D 为AB 的中点,则线段CD 的长为 .17.在Rt △ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a ∶b =2∶3,c =65,则a = . 18.如图,在四边形ABCD 中,CD =7,∠C =30°,M 为AD 中点,动点P 从点B 出发沿BC 向终点C 运动,连接AP ,DP ,取AP 中点N ,连接MN ,则线段MN 的最小值为 .19.在平行四边形ABCD 中,BC 边上的高为4,AB =5,AC 5=ABCD 周长等于 . 20在矩形ABCD 中,AD =9,点G 在边AD 上,AB =GD =4,边BC 上有一点H ,将矩形沿边GH 折叠,点C 和D 的对应点分别是C '和D ',若点A , D '和C '三个点恰好在同一条直线上时,AC '的长为 .三、解答题(满分60分)21.计算(每小题6分,共18分)(1)2(32218310)⨯-+; (2)2(4236)22(31)-÷--;(3)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中52,52x y =+=-. 22.(6分)已知平行四边形ABCD 中,AE ⊥BC 于E ,CF ⊥AD 于F .图1 图2(1)如图1,求证:四边形AECF 为矩形;(2)如图2,连接BF ,DE 分别交AE ,CF 于M ,N 两点,请直接写出图中的所有平行四边形. 23.(6分)矩形ABCD 中,AB =10,BC =3,E 为AB 边的中点,P 为CD 边上的点,且△AEP 是腰长为5的等腰三角形,请你画出图形,直接写出线段AP 长.24.(8分)如图,在ABCD 中,∠BAD =32°,分别以BC ,CD 为边向外作△BCE 和△DCF ,使BE =BC , DF =DC ,∠EBC =∠CDF ,延长AB 交边EC 于点H ,点H 在E ,C 两点之间,连接AE ,AF .(1)求证:△ABE ≌△FDA ;(2)当AE ⊥AF 时,求∠EBH 的度数.25.(10分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.实践操作:如图1,在矩形纸片ABCD 中,AB =4cm .第一步:如图2,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;第二步:如图3,再一次折叠纸片,使点A 落在EF 上点N 处,折叠BM 过点B 交AD 于M ,连接BN .图1 图2 图3解决问题(1)在图3中,EN 与AB 的关系是 ,EN = cm ;(2)在图3中,连接AN ,试判断△ABN 的形状,并给予证明;拓展应用(3)已知,在矩形ABCD 中,AB =4cm ,AD =8cm ,点P 在边AD 上,将△ABP 沿着BP 折叠,若点A 的对应点A '恰落在矩形ABCD 的对称轴上,则AP = cm .26.(12分)如图,点O 为坐标原点,四边形OABC 为矩形,边OC 、OA 分别在x 轴、y 轴上,A (0,a ),C(c ,0),且a 、c 满足2|4|(8)0a c -+-=.(1)求B ,C 两点的坐标;(2)把△ABC 沿AC 翻折,点B 落在B '处,线段AB 与x 轴交于点D ,求CD 的长;(3)在平面内是否存在点P ,使以A ,D ,C ,P 为顶点的四边形是平行四边形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.2023-2024学年度第二学期八年级期中考试数学试卷参考答案一、选择题(每小题3分,满分30分)1.D2.B3.A4.D5.B6.C7.A8.D9.B 10.C二、填空题(每小题3分,满分30分)11.x ≥-1且x ≠2 12.AD =BC (答案不唯一) 13.直角 1452 4116.262 17.25或213 18.74 19.20或12 20.7或1三、解答题(共60分)21解:(1)原式=64236320-+……(2分)=8-12+65-……(2分)=65--4……(2分)(2)原式=323(3231)2---+……(2分) =3234232--+……(2分) =322-……(2分) (3)解:原式=1()()()()()x y x y x y x y x y x y y x y ⎡⎤-++÷⎢⎥+-+-+⎣⎦=2()()()x y x y x y x y ⋅++- =2xy x y-.………………(4分) 当52,52x y =+=-时,原式=2(52)(52)21425252+-==+-+.………………(2分) 22.(1)证明:∵四边形ABCD 为平行四边形,∴AD ∥BC .∵AE ⊥BC 于E ,CF ⊥AD 于F ,∴∠AEB =∠EAD =∠BCF =∠CFD =90°.∴四边形AECF 为矩形.………………(2分)(2)解:图中所有的平行四边形为:四边形FDEB ,四边形ABCD ,四边形AECF ,四边形MFNE .……(4分)23.如图,AP =10=或5或310=1分,答案1分24.(1)在平行四边形ABCD 中,AB =DC .又DF =DC ,∴AB =DF .同理,EB =AD .……(2分)在平行四边形ABCD 中,∠ABC =∠ADC .又∠EBC =∠CDF ,∴∠ABE =∠ADF .∴△ABE ≌△FDA (SAS ).……(2分)(2)∵△ABE ≌△FDA .∴∠AEB =∠DAF .∵∠EBH =∠AEB +∠EAB ,∴∠EBH =∠DAF +∠EAB . ∵AE ⊥AF .∴∠EAF =90°……(2分)∵∠BAD =32°,∴∠DAF +∠EAB =90°-32°=58°. ∴∠EBH =58°……(2分)25.解:EN 垂直平分AB ,4分)(2)解:△ABN 为等边三角形;理由如下:∵EN 垂直平分AB ,∴AN =BN .……(2分)又∵AB =BN ,∴AB =BN =AN .∴△ABN 为等边三角形;……(2分)(3)AP 的长为4cm ……(2分) 26.解:(1)∵|a -4|+(8-c )2=0,∴a -4=0,8-c =0解得a =4,c =8……(2分)∴A (0,4),C (8,0).∵四边形AOCB 是矩形,∴AB =OC =8,BC =AO =4∴B (8,4).…………(1分)(2)∵四边形ABCD 是矩形,∴AB ∥CD .∴∠BAC =∠ACO .……(2分)∵由轴对称的性质得∴,BAC B AC BC B C ∠∠'='=.∴∠DAC -∠DCA .∴DA =DC .……(2分)设DA =DC =x ,则8DB AB AD x '=='--.在Rt DB C '中,222DB B C DC ''+= ,即222(8)4x x =-+,解得x =5,即CD =5……(2分)(3)P (-5,4)或P (5,4)或P (11,-4).……(3分)。
(市县区某某中学)初中八年级数学下册第二学期期中考试试题卷(含答案详解)
(市县区某某中学)初中八年级数学下册第二学期期中考试试题卷(含答案详解)满分:150分 时间:120分钟一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 29.如果把xyx+y中x ,y 的值都扩大2倍,那么这个分式的值( )A.不变B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
凯里十中—八级下期中考试数学试卷
凯里十中2013—2014学年度第二学期期中考试八年级数学试卷A 、31 B 、31 C 、26 D 、242.下列式子无论x 取何值,一定是二次根式的是:A、2--x B 、x C 、22+x D 、22-x 3.分别以下列各组数为边长,能构成直角三角形的是:A 、4,5,6B 、1,1C 、6,8,11D 、5,12,23 4.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是: A.12米 B.13米 C.14米 D.15米5.若平行四边形ABCD 的周长为28,△ABC 的周长为17cm ,则AC 的长为: A 、5.5cm B 、3cm C 、4cm D 、11cm6.顺次连结菱形各边中点所围成的四边形是:A .一般的平行四边形B .矩形C .菱形D .正方形 7.已知a A 、 a B 、a - C 、-1 D 、 0 8.在函数12--=x xy 中,自变量的取值范围是( ) A 、x ≤2 B 、x<2且x ≠1 C 、1<x ≤2 D 、 x ≤2且x ≠19.如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( )A 、53cmB .25cmC .518cmD . 524cm10.如图,在矩形ABCD 中,AB =2,BC =4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )A. 3B. 3.5C. 2.5D. 2.8AD第9题第10题12.,则它的周长是 cm 。
13.如图,已知一根长8m 的竹杆在离地3m 处断裂,竹杆顶部抵着地面,此时, 顶部距底部有 m 。
14.矩形的两条对角线的夹角为600,较短的边长为12cm,则对角线的长为__________cm.15.已知菱形的两条对角线长为8cm 和6cm,那么这个菱形的周长是 cm, 面积是 cm 2.16.已知直角三角形的两条直角边的长分别是23+1和23-1,则斜边的长是17.如图,平行四边形ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米. 18.如图,在菱形ABCD 中,AB=4,E 在BC 上,BE=2,∠BAD=1200,点P 在BD 上,则PE+PC 的最小值是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014学年第二学期期终考试八年级数学试卷(6)
班级 姓名 学号
一、选择题。
(本题共5小题,每小题3分,共15分)
1、如果分式x 211
-的值为负数,则x 的取值范围是-------------( )
(A ) 21≤x (B ) 21<x (C ) 21≥x (D ) 21
>x
2、若方程7667=----x
k
x x 有增根,则=k ------------------------------( )
(A ) -1 (B ) 0 (C ) 1 (D ) 6 3、一列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是-( ) A 、 1.5a =,2b =, 2.5c = B 、7a =,24b =,25c = C 、5a =,6b =,7c = D 、5a =,12b =,13c =
4、如图,函数y =k (x +1)与x
k
y =
(k <0)在同一坐标系中,图象只能是下图中的--------------------------------------------------------------------------( )
5、如图,在▱ABCD 中,已知AD=7cm ,AB=3cm ,AE 平分∠BAD 交BC 边于
点E ,则EC 等于------------------------------------------------ ( )
A 、1
B 、2
C 、3
D 、4 二、填空题(本题共5小题,每小题4分,共20分.) 6、函数y=1
3
x -自变量x 的取值范围是_________。
7、下列命题:①对顶角相等;②等腰三角形的两个底角相等;③两直线平行,同位角相等.其中逆命题为真命题的有: (请填上所有符合题意的序号)。
8、计算:1
11
x x x -=-- 。
9、▱ABCD 中,AD ⊥BD ,AD=4,
AC=_________.
E D
C
B A
第5题
O
D
C B
A
10、如图所示,设A 为反比例函数x
k
y =
图象上一点,且矩形ABOC 的面积为3,则这个反比例函数解析式为 。
三、解答题。
(每小题6分,共30分)
11、计算:()
()122
2001312
1
-⨯-++-⎪⎭
⎫
⎝⎛-。
12、解方程:x
x x --=
+-21324。
13.当k 为何值时,方程组⎩
⎨⎧-==+--k y x y x y 0
1242有两个不相等的实数解。
14、已知:反比例的函数图像如图所示经过点A 。
(1)求y 与x 之间的函数关系式 (2)若该反比例函数图象经过点()1,
y a B 、点
()2,2y a C ,当0>a 时,试比较1y 与2y 的大小。
E
F D
C
B
A 15、如图,▱ABCD 中,E 、F 分别为A
B 、CD 中点 求证:DE=BF
四、解答题:(每小题7分,共35分) 16、如图:已知一次函数
y kx b =+(0)k ≠的图象与x 轴、y 轴的交点分别为
A 、
B 两点。
且与反比例函数(0)m
y m x
=
≠的图象在第一象限交于点C ,CD 垂直于x 轴,垂足为D ,若OA=OB=OD=2。
(1)写出点A 、B 、D 的坐标。
(2)一次函数和反比例函数的解析式。
17.如图,▱ABCD 中,点E 是边AD 的中点,BE 的延长线与CD 的延长线相交于点F 。
(1)求证:△ABE ≌△DFE ;
(2)试连结BD 、AF ,判断四边形ABDF 的形状,并证明你的结论。
F
E
D
C
B
A
18、某商场用50000元从外地购回一批T恤衫,由于销路好,商场又紧急调拨18.6万元采购回比第一次多2倍的T恤衫,但第二次比第一次进价每件贵12元,商场在出售时统一按每件80元的标价出售,为了缩短库存时间,最后的400件按6.5折处理并很快售完,求商场在这两次生意中共盈利多少元.
19、如图,取一根长1米长的匀质木杆,用细绳绑在木杆的中点O处并将其吊起来,在中点的左侧距离中点25cm处挂一个重9.8牛顿的物体,在中点右侧用一个弹簧秤向下拉,改变弹簧称与中点O的距离L(单位:cm),看弹簧秤的示数F(
结果老师发现其中有一个数据明显有错误,另一个数据却被墨水涂黑了。
(1)当L = _____cm时的数据是错了;
(2)被墨水涂黑了的数据你认为大概是_________;
(3)你能求出F与L的函数关系式吗?
21.在直角坐标系中,点A的坐标为)2
,2( ,点B的坐
标为(4,2)
(1)在y轴上找点P,使得△PAB是等腰三角形,求出点P坐标;
(2)点C在x轴上,点D在y轴上,并且以A、B、C、D为顶点的四边形为平行四边形,求出点C与点D的坐标。