[推荐学习]高中数学第三章三角恒等变换示范教案新人教B版必修4

合集下载

人教版高中必修4(B版)第三章三角恒等变换课程设计

人教版高中必修4(B版)第三章三角恒等变换课程设计

人教版高中必修4(B版)第三章三角恒等变换课程设计一、课程背景本课程设计是针对高中必修课程《数学四》(B版)第三章三角恒等变换的教学实践。

在本章节中,学生将学习三角函数的基本概念,包括正弦、余弦、正切等;以及三角函数的基本性质、图像特征等知识。

在此基础上,进一步学习三角恒等变换的定义、性质、应用等内容,帮助学生感受数学美妙,拓展学生的数学思维和实际应用能力。

二、课程目标•知识目标1.掌握三角函数的概念、性质、基本图像和相关公式;2.掌握三角恒等变换的概念、性质和基本应用;3.理解三角恒等变换与三角函数图像的关系,培养学生对数学美的感悟。

•能力目标1.能灵活应用三角函数及其相关公式;2.能理解并应用三角恒等变换在实际问题中得到解决;3.能有效运用数学知识解决实际问题,并能形成自己的思考方式。

•情感目标1.通过学习,培养学生感受数学美妙的情感和兴趣;2.让学生理解数学是实践中最常用的一门学科;3.激发学生爱思考、勇于探究、善于合作的精神。

三、课程内容1.三角函数基础知识复习;2.三角恒等变换;3.三角函数图像变化。

四、教学方法1.讲授法:通过课堂讲解,准确阐述三角恒等变换的基本概念、性质、公式等,并通过简单的计算题、实例演练等方式帮助学生掌握相关知识;2.实践结合法:通过实际问题的解答,引导学生思考、动手解决,培养学生的数学实践能力;3.合作学习法:通过小组讨论、合作解题等方式,让学生在团队中相互交流、借鉴、提高彼此能力。

五、教学设计第一节课时间:1学时主要内容:三角函数基础知识复习1.引入三角函数知识,介绍正弦、余弦、正切的定义、符号、图像及基本性质;2.以例子为主,提高学生对于三角函数的计算能力;3.通过课堂测验,及时调整教学内容,帮助弱势学生摆脱困境。

第二节课时间:1学时主要内容:三角恒等变换1.引入三角恒等变换的定义、本质及重要性;2.提出三角恒等变换相关的公式,并进行简单的计算;3.通过实例演示,帮助学生理解三角恒等变换在证明中的应用。

新人教版高中数学第3章三角恒等变换教案必修四

新人教版高中数学第3章三角恒等变换教案必修四

- 1 -高中数学 第3章 三角恒等变换教案 新人教版必修4目标定位:1.三角函数是刻画周期性现象的重要数学模型,同时也是一种重要的数学工具.在第3章中,我们从周期性现象的原型出发,通过数学的抽象,将周期性变化的“过程”凝聚为三角函数这一新的数学“对象”,并从函数的角度初步探讨了这一数学模型的性质,从而完成了数学建构活动的第一步.我们知道,研究一个数学对象,就要研究它的运算,这是数学研究的一般程序.因此,建立了三角函数这一数学模型之后,研究它的运算就是顺理成章的事了.在本章中,我们将把三角函数这一数学模型当成是新的“对象”,重点研究三角函数的运算,这实际上是对三角函数学习的继续和深化,也是有效地发挥三角函数的工具价值的基础. 2.本章具体的教学目标是:(1)通过推导两角差的余弦公式,以及两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体验数学的发现与创造过程,体会向量与三角函数的联系、三角恒等变换公式之间的联系,理解并掌握三角变换的基本方法,发展学生的运算能力和推理能力.(2)掌握两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,能正确运用这些公式进行简单的三角函数式的化简、求值和恒等式证明.教材解读:1.在教科书中,三角变换的教学是放在对周期现象进行研究的大背景下进行的. 课本对于周期性变化的研究,是按照数学研究的一般程序进行的(如图)本章就是对“对数学模型进行研究”的一部分,是第1章的继续和深入.2.为了突出三角函数是描述周期变化的数学模型这一本质,教科书为三角变换的教学提供了问题背景.首先,课本在引言中从周期运动叠加的角度提出三角变换的课题,引发了对三角变换的讨论,在得到和差角公式等具体的成果之后,又以《链接》的形式,利用这些成果,回答了引言中的问题,给出了“任意的正(余)弦函数的叠加函数都可以表示为Asin(x + φ)的形式,且周期不变.”的结论.这样的安排不仅使本章构成了一个相对完整的数学发现和应用的案例,而且深化了学生对三角函数是刻画周期性变化的重要的数学模型的认识.这样的安排,有助于学生从总体上理解三角变换.3.本章引言起到了承上启下的作用.在第1章,我们以最基本最简单的周期性运动(圆周运动)为原型,建立了新的数学模型:三角函数,并通过对三角函数的研究,证实了三角函数具有我们希望它具有的周期性,但是严格地说,为了让学生建立起三角函数是“刻画周期性变化的重要的数学模型”这一基本的认识,还需要有更多的案例来支持!引言中提出的“周期性运动的叠加”就是这样一个典型的案例!在这个案例中,学生看到了两个周期性运动的叠加.从直觉上看,学生可以断言,运动叠加的结果应该是周期性运动!因此,如果三角函数真的是刻画周期性变化的数学模型的话,运动的过程就应该能用三角函数来表达!这就是引言中的猜想:“对于函数y=sin x+cos x 我们猜想它仍然表示一个简谐振动,即sin x+cos x能够恒等变形为A sin(ωx+φ)的形式.”正是这个猜想的指引下,三角变换的研究顺理成章地展开了!这样的安排,可以使学生体会到三角变换不仅仅是形式的变换,而是对三角函数研究的继续和深化.4.本章三角变换的公式形成了一个类似于公理体系的演绎的知识结构,而这个知识体系是借助于“运算”的方式建立的.从本源看,三角变换公式都是由三角函数定义推出的逻辑结论(因而定义可以看成“公理”),三角变换公式(可以看成是“定理”)之间又存在着紧密的逻辑联系,公式的推导过程正是揭示其联系的过程.在课本中,三角变换的公式都是由余弦的差角公式借助于三角函数的运算推导出来的,这可以让学生认识到,运算是演绎推理的重要形式,体会到运算在探索、发现数学结论,建立数学知识体系中的作用.5.注意从运算的角度看待三角变换.把三角变换看成是三角函数的运算.这样就使的三角变换和运算(包括向量的运算)发生了联系.在教科书中,三角变换的公式都是通过运算的方法推导和证明的.而在 3.3几个三角恒等式中,教科书更正面地从运算的角度提出和差化积、积化和差的研究课题.最新中小学教案、试题、试卷- 2 -。

高中数学 第三章 三角恒等变换 3.2.1 倍角公式学案 新人教B版必修4

高中数学 第三章 三角恒等变换 3.2.1 倍角公式学案 新人教B版必修4

3.2 倍角公式和半角公式3.2.1 倍角公式[学习目标] 1.会从两角和的正弦、余弦、正切公式导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换,并能灵活地将公式变形运用.[知识链接]1.两角和公式与二倍角公式有联系吗?答 有联系.在S α+β,C α+β,T α+β中,令β=α即可得S 2α,C 2α,T 2α. 2.什么情况下sin 2α=2sin α,tan 2α=2tan α?答 一般情况下,sin 2α≠2sin α,例如sin π3≠2s in π6,只有当α=k π(k ∈Z )时,sin 2α=2sin α才成立.只有当α=k π(k ∈Z )时,tan 2α=2tan α成立. [预习导引] 1.倍角公式(1)S 2α:sin 2α=2sin_αcos_α,sin α2cos α2=12sin α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α. 2.倍角公式常用变形(1)sin 2α2sin α=cos_α,sin 2α2cos α=sin_α; (2)(sin α±cos α)2=1±sin _2α;(3)sin 2α=1-cos 2α2,cos 2α=1+cos 2α2;(4)1-cos α=2sin2α2,1+cos α=2cos2α2.要点一 给角求值问题 例1 求下列各式的值:(1)sin π12cos π12;(2)1-2sin 2750°;(3)2tan 150°1-tan 2150°; (4)1sin 10°-3cos 10°;(5)cos 20°cos 40°cos 80°. 解 (1)原式=2sin π12cos π122=sinπ62=14.(2)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12.(3)原式=tan(2×150°)=tan 300° =tan(360°-60°)=-tan 60°=- 3. (4)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=4sin 30°cos 10°-cos 30°sin 10°2sin 10°cos 10°=4sin 20°sin 20°=4. (5)原式=2sin 20°·cos 20°·cos 40°·cos 80°2sin 20°=2sin 40°·cos 40°·cos 80°4sin 20°=2sin 80°·cos 80°8sin 20°=sin 160°8sin 20°=18.规律方法 此类题型(1)(2)(3)小题直接利用公式或逆用公式较为简单,而(4)小题分式一般先通分,再考虑结合三角函数公式的逆用从而使问题得解.而(5)小题通过观察角度的关系,发现其特征(二倍角形式),逆用正弦二倍角公式,使得问题中可连用正弦二倍角公式,所以在解题过程中要注意观察式子的结构特点及角之间是否存在特殊的倍数关系,灵活运用公式及其变形,从而使问题迎刃而解. 跟踪演练1 求下列各式的值.(1)sin π8sin 3π8;(2)cos 215°-cos 275°;(3)2cos25π12-1;(4)tan 30°1-tan 230°.解 (1)∵sin 3π8=sin(π2-π8)=cos π8,∴sin π8sin 3π8=sin π8cos π8=12·2sin π8cos π8=12sin π4=24. (2)∵cos 275°=cos 2(90°-15°)=sin 215°, ∴cos 215°-cos 275°=cos 215°-sin 215°=cos 30°=32. (3)2cos25π12-1=cos 5π6=-32. (4)tan 30°1-tan 230°=12×2tan 30°1-tan 230°=12tan 60°=32. 要点二 给值求值问题例2 已知sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值.解 原式=sin ⎝ ⎛⎭⎪⎫π2+2x cos ⎝ ⎛⎭⎪⎫π4+x=2sin ⎝ ⎛⎭⎪⎫π4+x ·cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝ ⎛⎭⎪⎫π4+x .∵sin ⎝ ⎛⎭⎪⎫π4-x =cos ⎝ ⎛⎭⎪⎫π4+x =513,且0<x <π4,∴π4+x ∈⎝ ⎛⎭⎪⎫π4,π2,∴sin ⎝ ⎛⎭⎪⎫π4+x = 1-cos 2⎝ ⎛⎭⎪⎫π4+x =1213.∴原式=2×1213=2413.规律方法 在解题过程中要注意抓住角的特点解题,同时要注意挖掘题目中的隐含条件:π4+x 与π4-x 存在互余关系.特别要注意利用这些条件来确定某些三角函数值的符号.跟踪演练2 已知cos ⎝ ⎛⎭⎪⎫α+π4=35,π2≤α<3π2,求cos ⎝⎛⎭⎪⎫2α+π4的值.解 ∵π2≤α<3π2,∴3π4≤α+π4<7π4,于是可由cos ⎝ ⎛⎭⎪⎫α+π4=35得到sin ⎝ ⎛⎭⎪⎫α+π4=-45. 即22cos α-22sin α=35,22sin α+22cos α=-45. 两式相加得cos α=-210,两式相减得sin α=-7210. 而cos ⎝ ⎛⎭⎪⎫2α+π4=22(cos 2α-sin 2α),cos 2α=⎝ ⎛⎭⎪⎫-2102-(-7210)2=-2425, sin 2α=2×⎝ ⎛⎭⎪⎫-210×⎝ ⎛⎭⎪⎫-7210=725. 所以cos ⎝ ⎛⎭⎪⎫2α+π4=22⎝ ⎛⎭⎪⎫-2425-725=-31250. 要点三 给值求角问题例3 已知tan α=13,tan β=-17,且α,β∈(0,π),求2α-β的值.解 ∵tan α=13>0,∴α∈⎝ ⎛⎭⎪⎫0,π2,2α∈(0,π),∴tan 2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴2α∈⎝⎛⎭⎪⎫0,π2,又∵tan β=-17<0,β∈(0,π),∴β∈⎝ ⎛⎭⎪⎫π2,π, ∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34-⎝ ⎛⎭⎪⎫-171+34×⎝ ⎛⎭⎪⎫-17=1,又∵2α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫π2,π,∴2α-β∈(-π,0),∴2α-β=-34π.规律方法 在给值求角时,一般选择一个适当的三角函数,根据题设确定所求角的范围,然后再求出角.其中确定角的范围是关键的一步.跟踪演练3 已知tan α=17,sin β=1010,且α,β为锐角,求α+2β的值.解 ∵tan α=17<1,且α为锐角,∴0<α<π4,又∵sin β=1010<22,且β为锐角,∴0<β<π4, ∴0<α+2β<3π4.由sin β=1010,β为锐角,得cos β=31010, ∴tan β=13,∴tan(α+β)=tan α+tan β1-tan αtan β=12,∴tan(α+2β)=α+β+tan β1-α+ββ=12+131-12×13=1,故α+2β=π4.1.cos 275°+cos 215°+cos 75°cos 15°的值等于( ) A.62 B.32 C.54 D .1+34答案 C解析 原式=sin 215°+cos 215°+12sin 30°=1+14=54.2.sin4π12-cos 4π12等于( ) A .-12 B .-32 C.12 D.32答案 B 解析 原式=⎝⎛⎭⎪⎫sin 2π12+cos 2π12·⎝ ⎛⎭⎪⎫sin 2π12-cos 2π12 =-⎝⎛⎭⎪⎫cos 2π12-sin 2π12=-cos π6=-32. 3.tan 7.5°1-tan 27.5°=________. 答案 1-32解析 原式=12·2tan 7.5°1-tan 27.5°=12·tan 15° =12tan(60°-45°)=12×3-11+3=1-32. 4.设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是________________________________________________________________________. 答案3解析 因为sin 2α=2sin αcos α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-12,sin α=1-cos 2α=32,所以tan α=-3,则tan 2α=2tan α1-tan 2α=-231--32= 3.1.对于“二倍角”应该有广义上的理解,如:8α是4α的二倍;6α是3α的二倍;4α是2α的二倍;3α是32α的二倍;α2是α4的二倍;α3是α6的二倍;α2n =2·α2n +1(n ∈N +).2.二倍角的余弦公式的运用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛.二倍角的常用形式:①1+cos 2α=2cos 2α,②cos 2α=1+cos 2α2,③1-cos 2α=2sin 2α,④sin 2α=1-cos 2α2.一、基础达标1.若sin α2=33,则cos α等于( )A .-23B .-13 C.13 D.23答案 C解析 cos α=1-2sin2α2=1-2×⎝ ⎛⎭⎪⎫332=13. 2.3-sin 70°2-cos 210°的值是( )A.12B.22 C .2 D.32 答案 C解析 原式=3-sin 70°2-12+=-3-cos 20°=2.3.函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是( ) A .π,1 B .π,2 C .2π,1 D .2π,2 答案 A解析 f (x )=sin x cos x +32cos 2x =12sin 2x +32cos 2x =sin ⎝⎛⎭⎪⎫2x +π3.所以最小正周期为π,振幅为1. 故选A.4.若1-tan θ2+tan θ=1,则cos 2θ1+sin 2θ的值为( )A .3B .-3C .-2D .-12答案 A解析 ∵1-tan θ2+tan θ=1,∴tan θ=-12.∴cos 2θ1+sin 2θ=cos 2θ-sin 2θθ+cos θ2=cos θ-sin θcos θ+sin θ=1-tan θ1+tan θ=1-⎝ ⎛⎭⎪⎫-121+⎝ ⎛⎭⎪⎫-12=3. 5.若α∈⎣⎢⎡⎦⎥⎤5π2,7π2,则1+sin α+1-sin α的值为( )A .2cos α2B .-2cos α2C .2sin α2D .-2sin α2答案 D 解析 ∵α∈⎣⎢⎡⎦⎥⎤5π2,7π2,∴α2∈⎣⎢⎡⎦⎥⎤5π4,7π4,∴原式=⎪⎪⎪⎪⎪⎪sin α2+cos α2+⎪⎪⎪⎪⎪⎪sin α2-cos α2=-sin α2-cos α2-sin α2+cos α2=-2sin α2.6.若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于________.答案3解析 由sin 2 α+cos 2α=14得sin 2 α+1-2sin 2 α=1-sin 2 α=cos 2α=14.∵α∈⎝ ⎛⎭⎪⎫0,π2,∴cos α=12,∴α=π3,∴tan α=tan π3= 3.7.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝⎛⎭⎪⎫5π6-2α的值.解 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-255.故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝ ⎛⎭⎪⎫-255+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α =2×55×⎝ ⎛⎭⎪⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35, 所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α=⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45=-4+3310.二、能力提升8.4cos 50°-tan 40°等于( ) A. 2 B.2+32C. 3 D .22-1 答案 C解析 4cos 50°-tan 40°=4cos 50°-sin 40°cos 40°=4cos 50°cos 40°-sin 40°cos 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=+--cos 40°=32cos 20°+32sin 20°cos 40°=3cos 40°cos 40°=3,选C.9.函数y =sin 2x +23sin 2x的最小正周期T 为________________________________________________________________________. 答案 π解析 y =sin 2x +23sin 2x =sin 2x +23×1-cos 2x2=sin 2x -3cos 2x + 3 =2sin ⎝ ⎛⎭⎪⎫2x -π3+3, 所以周期T =2π2=π.10.已知tan θ2=3,则1-cos θ+sin θ1+cos θ+sin θ=______.答案 3解析 1-cos θ+sin θ1+cos θ+sin θ=2sin 2θ2+2sin θ2cosθ22cos 2θ2+2sin θ2cosθ2=2sin θ2⎝ ⎛⎭⎪⎫sin θ2+cos θ22cos θ2⎝⎛⎭⎪⎫cos θ2+sin θ2=tan θ2=3.11.(1)已知π<α<32π,化简1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α;(2)化简:sin 50°(1+3tan 10°). 解 (1)∵π<α<32π,∴π2<α2<34π,∴1+cos α=2|cos α2|=-2cos α2,1-cos α=2|sin α2|=2sin α2.∴1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α=1+sin α-2α2+sin α2+1-sin α2α2-cos α2=α2+sin α22-2α2+sin α2+α2-cosα222α2-cos α2=-2cos α2.(2)原式=sin 50°cos 10°+3sin 10°cos 10°=+cos 10°=2sin 50°sin 40°cos 10°=2sin 40°cos 40°cos 10°=sin 80°cos 10°=1.12.在平面直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫12,cos 2 θ在角α的终边上,点Q (sin 2θ,-1)在角β的终边上,且OP →·OQ →=-12.(1)求cos 2θ的值; (2)求sin(α+β)的值. 解 (1)因为OP →·OQ →=-12,所以12sin 2 θ-cos 2θ=-12,即12(1-cos 2 θ)-cos 2 θ=-12,所以cos 2θ=23, 所以cos 2θ=2cos 2θ-1=13.(2)因为cos 2 θ=23,所以sin 2 θ=13, 所以点P ⎝ ⎛⎭⎪⎫12,23,点Q ⎝ ⎛⎭⎪⎫13,-1, 又点P ⎝ ⎛⎭⎪⎫12,23在角α的终边上, 所以sin α=45,cos α=35. 同理sin β=-31010,cos β=1010, 所以sin(α+β)=sin αcos β+cos αsin β=45×1010+35×⎝ ⎛⎭⎪⎫-31010=-1010. 三、探究与创新13.已知向量a =⎝⎛⎭⎪⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a ·b . (1)求f (x )的最小正周期;(2)求f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值. 解 (1)f (x )=a ·b =cos x ·3sin x -12cos 2x =32sin 2x -12cos 2x =sin ⎝⎛⎭⎪⎫2x -π6. 最小正周期T =2π2=π. 所以f (x )=sin ⎝⎛⎭⎪⎫2x -π6的最小正周期为π. (2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6, 由正弦函数y =sin x 在⎣⎢⎡⎦⎥⎤-π6,5π6上的图象知, f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1. 所以,f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值分别为1,-12.。

第三章《三角恒等变换教材分析》教案新人教B版

第三章《三角恒等变换教材分析》教案新人教B版

数学:第三章《三角恒等变换教材分析》教案(新人教B版必修4)必修4第三章三角恒等变换教材分析(一) 编写特色1.用向量证明和角公式,引导学生用向量研究和差化积公式。

2.建立和角公式与旋转变换之间的联系。

3.融入算法,引导学生找出求正弦函数值的算法。

4.引导学生独立的由和角公式推导出倍角公式与和差化积、积化和差公式。

5.和角公式在三角恒等变换及三角计算中的应用。

(二) 内容结构1.内容编排本章的主要内容是和角公式、倍角公式和半角公式、三角函数的积化和差公式与和差化积公式,为了引起学生学习本章的兴趣,同时为了加强三角变换的实际应用,本章的开篇从一个实际问题出发,通过数学化,得到一个必须通过三角变换才能解决的数学问题,从而激发学生对本章内容的学习兴趣和求知欲。

全章共分三大节。

第一大节,首先利用向量的方法证明了两角差的余弦公式,接着导出两角和的余弦公式,再利用诱导公式推出两角和、差的正弦公式,又利用同角三角函数关系式推出两角和、差的正切公式;第二大节,推导出倍角公式和半角公式。

第三大节,推导出积化和差与和差化积公式,并通过例题讲解以上各公式的应用。

2,地位与作用变换是数学的重要工具,也是数学学习的主要对象之一。

代数变换是学生熟悉的,与代数变换一样,三角变换也是只变其形不变其质,它可以揭示那些外形不同但实质相同的三角函数式之间的内在联系。

在本册第一章,学生接触了同角三角函数式的变换。

在本章,学生将运用向量方法推导两角差的余弦公式,由此出发导出其他的三角恒等变换公式,并运用这些公式进行简单的三角恒等变换,通过本章学习,学生的推理能力和运算能力将得到进一步提高。

三角恒等变换在数学及应用科学中应用广泛,同时有利于发展学生的推理能力和计算能力,本章将通过三角恒等变形揭示一些问题的数学本质。

3.重点与难点本章的重点是掌握和角公式的推导过程;难点是理解和角公式的几何意义。

4.本章知识结构(三)课时分配本章教学时间约8课时,具体分配如下:3.1 和角公式3.1.1 两角和与差的余弦2课时3.1.2 两角和与差的正弦1课时3.1.3 两角和与差的正切1课时3.2 倍角公式和半角公式3.2.1 倍角公式1课时3.2.2 半角的正弦、余弦和正切1课时3.3 三角函数的积化和差与和差化积1课时本章小结1课时课题3.1.1两角和与差的余弦(一)(一)教学目标:知识目标:理解并掌握两角和、差的余弦公式及其推导过程,理解公式的使用条件;会用公式求值能力目标:培养学生观察分析、类比、联想能力;推理能力及交流探讨能力。

第三章三角恒等变换教案

第三章三角恒等变换教案

高中数学必修4 第3章 三角恒等变换 3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单使用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础. 二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不但有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,使用已学知识和方法的水平问题,等等. 三、教学设想: (一)导入:问题1: 我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家能够猜测,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜测是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-= (二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也能够用角α的余弦线来表示。

思考?.1角函数线来探求公式怎样联系单位圆上的三(1) 怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)?)2(的余弦线和余弦线的正弦线怎样作出角βαβα-,、、思考2:怎样联系向量的数量积探求公式?(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?(2)怎样利用向量的数量积的概念的计算公式得到探索结果? 两角差的余弦公式:βαβαβαsin sin cos cos )cos(⋅+⋅=-(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值. 解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin 30222=+=-=⨯=()231cos15cos 4530cos 45cos30sin 45sin 302222=-=+=⨯=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活使用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.思考:此题中没有),2ππα⎝⎛∈,呢? (四)练习:不查表计算以下各式的值:︒︒+︒︒20sin 80sin 20cos 80cos 1)(︒+︒15sin 2315cos 212)(解: ︒︒+︒︒20sin 80sin 20cos 80cos 1)( 2160cos )2080cos(=︒=︒-︒= (五)小结:两角差的余弦公式,首先要理解公式结构的特征,理解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活使用.(1)牢记公式.S S C C C ⋅+⋅=-)(βα(2)在“给值求值”题型中灵活处理已、未知关系. (六)作业3.1.2两角和与差的正弦、余弦、正切公式一、教材分析本节的主要内容是两角和与差的正弦、余弦和正切公式,为了引起学生学习本章的兴趣,理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用从而激发学生对本章内容的学习兴趣和求知欲。

高中数学 第三章 三角恒等变换 3.3 三角函数的积化和

高中数学 第三章 三角恒等变换 3.3 三角函数的积化和

3.3 三角函数的积化和差与和差化积教学分析本节主要包括利用已有的公式进行推导发现.本节的编写意图与特色是教师引导学生发现创造,从而加深理解变换思想,提高学生的推理能力.三角恒等变换所涉及的问题各种各样,内容十分丰富,我们希望能总结出一些有规律性的数学思想、方法和技巧,提高对三角变换的理性认识.科学发现是从问题开始的,没有问题就不可能有深入细致的观察.为了让学生经历一个完整的探索发现过程,教科书从三角函数运算的角度提出了研究课题.这是从数学知识体系的内部发展需要提出问题的方法.用这种方法提出问题可以更好地揭示知识间的内在联系,体会推理论证和逻辑思维在数学发现活动中的作用.从运算的角度提出问题,还可以帮助学生认识到三角变换也是一种运算,丰富对运算的认识,从而把对三角变换的研究纳入整体的数学体系之中.类比对数运算,由两角和与差的正弦公式易推出积化和差公式.在推导了公式sin α+sin β=2sin α+β2cos α-β2以后,可以让学生推导其余的和差化积及积化和差公式.和差化积、积化和差不要求记忆,都在试卷上告诉我们,要注意不应该加大三角变换的难度,不要在三角变换中“深挖洞”.高考在该部分内容上的难度是一降再降.三维目标1.通过类比推导出积化和差与和差化积公式.体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.2.通过和差化积公式和积化和差公式的推导,让学生经历数学探索和发现过程,激发学生学好数学的欲望和信心.重点难点教学重点:推导积化和差、和差化积公式.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.课时安排 1课时教学过程导入新课思路1.(复习导入)在前面的几节课中我们学习了两角和与差的三角函数的计算公式,并运用这些公式解决了一些三角函数的化简、求值以及三角恒等式的证明问题,在我们运用三角函数知识解决一些问题的时候,我们也会遇到形如sin α+sin β,sin α-sin β,cos α+cos β,cos α-cos β的形式,那么,我们能否运用角α、β的有关三角函数值表示它们呢?这就是我们本节课所要研究的问题.思路2.(类比导入)我们知道log a m +log a n =log a (mn),那么sin α+sin β等于什么呢? 推进新课 新知探究 提出问题你能从两角和与差的正、余弦公式中发现些什么?积化和差与和差化积公式的特点是什么?活动:考察公式cos(α+β)=cos αcos β-sin αsin β; cos(α-β)=cos αcos β+sin αsin β; sin(α+β)=sin αcos β+cos αsin β; sin(α-β)=sin αcos β-cos αsin β.从公式结构上看,把cos αcos β,sin αsin β,sin αcos β,cos αsin β分别看成未知数解方程组,则容易得到如下结论:cos αcos β=12[cos(α+β)+cos(α-β)];sin αsin β=-12[cos(α+β)-cos(α-β)];sin αcos β=12[sin(α+β)+sin(α-β)];cos αsin β=12[sin(α+β)-sin(α-β)].从上面这四个公式,又可以得出sin(α+β)+sin(α-β)=2sin αcos β; sin(α+β)-sin(α-β)=2cos αsin β; cos(α+β)+cos(α-β)=2cos αcos β; cos(α+β)-cos(α-β)=-2sin αsin β.设α+β=x ,α-β=y ,则α=x +y 2,β=x -y2.这样,上面得出的四个式子可以写成sinx +siny =2sin x +y 2cos x -y2;sinx -siny =2cos x +y 2sin x -y2;cosx +cosy =2cos x +y 2cos x -y2;cosx -cosy =-2sin x +y 2sin x -y2.利用这四个公式和其他三角函数关系式,我们可把某些三角函数的和或差化成积的形式.教师还可引导学生用向量运算证明和差化积公式. 如图1所示.作单位圆,并任作两个向量图1OP →=(cos α,sin α),OQ →=(cos β,sin β).取的中点M ,则M(cos α+β2,sin α+β2).连接PQ ,OM ,设它们相交于点N ,则点N 为线段PQ 的中点且ON⊥PQ.∠xOM 和∠MOQ 分别为α+β2,α-β2.探索三个向量OP →,ON →,OQ →之间的关系,并用两种形式表达点N 的坐标,以此导出和差化积公式cos α+cos β=2cos α+β2cos α-β2;sin α+sin β=2sin α+β2cos α-β2.讨论结果:略应用示例例 1已知sinx -cosx =12,求sin 3x -cos 3x 的值.活动:教师引导学生利用立方差公式进行对公式变换化简,然后再求解.由于(a -b)3=a 3-3a 2b +3ab 2-b 3=a 3-b 3-3ab(a -b),∴a 3-b 3=(a -b)3+3ab(a -b).解完此题后,教师引导学生深挖本例的思想方法,由于sinxcosx 与sinx±cosx 之间的转化,提升学生的运算、化简能力及整体代换思想.本题也可直接应用上述公式求之,即sin 3x -cos 3x =(sinx-cosx)3+3sinxcosx(sinx -cosx)=1116.此方法往往适用于sin 3x±cos 3x 的化简问题之中.解:由sinx -cosx =12,得(sinx -cosx)2=14,即1-2sinxcosx =14,∴sinxcosx=38.∴sin 3x -cos 3x =(sinx -cosx)(sin 2x +sinxcosx +cos 2x)=12(1+38)=1116.例 2已知cos 4A cos 2B +sin 4A sin 2B =1,求证:cos 4B cos 2A +sin 4Bsin 2A=1.活动:此题可从多个角度进行探究,由于所给的条件等式与所要证明的等式形式一致,只是将A 、B 的位置互换了,因此应从所给的条件等式入手,而条件等式中含有A 、B 角的正、余弦,可利用平方关系来减少函数的种类.从结构上看,已知条件是a 2+b 2=1的形式,可利用三角代换.证法一:∵cos 4A cos 2B +sin 4A sin 2B=1,∴cos 4A·sin 2B +sin 4A·cos 2B =sin 2B·cos 2B.∴cos 4A(1-cos 2B)+sin 4A·cos 2B =(1-cos 2B)cos 2B ,即cos 4A -cos 2B(cos 4A -sin 4A)=cos 2B -cos 4B.∴cos 4A -2cos 2Acos 2B +cos 4B =0.∴(cos 2A -cos 2B)2=0.∴cos 2A =cos 2B.∴sin 2A =sin 2B.∴cos 4B cos 2A +sin 4B sin 2A=cos 2B +sin 2B =1. 证法二:令cos 2A cosB =cos α,sin 2A sinB =sin α,则cos 2A =cosBcos α,sin 2A =sinBsin α.两式相加得1=cosBcos α+sinBsin α,即cos(B -α)=1.∴B-α=2k π(k∈Z ),即B =2k π+α(k∈Z ).∴cos α=cosB ,sin α=sinB.∴cos 2A =cosBcos α=cos 2B ,sin 2A =sinBsin α=sin 2B.∴cos 4B cos 2A +sin 4B sin 2A =cos 4B cos 2B +sin 4B sin 2B =cos 2B +sin 2B =1.例3 证明1+sinx cosx =tan(π4+x 2).活动:教师引导学生思考,对于三角恒等式的证明,可从三个角度进行推导:①左边→右边;②右边→左边;③左边→中间条件←右边.教师可以鼓励学生试着多角度的化简推导.注意式子左边包含的角为x ,三角函数的种类为正弦,余弦,右边是半角x2,三角函数的种类为正切.证法一:从右边入手,切化弦,得tan(π4+x 2)=π4+x 2π4+x 2=sin π4cos x 2+cos π4sin x 2cos π4cos x 2-sin π4sin x 2=cos x 2+sinx 2cos x 2-sinx 2,由左右两边的角之间的关系,想到分子分母同乘以cos x 2+sin x2,得x 2+sin x 22x 2+sin x 2x 2-sin x 2=1+sinxcosx.证法二:从左边入手,分子分母运用二倍角公式的变形,降倍升幂,得 1+sinxcosx=x 2+sin x 22x 2+sin x 2x 2-sin x 2=cos x 2+sin x 2cos x 2-sin x 2.由两边三角函数的种类差异,想到弦化切,即分子分母同除以cos x2,得1+tan x 21-tan x 2=tan π4+tanx 21-tan π4tanx 2=tan(π4+x 2). 变式训练求证:1+sin4θ-cos4θ2tan θ=1+sin4θ+cos4θ1-tan 2θ. 分析:运用比例的基本性质,可以发现原式等价于1+sin4θ-cos4θ1+sin4θ+cos4θ=2tan θ1-tan 2θ,此式右边就是tan2θ. 证明:原等式等价于1+sin4θ-cos4θ1+sin4θ+cos4θ=tan2θ.而上式左边=sin4θ+-cos4θsin4θ++cos4θ=2sin2θcos2θ+2sin 22θ2sin2θcos2θ+2cos 22θ=2sin2θθ+sin2θ2cos2θθ+cos2θ=tan2θ=右边.∴上式成立,即原等式得证.课堂小结1.先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2.教师画龙点睛:本节学习的数学方法:公式的使用,换元法,方程思想,等价转化,三角恒等变形的基本手段.作业课本本节习题3—3A 组1~4,B 组1~4.设计感想1.本节主要学习了怎样推导积化和差,和差化积公式,在解题过程中,应注意对三角式的结构进行分析,根据结构特点选择合适公式,进行公式变形.还要思考一题多解、一题多变,并体会其中的一些数学思想,如换元、方程思想,“1”的代换,逆用公式等.2.在近几年的高考中,对三角变换的考查仍以基本公式的应用为主,突出对求值的考查.特别是对平方关系及和角公式的考查应引起重视,其中遇到对符号的判断是经常出问题的地方,同时要注意结合诱导公式的应用.备课资料一、一道给值求角类问题错解点击. 解决给值求角这类问题时,要注意根据问题给出的三角函数值及角的范围,选择适当的三角函数,确定所求角的恰当范围,利用函数值在此范围内的单调性求出所求角.解答此类问题一定要重视角的范围对三角函数值的制约关系,常见的错误为不根据已知条件确定角的范围而盲目求值,造成增解.例题:若sin α=55,sin β=1010,α、β均为锐角,求α+β的值. 错解:∵α为锐角, ∴cos α=1-sin 2α=255.又β为锐角,∴cos β=1-sin 2β=31010.∴sin(α+β)=sin αcos β+cos αsin β=22. ∵α,β均为锐角, ∴0°<α+β<180°. ∴α+β=45°或135°.点评:上述解法欠严密,仅由sin(α+β)=22,0°<α+β<180°而得到α+β=45°或135°是正确的.但题设中sin α=55<12,sin β=1010<12,使得0°<α+β<60°,故上述结论是错误的.事实上,由0°<α+β<180°,应选择求cos(α+β)=22(∵余弦函数在此范围内是单调的),易求得cos(α+β)=22,则α+β=45°,因此,解决给值求角这类问题一般分三步:第一步是确定角所在的范围;第二步是求角的某一个三角函数值(要尽量使所选择的三角函数在所确定的范围内单调);第三步是得到结论,求得所求角的值.二、如何进行三角恒等变式的证明. 三角恒等式证明的基本方法:(1)可从一边开始,证得它等于另一边,一般是由繁到简. (2)可用左右归一法,即证明左右两边都等于同一个式子. (3)可采用切割化弦,将其转化为所熟知的正、余弦. (4)可用分析法,即假定结论成立,经推理论证,找到一个显然成立的式子(或已知条件). (5)可用拼凑法,即针对题设与结论间的差异,有针对性地变形,以消除其差异,简言之,即化异求同.(6)可采用比较法,即“左边右边=1”或“左边-右边=0”.证明三角恒等式的实质是消除等式两边的差异,就是有目的地进行化简,因此,在证明时要注意将上述方法综合起来考虑,要灵活运用公式,消除差异,其思维模式可归纳为三点:(1)发现差异:观察角、函数、运算结构的差异;(2)寻求联系:运用相关公式,找出转化差异的联系; (3)合理转化:选择恰当的公式,实现差异的转化.二、备用习题1.已知tanx =-3,则sin2x =________,cos2x =________. 2.已知tan α=2,则cos2α等于( )A .-13B .±13C .-35D .±353.下列各式化成和差的形式分别是: (1)sin(π3+2x)cos(π3-2x);(2)cos α+β2sin α-β2.4.设α、β≠k π+π2(k∈Z ),且cos2α+sin 2β=0.求证:tan 2α=2tan 2β+1.5.已知△ABC 的三个内角A 、B 、C 满足A +C =2B ,且1cosA +1cosC =-2cosB ,试求cosA -C2的值.6.不查表求值: tan6°tan42°tan66°tan78°. 参考答案:1.-35 -452.C3.(1)34+12sin4x ;(2)12(sin α-sin β). 4.证明:∵cos2α+sin 2β=0, ∴1-tan 2α1+tan 2α+sin 2βsin 2β+cos 2β=0, 即1-tan 2α1+tan 2α+tan 2β1+tan 2β=0. 化简得tan 2α=2tan 2β+1.5.由题设条件,知B =60°,A +C =120°,设A -C2=α,则A =60°+α,C =60°-α.代入1cosA +1cosC =-2cosB ,可得1+α+1-α=-22,即2cos α-3sin α+2cos α+3sin α=-2,可化为4cos 2α+2cos α-3=0, 解得cos α=22或-324(舍去). ∴cos A -C 2=22.6.原式=tan54°tan6°tan66°tan42°tan78°tan54°=-+tan54°=tan18°tan42°tan78°tan54°=-+tan54°=tan54°tan54°=1.。

[k12精品]高中数学第三章三角恒等变换3.2倍角公式和半角公式3.2.1倍角公式示范教案新人教B版必修4

[k12精品]高中数学第三章三角恒等变换3.2倍角公式和半角公式3.2.1倍角公式示范教案新人教B版必修4

3.2.1 倍角公式示范教案 整体设计教学分析倍角公式是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具,通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律,通过推导还让学生加深理解了高中数学由一般到特殊的化归思想.因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义.本节课通过教师提出问题、设置情境及对和角公式中α、β关系的特殊情形α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师要引导学生自己去做,因为,《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验.”在实际教学过程中不要过多地补充一些高技巧、高难度的练习,否则就违背了新课标在这一节的编写意图和新课改精神.三维目标1.通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力.2.通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.3.通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.重点难点教学重点:二倍角公式推导及其应用.教学难点:灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式. 课时安排 1课时教学过程 导入新课思路1.(复习导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后让学生默写这六个公式.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课.思路2.(问题导入)出示问题,让学生计算,若sin α=35,α∈(π2,π),求sin2α,cos2α的值.学生会很容易看出:sin2α=sin(α+α)=sin αcos α+cos αsin α=2sin αcos α的,以此展开新课,并由此展开联想推出其他公式.推进新课新知探究 提出问题还记得和角的正弦、余弦、正切公式吗?请学生默写出来,并由一名学生到黑板默写你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式? 在得到的C 2α公式中,还有其他表示形式吗? 细心观察二倍角公式结构,有什么特征呢?能看出公式中角的含义吗?思考过公式成立的条件吗?让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一组,做填数游戏:=,=cos 2 -sin2思考过公式的逆用吗?想一想C 2α还有哪些变形?请思考以下问题:sin2α=2sin α吗?cos2α=2cos α吗?tan2α=2tan α吗 活动:本节总的指导思想是教师引导学生自己推导倍角公式.学生默写完问题(1)后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α,β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α,β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题(2),然后找一名学生到黑板进行简化,其他学生在自己的座位上简化,教师再与学生一起集体订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉.sin(α+β)=sin αcos β+cos αsin β⇒sin2α=2sin αcos α(S 2α);cos(α+β)=cos αcos β-sin αsin β⇒cos2α=cos 2α-sin 2α(C 2α);tan(α+β)=tan α+tan β1-tan αtan β ⇒tan2α=2tan α1-tan 2α(T 2α). 这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”.教师适时提出问题(3),点拨学生结合sin 2α+cos 2α=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式.sin2α=2sin αcos α2αcos2α=cos 2α-sin 2α2αtan2α=2tan α1-tan 2α2αcos2α=2cos 2α-1cos2α=1-2sin 2α这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了α的三角函数与2α的三角函数之间的关系.问题(4),教师指导学生,这组公式用途很广,并与学生一起观察公式的特征与记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角、二倍角的正弦是单项式,余弦是多项式,正切是分式.问题(5),因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;(Ⅳ)公式(S 2α),(C 2α)中的角α没有限制,都是α∈R ,但公式(T 2α)需在α≠12k π+π4和α≠k π+π2(k∈Z )时才成立,这一条件限制要引起学生的注意.但是当α=k π+π2,k∈Z 时,虽然tan α不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.问题(6),填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,α2是α4的二倍,3α是3α2的二倍,α3是α6的二倍,π2-α是π4-α2的二倍等,所有这些都可以应用二倍角公式. 例如:sin α2=2sin α4cos α4,cos α3=cos 2α6-sin 2α6等等.问题(7),本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.如:sin3αcos3α=12sin6α,4sin α4cos α4=2(2sin α4cos α4)=2sin α2,2tan40°1-tan 240°=tan80°,cos 22α-sin 22α=cos4α,tan2α=2tan α(1-tan 2α)等等. 问题(8),一般情况下:sin2α≠2sin α,cos2α≠2cos α,tan2α≠2tan α.若sin2α=2sin α,则2sin αcos α=2sin α,即sin α=0或cos α=1,此时α=k π(k∈Z ).若cos2α=2cos α,则2cos 2α-2cos α-1=0,即cos α=1-32(cos α=1+32舍去).若tan2α=2tan α,则2tan α1-tan 2α=2tan α,∴tan α=0,即α=k π(k∈Z ). 讨论结果:(1)~(8)略. 应用示例思路1例 1已知sin α=513,α∈(π2,π),求sin2α,cos2α,tan2α的值.活动:教师引导学生分析题目中角的关系,观察所给条件与结论的结构,注意二倍角公式的选用,领悟“倍角”是相对的这一换元思想.让学生体会“倍”的深刻含义,它是描述两个数量之间关系的.本题中的已知条件给出了α的正弦值.由于2α是α的二倍角,因此可以考虑用倍角公式.本例是直接应用二倍角公式解题,目的是为了让学生初步熟悉二倍角的应用,理解二倍角的相对性,教师大胆放手,可让学生自己独立探究完成.解:因为sin α=513,α∈(π2,π),所以cos α=-1-sin 2α=-1-5132=-1213, sin2α=2sin αcos α=2×513×(-1213)=-120169, cos2α=cos 2α-sin 2α=(-1213)2-(513)2=119169,tan2α=sin2αcos2α=-120169÷119169=-120119.点评:学生由问题中条件与结论的结构不难想象出解法,但要提醒学生注意,在解题时注意优化问题的解答过程,使问题的解答简捷、巧妙、规范,并达到熟练掌握的程度.本节变式训练1.y =(sinx -cosx)2-1是( )A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数 答案:D 2.若cos2αα-π4=-22,则cos α+sin α的值为( ) A .-72 B .-12 C.12 D.72 答案:C 3.下列各式中,值为32的是( ) A .2sin15°-cos15° B .cos 215°-sin 215°C .2sin 215°-1D .sin 215°+cos 215° 答案:B例 2证明1+sin2θ-cos2θ1+sin2θ+cos2θ=tan θ.活动:教师可点拨学生想一想,到现在为止,所学的证明三角恒等式的方法大致有几种:从复杂一端化向简单一端;两边化简,中间碰头;化切为弦;还可以利用分析综合法解决,有时几种方法会同时使用等.对找不到思考方向的学生,教师点出:可否再添加一种,化倍角为单角?这可否成为证明三角恒等式的一种方法?再适时引导,前面学习同角三角函数的基本关系时曾用到“1”的代换,对“1”的妙用大家深有体会,这里可否在“1”上做做文章?待学生探究解决方法后,可找几个学生到黑板书写解答过程,以便对照点评及给学生以启发.点评时对能够善于运用所学的新知识解决问题的学生给予赞扬;对暂时找不到思路的学生给予点拨、鼓励.强调“1”的妙用很妙,妙在它在三角恒等式中一旦出现,在证明过程中就会起到至关重要的作用,在今后的证题中,万万不要忽视它.证明:方法一:左=sin2θ+-cos2θsin2θ++cos2θ=2sin θcos θ++1-2cos 2θ2sin θcos θ++2cos 2θ-=sin θcos θ+1-cos 2θsin θcos θ+cos 2θ=sin θcos θ+sin 2θsin θcos θ+cos 2θ =sin θθ+sin θcos θθ+cos θ=tan θ=右,所以,原式成立. 方法二:左=sin 2θ+cos 2θ+sin2θ+sin 2θ-cos 2θsin 2θ+cos 2θ+sin2θ+cos 2θ-sin 2θ=sin2θ+2sin 2θsin2θ+2cos 2θ=2sin θθ+cos θ2cos θθ+cos θ=tan θ=右.方法三: 左=+sin2θ-cos2θ+sin2θ+cos2θ=2θ+cos 2θ+2sin θ·cos θ-2θ-sin 2θ2θ+cos 2θ+2sin θ·cos θ+2θ-sin 2θ=θ+cos θ2-θ+sin θθ-sinθθ+cos θ2+θ+sin θθ-sinθ=θ+cos θθ+cos θ+sin θ-cos θθ+cos θθ+cos θ+cos θ-sin θ=θ+cos θθθ+cos θθ=tan θ=右.点评:以上几种方法大致遵循以下规律:首先从复杂端化向简单端;第二,化倍角为单角,这是我们今天刚刚学习的;第三,证题中注意对数字的处理,尤其“1”的代换的妙用,请同学们在探究中仔细体会这点.在这道题中通常用的几种方法都用到了,不论用哪一种方法,都要思路清晰,书写规范才是.变式训练1.若角α的终边经过点P(1,-2),则tan2α的值为__________. 答案:432.证明恒等式:sin2θ+sin θ2cos2θ+2sin 2θ+cos θ=tan θ. 证明:左边=2sin θcos θ+sin θ2θ-sin 2θ+2sin 2θ+cos θ =sin θθ+cos θθ+=tan θ=右边.思路2例 1求sin10°sin30°sin50°sin70°的值.活动:本例是一道灵活应用二倍角公式的经典例题,有一定难度,但也是训练学生思维能力的一道好题.本题需要公式的逆用,逆用公式的先决条件是认识公式的本质,要善于把表象的东西拿开,正确捕捉公式的本质属性,以便合理运用公式.教学中教师可让学生充分进行讨论探究,不要轻易告诉学生解法,可适时点拨学生需要做怎样的变化,又需怎样应用二倍角公式.并点拨学生结合诱导公式思考.学生经过探索发现,如果用诱导公式把10°,30°,50°,70°正弦的积化为20°,40°,60°,80°余弦的积,其中60°是特殊角,很容易发现40°是20°的2倍,80°是40°的2倍,故可考虑逆用二倍角公式.解:原式=cos80°cos60°cos40°cos20°=23·sin20°cos20°cos40°cos80°23·2sin20°=sin160°16sin20°=sin20°16sin20°=116.例 2在△ABC 中,cosA =45,tanB =2,求tan(2A +2B)的值.活动:这是本节课本上最后一个例题,结合三角形,具有一定的综合性,同时也是和与差公式的应用问题.教师可引导学生注意在三角形的背景下研究问题,会带来一些隐含的条件,如A +B +C =π,0<A<π,0<B<π,0<C<π,就是其中的一个隐含条件.可先让学生讨论探究,教师适时点拨.学生探究解法时教师进一步启发学生思考由条件到结果的函数及角的联系.由于对2A +2B 与A ,B 之间关系的看法不同会产生不同的解题思路,所以学生会产生不同的解法,不过它们都是对倍角公式、和角公式的联合运用,本质上没有区别.不论学生的解答正确与否,教师都不要直接干预.在学生自己尝试解决问题后,教师可与学生一起比较各种不同的解法,并引导学生进行解题方法的归纳总结.基础较好的班级还可以把求tan(2A +2B)的值改为求tan2C 的值.解法一:在△ABC 中,由cosA =45,0<A<π,得sinA =1-cos 2A =1-452=35. 所以tanA =sinA cosA =35×54=34,tan2A =2tanA1-tan 2A =2×341-342=247. 又tanB =2,所以tan2B =2tanB 1-tan 2B =2×21-22=-43.于是tan(2A +2B)=tan2A +tan2B1-tan2Atan2B =247-431-247-43=44117. 解法二:在△ABC 中,由cosA =45,0<A<π,得sinA =1-cos 2A =1-452=35. 所以tanA =sinA cosA =35×54=34.又tanB =2,所以tan(A +B)=tanA +tanB 1-tanAtanB =34+21-34×2=-112.于是tan(2A +2B)=tan[2(A +B)]=+1-tan2+=-1121--1122=44117. 变式训练化简:1+cos4α+sin4α1-cos4α+sin4α.解:原式=2cos 22α+2sin2αcos2α2sin 22α+2sin2αcos2α=2cos2αα+sin2α2sin2αα+cos2α=1tan2α. 课堂小结1.先由学生回顾本节课都学到了什么?有哪些收获?对前面学过的两角和公式有什么新的认识?对三角函数式子的变化有什么新的认识?怎样用二倍角公式进行简单三角函数式的化简、求值与恒等式证明.2.教师画龙点睛:本节课要理解并掌握二倍角公式及其推导,明白从一般到特殊的思想,并要正确熟练地运用二倍角公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.作业课本本节练习B 组1~4.设计感想 1.新课改的核心理念是:以学生发展为本.本节课的设计流程从回顾→探索→应用,充分体现了“学生主体、主动探索、培养能力”的新课改理念,体现“活动、开放、综合”的创新教学模式.本节在学生探究和角公式的特殊情形中得到了二倍角公式,在这个活动过程中,由一般化归为特殊的基本数学思想方法就深深的留在了学生记忆中.本节课的教学设计流程还是比较流畅的.2.纵观本教案的设计,学生发现二倍角后就是应用,至于如何训练二倍角公式正用,逆用,变形用倒成了次要的了.而学生从探究活动过程中学会了怎样去发现数学规律,又发现了怎样逆用公式及活用公式,那才是深层的,那才是我们中学数学教育的最终目的.3.教学矛盾的主要方面是学生的学,学是中心,会学是目的,根据高中三角函数的推理特点,本节主要是教给学生“回顾公式、探索特殊情形、发现规律、推导公式、学习应用”的探索创新式学习方法.这样做增加了学生温故知新的空间,增强了学生的参与意识,教给了学生发现规律、探索推导、获取新知的途径,让学生真正尝试到探索的喜悦,真正成为教学的主体.备课资料 一、三角变换中的“一致代换”法在三角变换中,“一致代换”法是一种重要的方法,所谓“一致代换”法,即在三角变换中,化“异角”“异名”“异次”为“同角”“同名”“同次”的方法.它主要包括:在三角函数式中,①如果只含同角三角函数,一般应从变化函数名称入手,尽量化为同名函数,常用“化弦法”;②如果含有异角,一般应从变化角入手,尽量化不同角为同角,变复角为单角;③如果含有异次幂,一般利用升幂或降幂公式化异次幂为同次幂.二、备用习题1.求值:1sin10°-3cos10°.2.化简:cos36°cos72°.3.化简:cos αcos α2cos α22cos α23·…·cos α2n -1.4.求值:sin6°sin42°sin66°sin78°.5.已知向量m =(sinA ,cosA),n =(1,-2),且m·n =0. (1)求tanA 的值;(2)求函数f(x)=cos2x +tanAsinx(x∈R )的值域.6.已知cos(α-β2)=-19,sin(α2-β)=23,且π2<α<π,0<β<π2,求cos(α+β)的值.7.已知cos(x -π4)=210,x∈(π2,3π4).(1)求sinx 的值; (2)求sin(2x +π3)的值.参考答案:1.解:原式=cos10°-3sin10°sin10°cos10°=12cos10°-32sin10°cos10° =-cos30°sin2sin10°cos10°=-sin20°=4.2.解:原式=2sin36°cos36°·cos72°2sin36°=2sin72°cos72°4sin36°=sin144°4sin36°=14.3.解:先将原式同乘除因式sin α2n -1,然后逐次使用倍角公式,则原式=sin2α2nsin α2n -1.4.解:原式=sin6°cos48°cos24°cos12°=sin6°cos12°cos24°cos48° =24cos6°sin6°cos12°cos24°cos48°24cos6°=sin96°24cos6°=cos6°16cos6°=116. 5.解:(1)由题意,得m·n =sinA -2cosA =0,因为cosA≠0,所以tanA =2.(2)由(1)知tanA =2,得f(x)=cos2x +2sinx =1-2sin 2x +2sinx =-2(sinx -12)2+32,因为x∈R ,所以sinx∈[-1,1].当sinx =12时,f(x)有最大值32;当sinx =-1时,f(x)有最小值-3,所以所求函数f(x)的值域是[-3,32].6.∵cos(α-β2)=-19,π2<α<π,0<β<π2,∴π2<α-β2<π. ∴sin(α-β2)=459.∵sin(α2-β)=23,π2<α<π,0<β<π2,∴0<α2-β<π2.∴cos(α2-β)=53.∵cosα+β2=cos[(α-β2)-(α2-β)]=cos(α-β2)cos(α2-β)+sin(α-β2)sin(α2-β) =(-19)×53+459×23=7275,∴cos(α+β)=2cos2α+β2-1=-239729. 7.解:(1)因为x∈(π2,3π4),所以x -π4∈(π4,π2).于是sin(x -π4)=1-cos2-π4=7210, sinx =sin[(x -π4)+π4]=sin(x -π4)cos π4+cos(x -π4)sin π4=7210×22+210×22=45. (2)因为x∈(π2,3π4),故cosx =-1-sin 2x =-1-452=-35,sin2x =2sinxcosx =-2425,cos2x =2cos 2x -1=-725.所以sin(2x +π3)=sin2xcos π3+cos2xsin π3=-24+7350.。

人教B版高中数学必修四第三章 三角恒等变换.docx

人教B版高中数学必修四第三章  三角恒等变换.docx

第三章三角恒等变换§3.1 和角公式3.1.1两角和与差的余弦课时目标1.会用向量的数量积推导两角差的余弦公式.2.能利用两角和与差的余弦公式进行三角函数式的化简和求值.1.两角差的余弦公式:Cα-β:cos (α-β)=________________________________________________________.2.两角和的余弦公式:在两角差的余弦公式中,以-β替代β就得到两角和的余弦公式.即: cos (α+β)=cos [α-(-β)]=________________________________________________=________________________________________________________________________.一、选择题1.cos 15°cos 105°+sin 15°sin 105°等于( )A .-12B .12C .0D .12.化简cos (α+β)cos α+sin (α+β)sin α得( ) A .cos α B .cos βC .cos (2α+β)D .sin (2α+β)3.化简cos (45°-α)cos (α+15°)-sin (45°-α)sin (α+15°)得( ) A .12 B .-12 C .32 D .-324.若cos (α-β)=55,cos 2α=1010,并且α、β均为锐角且α<β,则α+β的值为( )A .π6B .π4C .3π4D .5π65.若sin (π+θ)=-35,θ是第二象限角,sin ⎝ ⎛⎭⎪⎫π2+φ=-255,φ是第三象限角,则cos (θ-φ)的值是( )A .-55B .55C .11525 D . 56.若sin α+sin β=1-32,cos α+cos β=12, 则cos (α-β)的值为( ) A .12 B .-32 C .34 D .1 二、填空题7.若cos (α-β)=13,则(sin α+sin β)2+(cos α+cos β)2=________.8.已知cos (α+β)=13,cos (α-β)=12,则tan αtan β=________.9.已知sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,则cos (α-β)的值是________.10.已知α、β均为锐角,且sin α=55,cos β=1010,则α-β的值为________.三、解答题11.已知tan α=43,cos (α+β)=-1114,α、β均为锐角,求cos β的值.12.已知cos (α-β)=-45,sin (α+β)=-35,π2<α-β<π,3π2<α+β<2π,求β的值.能力提升13.已知cos (α-β2)=-19,sin (α2-β)=23,且π2<α<π,0<β<π2,求cos α+β2的值.14.已知α、β、γ∈⎝⎛⎭⎪⎫0,π2,sin α+sin γ=sin β,cos β+cos γ=cos α,求β-α的值.1.给式求值或给值求值问题,即由给出的某些函数关系式(或某些角的三角函数值),求另外一些角的三角函数值,关键在于“变式”或“变角”,使“目标角”换成“已知角”.注意公式的正用、逆用、变形用,有时需运用拆角、拼角等技巧.2.“给值求角”问题,实际上也可转化为“给值求值”问题,求一个角的值,可分以下三步进行:①求角的某一三角函数值;②确定角所在的范围(找一个单调区间);③确定角的值. 确定用所求角的哪种三角函数值,要根据具体题目而定.第三章 三角恒等变换 §3.1 和角公式3.1.1 两角和与差的余弦答案知识梳理1.cos αcos β+sin αsin β 2.cos αcos (-β)+sin α·sin (-β) cos αcos β-sin αsin β 作业设计 1.C 2.B3.A [原式=cos (α-45°)cos (α+15°)+sin (α-45°)sin (α+15°)=cos [(α-45°)-(α+15°)]=cos (-60°)=12.]4.C [sin (α-β)=-255(-π2<α-β<0).sin 2α=31010, ∴cos (α+β)=cos [2α-(α-β)]=cos 2αcos (α-β)+sin 2αsin (α-β)=1010×55+⎝ ⎛⎭⎪⎫31010×⎝ ⎛⎭⎪⎫-255=-22, ∵α+β∈(0,π),∴α+β=3π4.]5.B [∵sin (π+θ)=-35,∴sin θ=35,∵θ是第二象限角,∴cos θ=-45.∵sin ⎝ ⎛⎭⎪⎫π2+φ=-255,∴cos φ=-255, ∵φ是第三象限角,∴sin φ=-55.∴cos (θ-φ)=cos θcos φ+sin θsin φ=⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-255+35×⎝ ⎛⎭⎪⎫-55=55.] 6.B [由题意知⎩⎪⎨⎪⎧sin α+sin β=1-32①cos α+cos β=12 ②①2+②2⇒cos (α-β)=-32.] 7.83解析 原式=2+2(sin αsin β+cos αcos β)=2+2cos (α-β)=83.8.15解析 由⎩⎪⎨⎪⎧cos (α+β)=cos αcos β-sin αsin β=13cos (α-β)=cos αcos β+sin αsin β=12,∴⎩⎪⎨⎪⎧sin α sin β=112cos αcos β=512,∴tan αtan β=sin αsin βcos αcos β=15.9.-12解析 由⎩⎪⎨⎪⎧sin α+sin β=-sin γ ①cos α+cos β=-cos γ ②①2+②2⇒2+2(sin αsin β+cos αcos β)=1⇒cos (α-β)=-12.10.-π4解析 ∵α、β∈⎝ ⎛⎭⎪⎫0,π2,∴cos α=255,sin β=31010,∵sin α<sin β,∴α-β∈⎝ ⎛⎭⎪⎫-π2,0.∴cos (α-β)=cos αcos β+sin αsin β =255×1010+55×31010=22,∴α-β=-π4.11.解 ∵α∈⎝ ⎛⎭⎪⎫0,π2,tan α=43,∴sin α=437,cos α=17.∵α+β∈(0,π),cos (α+β)=-1114,∴sin (α+β)=5314.∴cos β=cos [(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α =⎝ ⎛⎭⎪⎫-1114×17+5314×437=12. 12.解 ∵π2<α-β<π,cos (α-β)=-45,∴sin (α-β)=35.∵32π<α+β<2π,sin (α+β)=-35, ∴cos (α+β)=45.∴cos 2β=cos [(α+β)-(α-β)]=cos (α+β)cos (α-β)+sin (α+β)sin (α-β) =45×⎝ ⎛⎭⎪⎫-45+⎝ ⎛⎭⎪⎫-35×35=-1. ∵π2<α-β<π,32π<α+β<2π, ∴π2<2β<3π2,∴2β=π,∴β=π2. 13.解 ∵π2<α<π,∴π4<α2<π2.∵0<β<π2,∴-π2<-β<0,-π4<-β2<0.∴π4<α-β2<π,-π4<α2-β<π2. 又cos (α-β2)=-19<0,sin (α2-β)=23>0,∴π2<α-β2<π,0<α2-β<π2. ∴sin (α-β2)=1-cos 2(α-β2)=459.cos (α2-β)=1-sin 2(α2-β)=53.∴cos α+β2=cos [(α-β2)-(α2-β)]=cos (α-β2)cos (α2-β)+sin (α-β2)sin (α2-β)=(-19)×53+459×23=7527.14.解 由已知,得sin γ=sin β-sin α,cos γ=cos α-cos β.平方相加得(sin β-sin α)2+(cos α-cos β)2=1.∴-2cos (β-α)=-1,∴cos (β-α)=12,∴β-α=±π3.∵sin γ=sin β-sin α>0, ∴β>α,∴β-α=π3.。

人教B版高中数学必修四《第三章 三角恒等变换 3.1 和角公式 3.1.2 两角和与差的正弦》_4

人教B版高中数学必修四《第三章 三角恒等变换 3.1 和角公式 3.1.2 两角和与差的正弦》_4

教 目标 知识与技能: 通过两角和与差的正弦、余弦、正切公式的运用,包括公式的直接运用与公式的逆用,会进行简单的求值、化简;有目的的化简函数。

过程与方法: 在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、正切公式。

情感、态度、价值观: 通过知识的探究过程培养学生认真分析的良好的习惯及勇于探索精神,激发学生的学习兴趣。

重点 两角和与差的正弦和正切公式的推导,及运用公式进行简单的求值。

难点 灵活运用所学公式进行求值、化简。

教学方法探究学习,小组讨论、学案导学教学手段投影仪,多媒体 教 学 过 程设 计 意 图 一、知识回顾学生活动:回顾复习,完成两角差与和的余弦公式的填空。

二、公式推导思考1:上面学生回顾复习了两角和与差的余弦公,两角和与差的正弦公式是怎样的呢??)(cos =-βα ?)(cos =+βα师生活动: 引导学生回答)(cos βα+是怎样由)(cos βα-推导出来的?思考2:我们利用什么公式来实现正、余弦的互化呢? 学生活动:学生可能有的想到利用诱导公式来化余弦为正弦即引导学生得出:sin(α+β)=cos [2π-(α+β)]=cos [(2π-α)-β]合作探究:(分小组讨论完成下面的推导)cos [(2π-α)-β]=cos(2π-α)cos β+sin(2π-α)sin β =sin αcos β+cos αsin β. 思考3:类比cos(α-β)推导出cos(α+β)的方法,我们可以由sin(α+β)的公式推出sin(α-β)的公式吗?β用-β代之,则(下面由学生自己推导,找一个学生回答)学生活动:sin(α-β)=sin [α+(-β)]=sinαcos(-β)+cosαsin(-β)设计意图:由复习引入新课,激发学生的成功喜悦,同时引起学生对新知识的思考和探索,激发学生的学习兴趣,增强学生的求知欲望.(也有的想到利用同角的平方和关系式sin 2α+cos 2α=1来互化,此法让学生课下进行)设计意图:合作探究,让学生小组讨论,自己推导出两角差的正弦公式,加深学生对知识的理解。

高中数学第三章三角恒等变换3.3三角函数的积化和差与和差化积教案新人教B版必修4

高中数学第三章三角恒等变换3.3三角函数的积化和差与和差化积教案新人教B版必修4
教学流程
(一)课前准备(预计用时:5分钟)
学生预习:
-发放预习材料,引导学生提前了解三角函数积化和差与和差化积的学习内容,标记出有疑问或不懂的地方。
-设计预习问题,如“积化和差与和差化积公式在生活中的应用”,激发学生思考,为课堂学习三角函数的内容做好准备。
教师备课:
-深入研究教材,明确教学目标和教学重难点。
-准备一些典型例题的解析图解,通过图解的方式让学生更清晰地看到解题步骤和思路。
-设计一些互动式电子白板练习,让学生可以在课堂上即时操作,增强互动性和参与感。
3.实验器材:
-虽然本节课不涉及物理实验,但如果条件允许,可以准备一些简单的实验器材,如直角三角形模型、角度测量仪等,用于直观展示三角函数中的角度关系。
- $\sin 30^\circ \cos 45^\circ - \cos 30^\circ \sin 45^\circ = \sin(30^\circ - 45^\circ)$
2.艺术性和趣味性:
回顾旧知:
-简要回顾上节课学习的三角恒等变换内容,帮助学生建立知识之间的联系。
-提出问题,检查学生对旧知的掌握情况,为学习新课打下基础。
(三)新课呈现(预计用时:25分钟)
知识讲解:
-清晰、准确地讲解积化和差与和差化积的知识点,结合实例帮助学生理解。
-突出重点,强调难点,通过对比、归纳等方法帮助学生加深记忆。
学生学习效果
1.知识与技能:
-学生能够理解并掌握三角函数积化和差与和差化积的基本概念和公式。
-学生能够运用积化和差与和差化积的公式进行三角函数的表达式转换和简化计算。
-学生通过课堂练习和课后作业,提高了对三角函数运算的熟练性和准确性。
-学生能够将实际问题中的角度关系转化为数学表达式,解决实际问题。

人教版高中数学必修4第三章三角恒等变换-《3.2简单的三角恒等变换》教案(3)

人教版高中数学必修4第三章三角恒等变换-《3.2简单的三角恒等变换》教案(3)

3.2简单的三角恒等变换教学目的:能运用和(差)角公式、倍角公式进行简单的恒等变换,包括浓度导出积 化和差、和差化积、半角公式,但不要求记住公式。

教学重点:用和(差)角公式、倍角公式进行简单的恒等变换。

教学难点: 例4的教学是本课的难点。

教学过程一、复习提问二倍角公式的正弦、余弦、正切。

二、新课在倍角公式中,“倍角”与“半角”是相对的例1、求证:α+α-=αα+=αα-=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin 222证明:1︒在 α-=α2sin 212cos 中,以α代2α,2α代α 即得: 2sin 21cos 2α-=α ∴2cos 12sin 2α-=α 2︒在 1cos 22cos 2-α=α 中,以α代2α,2α代α 即得: 12cos 2cos 2-α=α ∴2cos 12cos 2α+=α 3︒以上结果相除得:α+α-=αcos 1cos 12tan 2 注意:1︒左边是平方形式,只要知道2α角终边所在象限,就可以开平方。

2︒公式的“本质”是用α角的余弦表示2α角的正弦、余弦、正切 3︒上述公式称之谓半角公式(大纲规定这套公式不必记忆) α+α-±=αα+±=αα-±=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin补充:万能公式:求证:2tan 12tan 2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222α-α=αα+α-=αα+α=α 例2、求证: (1)sin αcos β=21[sin (α+β)+sin (α-β)] (2)sin θ+sin ϕ=22cos 2sin ϕθφθ-+ 例3、求函数y =sinx +3cosx 的周期,最大值和最小值。

解:y =sinx +3cosx=2(x x cos 23sin 21+) =2(3sin cos 3cossin ππx x +) =2)3sin(π+x所以,所求函数的周期为2π,最大值为2,最小值为-2。

数学:第三章《三角恒等变换教材分析》教案(新人教B版必修4)

数学:第三章《三角恒等变换教材分析》教案(新人教B版必修4)

数学:第三章《三角恒等变换教材分析》教案(新人
教B 版必修4)
必修4 第三章三角恒等变换教材分析
(一) 编写特色
1.用向量证明和角公式,引导学生用向量研究和差化积公式。

2.建立和角公式与旋转变换之间的联系。

3.融入算法,引导学生找出求正弦函数值的算法。

4.引导学生独立的由和角公式推导出倍角公式与和差化积、积化和差公式。

5.和角公式在三角恒等变换及三角计算中的应用。

(二) 内容结构
1.内容编排
本章的主要内容是和角公式、倍角公式和半角公式、三角函数的积化和差公式与和差化积公式,为了引起学生学习本章的兴趣,同时为了加强三角变换的实际应用,本章的开篇从一个实际问题出发,通过数学化,得到一个必须通过三角变换才能解决的数学问题,从而激发学生对本章内容的学习兴趣和求知欲。

全章共分三大节。

第一大节,首先利用向量的方法证明了两角差的余弦公式,接着导出两角和的余弦公式,再利用诱导公式推出两角和、差的正弦公式,又利用同角三角函数关系式推出两角和、差的正切公式;
第二大节,推导出倍角公式和半角公式。

第三大节,推导出积化和差与和差化积公式,并通过例题讲解以上各公式的应用。

高中数学第三章三角恒等变换示范教案新人教B版必修420171114373

高中数学第三章三角恒等变换示范教案新人教B版必修420171114373

第三章三角恒等变换示范教案本章知识网络教学分析本章三角函数模型是主线,三角变形是关键.三角函数及其三角恒等变形不仅有着广泛的实际应用,而且是进一步学习中学后续内容和高等数学的基础,因而成为高考中对基础知识、基本技能和基本思想方法考查的重要内容之一.本章特点是公式多,但积化和差与和差化积公式不要求记忆.切实掌握三角函数的基本变形思想是复习掌握好本章的关键.三角函数的恒等变形,不仅在三角函数的化简、求值问题中应用,而且在研究第一章三角函数的图象与性质时、在后续内容解三角形中也应用广泛.解决三角函数的恒等变形问题,其关键在掌握基本变换思想,运用三角恒等变形的主要途径——变角,变函数,变结构,注意公式的灵活应用.三角恒等变形是一种基本技能,从题型上一般表现为对三角式的化简、求值与证明.对所给三角式进行三角恒等变形时,除使用三角公式外,一般还需运用代数式的运算法则或公式.如平方差公式、立方差公式等.对三角公式不仅要掌握其“原形”,更要掌握其“变形”,解题时才能真正达到运用自如,左右逢源的境界.基本变形思想主要是:①化成“三个一”:即化为一个角的一种三角函数的一次方的形式y=Asin(ωx+φ);②化成“两个一”:即化为一个角的一种三角函数的二次型结构,再用配方法求解;③“合二为一”:对于形如asinθ+bcosθ的式子,引入辅助角φ并化成a2+b2sin(θ+φ)的形式(但在这里不要增加难度,仅限于特殊值、特殊角即可).高考对整个三角问题的考查主要集中在三个方面,一是三角函数的图象与性质,包括:定义域、值域、单调性、奇偶性、周期性、对称性等等;二是三角式的恒等变形,包括:化简、证明、直接求值、条件求值、求最值等;三是三角综合运用.特别是结合下一章的解三角形及与向量的交汇更是高考经久不衰的热点.因此复习中要充分运用数形结合的思想,利用向量的工具性,灵活运用三角函数的图象和性质解题,掌握化简和求值问题的解题规律和途径.学完本章后,前一章平面向量更有了用武之地,它是沟通代数、几何、与三角函数的一种重要工具,三角函数又具有较强的渗透力,切实提高三角函数的综合能力是复习好本章的保证.因此,我们可以通过整合,将三角函数,平面向量结成一个知识板块来复习,并进行三角与向量相融合的综合训练,这样更有利于学生对平面向量、三角函数及三角恒等变形的深刻理解及运用.三维目标1.通过复习全章知识方法,掌握两角和与差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式.并能正确地运用上述公式化简三角函数式、求某些角的三角函数值、证明较简单的三角恒等式以及解决一些简单的实际问题.2.掌握简单的三角恒等变形的基本思想方法,并结合向量解决一些基本的综合问题.3.通过三角恒等变换体会数学的逻辑性的特征,进一步理解数学的化归思想、方程思想和代换意识,认识事物之间是相互依存、相互联系的.重点难点教学重点:和角公式、差角公式、倍角公式及其灵活应用.教学难点:和角公式、差角公式、倍角公式在三角恒等变形中的综合运用.课时安排1课时教学过程导入新课思路1.(直接导入)在第一章三角函数的基础上,我们一起又探究学习了第三章简单三角恒等变形的有关知识,并掌握了一定的分析问题与解决问题的方法,提高了我们的思维能力与运算能力.现在我们一起对本章进行小结与复习,进一步巩固本章所学的知识,请同学们画出本章的知识框图,由此进入复习.思路2.(问题导入)本章学习了几个公式?推导这些公式的过程中你用到了哪些基本的数学思想方法?你是从哪几个基本方面认识三角函数式的特点的?它们之间存在着怎样的逻辑关系?三角式的变形与代数式的变形有什么相同点?有什么不同点?对三角函数式特点的分析对你提高三角恒等变形的能力有什么帮助?通过学生解决这些问题展开全章的复习.推进新课知识回顾提出问题列出本章所学的公式,理清它们之间的关系,回顾、思考并回答:推导这些公式的过程中你用到了哪些基本的数学思想方法?你是从哪几个基本方面认识三角函数式的特点的?它们之间存在着怎样的逻辑关系?三角式的变形与代数式的变形有什么相同点?有什么不同点?三角函数式特点的分析对你提高三角恒等变形的能力有什么帮助?三角函数的变形灵活性大、方法多,回顾从前所学,三角变形都有哪些?如果对三角函数变形题型进行归类,那么回顾从前所学,常见的基本题型有哪些?活动:问题(1),本章的三角恒等变换公式中,余弦的差角公式是其他公式的基础,由它出发,用-β代替β,±β代替β,α=β等换元法就可以推导出其他公式.见下表:教师引导学生用类比、联系、化归的观点来理解这些公式的逻辑关系,认识公式的特点,联想与代数运算的相同与不同之处;三角函数的恒等变形,是运用三角公式,变换三角表达式中的函数、角度和结构,把一个表达式变形成另一个与它等价的表达式.三角恒等变形是代数式恒等变形的推广和发展;进行三角恒等变形,除了要熟练运用代数恒等变形的各种方法,还要抓住三角本身的特点,领会和掌握最基本最常见的变形.教师要引导学生明确三角变换不仅有三角函数式的结构形式变形,而且还有角的变形,以及不同三角函数之间的变形,使学生领悟有关公式在变形中的作用和用法,学会用恰当的数学思想方法指导选择和设计变换思路.并让学生体会到通过三角恒等变形的探究训练,能大大提高他们的推理能力和运算能力.问题(2),教师引导学生回顾总结,在学生探索时适时点拨,常见的变形有: ①公式变形,数学公式变形的方法多种多样,揭示数学公式变形的一般规律对深化公式教学会有积极的意义.由于公式中的字母可以代表数、式、函数等有数学意义的式子,因此可以根据需要对公式进行适当的数学处理,或代换,或迭代,或取特殊值等等.如:tan α+tan β=tan(α+β)(1-tan αtan β),tan αtan β=1-tan α+tan βα+β,1=tan αtan β+tan α+tan βα+β,1+cos2α=2cos 2α,1-cos2α=2sin 2α等.②角的变形,角度变形是三角函数恒等变形的首选方法,在进行三角恒等变形时,对角之间关系必须进行认真的观察联想,分析角之间的和、差、倍、分关系.在数值角的三角函数式化简中,要特别注意是否能够产生特殊角;熟悉两角互余、互补的各种形式;或者引入辅助角进行角的变形等.如:α=(α+β)-β;2α=(α+β)+(α-β);π4-α=π2-(π4+α);π6+α=π2-(π3-α)等. 还需熟练掌握一些常见的式子:如:sinx±cosx=2sin(x±π4),sinx±3cosx =2sin(x±π3)等.问题(3),教师引导学生回顾总结,适时地点拨学生,常见三角恒等变形的基本题型有求值、化简、证明.对于求值,常见的有给角求值、给值求值、给值求角.①给角求值的关键是正确地分析角之间的关系,准确地选用公式,要注意产生特殊角,同时把非特殊角的三角函数值相约或相消,从而求出三角函数式的值;②给值求值的关键是分析已知式与待求式之间角、函数、结构间差异,有目的地将已知式、待求式的一方或两方加以变形,找出它们之间的联系,最后求出待求式的值;③给值求角的关键是先求出该角的某一三角函数值,其次判断该角对应函数的单调区间,最后求出角.对于化简,有两种常见的形式,①未指明答案的恒等变形,这时应把结果化为最简形式;②根据解题需要将三角函数式化为某种特定的形式,例如一角一函数的形式,以便研究它的各种性质.无论是何种形式的化简,都要切实注意角度变形、函数变形等各种变形.对于证明,它包括无条件的恒等式和有附加条件恒等式的证明.①无条件恒等式的证明,需认真分析等式两边三角函数式的特点,角度、函数、结构的差异,一般由繁的一边往简的一边证,逐步消除差异,最后达到统一.对于较难的题目,可以用分析法帮助思考,或分析法和综合法联用.②有附加条件的恒等式的证明,关键是恰当地利用附加条件,需认真分析条件式和结论式中三角函数之间的联系,从分析过程中发现条件应怎样利用,证明这类恒等式时,还常常用到消元法和基本量方法.讨论结果:(1)~(3)略. 应用示例思路1例1(1)化简tan 2Atan(30°-A)+tan2A·tan(60°-A)+tan(30°-A)tan(60°-A);(2)已知α为锐角,且tan α=12,求sin2αcos α-sin αsin2αcos2α的值.活动:本例是一个三角函数化简求值问题,属于给出某些角的三角函数式的值,求另外一些三角函数式的值.关键是正确运用三角变换公式及常用思想方法,探索已知式与欲求式之间的差异和联系的途径和方法.教师可以大胆放手,让学生自己独立探究,必要时给予适时的点拨引导.但要让学生明白,从高考角度来看,关于三角函数求值问题是个重要题型、命题热点,一直备受高考的青睐.因为三角函数求值问题能综合考查考生三角变形、代数变形的基本运算能力和灵活运用公式、合理选用公式、准确选择解题方向的思维能力,且题目的答案可以简单明了.并让学生明了解决这类问题时应在认准目标的前提下,从结构式的特点去分析,以寻找到合理、简捷的解题方法,切忌不分青红皂白地盲目运用三角公式.比如在本例的(1)中,首先应想到将倍角化为单角这一基本的转化方法.教师还应点拨学生思考,求三角函数式的值必须明确求值的目标.一般来说,题设中给出的是一个或某几个特定角,即便这些角都不是特殊角,其最终结果也应该是一个具体的实数;题设中给出的是某种或几种参变量关系,其结果既可能是一个具体的实数,也可能是含参变量的某种代数式.如本例的(2)中,目标是“弦”且是“和差角”,而条件是“切”且是“单角”.在学生探讨向目标转化的过程中,由于视角不同,思考方式不同,学生会有多种解法,教师应鼓励学生一题多解,对新颖解法给予表扬.解:(1)∵tan(90°-2A)=tan[(30°-A)+(60°-A)]=-+-1-t--,∴tan(30°-A)+tan(60°-A)=tan(90°-2A)[1-tan(30°-A)tan(60°-A)]. ∴原式=tan2A[tan(30°-A)+tan(60°-A)]+tan(30°-A)tan(60°-A)=tan2Atan(90°-2A)[1-tan(30°-A)tan(60°-A)]+tan(30°-A)tan(60°-A) =1-tan(30°-A)tan(60°-A)+tan(30°-A)tan(60°-A) =1.(2)原式=2sin αcos α·cos α-sin α2sin αcos α·cos2α=sin α2cos 2α-12sin αcos α·cos2α =cos2α2cos α·cos2α=12cos α.∵tan α=12,又α∈(0,π2),即2sin α=cos α. 又由sin 2α+cos 2α=1,∴cos α=25.∴sin2αcos α-sin αsin2αcos2α=54.点评:本题主要回顾了和差公式、二倍角公式的使用,及三角函数化简求值题目的一般解法;由于公式本身就是等式,所以从方程观点出发进行变形也是一种行之有效的变形办法.由此产生逆变公式、整体变形公式等方法的灵活运用,本例的两问的解法其实质是一样的.学生解决完后,教师应抓住这最佳时机,留出一定的时间让学生反思、领悟解决问题所用到的化归等数学思想方法.变式训练 1.α++α+2cos α=__________.解析:α++α+2cos α=cos α2cos α=12. 答案:122.已知sin(α+β)=23,sin(α-β)=15,求tan αtan β的值.解法一:由已知条件及正弦的和(差)角公式, 得⎩⎪⎨⎪⎧sin αcos β+cos αsin β=23,sin αcos β-cos αsin β=15,∴sin αcos β=23+152=1330,cos αsin β=23-152=730.∴tan αtan β=sin αcos βcos αsin β=1330×307=137. 解法二:(设未知数)令x =tan αtan β, ∵α+βsiα-β=23×51=103=α+βcos αcos βα-βcos αcos β=tan α+tan βtan α-tan β=tan αtan β+1tan αtan β-1=x +1x -1.解之,得tan αtan β=x =137. 例2已知α、β∈(0,π4),且3sin β=sin(2α+β),4tan α2=1-tan 2α2,求α+β的值.活动:本题属于给值求角,综合性强,有一定的难度,教师应在学生探究中适时给予恰当的点拨:把所求的角用含已知其值的角的式子表示,由所求的函数值结合该函数的单调区间求得角,但不要忽视对所求角的范围的讨论.即解决“给值求角”问题是由两个关键步骤构成:①把所求角用含已知角的式子表示;②由所得的函数值结合该函数的单调区间求得角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,如本例,联想条件的形式,确定目标选用和角的正切.这点要提醒学生在解题过程中细细体会,领悟其要领,掌握其实质.解:∵3sin[(α+β)-α]=sin[(α+β)+α],3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α, sin(α+β)cos α=2cos(α+β)sin α,∵α、β∈(0,π4),∴0<α+β<π2.∴cos(α+β)≠0,cos α≠0.∴tan(α+β)=2tan α. 由4tan α2=1-tan 2α2,得4tanα21-tan2α2=1,即得2tan α=1,代入tan(α+β)=2tan α,得tan(α+β)=1. 又0<α+β<π2,∴α+β=π4.点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注变式训练已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.解:∵2α-β=2(α-β)+β,tan(α-β)=12,∴tan2(α-β)=α-β1-tan 2α-β=43. 从而tan(2α-β)=tan[2(α-β)+β]=α-β+tan β1-α-ββ=43-171+43×17=25212521=1.又∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=13<1,且0<α<π,∴0<α<π4.∴0<2α<π2.又tan β=-17<0,且β∈(0,π),∴π2<β<π,-π<-β<-π2. ∴-π<2α-β<0.∴2α-β=-3π4.思路2例题 已知函数f(x)=sin 2ωx +3sin ωxsin(ωx +π2)(ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f(x)在区间[0,2π3]上的取值范围. 解:(1)f(x)=1-cos2ωx 2+32sin2ωx=32sin2ωx -12cos2ωx +12=sin(2ωx -π6)+12.因为函数f(x)的最小正周期为π,且ω>0,所以2π2ω=π.解得ω=1.(2)由(1)得f(x)=sin(2x -π6)+12.因为0≤x≤2π3, 所以-π6≤2x-π6≤7π6.所以-12≤sin(2x-π6)≤1.因此0≤sin(2x-π6)+12≤32,即f(x)的取值范围为[0,32].例2已知函数f(x)=2cos 2ωx +2sin ωxcos ωx +1(x∈R ,ω>0)的最小正周期是π2. (1)求ω的值;(2)求函数f(x)的最大值,并且求使f(x)取得最大值的x 的集合. 解:f(x)=21+cos2ωx2+sin2ωx +1=sin2ωx +cos2ωx +2=2(sin2ωxcos π4+cos2ωxsin π4)+2=2sin(2ωx +π4)+2.由题设,函数f(x)的最小正周期是π2,可得2π2ω=π2,所以ω=2.(2)解:由(1)知,f(x)=2sin(4x +π4)+2.当4x +π4=π2+2k π,即x =π16+k π2(k∈Z )时,sin(4x +π4)取得最大值1,所以函数f(x)的最大值是2+2,此时x 的集合为{x|x =π16+k π2,k∈Z }.例3 求函数y =7-4sinxcosx +4cos 2x -4cos 4x 的最大值与最小值.解:y =7-4sinxcosx +4cos 2x -4cos 4x=7-2sin2x +4cos 2x(1-cos 2x)=7-2sin2x +4cos 2xsin 2x=7-2sin2x +sin 22x =(1-sin2x)2+6.由于函数z =(u -1)2+6在[-1,1]中的最大值为z max =(-1-1)2+6=10,最小值为z min =(1-1)2+6=6,故当sin2x =-1时,y 取得最大值10; 当sin2x =1时,y 取得最小值6. 课堂小结1.先由学生总结归纳本节所复习的知识及数学思想方法,明确三角恒等变换所涉及的公式,主要是和角公式、差角公式、倍角公式,这些公式主要用于三角函数式的计算、化简与推导,它们在数学和许多其他学科中都有广泛的应用,必须熟练掌握,并搞清这些公式的逻辑关系和推导公式过程中所涉及的数学思想方法.2.教师强调,对一些公式不仅会用,还会逆用、变形用.三角函数是三角变形的对象,在进行三角恒等变换时,要认清三角函数式的角的特征、函数名称的特征和式子结构特征,以便使用恰当的变形手段,巧妙地解决问题.作业课本本章巩固与提高7、8.设计感想1.本节为全章复习课,教案设计的指导思想是:通过设计的教学程序,引导学生对全章,甚至对涉及前两章的相关内容进行全面地复习整合,在掌握数学知识的同时,深刻领悟数学思想方法,提高他们分析问题、解决问题的能力.2.本章在新课程中的位置是承上启下,前有三角函数,后有解三角形,所以三角函数式的恒等变形是解决有关三角问题的重要环节,蕴含着丰富的数学思想方法,教师在指导学生复习时要引导学生深刻领悟这一点.3.三角函数公式众多,教学时要充分体现新课标的“以学生发展为本”的新理念,让学生亲自探究体验,切忌被动学习、死记硬背、机械的训练.在指导学生运用三角公式进行三角变换时,注意点拨学生从三角函数名称和角的差异双角度去综合分析,再从差异的分析中决定三角公式的选取,不可生搬硬套题型.备课资料备用习题1.f(x)=2cos 2x +3sin2x +a(a 为实常数)在区间[0,π2]上的最小值为-4,那么a 的值等于( )A .4B .-6C .-4D .-32.函数y =sin 6x +cos 6x 的最小正周期是( )A.π4B.π6 C .π D.π23.设a =2cos 228°-1,b =22(cos18°-sin18°),c =log 1222,则( ) A .a<b<c B .b<a<c C .b<c<a D .c<b<a 4.若α是锐角,且sin α=35,则2cos(α+π4)等于( )A.75B.15 C .-75 D .-15 5.函数y =sin(x -π6)·cosx 的最小值为( )A.22 B .-22 C .-34 D.126.设向量a =(cos23°,cos67°),b =(cos53°,cos37°),则a ·b 等于( ) A.32 B.12 C .-32 D .-127.设p =cos α·cos β,q =cos2α+β2,那么p 、q 的大小关系是( ) A .p >q B .p <q C .p≤q D .p≥q8.已知sin(α+β)=-35,sin(α-β)=35,且α-β∈(π2,π),α+β∈(3π2,2π),则cos2β等于( )A .-1B .1C.2425 D .-459.已知函数f(x)=6cos 4x -5cos 2x +1cos2x ,求f(x)的定义域,判断它的奇偶性,并求其值域.10.化简:(3sin 2140°-1cos 2140°)·12sin10°. 11.一元二次方程mx 2+(2m -3)x +m -2=0的两个实数根为tan α和tan β, 求tan(α+β)的取值范围及其最小值.12.设向量a =(cos(α+β),sin(α+β)),b =(cos(α-β),sin(α-β)),且a +b =(45,35),(1)求tan α;(2)求2cos 2α2-3sin α-12α+π4.13.观察以下各等式:sin 230°+cos 260°+sin30°cos60°=34,sin 220°+cos 250°+sin20°cos50°=34,sin 215°+cos 245°+sin15°cos45°=34.分析上述各式的共同特点,写出能反映一般规律的等式,并对等式的正确性作出证明. 参考答案:1.C ∵f(x)=1+cos2x +3sin2x +a =2sin(2x +π6)+a +1,∵x∈[0,π2],∴2x+π6∈[π6,7π6].∴f(x)的最小值为2×(-12)+a +1=-4.∴a=-4.2.D ∵y=sin 6x +cos 6x =(sin 2x +cos 2x)(sin 4x -sin 2xcos 2x +cos 4x) =1-3sin 2xcos 2x =1-34sin 22x =38cos4x +58,∴T=π2.3.C 4.B5.C ∵y=12[sin(2x -π6)+sin(-π6)]=12sin(2x -π6)-14,∵sin(2x-π6)∈[-1,1],∴y min =-34.6.A 7.C 8.A9.解:由cos2x≠0,得2x≠k π+π2,解得x≠k π2+π4(k∈Z ). 所以f(x)的定义域为{x|x∈R 且x≠k π2+π4,k∈Z }. 因为f(x)的定义域关于原点对称,且f(-x)=6cos 4--5cos 2-+1-=6cos 4x -5cos 2x +1cos2x =f(x),所以f(x)是偶函数.又当x≠k π2+π4(k∈Z )时, f(x)=6cos 4x -5cos 2x +1cos2x =2x -2x -cos2x =3cos 2x -1, 所以f(x)的值域为{y|-1≤y<12或12<y≤2}. 点评:本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力.关键在于从定义域入手,对函数式子进行化简整理.10.解:原式=3cos 2140°-sin 2140°sin 140°cos 140°·12sin10°=3cos140°-3cos140°+-2·12sin10° =-4sin80°·sin200°14sin 280°·12sin10° =-8sin200°sin80°cos80°=-16sin200°sin160°=16. 11.解:由方程有实根,得⎩⎪⎨⎪⎧ Δ=-2--,m≠0,所以m 的取值范围为m≤94且m≠0. 由韦达定理tan α+tan β=3-2m m ,tan αtan β=m -2m, 代入和角公式,得tan(α+β)=tan α+tan β1-tan αtan β=3-2m 2=32-m≥32-94=-34, 所以tan(α+β)的取值范围为[-34,32)∪(32,+∞),最小值为-34. 12.解:(1)a +b =(cos α·cos β-sin α·sin β+cos α·cos β+sin α·sin β,sin α·cos β+cos α·sin β+sin α·cos β-cos α·sin β)=(2cos α·cos β,2sin α·cos β)=(45,35), ∴2cos α·cos β=45,2sin α·cos β=35.∴tan α=34.(2)2cos 2α2-3sin α-12α+π4=cos α-3sin αcos α+sin α=1-3tan α1+tan α=-57. 13.反映一般规律的等式是(表述形式不唯一)sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明:左边=1-cos2α2+1+α+2+sin α(cos αcos30°-sin αsin30°) =1-12cos2α+12(cos2αcos60°-sin2αsin60°)+32sin αcos α-12sin 2α=1-12cos2α+14cos2α-34sin2α+34sin2α--cos2α4=1-14=34=右边.本题是开放性问题,反映一般规律的等式的表述形式还可以是:sin 2(α-30°)+cos 2α+sin(α-30°)cos α=34,sin 2(α-15°)+cos 2(α+15°)+sin(α-15°)cos(α+15°)=34,等等.sin 2α+cos 2β+sin αcos β=34,其中β-α=30°.。

人教版高中数学必修4教案第三章三角恒等变换3.2 简单的三角恒等变换(3个课时)

人教版高中数学必修4教案第三章三角恒等变换3.2 简单的三角恒等变换(3个课时)

3.2 简单的三角恒等变换(3个课时)一、课标要求:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=. 又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证: (1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sin cos 22θϕθϕθϕ+-+=.证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sincos 22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想? 例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、求函数sin y x x =+的周期,最大值和最小值.解:sin y x x =+这种形式我们在前面见过,1sin 2sin 2sin 223y x x x x x π⎛⎫⎛⎫==+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:157158P P - 14T T -《三角恒等变换》复习课(2个课时)一、教学目标进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:二、知识与方法:1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、2π±β代替β、α=β等换元法可以推导出其它公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章三角恒等变换示范教案本章知识网络教学分析本章三角函数模型是主线,三角变形是关键.三角函数及其三角恒等变形不仅有着广泛的实际应用,而且是进一步学习中学后续内容和高等数学的基础,因而成为高考中对基础知识、基本技能和基本思想方法考查的重要内容之一.本章特点是公式多,但积化和差与和差化积公式不要求记忆.切实掌握三角函数的基本变形思想是复习掌握好本章的关键.三角函数的恒等变形,不仅在三角函数的化简、求值问题中应用,而且在研究第一章三角函数的图象与性质时、在后续内容解三角形中也应用广泛.解决三角函数的恒等变形问题,其关键在掌握基本变换思想,运用三角恒等变形的主要途径——变角,变函数,变结构,注意公式的灵活应用.三角恒等变形是一种基本技能,从题型上一般表现为对三角式的化简、求值与证明.对所给三角式进行三角恒等变形时,除使用三角公式外,一般还需运用代数式的运算法则或公式.如平方差公式、立方差公式等.对三角公式不仅要掌握其“原形”,更要掌握其“变形”,解题时才能真正达到运用自如,左右逢源的境界.基本变形思想主要是:①化成“三个一”:即化为一个角的一种三角函数的一次方的形式y=Asin(ωx+φ);②化成“两个一”:即化为一个角的一种三角函数的二次型结构,再用配方法求解;③“合二为一”:对于形如asinθ+bcosθ的式子,引入辅助角φ并化成a2+b2sin(θ+φ)的形式(但在这里不要增加难度,仅限于特殊值、特殊角即可).高考对整个三角问题的考查主要集中在三个方面,一是三角函数的图象与性质,包括:定义域、值域、单调性、奇偶性、周期性、对称性等等;二是三角式的恒等变形,包括:化简、证明、直接求值、条件求值、求最值等;三是三角综合运用.特别是结合下一章的解三角形及与向量的交汇更是高考经久不衰的热点.因此复习中要充分运用数形结合的思想,利用向量的工具性,灵活运用三角函数的图象和性质解题,掌握化简和求值问题的解题规律和途径.学完本章后,前一章平面向量更有了用武之地,它是沟通代数、几何、与三角函数的一种重要工具,三角函数又具有较强的渗透力,切实提高三角函数的综合能力是复习好本章的保证.因此,我们可以通过整合,将三角函数,平面向量结成一个知识板块来复习,并进行三角与向量相融合的综合训练,这样更有利于学生对平面向量、三角函数及三角恒等变形的深刻理解及运用.三维目标1.通过复习全章知识方法,掌握两角和与差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式.并能正确地运用上述公式化简三角函数式、求某些角的三角函数值、证明较简单的三角恒等式以及解决一些简单的实际问题.2.掌握简单的三角恒等变形的基本思想方法,并结合向量解决一些基本的综合问题.3.通过三角恒等变换体会数学的逻辑性的特征,进一步理解数学的化归思想、方程思想和代换意识,认识事物之间是相互依存、相互联系的.重点难点教学重点:和角公式、差角公式、倍角公式及其灵活应用.教学难点:和角公式、差角公式、倍角公式在三角恒等变形中的综合运用.课时安排1课时教学过程导入新课思路1.(直接导入)在第一章三角函数的基础上,我们一起又探究学习了第三章简单三角恒等变形的有关知识,并掌握了一定的分析问题与解决问题的方法,提高了我们的思维能力与运算能力.现在我们一起对本章进行小结与复习,进一步巩固本章所学的知识,请同学们画出本章的知识框图,由此进入复习.思路2.(问题导入)本章学习了几个公式?推导这些公式的过程中你用到了哪些基本的数学思想方法?你是从哪几个基本方面认识三角函数式的特点的?它们之间存在着怎样的逻辑关系?三角式的变形与代数式的变形有什么相同点?有什么不同点?对三角函数式特点的分析对你提高三角恒等变形的能力有什么帮助?通过学生解决这些问题展开全章的复习.推进新课知识回顾提出问题1列出本章所学的公式,理清它们之间的关系,回顾、思考并回答:推导这些公式的过程中你用到了哪些基本的数学思想方法?你是从哪几个基本方面认识三角函数式的特点的?它们之间存在着怎样的逻辑关系?三角式的变形与代数式的变形有什么相同点?有什么不同点?三角函数式特点的分析对你提高三角恒等变形的能力有什么帮助?2三角函数的变形灵活性大、方法多,回顾从前所学,三角变形都有哪些?3如果对三角函数变形题型进行归类,那么回顾从前所学,常见的基本题型有哪些?活动:问题(1),本章的三角恒等变换公式中,余弦的差角公式是其他公式的基础,由它出发,用-β代替β,±β代替β,α=β等换元法就可以推导出其他公式.见下表:教师引导学生用类比、联系、化归的观点来理解这些公式的逻辑关系,认识公式的特点,联想与代数运算的相同与不同之处;三角函数的恒等变形,是运用三角公式,变换三角表达式中的函数、角度和结构,把一个表达式变形成另一个与它等价的表达式.三角恒等变形是代数式恒等变形的推广和发展;进行三角恒等变形,除了要熟练运用代数恒等变形的各种方法,还要抓住三角本身的特点,领会和掌握最基本最常见的变形.教师要引导学生明确三角变换不仅有三角函数式的结构形式变形,而且还有角的变形,以及不同三角函数之间的变形,使学生领悟有关公式在变形中的作用和用法,学会用恰当的数学思想方法指导选择和设计变换思路.并让学生体会到通过三角恒等变形的探究训练,能大大提高他们的推理能力和运算能力.问题(2),教师引导学生回顾总结,在学生探索时适时点拨,常见的变形有:①公式变形,数学公式变形的方法多种多样,揭示数学公式变形的一般规律对深化公式教学会有积极的意义.由于公式中的字母可以代表数、式、函数等有数学意义的式子,因此可以根据需要对公式进行适当的数学处理,或代换,或迭代,或取特殊值等等.如:tan α+tan β=tan(α+β)(1-tan αtan β),tan αtan β=1-tan α+tan βα+β, 1=tan αtan β+tan α+tan βα+β, 1+cos2α=2cos 2α,1-cos2α=2sin 2α等.②角的变形,角度变形是三角函数恒等变形的首选方法,在进行三角恒等变形时,对角之间关系必须进行认真的观察联想,分析角之间的和、差、倍、分关系.在数值角的三角函数式化简中,要特别注意是否能够产生特殊角;熟悉两角互余、互补的各种形式;或者引入辅助角进行角的变形等.如:α=(α+β)-β;2α=(α+β)+(α-β);π4-α=π2-(π4+α);π6+α=π2-(π3-α)等. 还需熟练掌握一些常见的式子: 如:sinx±cosx=2sin(x±π4),sinx±3cosx =2sin(x±π3)等. 问题(3),教师引导学生回顾总结,适时地点拨学生,常见三角恒等变形的基本题型有求值、化简、证明.对于求值,常见的有给角求值、给值求值、给值求角.①给角求值的关键是正确地分析角之间的关系,准确地选用公式,要注意产生特殊角,同时把非特殊角的三角函数值相约或相消,从而求出三角函数式的值;②给值求值的关键是分析已知式与待求式之间角、函数、结构间差异,有目的地将已知式、待求式的一方或两方加以变形,找出它们之间的联系,最后求出待求式的值;③给值求角的关键是先求出该角的某一三角函数值,其次判断该角对应函数的单调区间,最后求出角.对于化简,有两种常见的形式,①未指明答案的恒等变形,这时应把结果化为最简形式;②根据解题需要将三角函数式化为某种特定的形式,例如一角一函数的形式,以便研究它的各种性质.无论是何种形式的化简,都要切实注意角度变形、函数变形等各种变形.对于证明,它包括无条件的恒等式和有附加条件恒等式的证明.①无条件恒等式的证明,需认真分析等式两边三角函数式的特点,角度、函数、结构的差异,一般由繁的一边往简的一边证,逐步消除差异,最后达到统一.对于较难的题目,可以用分析法帮助思考,或分析法和综合法联用.②有附加条件的恒等式的证明,关键是恰当地利用附加条件,需认真分析条件式和结论式中三角函数之间的联系,从分析过程中发现条件应怎样利用,证明这类恒等式时,还常常用到消元法和基本量方法.讨论结果:(1)~(3)略.应用示例思路1例1(1)化简tan2Atan(30°-A)+tan2A·tan(60°-A)+tan(30°-A)tan(60°-A);(2)已知α为锐角,且tan α=12,求sin2αcos α-sin αsin2αcos2α的值. 活动:本例是一个三角函数化简求值问题,属于给出某些角的三角函数式的值,求另外一些三角函数式的值.关键是正确运用三角变换公式及常用思想方法,探索已知式与欲求式之间的差异和联系的途径和方法.教师可以大胆放手,让学生自己独立探究,必要时给予适时的点拨引导.但要让学生明白,从高考角度来看,关于三角函数求值问题是个重要题型、命题热点,一直备受高考的青睐.因为三角函数求值问题能综合考查考生三角变形、代数变形的基本运算能力和灵活运用公式、合理选用公式、准确选择解题方向的思维能力,且题目的答案可以简单明了.并让学生明了解决这类问题时应在认准目标的前提下,从结构式的特点去分析,以寻找到合理、简捷的解题方法,切忌不分青红皂白地盲目运用三角公式.比如在本例的(1)中,首先应想到将倍角化为单角这一基本的转化方法.教师还应点拨学生思考,求三角函数式的值必须明确求值的目标.一般来说,题设中给出的是一个或某几个特定角,即便这些角都不是特殊角,其最终结果也应该是一个具体的实数;题设中给出的是某种或几种参变量关系,其结果既可能是一个具体的实数,也可能是含参变量的某种代数式.如本例的(2)中,目标是“弦”且是“和差角”,而条件是“切”且是“单角”.在学生探讨向目标转化的过程中,由于视角不同,思考方式不同,学生会有多种解法,教师应鼓励学生一题多解,对新颖解法给予表扬.解:(1)∵tan(90°-2A)=tan[(30°-A)+(60°-A)] =-+-1---,∴tan(30°-A)+tan(60°-A)=tan(90°-2A)[1-tan(30°-A)tan(60°-A)]. ∴原式=tan2A [tan(30°-A)+tan(60°-A)]+tan(30°-A)tan(60°-A)=tan2Atan(90°-2A)[1-tan(30°-A)tan(60°-A)]+tan(30°-A)tan(60°-A) =1-tan(30°-A)tan(60°-A)+tan(30°-A)tan(60°-A)=1.(2)原式=2sin αcos α·cos α-sin α2sin αcos α·cos2α=sin α2cos 2α-12sin αcos α·cos2α=cos2α2cos α·cos2α=12cos α. ∵tan α=12,又α∈(0,π2), 即2sin α=cos α.又由sin 2α+cos 2α=1,∴cos α=25. ∴sin2αcos α-sin αsin2αcos2α=54. 点评:本题主要回顾了和差公式、二倍角公式的使用,及三角函数化简求值题目的一般解法;由于公式本身就是等式,所以从方程观点出发进行变形也是一种行之有效的变形办法.由此产生逆变公式、整体变形公式等方法的灵活运用,本例的两问的解法其实质是一样的.学生解决完后,教师应抓住这最佳时机,留出一定的时间让学生反思、领悟解决问题所用到的化归等数学思想方法. 变式训练1.α++α+2cos α=__________. 解析:α++α+2cos α=cos α2cos α=12. 答案:122.已知sin(α+β)=23,sin(α-β)=15,求tan αtan β的值. 解法一:由已知条件及正弦的和(差)角公式,得⎩⎪⎨⎪⎧ sin αcos β+cos αsin β=23,sin αcos β-cos αsin β=15,∴sin αcos β=23+152=1330,cos αsin β=23-152=730. ∴tan αtan β=sin αcos βcos αsin β=1330×307=137. 解法二:(设未知数)令x =tan αtan β, ∵α+βα-β=23×51=103=α+βcos αcos βα-βcos αcos β=tan α+tan βtan α-tan β=tan αtan β+1tan αtan β-1=x +1x -1.解之,得tan αtan β=x =137. 例2已知α、β∈(0,π4),且3sin β=sin(2α+β),4tan α2=1-tan 2α2,求α+β的值.活动:本题属于给值求角,综合性强,有一定的难度,教师应在学生探究中适时给予恰当的点拨:把所求的角用含已知其值的角的式子表示,由所求的函数值结合该函数的单调区间求得角,但不要忽视对所求角的范围的讨论.即解决“给值求角”问题是由两个关键步骤构成:①把所求角用含已知角的式子表示;②由所得的函数值结合该函数的单调区间求得角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,如本例,联想条件的形式,确定目标选用和角的正切.这点要提醒学生在解题过程中细细体会,领悟其要领,掌握其实质.解:∵3sin[(α+β)-α]=sin[(α+β)+α],3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α, sin(α+β)cos α=2cos(α+β)sin α,∵α、β∈(0,π4),∴0<α+β<π2. ∴cos(α+β)≠0,cos α≠0.∴tan(α+β)=2tan α.由4tan α2=1-tan 2α2,得4tan α21-tan 2α2=1, 即得2tan α=1,代入tan(α+β)=2tan α,得tan(α+β)=1.又0<α+β<π2,∴α+β=π4. 点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,变式训练已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值. 解:∵2α-β=2(α-β)+β,tan(α-β)=12, ∴tan2(α-β)=α-β1-tan 2α-β=43. 从而tan(2α-β)=tan[2(α-β)+β]=α-β+tan β1-α-ββ=43-171+43×17=25212521=1. 又∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=13<1, 且0<α<π,∴0<α<π4. ∴0<2α<π2. 又tan β=-17<0,且β∈(0,π), ∴π2<β<π,-π<-β<-π2. ∴-π<2α-β<0.∴2α-β=-3π4.思路2例题 已知函数f(x)=sin 2ωx +3sin ωxsin(ωx +π2)(ω>0)的最小正周期为π. (1)求ω的值;(2)求函数f(x)在区间[0,2π3]上的取值范围.解:(1)f(x)=1-cos2ωx 2+32sin2ωx =32sin2ωx -12cos2ωx +12=sin(2ωx -π6)+12. 因为函数f(x)的最小正周期为π,且ω>0,所以2π2ω=π. 解得ω=1.(2)由(1)得f(x)=sin(2x -π6)+12.因为0≤x≤2π3, 所以-π6≤2x-π6≤7π6.所以-12≤sin(2x-π6)≤1. 因此0≤sin(2x-π6)+12≤32,即f(x)的取值范围为[0,32]. 例2已知函数f(x)=2cos 2ωx +2sin ωxcos ωx +1(x∈R ,ω>0)的最小正周期是π2. (1)求ω的值;(2)求函数f(x)的最大值,并且求使f(x)取得最大值的x 的集合.解:f(x)=21+cos2ωx 2+sin2ωx +1=sin2ωx +cos2ωx +2 =2(sin2ωxcos π4+cos2ωxsin π4)+2=2sin(2ωx +π4)+2. 由题设,函数f(x)的最小正周期是π2,可得2π2ω=π2,所以ω=2. (2)解:由(1)知,f(x)=2sin(4x +π4)+2. 当4x +π4=π2+2k π,即x =π16+k π2(k∈Z )时,sin(4x +π4)取得最大值1, 所以函数f(x)的最大值是2+2,此时x 的集合为{x|x =π16+k π2,k∈Z }. 例3 求函数y =7-4sinxcosx +4cos 2x -4cos 4x 的最大值与最小值.解:y =7-4sinxcosx +4cos 2x -4cos 4x=7-2sin2x +4cos 2x(1-cos 2x)=7-2sin2x +4cos 2xsin 2x=7-2sin2x +sin 22x =(1-sin2x)2+6.由于函数z =(u -1)2+6在[-1,1]中的最大值为z max =(-1-1)2+6=10,最小值为z min =(1-1)2+6=6,故当sin2x =-1时,y 取得最大值10;当sin2x =1时,y 取得最小值6.课堂小结1.先由学生总结归纳本节所复习的知识及数学思想方法,明确三角恒等变换所涉及的公式,主要是和角公式、差角公式、倍角公式,这些公式主要用于三角函数式的计算、化简与推导,它们在数学和许多其他学科中都有广泛的应用,必须熟练掌握,并搞清这些公式的逻辑关系和推导公式过程中所涉及的数学思想方法.2.教师强调,对一些公式不仅会用,还会逆用、变形用.三角函数是三角变形的对象,在进行三角恒等变换时,要认清三角函数式的角的特征、函数名称的特征和式子结构特征,以便使用恰当的变形手段,巧妙地解决问题.作业课本本章巩固与提高7、8.设计感想1.本节为全章复习课,教案设计的指导思想是:通过设计的教学程序,引导学生对全章,甚至对涉及前两章的相关内容进行全面地复习整合,在掌握数学知识的同时,深刻领悟数学思想方法,提高他们分析问题、解决问题的能力.2.本章在新课程中的位置是承上启下,前有三角函数,后有解三角形,所以三角函数式的恒等变形是解决有关三角问题的重要环节,蕴含着丰富的数学思想方法,教师在指导学生复习时要引导学生深刻领悟这一点.3.三角函数公式众多,教学时要充分体现新课标的“以学生发展为本”的新理念,让学生亲自探究体验,切忌被动学习、死记硬背、机械的训练.在指导学生运用三角公式进行三角变换时,注意点拨学生从三角函数名称和角的差异双角度去综合分析,再从差异的分析中决定三角公式的选取,不可生搬硬套题型.备课资料备用习题1.f(x)=2cos 2x +3sin2x +a(a 为实常数)在区间[0,π2]上的最小值为-4,那么a 的值等于( )A .4B .-6C .-4D .-32.函数y =sin 6x +cos 6x 的最小正周期是( )A.π4B.π6 C .π D.π23.设a =2cos 228°-1,b =22(cos18°-sin18°),c =log 1222,则( ) A .a<b<c B .b<a<cC .b<c<aD .c<b<a 4.若α是锐角,且sin α=35,则2cos(α+π4)等于( ) A.75 B.15 C .-75 D .-155.函数y =sin(x -π6)·cosx 的最小值为( ) A.22 B .-22 C .-34 D.126.设向量a =(cos23°,cos67°),b =(cos53°,cos37°),则a ·b 等于( ) A.32 B.12 C .-32 D .-127.设p =cos α·cos β,q =cos 2α+β2,那么p 、q 的大小关系是( ) A .p >q B .p <qC .p≤q D.p≥q8.已知sin(α+β)=-35,sin(α-β)=35,且α-β∈(π2,π),α+β∈(3π2,2π),则cos2β等于( )A .-1B .1C.2425 D .-459.已知函数f(x)=6cos 4x -5cos 2x +1cos2x,求f(x)的定义域,判断它的奇偶性,并求其值域.10.化简:(3sin 2140°-1cos 2140°)·12sin10°. 11.一元二次方程mx 2+(2m -3)x +m -2=0的两个实数根为tan α和tan β, 求tan(α+β)的取值范围及其最小值.12.设向量a =(cos(α+β),sin(α+β)),b =(cos(α-β),sin(α-β)),且a +b =(45,35), (1)求tan α;(2)求2cos 2α2-3sin α-12α+π4. 13.观察以下各等式:sin 230°+cos 260°+sin30°cos60°=34, sin 220°+cos 250°+sin20°cos50°=34, sin 215°+cos 245°+sin15°cos45°=34. 分析上述各式的共同特点,写出能反映一般规律的等式,并对等式的正确性作出证明. 参考答案:1.C ∵f(x)=1+cos2x +3sin2x +a =2sin(2x +π6)+a +1, ∵x∈[0,π2],∴2x+π6∈[π6,7π6]. ∴f(x)的最小值为2×(-12)+a +1=-4.∴a=-4. 2.D ∵y=sin 6x +cos 6x =(sin 2x +cos 2x)(sin 4x -sin 2xcos 2x +cos 4x)=1-3sin 2xcos 2x =1-34sin 22x =38cos4x +58, ∴T=π2. 3.C 4.B5.C ∵y=12[sin(2x -π6)+sin(-π6)]=12sin(2x -π6)-14, ∵sin(2x-π6)∈[-1,1],∴y min =-34. 6.A 7.C 8.A9.解:由cos2x≠0,得2x≠k π+π2,解得x≠k π2+π4(k∈Z ). 所以f(x)的定义域为{x|x∈R 且x≠k π2+π4,k∈Z }. 因为f(x)的定义域关于原点对称,且f(-x)=6cos 4-x -5cos 2-x +1cos -2x =6cos 4x -5cos 2x +1cos2x =f(x), 所以f(x)是偶函数.又当x≠k π2+π4(k∈Z )时, f(x)=6cos 4x -5cos 2x +1cos2x =2x -2x -cos2x =3cos 2x -1, 所以f(x)的值域为{y|-1≤y<12或12<y≤2}. 点评:本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力.关键在于从定义域入手,对函数式子进行化简整理.10.解:原式=3cos 2140°-sin 2140°sin 2140°cos 2140°·12sin10°=3cos140°-3cos140°+-2·12sin10° =-4sin80°·sin200°14sin 280°·12sin10° =-8sin200°sin80°cos80°=-16sin200°sin160°=16. 11.解:由方程有实根,得⎩⎪⎨⎪⎧ Δ=-2--,m≠0,所以m 的取值范围为m≤94且m≠0. 由韦达定理tan α+tan β=3-2m m ,tan αtan β=m -2m, 代入和角公式,得tan(α+β)=tan α+tan β1-tan αtan β=3-2m 2=32-m≥32-94=-34, 所以tan(α+β)的取值范围为[-34,32)∪(32,+∞),最小值为-34. 12.解:(1)a +b =(cos α·cos β-sin α·sin β+cos α·cos β+sin α·sin β,sin α·cos β+cos α·sin β+sin α·cos β-cos α·sin β)=(2cos α·cos β,2sin α·cos β)=(45,35),∴2cos α·cos β=45,2sin α·cos β=35.∴tan α=34.(2)2cos 2α2-3sin α-12α+π4=cos α-3sin αcos α+sin α=1-3tan α1+tan α=-57.13.反映一般规律的等式是(表述形式不唯一)sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.证明:左边=1-cos2α2+1+α+2+sin α(cos αcos30°-sin αsin30°)=1-12cos2α+12(cos2αcos60°-sin2αsin60°)+32sin αcos α-12sin 2α=1-12cos2α+14cos2α-34sin2α+34sin2α--cos2α4=1-14=34=右边.本题是开放性问题,反映一般规律的等式的表述形式还可以是:sin 2(α-30°)+cos 2α+sin(α-30°)cos α=34,sin 2(α-15°)+cos 2(α+15°)+sin(α-15°)cos(α+15°)=34,等等.sin 2α+cos 2β+sin αcos β=34,其中β-α=30°.。

相关文档
最新文档