抽样和抽样分布
抽样与抽样分布
抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
抽样的目的是通过样本来推断总体的特征和性质。
在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。
一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。
这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。
常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。
2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。
这样可能导致样本的代表性不足,从而产生较大的估计误差。
有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。
二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。
统计量可以是样本均值、样本方差等。
抽样分布的性质对于进行统计推断和假设检验非常重要。
2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。
中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。
3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。
这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。
4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。
通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。
为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。
三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。
以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。
通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。
2. 假设检验假设检验是统计学中常用的推断方法之一。
通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。
统计学之抽样与抽样分布
的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差
•
有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体
•
称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。
抽样检验和抽样分布
占总体单位数N的比例,即:
n n n n 1 2 3 K n
N1 N2 N3
NN K
各类型组应抽取的样本单位数为:
N n
in
n N i N i N
样本比率抽样样本容量:按前面指定的比
例(n/N)从每组的Ni单位中抽取ni个单位 即构成一个抽样总体,其样本容量为:
K
n= n1+ n2+ n3+…+ nk= ni i 1
数μ;
3、样本平均数 x 分布的均方差 x 等于:
当为有限总体无放回抽样时,其样本均值 标准差为:
N
N x
N
N
p
1
p
如果总体为无限总体的或抽取是有放回的
,其样本均值标准差为:
x
N
(二)非正态总体样本平均数 x 的分布及
性质?
1、中心极限定理可以解决上述问题:
一个具有任意函数形式的总体,其样
2、抽样误差:是指由于随机抽样的偶然因 素使样本各单位的结构不足以代表总体 各单位的结构,而引起抽样指标和全及 指标之间的绝对离差。不包含登记性误 差和不遵守随机原则造成的偏差。
影响抽样误差的因素有:总体各单位标 志值的差异程度;样本的单位数;抽样 的方法;抽样调查的组织形式。
第二节 随机抽样设计
样本容量足够大(n=50),据中心极限
定理,x 近似服从正态分布。
(1)
3160
x
800 113.14
x
N
50
x
P x3000 P
x
3000
3160
/ n
113.14
Pz 1.41 0.9207
同理处理(2)和(3)
统计学抽样与抽样分布
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
5
样本和统计量
统计量(statistic)。在抽样估计中,用来反映样本 总体数量特征的指标称为样本指标,也称为样本统计 量或估计量,是根据样本资料计算的、用以估计或推 断相应总体指标的综合指标。
调查的实施 缺点是估计的精度较差
多阶段抽样
(multi-stage sampling)
1. 先抽取群,但并不是调查群内的所有单位,而是再
进行一步抽样,从选中的群中抽取出若干个单位进 行调查
群是初级抽样单位,第二阶段抽取的是最终抽样单位。 将该方法推广,使抽样的段数增多,就称为多阶段抽样
2. 具有整群抽样的优点,保证样本相对集中,节约调
4.1 抽样的基础知识
一、 几个概念 二、抽样误差 三、常用的抽样方法
1
一、几个概念
(一)全及总体与总体指标
全及总体。简称总体(Population),是指所要研究的 对象的全体,它是由所研究范围内具有某种共同性质 的全部单位所组成的集合体。总体单位总数用N表示。 (举例) 总体指标(参数)。在抽样估计中,用来反映总体数 量特征的指标称为总体指标,也叫总体参数。 研究目的一经确定,总体也唯一地确定了,所以总体 指标的数值是客观存在的、确定的,但又是未知的, 需要用样本资料去估计。
随机误差:又称偶然性误差,是指遵循随机原则 抽样,但由于样本各单位的结构不足以代表总体 各单位的结构而引起的样本估计量与总体参数之 间的误差。这就是抽样估计中所谓的抽样误差 。
第四章 抽样和抽样分布
p
例子:
例:要估计某地区10000名适龄儿童的入学 率,用不重置抽样方法从这个地区抽取400 名儿童,检查有320名儿童入学,求样本入 学率的平均误差。 已知条件:
样本日工资平均数
单位:元
样本变量 34 34
38 42 46 50
38 36
38 40 42 44
42 38
40 42 44 46
46 40
42 44 46 48
50 42
44 46 48 50
34
36 38 40 42
抽样分布为:
Ex
x f
i 1 9
9
i i
样本日平均工资分布
样本日平均工资
三、抽样分布定理
样本平均数的抽样分布定理
(1)正态分布再生定理
X ~ N ( X , 2 ) ,则从这个总体中抽取样本容 总体变量
量为n的样本平均数 x 也服从正态分布,其平均数E ( x ) 仍为 X ,其标准差 ( x ) 。即样本平均数 x 服从正态分布 x ~ N ( X , 2 ) 。
不论总体是何种分布,只要样本的单位数量增 多,则样本平均数就趋于正态分布。
一般认为样本单位数不少于30的是大样本,样 本平均数的抽样分布就接近于正态分布。
总体未 知参数
1. 是一种理论概率分布
2. 样本统计量是随机变量
– 样本均值, 样本比例,样本方差等
3. 结果来自容量相同的所有可能样本
4. 提供了样本统计量长远我们稳定的信息, 是进行推断的理论基础,也是抽样推断科 学性的重要依据
统计学第六章抽样和抽样分布
2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
(04)第4章+抽样与抽样分布
4-6
统计学
STATISTICS
例题分析
♦ 假定我们刚刚已取了飞机制造所用的铆钉的25个 假定我们刚刚已取了飞机制造所用的铆钉的25个
一组的样本。检测铆钉的抗剪强度,破坏每个铆 钉所需的力是响应变量。对这组样本,可以求得 各种描述性的测量(均值、方差等)。 ♦ 然而,我们的感兴趣的是总体,并不是样本自身。 被测试的铆钉在测试时已被破坏,不能再用在飞 机的制造上,所以我们肯定不能测试所有的铆钉。 我们必须从这组样本或几组这样的样本来决定总 体的某些特性。 ♦ 因此,我们必须设法推断信息,也即基于样本的 观测结果作出总体的推断
(例题分析) 例题分析)
计算出各样本的均值,如下表。 计算出各样本的均值,如下表。并给出样本均 值的抽样分布
4 - 32
样本均值的抽样分布
统计学
STATISTICS
(例题分析) 例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 设一个总体,含有4个元素(个体) 数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总 个个体分别为x 体的均值、 体的均值、方差及分布如下 总体分布
4 - 17
统计学
STATISTICS
分层抽样
分层抽样
统计学
STATISTICS
(stratified sampling) sampling)
♦ 分层抽样:在抽样之前先将总体的单位按 分层抽样:
某种特征或某种规则划分为若干层(类), 然后从不同的层中独立、随机地抽取一定 数量的单位组成一个样本,也称分类抽样 数量的单位组成一个样本,也称分类抽样 sampling) (stratified sampling) ♦ 在分层或分类时,应使层内各单位的差异 尽可能小,而使层与层之间的差异尽可能 大
《统计学》第9章 抽样与抽样分布
二、抽样中的基本概念
⚫ 样本比例(成数)
p = n1 ,q = n0 = 1− p
n
n
⚫ 样本是非标志的标准差
(n = n0 + n1)
sp =
n p (1− p) =
n −1
n pq n −1
⚫ 样本是非标志的方差
s
2 p
=
n n −1
p(1 −
p)
=
n n −1
pq
第一节 抽样和抽样方法
三、抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 在实践中总体所包括的单位数很多,分布很广,通过一次 抽样就选出有代表性的样本是很困难的。此时可将整个抽 样过程分为几个阶段,然后逐阶段进行抽样,最终得到所 需要的有代表性的样本。
第一节 抽样和抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 阶段数不宜过多,一般采用两个、三个阶段,至多四个阶 段为宜,否则,手续繁琐,效果也不一定好。
第一节 抽样和抽样方法
二、抽样中的基本概念
⚫ 总体参数
⚫ 总体参数是根据总体各单位的标志值或特征计算的、反 映总体某一属性的综合指标。
⚫ 总体参数是唯一的、确定的常数,但一般情况下又是未 知的。
⚫ 常用的总体参数有 ⚫ 总体均值 ⚫ 总体标准差、总体方差 ⚫ 总体比例(成数)
第一节 抽样和抽样方法
⚫ 样本标准差
s =
1 n −1
n i =1
(xi
−
x )2,或s
=
1
m
m
(xi − x )2 fi
fi −1 i=1
i =1
⚫ 样本方差
( ) ( ) s2 = 1 n n −1 i=1
抽样及抽样分布
分层抽样 概念:分层抽样又称类型抽样。首先将总体单
位按某一个标志分层;然后在各层按随机抽样的方 法分别抽出各层的样本。
特点:分层抽样在层内是抽样调查,层间是全面调
查,所以分层时应该尽量让每层内的变异程度小,
而层间的变异程度大。分层抽样的抽样误差较简单 随机抽样小,样本具有很好的代表性。
抽样平均误差的计算公式:
z
(
X 1
X
)
2
( 1
2
)
s2 1
s2 2
n1 n2
渐近服从标准正态分布。
如果: X1 和 X2 是两个非正态总体,当和样本容
量足够大,
z
(
X1
X
2
)
(1
2
)
s2 1
s2 2
n1 n2
渐近服从标准正态分布。
NEXT
二、样本成数及成数差的抽样 分布
成数的概念 样本成数的分布 两个总体样本成数差的分布
,则样本的成数为p n1
n
。
例如,某工厂生产某种电子元件,某批产品
共10000件,其中不合格品100件原则抽100件,其中
有3件不合格品,则样本的成数为p 3% 。
NEXT
样本成数的分布
用途:推断或估计总体的成数。例如某项改革 方案工人的支持率,产品的正品率等。
假设A、B、C、D、E5位同学的统计学成绩分别为: 80、 86、90、92、96。可计算得总体均值为88.8,总体方 差为29.76。现在随机从中抽容量为2的样本。
重复抽样的所有可能的样本:
样本(AA)(AB)(AC)(AD)(AE)
均值 80 83 85
86 88
样本 (BA)(BB) (BC) (BD)(BE)
管理统计学第06章 抽样与抽样分布
抽样的基础概念
样本(sample)从总体中抽取的一部分元素的集合,构成样本的元素数目称为
样本容量,用n表示。
=<30
小样本
>30
大样本
抽样的基础概念
例:某党派想支持某一候选人参选美国某州议员,为了决定是否支持该候选人,该党派领导需要估 计支持该候选人的民众占全部登记投票人总数的比例。由于时间及财力的限制
当总体服从正态分布N ~ (μ,σ2 )时,来自该总体的所有容量为n的样本的均值X也服从 正态分布,X 的数学期望为μ,方差为σ2/n。即X~N(μ,σ2/n)
σ2 =10
n=2 σ2 =5
n =4 σ2 =2.5
= 50
X
总体分布
x 50
X
抽样分布
中心极限定理
中心极限定理(central limit theorem)设从均值为,方差为 2的一个任意总体中
均值和方差
N
Xi
i1 2.5
Nቤተ መጻሕፍቲ ባይዱ
N
(Xi )2
2 i1
1.25
N
.3
.2
.1 0
1
总体分布
2
3
4
样本均值的分布
例:现从总体中抽取n=2的简单随机样本,在重复抽样条件下,共有42=16个样 本。所有样本的结果如下表
所有可能的n = 2 的样本(共16个)
第二个观察值
中心极限定理
样本均值的分布趋于正态分布的过程
正态分布 总体分布
样本均值分布
(n=2)
样本均值分布
(n=10)
样本均值分布
(n=30)
指数分布
均匀分布
抽样检验和抽样分布
抽样检验和抽样分布1. 引言抽样是统计学中非常重要的概念,通过对总体的一局部样本进行研究和分析,可以得出关于总体的推断和结论。
抽样检验是统计推断的一种方法,用于判断样本与总体之间是否存在显著差异。
抽样分布是抽样统计量的概率分布,是基于样本的随机变量,用于进行统计推断和估计。
2. 抽样检验抽样检验是统计推断的一种方法,用于判断样本与总体之间是否存在显著差异。
在抽样检验中,我们首先提出一个原假设和一个备择假设,然后通过计算样本统计量的概率来判断原假设是否成立。
常用的抽样检验方法包括:2.1 单样本 t 检验单样本 t 检验用于判断一个样本的均值是否与总体均值存在显著差异。
通过计算样本的 t 统计量来进行判断,如果 t 统计量的值较大,说明样本均值与总体均值之间存在显著差异。
2.2 双样本 t 检验双样本 t 检验用于判断两个样本的均值是否存在显著差异。
通过计算两个样本的 t 统计量来进行判断,如果 t 统计量的值较大,说明两个样本的均值之间存在显著差异。
2.3 卡方检验卡方检验用于判断两个或多个分类变量之间是否存在关联性。
通过计算卡方统计量来进行判断,如果卡方统计量的值较大,说明分类变量之间存在关联性。
2.4 方差分析方差分析用于判断一个因变量在不同组之间是否存在显著差异。
通过计算方差比率统计量来进行判断,如果方差比率统计量的值较大,说明不同组之间的因变量存在显著差异。
3. 抽样分布抽样分布是抽样统计量的概率分布,是基于样本的随机变量,用于进行统计推断和估计。
常用的抽样分布包括:3.1 正态分布在很多情况下,当样本容量足够大时,抽样分布可以近似地认为是正态分布。
正态分布是一种对称的连续概率分布,其概率密度函数可由均值和标准差完全描述。
3.2 学生 t 分布学生 t 分布是在样本容量较小、总体标准差未知的情况下使用的抽样分布。
学生 t 分布相比于正态分布,具有更宽的尾部,适用于小样本量的情况。
3.3 卡方分布卡方分布是基于正态分布的样本推断中经常使用的一种抽样分布。
第7章抽样与抽样分布
· · ·
· · ·
统计学
STATISTICS
3· 等距抽样(机械抽样或系统抽样)
将总体单位按某一标志排序,然后按相等间隔 抽取样本单位构成样本的抽样形式 随机起点 · · · · · · (总体单位按某一标志排序) 按无关标志排队,其抽样效果相当于简单随机抽样; 半距起点 对称起点
按有关标志排队,其抽样效果相当于类型抽样。
明确 总体及 抽样单位
统计学
STATISTICS
明确 调查目 的
确定或构 建抽样框
提出指标 精度要求
选择抽样 组织形式
2019/1/31
确定 样本容量
制定 具体办法 步骤
23
统计学
STATISTICS
2.抽样方案设计的基本原则
(1)保证实现抽样随机性的原则 (2)保证实现最大的抽样效果原则
3.抽样方案设计中的重要问题
不重复抽样
每次从总体中抽选一个单位后就不 再将其放回参加下一次的抽选。又 称不放回抽样. 总体单位数减少n,同一单位只可 7 能被抽中一次。
2019/1/31
可能的样本数目考虑各单Biblioteka 的中选顺序 AB≠BA统计学
STATISTICS
考虑顺序的重复抽样 不考虑顺序的重复抽样 考虑顺序的不重复抽样
N
n
Nn N 2
15
(二)随机抽样的组织方式 STATISTICS
1· 简单随机抽样(纯随机抽样)
根据随机原则直接从总体中抽取单位构成样 本的一种抽样方式。
•每个容量为n的样本都有同等机会(概率)被抽中 •简单、直观,是最简单、最基本、最符合随机原 则,但同时也是抽样误差最大的抽样组织形式 •仅适用于规模不大、分布比较均匀的总体 •一般有抽签、抓阄、随机数码表、抽样函数等
抽样及抽样分布
抽样及抽样分布引言在统计学中,抽样是从总体中选择一局部个体进行研究的过程。
通过抽样可以获得总体的估计值,从而对总体进行推断。
抽样是统计学的根底,也是进行统计推断的前提。
本文将介绍抽样的根本概念和方法,以及抽样分布的概念和特性。
抽样方法进行抽样时,需要选择适宜的抽样方法。
常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和群组抽样等。
简单随机抽样简单随机抽样是最根本的抽样方法,每个个体被随机地选入样本,且每个个体被选入样本的概率相等。
这种方法可以确保样本具有代表性。
系统抽样系统抽样是按照一定的规那么从总体中选取样本,例如每隔一定间隔选取一个个体。
这种方法简单实用,但需要注意规那么的选择是否会引入偏差。
分层抽样分层抽样是将总体分成假设干层,然后从每层中随机选取个体组成样本。
这种方法可以保证每个层次都有足够的代表性。
群组抽样群组抽样是将总体划分为假设干群组,然后随机选取假设干群组作为样本。
这种方法适用于总体中包含多个群组,但群组内个体相似的情况。
抽样分布抽样分布是指抽样统计量的分布。
统计量可以是样本均值、样本方差、样本相关系数等。
样本均值的抽样分布假设总体服从正态分布,样本均值的抽样分布也会服从正态分布。
根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将变得更加接近正态分布。
样本方差的抽样分布样本方差的抽样分布是以总体方差为参数的分布,通常服从卡方分布。
样本容量的大小将影响样本方差的抽样分布形状。
样本相关系数的抽样分布样本相关系数的抽样分布通常是以总体相关系数为参数的分布。
样本容量的增加会使样本相关系数的抽样分布趋向于正态分布。
抽样误差与置信区间抽样误差是指样本统计量与总体参数之间的差异。
抽样误差的大小会受到样本容量和抽样方法的影响。
为了评估抽样结果的可靠性,可以构建置信区间。
置信区间是总体参数的一个区间估计,表示总体参数落在该区间的概率。
置信区间的宽度与置信水平、样本容量以及总体标准差等相关。
抽样与抽样分布
抽样与抽样分布抽样是统计学中一种重要的数据收集方法,通过从总体中选择一部分样本来代表整体,可以更方便、更经济地进行数据分析和推断。
而抽样分布则是与抽样密切相关的概念,指的是样本统计量的概率分布。
本文将从抽样的定义和目的、抽样方法和抽样分布的性质等方面进行探讨。
一、抽样的定义和目的抽样是统计学中利用一定的方法和技术从总体中选取一部分个体作为样本,以了解总体特征或者对总体进行推断的过程。
抽样的目的在于通过对样本的观测和研究来推断总体的特征,而无需对整个总体进行调查。
抽样可以减少调查或实验的成本、节约时间,并且在一定程度上能够保证结果的可靠性和精确度。
二、抽样方法1. 简单随机抽样:简单随机抽样是指从总体中随机选择样本,使每一个样本都有相同的概率被选中。
简单随机抽样通常需要使用随机数表、随机数发生器或者抽签等方法来实现。
2. 系统抽样:系统抽样是按照一定的规则和系统性地从总体中选择样本,例如每隔一个固定的间隔选取一个样本。
系统抽样的优点在于操作简单,但是如果总体中存在某种周期性或者规律性的分布,可能会导致抽样结果的偏差。
3. 整群抽样:整群抽样是将总体根据某些特征进行分类,然后从每个分类中随机选择一定数量的群体作为样本。
整群抽样适用于总体中存在明显的群体结构的情况,可以提高样本的代表性。
4. 分层抽样:分层抽样是按照某种特征将总体分为若干层,然后从每一层中随机选择一定数量的样本。
分层抽样可以更好地体现总体的结构和差异,提高样本的代表性和准确性。
三、抽样分布的性质抽样分布是样本统计量的概率分布,其具有以下几个重要性质:1. 无偏性:如果样本统计量的期望值等于总体参数的真值,那么称该统计量是无偏的。
即样本统计量是对总体参数的无偏估计。
无偏性是抽样分布的重要性质,保证了样本统计量的可靠性和准确性。
2. 一致性:当样本数量趋向无穷大时,样本统计量的值趋向于总体参数的真值。
即样本统计量在大样本情况下能够接近总体参数,具有一致性。
抽样与抽样分布
N (1.0 2.5) 2 (4.0 2.5) 2 2 0.625 16 n
比较及结论:1. 样本均值的均值(数学期望) 等于总体均值 2. 样本均值的方差等于总体方差的1/n
样本均值的分布与总体分布的比较 (例题分析)
总体分布
.3 P(X)
抽样分布
.3 .2 .1 0
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。总 体的均值、方差及分布如下 总体分布
.3
均值和方差
x
i 1
N
i
.2 .1 0
1 2 3 4
N
N i 1
2.5
2
2 ( x ) i
抽样中的泰坦尼克事件
在1936年美国总统选举前一份颇有名气的 杂志的工作人员做了一次民意调查, 调查兰 顿(当时任堪萨斯州州长)和罗斯福(当时总 统)中谁将担任下一界总统, 为了了解公众意 向, 调查者通过电话簿和车辆登记簿上的名 单给一大批人发了调查表, 通过分析回收的 调查表, 发现兰顿非常受欢迎,于是此杂志预 测兰顿将在选举中获胜.
系统抽样(systematic sampling)
将总体各单位按某种顺序排列,并按某种规则确 定一个随机起点,然后,每隔一定的间隔抽取一 个单位,直至抽取n个单位形成一个样本。
整群抽样(cluster sampling)
在总体中以群(或组)为单位,将简单或系统抽 样方式,抽取若干群(或)组,然后对所有抽中 的各群(或各组)中的全部单位一一进行调查。
1. t 分布是对称分布,均值为0。 2. 样本容量大于或等于30时, t 分布接近于标准正态分布,这时可 用标准正态分布来代替t 分布。 3. t 分布是一个分布族,不同自由度对应不同的 t 分布。 4. 与标准正态分布相比,t 分布的中心部分较低,两个尾部较高。 5. 变量t 的取值范围在 与 之间。
06抽样与抽样分布讲解
2.
设 X ~ N(, 2 ) ,则
z X ~ N(0,1)
3. 令 Y z 2,则 Y 服从自由度为1的2分布,即
4.
Y ~ 2 (1)
4. 当总体 X ~ N(, 2 ),从中抽取容量为n的样本,则
n
(xi x)2
i 1
2
~ 2 (n 1)
2分布
(性质和特点)
1. 分布的变量值始终为正
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
x
中心极限定理
(central limit theorem)
x 的分布趋 于正态分布 的过程
抽样分布与总体分布的关系
总体分布
正态分布
样本均值 正态分布
非正态分布
大样本
小样本
样本均值 正态分布
1. 从总体N个单位(元素)中随机地抽取n个单位作为 样本,使得总体中每一个元素都有相同的机会(概 率)被抽中
2. 抽取元素的具体方法有重复抽样和不重复抽样 3. 特点
简单、直观,在抽样框完整时,可直接从中抽取样本 用样本统计量对目标量进行估计比较方便
4. 局限性
当N很大时,不易构造抽样框 抽出的单位很分散,给实施调查增加了困难 没有利用其他辅助信息以提高估计的效率
2 x
i 1
M
(1.0 2.5)2 (4.0 2.5)2 0.625 2
16
n
M为样本数目
比较及结论:1. 样本均值的均值(数学期望) 等于总体均值 2. 样本均值的方差等于总体方差的1/n
统计量的标准误 (standard error)
抽样和抽样分布
离散型随机变量的方差(实例)
【例】投掷一枚骰子,出现的点数是个离散型随 机变量,其概率分布为如下。计算数学期望和方 差 X = xi 1 2 3 4 5 6 P(X =xi)=pi 1/6 1/6 1/6 1/6 1/6 1/6
1 1 解:数学期望为: E ( X ) xi pi 1 6 3.5 6 6 i 1 6 方差为: D( X ) xi E ( X )2 pi
n N
二、试验
1.概念: 在相同条件下,对事物或现象所进行的观察。
例如:掷一枚骰子,观察其出现的点数;产品质 量检验,考察其是否是合格品等。
2.试验具有以下特点:
可以在相同的条件下重复进行; 每次试验的可能结果不止一个,但试验的所
有可能结果在试验之前是确切知道的;
在试验结束之前,不能确定该次试验的确切
i 1 n
( X取有限个值) ( X取无穷个值)
E ( X ) xi p i
i 1
(3)性质
第三章所讲的平均数的性质也完全适合于数学 期望。对于抽样分布通常要考虑多个变量的情 况,所以还要补充两条性质。 ①n个随机变量代数和的数学期望等于它们的 数学期望之和。 ②n个独立随机变量连乘积的数学期望等于它 们数学期望的乘积
两种抽样方法
重置抽样
1.概念: 也称有放回的抽样,从总体中抽取一个单位,登记 后再放回总体参加下一次的抽取,连续试验n次。 2.重置抽样排列数: 从总体N个单位,抽取样本容量为n个单位的重置 试验,可能抽取的样本点个数: n n
AN = N
不重置抽样
1.概念: 也称无放回的抽样,每次总体中抽取一个单 位,登记后不再放回原总体,不参加下一次抽 选,下一次继续从总体余下的单位抽取样本单 位,这样继续进行n次试验。 有n个单位的样本是由n次连续试验构成的,但 因每次抽出不重置,所以实质上等同于同时从 总体中抽取n个样本单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义 表示抽样结果的样本统计量 x , , p 作为随机 变量,其概率分布称为抽样分布。 同样的,和其它随机变量一样, x , , p 也有数学期 望、方差和标准差。
5 - 12
统计学
抽样分布
表7-5 500个容量30样本的均值分布表
平均年薪 49500-49999 50000-50499 50500-50999 51000-51499 51500-51999 52000-52499 52500-52999 53000-53499 53500-53999
x 的数学期望
定义 x 的抽样分布,是样本均值 x 的所有可能值的 概率分布。
• x 的期望 在简单随机抽样中, E x . 点估计的期望值等于被估参数,这样的点估计是无 偏的。
5 - 17
统计学
抽样分布的形态
5 - 18
中心极限定理
统计学
抽样分布的形态
5 - 19
中心极限定理
5-9
统计学
二、抽样分布
5 - 10
统计学
抽样分布
在EAI的例子中,得到两个点估计值
样本均值x 51814美元
样本比率p 0.63
考虑2500人的总体,由其中30人组成一个样本,共 有多少个这样的样本?
C
5 - 11
2500 30
个!
统计学
抽样分布
把抽样过程看作一次试验, x 表示的就是抽样的结果 ,那么, x 是一个随机变量.
统计学
第7章 抽样和抽样分布
§7.1 抽样过程
§7.2 抽样分布 §7.3 均值的抽样分布 §7.4 比率的抽样分布
5-1
统计学
一、抽样过程
5-2
统计学
抽 样
(例题分析)
联合电气公司(EAI)的例子 联合电气公司的人事经理被分派了一项任务:为公 司的2500名管理人员制作一份简报,简报需包括: (1)管理人员的平均年薪 (2)已完成公司内部管理培训课程的管理人员所占 的比率。 该问题中,总体:2500名管理人员
5-3
统计学
掌握总体信息
• 现掌握如下信息: 管理人员平均工资51800美元 工资标准差4000美元 2500名管理人员中有1500人已完成培训课程 可归纳为 总体均值μ=51800 标准差σ=40 完成培训的比率P=0.6 总 体 参 数
5-4
统计学
无法掌握总体信息
• 目标总体、抽样总体 与 抽样框 例:调查个体商业经营单位 目标总体:个体商业经营单位全体 抽样框:营业执照 • 抽样方法:简单随机抽样
表7-2 30名管理人员组成的样本有关年薪和是否参加培训的信息
样本 1 2 3 4 5 6 7 8 9 10 11 12 13 14 815 年薪 49094.3 53263.9 49643.5 49894.9 47621.6 55924 49092.3 51404.4 50957.7 55109.7 45922.6 57268.4 55688.8 51564.7 56188.2 参加培训 是 是 是 是 否 是 是 是 是 是 是 否 是 是 否 样本 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 年薪 51766 52541.3 44980 51932.6 52973 45120.9 51753 54391.8 50164.2 52793.6 50241.3 52793.9 50979.4 55860.9 57309.1 参加培训 是 否 是 是 是 是 是 否 否 否 否 否 是 是 否
统计学
5-
统计学
点估计பைடு நூலகம்
(例题分析)
要得出2500名管理人员的工资均值、参加培训的比 率,可计算出相应的30人样本相应的样本统计量
1554420 51814 美元 x 30 n 19 p 0.63 30
i
x
i
于是,2500名管理人员的工资均值的一个估计值为 51814美元;参加培训的比率的一个估计值为0.63。
5 - 13
频率 2 16 52 101 133 110 54 26 6 总计500
相对频率 0.004 0.032 0.104 0.202 0.266 0.22 0.108 0.052 0.012 1
统计学
抽样分布
5 - 14
统计学
抽样分布
5 - 15
统计学
x 的抽样分布
5 - 16
统计学
5-5
统计学
• 随机数表
抽样方法
5-6
统计学
点估计
• 用样本的数字特征估计总体数字特征:
样 总体均值μ --样本均值 x 本 统 总体标准差σ--样本标准差 s 计 总体比率P—样本比率p 量 • 样本均值、样本标准差、样本比率可以看作 总体参数μ、σ、P对应的点估计。
5-7
联合电气公司(EAI)的例子