人教版八年级下册数学期末测试题(一)

合集下载

2020人教版八年级下册数学《期末检测试卷》(附答案解析)

2020人教版八年级下册数学《期末检测试卷》(附答案解析)

人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8B. x <8C. x≤8D. x >0且x≠82.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 34.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( ) A. 42、42B. 43、42C. 43、43D. 44、435.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:下列结论错误的是( ) A. 当40h =时,t 约2.66秒 B. 随高度增加,下滑时间越来越短 C. 估计当80h cm =时,t 一定小于2.56秒 D. 高度每增加了10cm ,时间就会减少0.24秒 6.如果点A (﹣2,a )在函数y 12=-x +3的图象上,那么a 的值等于( ) A. ﹣7B. 3C. ﹣1D. 4Y的周长为( 7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD)A. 20B. 16C. 12D. 88.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差11.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A. 1B. 2C. 3D. 412.如图,点E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB( )=∠CFD 中,添加一个条件,使四边形DEBF 是平行四边形,可添加的条件是A. ①②③B. ①②④C. ①③④D. ②③④13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.三、解答题(本大题共7小题,共63分)20.计算:12 (27246)12 33+-⋅21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据;(1)计算甲车间样品合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.答案与解析一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8 B. x <8C. x≤8D. x >0且x≠8【答案】C 【解析】根据二次根式的性质,被开方数大于等于0可得: 80x -≥,解得: 8x ≤,故选C. 2.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 【答案】B 【解析】 【分析】直接利用二次根式的性质分别化简的得出答案. 【详解】A .(5-)2=5,正确,不合题意; B .ab a b =(a ≥0,b ≥0),故此选项错误,符合题意; C .23π-=()π﹣3,正确,不合题意;D .82233=,正确,不合题意. 故选B .【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 3【答案】C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD=22AB BD-=4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.4.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:42442+=43,x=18(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.5.在实验课上,小亮利用同一块木板测得小车从不同高度()h与下滑的时间()t的关系如下表:下列结论错误的是()A. 当40h=时,t约2.66秒B.随高度增加,下滑时间越来越短C. 估计当80h cm=时,t一定小于2.56秒D. 高度每增加了10cm,时间就会减少0.24秒【答案】D 【解析】【分析】一个用图表表示的函数,根据给出的信息,对四个选项逐一分析,即可解答.【详解】A选项:当h=40时,t约2.66秒;B选项:高度从10cm增加到50cm,而时间却从3.25减少到2.56;C选项:根据B中的估计,当h=80cm时,t一定小于2.56秒;D选项:错误,因为时间的减少是不均匀的;故选D.【点睛】考查了函数的概念,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).6.如果点A(﹣2,a)在函数y12=-x+3的图象上,那么a的值等于()A. ﹣7B. 3C. ﹣1D. 4 【答案】D【解析】【分析】把点A的坐标代入函数解析式,即可得a的值.【详解】根据题意,把点A的坐标代入函数解析式,得:a12=-⨯(﹣2)+3=4.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,是基础题型.7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCDY的周长为( )A. 20B. 16C. 12D. 8【答案】B【解析】【分析】首先证明:OE=12BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12 BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.【答案】A【解析】试题解析:当k>0,b>0时,函数y=kx+b的图象过第一、二、三象限;当k<0,b<0时,函数y=kx+b的图象过第一、二、四象限.由此可知选项A是正确的.故选A.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形【答案】D【解析】【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB=BC 时,它是菱形,故本选项不符合题意;B. 根据对角线互相垂直的平行四边形是菱形知:当AC ⊥BD 时,四边形ABCD 是菱形,故本选项不符合题意;C. 根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项不符合题意;D. 根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项符合题意; 故选D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差 【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 11.对于函数y=﹣2x+2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y 的值随x 的增大而增大,其中正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0, ∴一次函数中y 随x 的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x >1时,y <0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y 随x 的增大而减小,④不正确.故选B【点睛】本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.12.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴DEBF是平行四边形,故②正确;添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故③正确;添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D.点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案【答案】B【解析】【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2mn即四个直角三角形的面积和,从而不难求得(m+n)2.【详解】(m+n)2=m2+n2+2mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣2)=24.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.【答案】C【解析】【分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=12x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.【答案】8米.【解析】【分析】在Rt△ABC中,利用勾股定理即可求出BC的值.【详解】在Rt△ABC中,AB2=AC2+BC2.∵AB=10米,AC=6米,∴BC22=-=8米,即梯子的底端到墙的底端的距离为8米.AB AC故答案为8米.【点睛】本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.【答案】1【解析】这组数出现次数最多的是29;∴这组数的众数是29.∵共42人,∴中位数应是第21和第22人的平均数,位于最中间的数是28,28,∴这组数的中位数是28.∴该班中考英语口语考试成绩的众数比中位数多29﹣28=1分,故答案为1.【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.【答案】20【解析】【分析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得30030 90050k b k b=+⎧⎨=+⎩,解得,30600kb=⎧⎨=-⎩,则y=30x-600.当y=0时,30x-600=0,解得:x=20.故答案为20.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.【答案】13【解析】【分析】由AC ⊥BC ,AB =10,AD =BC=6,根据勾股定理求得AC 的长,得出OA 的长,然后再由勾股定理求得OB 即可.【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,OD=OB,OA=OC,∵AC ⊥BC ,∴=8,∴OC=4,∴∴【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.三、解答题(本大题共7小题,共63分)20.计算:【答案】6【解析】分析:先将二次根式化为最简,然后合并同类二次根式,根据二次根式的乘法进行运算即可.详解:原式1633⎛=⨯⨯⨯ ⎝⎭=⨯==6.点睛:考查二次根式混合运算,掌握运算顺序是解题的关键.21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠ABC 的度数.【答案】(1)见解析;(2)∠ABC =45°.【解析】【分析】(1)根据勾股定理作出边长为5的正方形即可得;(2)连接AC ,根据勾股定理逆定理可得△ABC 是以AC 、BC 为腰的等腰直角三角形,据此可得答案.【详解】(1)如图1所示:(2)如图2,连AC ,则22221251310BC AC AB ==+==+=,.∵2225510+=()()(),即BC 2+AC 2=AB 2,∴△ABC 为直角三角形,∠ACB =90°,∴∠ABC =∠CAB =45°.【点睛】本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别165.5~170.5 170.5~175.5 175.5~180.5 180.5~185.5 185.5~190.5 190.5~195.5频数甲车间 2 4 5 6 2 1乙车间 1 2 a b 2 0分析数据:车间平均数众数中位数方差甲车间180 185 180 43.1乙车间180 180 180 22.6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.【答案】(1)甲车间样品的合格率为55% (2)乙车间的合格产品数为750个;(3)乙车间生产的新产品更好,理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm 的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为56100%55%20+⨯=; (2)∵乙车间样品的合格产品数为()2012215-++=(个), ∴乙车间样品的合格率为15100%75%20⨯=, ∴乙车间的合格产品数为100075%750⨯=(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.【答案】(1) y=2x+1;(2)不;(3)0.25. 【解析】【分析】(1)用待定系数法求解函数解析式;(2)将点P 坐标代入即可判断;(3)求出函数与x 轴、y 轴的交点坐标,后根据三角形的面积公式即可求解.【详解】解答:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(-1,1)代入函数解析式,1≠-2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12 -,此函数与x轴、y轴围成的三角形的面积为:11110.25 224⨯⨯-==24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.【答案】见解析;【解析】【分析】连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?【答案】(1) y=0.8x+50;(2)见解析.【解析】分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.详解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=0.9x;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=0.8x+50;(2)当0.9x<0.8x+50时,解得:x<500;当0.9x=0.8x+50时,x=500;当0.9x>0.8x+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【答案】见解析【解析】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.【点评】此题考查了菱形的判定与性质以及全等三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.。

新人教版八年级数学下册期末测试卷(完整)

新人教版八年级数学下册期末测试卷(完整)

新人教版八年级数学下册期末测试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,127.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,平行四边形ABCD中,60BAD∠=︒,2AD=,点E是对角线AC上一动点,点F是边CD上一动点,连接BE、EF,则BE EF+的最小值是____________.6.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、B6、A7、B8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、22()1y x =-+3、如果两个角互为对顶角,那么这两个角相等4、1456、15.三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、123、8k ≥-且0k ≠.4、E (4,8) D (0,5)5、(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

人教版初中数学八年级下册期末测试题、答案

人教版初中数学八年级下册期末测试题、答案

人教版初中数学八年级下册期末测试题一、选择题(本大题共小题,每小题分,共分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得分,选错、不选或多选均得零分.)A B C D 如图,O A B 为直角三角形,O A =,A B =,则点A 的坐标为()A()B ()C ()D ()如图,矩形A B C D 的对角线A C =,B O C Ð=°,则A B 的长为()A B C D 一次函数()y kx k =-¹的函数值y 随x 的增大而减小,它的图象不经过的象限是()A 第一象限B 第二象限C 第三象限D 第四象限如图,直线y x =和y k x b =+相交于点()P ,则不等式x k x b £+的解集为()A.x ³B.x £C.x ³D.x £一组数据:n a a a ×××的平均数为P ,众数为Z ,中位数为W ,则以下判断正确的是()A P 一定出现在n a a a ×××中B Z 一定出现在n a a a ×××中C W 一定出现在n a a a ×××中D P ,Z ,W 都不会出现在n a a a ×××中二、填空题(本大题共小题,每小题分,共分)将函数y x =的图象向下平移个单位,所得图象的函数解析式为______如图,点P 是正方形A B C D 内位于对角线A C 下方的一点,已知:P C A P B C Ð=Ð,则B P C Ð的度数为______.南吕是国家历史文化名城,其名源于“昌大南疆,南方昌盛”之意,市内的滕王阁、八一起义纪念馆、海昏候遗址、绳金塔、八大山人纪念馆等都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学,人数分别为:,,,,(单位:人),这组数据的中位数是______.一组数据,,,x 的众数只有一个,则x 的值不能为______.如图,在A B C 中,已知:A C B Ð=°,c m A B =,c m A C =,动点P 从点B 出发,沿射线B C 以c m s 的速度运动,设运动的时间为t 秒,连接P A ,当A B P △为等腰三角形时,t 的值为______.三、解答题(本大题共小题,每小题分,共分)()计算:+-()求x =.如图,点C为线段A B上一点且不与A,B两点重合,分别以A C,B C为边向A B的同侧做锐角为°的菱形.请仅用无刻度的直尺分别按下列要求作图.(保留作图痕迹)=,作出线段D F的中点M;()在图中,连接D F,若A C B C()在图中,连接D F,若A C B C¹,作出线段D F的中点N.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图、(图为图的平面示意图),推开双门,双门间隙C D的距离为寸,点C和点D距离门槛A B都为尺(尺寸),则A B 的长是多少?某种子站销售一种玉米种子,单价为元千克,为惠民促销,推出以下销售方案:付款金额y(元)与购买种子数量x(千克)之间的函数关系如图所示.()当x³时,求y与x之间的的函数关系式:()徐大爷付款元能购买这种玉米种子多少千克?已知:①,,,,的平均数是,方差是;②,,,,的平均数是,方差是;③,,,,的平均数是,方差是;④,,,,的平均数是,方差是;请按要求填空:()n,n+,n+,n+,n+的平均数是,方差是;()n,n+,n+,n+,n+的平均数是,方差是;()n,n,n,n,n的平均数是,方差是.四、解答题(本大题共小题,每小题分,共分)下表是某公司员工月收入的资料.职位总经理财务总监部门经理技术人员前台保安保洁人数月收入元()这家公司员工月收入的平均数是元,中位数是和众数是;()在()中的平均数,中位数和众数哪些统计量能反映该公司全体员工收入水平?说明理由;()为了避免技术人员流失,该公司决定给他们每人每月加薪x元至公司员工月收入的平均数,求x的值.已知:一次函数()()y m x m m =+-¹与x 轴、y 轴交于A点,B 点()当m =时,求O A B 的面积;()请选择你喜欢的两个不同的()m m ¹的值,求得到的两个一次函数的交点坐标;()m 为何值时,O A B 是等腰直角三角形?如图,若D E 是A B C 的中位线,则A B C A D E S S =△△,解答下列问题:()如图,点P 是B C 边上一点,连接P D 、P E ①若P D E S =△,则A B CS=;②若P D B S =△,P C E S =△,连接A P ,则A P DS =,A P E S =△,A B CS=.()如图,点P 是A B C 外一点,连接P D 、P E ,已知:P D BS=,P C E S =△,P D E S =△,求A B CS的值;()如图,点P 是正六边形F G H I J K 内一点,连接P G 、P F 、P K ,已知:P G F S =△,P K J S =△,P F K S =△,求F G H I J K S 六边形的值.五、综合题(本大题共小题,共分)已知直线y x =-+分别与x 轴、y 轴交于A 点,B 点,点()n n Q x y 为这条直线上的点,Q P x ^轴于点P ,Q R y ^轴于点R .()①将下表中的空格填写完整:nn x --ny --n nx y +②根据表格中的数据,下列判断正确的是.A .x y =,B .x yS S =,C .x y S +=.()当点Q 在第一象限时,解答下列问题:①求证:矩形O P Q R 的周长是一个定值,并求这个定值;②设矩形O P Q R 的面积为S ,求证:S £.()当点Q 在第四象限时,直接写出Q P ,Q R 满足的等式关系.参考答案B C B A D By x﹣°或或()解:()原式(=+-=(=,∴x-=,∴x=解:()如图点M为D F的中点()如图点N为D F的中点解:取A B的中点O,过D作D E⊥A B于E,如图所示:由题意得:O A O B A D B C,设O A O B A D B C r寸,则A B r(寸),D E寸,O E C D寸,∴A E(r-)寸,在R t△A D E中,A E D E A D,即(r-)r,解得:r,∴r(寸),∴A B寸.解:()当x³时,设y与x之间的的函数关系式为y k x b=+,将点(),()带入解析式得k b k b+=ìí+=î解得k b=ìí=î∴y x=+.()将y=时,带入y x=+中解得x=千克.答:徐大爷付款元能购买这种玉米种子千克.解:()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴数据n,n+,n+,n+,n+的平均数+n E=n+,方差依然是,()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴n,n+,n+,n+,n+的平均数是+n E=n+,方差依然是,()数据n,n,n,n,n是将,,,,分别乘以n所得,∴数据n,n,n,n,n的平均数为n,方差为n,解:()∵一共有++++++=(人),∴这组数据的中位数是第、个数据的平均数,而第、个数据分别为、,∴中位数是+=(元),∵数据出现次数最多,∴这组数据的众数为元,故答案为:元,元;()中位数和众数能反映该公司全体员工收入水平,该公司员工月收入的平均数为,在这名员工中只有名员工的收入在元以上,有名员工的收入在元以下,因此用平均数不能反映所有员工的收入水平,中位数和众数为元能反映多数员工的收入水平.()由题意列方程:x x +=+,解得x =元∴技术人员需要加薪元.解:()当m =时,y x =-,当x =时,y =-,∴()B -,∴O B =当y =时,x =,∴A æöç÷èø,∴O A =,O A B S O A O B =×=△;()取m =,y x =+,取m =,y x=,∴y x y x =+ìí=î解得x y=ìí=î∴两个一次函数的交点坐标为()()当x =时,y m =-,∴O B m =-;当y =时,m x m-=,∴m O A m -=,∵O A B 是等腰直角三角形,∴O A O B =,即m m m--=;∵m -¹,∴m =±.解:()如图,连接B E ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P D E =S △B D E =,∴S △A B E =,∴S △A B C =,②∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A B C =;()如图,连接A P ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,S △A B C =S △A D E ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A D E =S △A P D S △A P E ﹣S △P D E =,∴S △A B C =S △A D E =;()如图,延长G F ,J K 交于点N ,连接G J ,连接P N ,∵六边形F G H I J K 是正六边形,∴F G =F K =K J ,∠G F K =∠J K F =°,S 六边形F G H I J K =S 四边形F G J K ,∴∠N F K =∠N K F =°,∴△N F K 是等边三角形,∴N F =N K =F K =F G =K J ,∴S △P G F =S △P F N =,S △P K J =S △P K N =,F K 是△N G J 的中位线,∴S △N F K =S △P F N S △P K N ﹣S △P F K =,∵F K 是△N G J 的中位线,∴S △N G J =S △N F K =;∴S 四边形F G J K =﹣=,∴S 六边形F G H I J K =.()①填表如下:n n x --n y --n nx y +②x y ==´--+++++++,故A 正确;[]x S =--+--+-+-+-+-+-+-+-=[]y S =--+--+-+-+-+-+-+-+-=∴x y S S =,故B 正确;∵x y +=∴x y S +=故C 正确;故答案为:A 、B 、C()①设()Q x x -+,∵点Q 在第一象限,∴O P x =,P Q x =-+,∴()O P Q R C O P P Q ==矩形+,∴矩形O P Q R 的周长是一个定值,周长为;②∵()()S x x x x x -=--+=+-=-³∴S £.()设点Q 的坐标为()xx -+,∵点Q 在第四象限,∴Q R x =,Q P x =-,∴Q R Q P -=.。

【人教版】八年级下册数学《期末考试试题》附答案解析

【人教版】八年级下册数学《期末考试试题》附答案解析

人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共计30分)1.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A. m 1≠.B. m 1=.C. m 1≥D. m 0≠. 2.下列各曲线中,不表示...y 是x 的函数是( ). A.B. C. D. 3.下列各组数中能作为直角三角形的三边长是( )A. 7,24,25B. 3,2,5C. 2,5,6D. 13,14,154.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A . m≥1 B. m≤1 C. m >1 D. m <15.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC 中,∠ACB =90°,AC+AB =10,BC =3,求AC 的长.在这个问题中,AC 的长为( )A. 4尺B. 92尺C. 9120尺D. 5尺6.一次函数42y x =--的图象经过( )A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限7.下列命题正确的是( )A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等矩形是正方形8.一个三角形两边长分别为2和6,第三边长是方程28150x x -+=的根,则这个三角形的周长为( )A. 11B. 12C. 13D. 11或139.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,点E 为CD 的中点,连接OE ,若4AB =,60BAD ∠=︒,则OCE △的面积是( )A. 4B. 23C. 2D. 3 10.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示.其中说法正确的是( )A. 甲的速度是60米/分钟B. 乙的速度是80米/分钟C. 点A 的坐标为(38,1400)D. 线段AB 所表示的函数表达式为40(4060)y t t =剟 二、填空题(每小题3分,共计30分) 11.在函数21x y x -=-中,自变量x 的取值范围是________. 12.在Rt △ABC 中,已知∠C =90°,∠A =30°,BC =1,则边AC 的长为_____. 13.若函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +<的解集为_____________.14.命题“全等三角形的对应边都相等”的逆命题是___命题.(填“真”或“假”)15.在平面直角坐标系中,已知一次函数61y x =-+的图象经过()111,P x y ,()222,P x y 两点,若12x x <,则1y ________2y .(填“>”“<”或“=”)16.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场)计划安排15场比赛,应邀请 个球队参加比赛.17.如图,AC 是四边形ABCD 的对角线,AC 平分BAD ∠,90ACD ABC ==∠∠°,点E ,F 分别为AC ,CD 的中点,连接BE ,EF ,78BEF ∠=︒,则D ∠的大小为________度.18.如图,平面直角坐标系中,ACOD Y 的顶点O ,A ,C 的坐标分别是(0,0),(4,0),(1,2),则直线AD 的解析式为____________.19.已知CD 是△ABC 的边AB 上的高,若CD=3,AD=1,AB=2AC ,则BC 的长为_____.20.如图,正方形ABCD 中,点E 在CD 的延长线上,点F 在AB 上,连接EF 交AD 于点G ,EF CE =,若3BF =,2DG =,则CE 的长为________.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.解方程:4(2)25x x +=22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段EF ,点A ,B ,E ,F 均在小正方形的顶点上.(1)在方格纸中画出以AB 为一边的矩形ABCD ,点C ,D 都在小正方形的顶点上,且矩形ABCD 的周长为65;(2)在方格纸中画出以EF 为边的菱形EFGH ,点G ,H 都在小正方形的顶点上,且菱形EFGH 的面积为4;连接CH ,请直接写出CH 的长.23.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA x P 轴,AC 是射线.(1)当30x …,求y 与x 之间的函数关系式; (2)若小李6月份上网费用为66元,则他在该月份的上网时间是多少小时?24.如图,矩形纸片ABCD ,点E 在BC 上,将CDE △沿DE 折叠,得到FDE V ,DF ,EF 分别交AB 于点G ,H ,且EH GH =.(1)求证:BG CE =;(2)若4AB =,3AD =,求AG 的长.25.某地2016年为做好“精准扶贫”,投入资金1200万元用于异地安置,并规划投入异地安置资金的年平均增长率在三年内保持不变,已知2018年在2016年的基础上增加了投入异地安置资金1500万元. (1)2017年该地投入异地安置资金为多少元?(2)在2017年异地安置的具体实施中,该地要求投入用于优先搬迁租房奖励的资金不低于2017年该地投入异地安置资金的25%.规定前1000户(含第1000)户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.26.已知:矩形ABCD ,点E 在AD 的延长线上,连接CE ,BE ,且BC CE =,DCE ∠的平分线CF 交BE 于点F .(1)如图1,求BFC ∠的大小;(2)如图2,过点F 作FN CF ⊥交BA 的延长线于点N ,求证:BN AD =;(3)如图3,在(2)的条件下,FN 交AD 于点M ,点Q 为MN 的中点,连接BQ 交AD 于点H ,点P 在AH 上,且DE PD =,连接BP ,且10BP DE =.延长MF 交CE 于点G ,连接CM ,若CGM △的周长与BHP V 的周长的差为2,求MN 的长.27.已知:在平面直角坐标系中,点O 为坐标原点,直线8(0)y kx k =+<分别交x 轴,y 轴于点C ,B ,点A 在第一象限,连接AB ,AC ,四边形ABOC 是正方形.(1)如图1,求直线BC 的解析式;(2)如图2,点,D E 分别在,AB OC 上,点E 关于y 轴的对称点为点F ,点G 在EF 上,且2EG FG =,连接DE ,DG ,设点G 的横坐标为t ,DEG △的面积为S ,求S 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)如图3,在(2)的条件下,连接BE ,BF ,CD ,点M 在BF 上,且FM EG =,点N 在BE 上,连接MN 交DG 于点H ,12BNM BEF ∠=∠,且MH NH =,若5CD BD =,求S 的值.答案与解析一、选择题(每小题3分,共计30分)1.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A. m 1≠.B. m 1=.C. m 1≥D. m 0≠.【答案】A【解析】【分析】 根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.2.下列各曲线中,不表示...y 是x 的函数是( ). A. B. C. D.【答案】D【解析】【分析】函数有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,结合选项即可作出判断.【详解】解:A 、B 、C 选项中对于x 的每一个确定的值,y 都有唯一的值与其对应,符合函数的定义, 只有D 选项对于x 的每一个确定的值,可能会有两个y 与之对应,不符合函数的定义,故选:D .【点睛】本题考查了函数的定义,注意掌握在函数变化的过程中,对于x 的每一个确定的值,y 都有唯一的值与其对应.3.下列各组数中能作为直角三角形的三边长是( )A. 7,24,25 325 C. 2,5,6 D. 13,14,15【答案】A【解析】【分析】根据勾股定理的逆定理依次判断各选项即可.【详解】A 、2227+24=25,则能作为直角三角形的三边长,故A 选项正确;B 、()()2223+25≠,则不能作为直角三角形的三边长,故B 选项错误; C 、2222+56≠,则不能作为直角三角形的三边长,故C 选项错误;D 、22213+1415≠,则不能作为直角三角形的三边长,故D 选项错误;故选A .【点睛】本题是对勾股定理的逆定理知识的考查,熟练掌握勾股定理是解决本题的关键.4.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A. m≥1B. m≤1C. m >1D. m <1【答案】D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->V ,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 5.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC 中,∠ACB =90°,AC+AB =10,BC =3,求AC 的长.在这个问题中,AC 的长为( )A. 4尺B. 92尺C. 9120尺D. 5尺【答案】C【解析】【分析】 首先设AC=x ,然后根据勾股定理列出方程,求解即可.【详解】设AC=x ,∵AC+AB=10,∴AB=10﹣x .∵在Rt △ABC 中,∠ACB=90°,∴AC 2+BC 2=AB 2,即x 2+32=(10﹣x )2.解得:x =4.55,即AC=4.55.故选:C .【点睛】本题考查的是勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图. 6.一次函数42y x =--的图象经过( )A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限【答案】D【解析】【分析】根据一次函数的一次项系数小于0,则函数一定过二、四象限,常数项-2<0,则一定与y 轴负半轴相交,据此即可判断.【详解】一次函数42y x =--的一次项系数为-4,∵-4<0,∴函数一定过二、四象限,∵常数项-2<0,∴函数与y 轴负半轴相交,∴一次函数42y x =--的图象经过第二、三、四象限,故选D.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数图像和解析式之间的关系是解决本题的关键. 7.下列命题正确的是( )A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等的矩形是正方形【答案】D【解析】【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A 、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故A 选项错误;B 、对角线互相垂直的四边形也可能是一般四边形,故B 选项错误;C 、对角线相等的四边形有可能是等腰梯形,故C 选项错误.D 、一组邻边相等的矩形是正方形,故D 选项正确.故选D .【点睛】本题考查特殊平行四边形的判定,需熟练掌握各特殊四边形的特点.8.一个三角形的两边长分别为2和6,第三边长是方程28150x x -+=的根,则这个三角形的周长为()A. 11B. 12C. 13D. 11或13【答案】C 【解析】【分析】先解方程求出第三边,再根据三角形三边关系确定第三边,然后求出周长即可.【详解】解:28150x x -+=()()350x x --=123,5x x ==,∵2+3<6,则x=3舍去,∵2+5>6,则x=5成立,则周长为2+5+6=13,故选C.【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法和三角形的三边关系是解决本题的关键.9.如图,菱形ABCD的对角线AC,BD相交于点O,点E为CD的中点,连接OE,若4AB=,60BAD∠=︒,则OCE△的面积是()A. 4B. 23C. 2D. 3【答案】D【解析】【分析】由已知条件可求出菱形的面积,则△ADC的面积也可求出,易证OE为△ADC的中位线,所以OE∥AD,再由相似三角形的性质即可求出△OCE的面积.【详解】解:过点D作DH⊥AB于点H,∵四边形ABCD是菱形,AO=CO,∴AB=BC=CD=AD,∵∠BAD=60°,∴DH=4323 =∴S菱形ABCD=42383⨯=∴S△CDA=12S菱形ABCD=183432⨯=∵点E为边CD的中点,∴OE为△ADC的中位线,∴OE∥AD,∴△CEO∽△CDA,∴△OCE的面积=14S△CDA=14334⨯=故选:D.【点睛】本题考查了菱形的性质、三角形中位线的判断和性质、相似三角形的判断和性质,能够证明OE为△ADC的中位线进而证明△CEO∽△CDA是解题的关键.10.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.其中说法正确的是()A. 甲的速度是60米/分钟B. 乙的速度是80米/分钟C. 点A的坐标为(38,1400)D. 线段AB所表示的函数表达式为剟y t t40(4060)【答案】D【解析】【分析】根据图象信息,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;由甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再根据“路程、时间与速度”的关系解答即可;求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B 两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式.【详解】解:A、根据图象信息,甲的速度为2400÷60=40米/分钟,故A选项错误;B、∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100-40=60米/分钟,B选项错误;C、乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A 点的坐标为(40,1600),故C 选项错误;D 、设线段AB 所表示的函数表达式为y=kt+b ,∵A (40,1600),B (60,2400),∴160040240060k b k b =+⎧⎨=+⎩, 解得:400k b =⎧⎨=⎩, ∴线段AB 所表示的函数表达式为40(4060)y t t =剟,故D 选项正确; 故选D.【点睛】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,读懂题目信息,从图象中获取有关信息是解题的关键.二、填空题(每小题3分,共计30分)11.在函数21x y x -=-中,自变量x 的取值范围是________. 【答案】1x ≠【解析】【分析】 在函数21x y x -=-中分母不为0,则x-1≠0,解出x 的取值范围即可. 【详解】在函数21x y x -=-中分母不为0, 则x-1≠0,即x≠1,故答案为:1x ≠.【点睛】本题是对分式有意义的考查,熟练掌握分母不为0是解决本题的关键.12.在Rt △ABC 中,已知∠C =90°,∠A =30°,BC =1,则边AC 的长为_____.【解析】【分析】由在Rt △ABC 中,∠C=90°,∠A=30°,BC=1,利用勾股定理,即可求得AC 的长;【详解】解:∵在Rt △ABC 中,∠C=90°,∠A=30°,BC=1,∴AB=2BC=2×2=4 ∴AC=22213-=【点睛】本题主要考查了应用勾股定理解直角三角形,解题的关键在于用在直角三角形中30°所对的边是斜边的一半.13.若函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +<的解集为_____________.【答案】3x >【解析】【分析】函数y kx b =+的图象过(0,3),由函数表达式可得,0kx b +<,就是一次函数值y <0,结合图像即可得出答案.【详解】解:由图知,3x >时,y <0,即0kx b +<,则关于x 的不等式0kx b +<的解集为3x >,故答案为:3x >.【点睛】本题是对一次函数图像的考查,熟练掌握一次函数图像知识和不等式知识是解决本题的关键. 14.命题“全等三角形的对应边都相等”的逆命题是___命题.(填“真”或“假”)【答案】真【解析】【分析】首先分清题设是:两个三角形全等,结论是:对应边相等,把题设与结论互换即可得到逆命题,然后判断正误即可.【详解】“全等三角形的对应边相等”的题设是:两个三角形全等,结论是:对应边相等,因而逆命题是:对应边相等的三角形全等.是一个真命题.故答案是:真【点睛】考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.15.在平面直角坐标系中,已知一次函数61y x =-+的图象经过()111,P x y ,()222,P x y 两点,若12x x <,则1y ________2y .(填“>”“<”或“=”)【答案】>【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小即可判断.【详解】解:∵一次函数61y x =-+中k=-6<0,∴y 随x 的增大而减小,∵12x x <,∴12y y >,故答案为:>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.16.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场)计划安排15场比赛,应邀请 个球队参加比赛.【答案】6.【解析】试题分析:设应邀请x 个队参加比赛,由题意则有:x(x-1)=15,解得x=6或x=-5(不合题意,舍去),故应邀请6个队参加比赛.考点:一元二次方程的应用.17.如图,AC 是四边形ABCD 的对角线,AC 平分BAD ∠,90ACD ABC ==∠∠°,点E ,F 分别为AC ,CD 的中点,连接BE ,EF ,78BEF ∠=︒,则D ∠的大小为________度.【答案】64【解析】【分析】根据三角形中位线定理得到EF∥AD,得到∠CEF=∠CAD,根据直角三角形的性质得到EA=EB,得到∠EAB=∠EBA,根据角平分线的定义、直角三角形的性质计算即可.【详解】解:∵点E,F分别为AC,CD 的中点,∴EF∥AD,∴∠CEF=∠CAD,∵∠ABC=90°,点E为AC的中点,∴EA=EB,∴∠EAB=∠EBA,∴∠CEB=2∠EAB,∵AC平分∠BAD,∴∠CAD=∠EAB,∴3∠DAC=78°,解得,∠DAC=26°,∵∠ACD=90°,∴∠D=90°-26°=64°,故答案为:64.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.Y的顶点O,A,C的坐标分别是(0,0),(4,0),(1,2),则直线AD的18.如图,平面直角坐标系中,ACOD解析式为____________.【答案】28y x =-【解析】【分析】先根据平行四边形的性质求出点D 坐标,再求出AD 解析式即可.【详解】∵四边形ACOD 是平行四边形,∴OC=AD ,OC ∥AD ,∵O(0,0),A(4,0),C(1,2),∴D 点坐标为(3,2)-,设AD 解析式为k y x b =+,把A(4,0),D(3,2)-代入k y x b =+中,0423k b k b=+⎧⎨-=+⎩, 解得:28k b =⎧⎨=-⎩, ∴28y x =-,故答案为:28y x =-.【点睛】本题是对平行四边形和一次函数知识的考查,熟练掌握平行四边形知识和一次函数解析式是解决本题的关键.19.已知CD 是△ABC 的边AB 上的高,若3AD=1,AB=2AC ,则BC 的长为_____. 【答案】327【解析】【分析】分两种情况:△ABC 是锐角三角形,△ABC 是钝角三角形,分别画出符合条件的图形,然后分别根据勾股定理计算AC 和BC 即可.【详解】分两种情况:①当ABC V 是锐角三角形,如图1,∵CD ⊥AB ,∴∠CDA=90°, ∵CD=3,AD=1,∴AC=2,∵AB=2AC ,∴AB=4, ∴BD=4-1=3,∴BC 2222CD BD 3(3)23+=+=;②当ABC V 是钝角三角形,如图2,同理得:AC=2,AB=4,∴2222CD BD (3)527+=+=综上所述,BC 的长为327故答案327【点睛】本题考查了三角形的高、勾股定理的应用,在直角三角形中常利用勾股定理计算线段的长,要熟练掌握,运用分类讨论思想进行解答是关键.20.如图,正方形ABCD 中,点E 在CD 的延长线上,点F 在AB 上,连接EF 交AD 于点G ,EF CE =,若3BF =,2DG =,则CE 的长为________.【答案】152【解析】【分析】过点F 作FH ∥BC 交CE 于点H ,设AF=a ,易证△AGF ∽△DGE ,从而可知21a ED a =+,根据勾股定理可求266a a EH +=,根据图中的等量关系列出方程可求出a 的值,从而可求出CE 的长度. 【详解】解:过点F 作FH ∥BC 交CE 于点H ,设AF=a ,∴CD=AB=a+3,∴AG=AD-GD=a+1,∵AF ∥CE ,∴△AGF ∽△DGE , ∴AF ED AG GD=, ∴21a ED a =+, 在Rt △EFH 中,由勾股定理可知:222EF EH FH =+,∴()()22233EH EH a +=++, ∴266a a EH +=, ∵21a EH ED DH a a =+=++, ∴26261a a a a a +=++, 解得::a=3或a=-4(舍去), ∴215312a CE ED CD a a =+=++=+,故答案为:152.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定以及勾股定理,本题属于中等题型.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.解方程:4(2)25x x += 【答案】12229229x x -+--== 【解析】【分析】 先将方程化为一般式,根据求根公式,解出方程即可.【详解】解:方程化为248250x x +-=4a =,8b =,25c =-224844(25)4640b ac ∆=-=-⨯⨯-=>方程有两个不等的实数根2484648429229b b ac x -±--±-±-±====即1222922922x x -+--==. 【点睛】本题是对一元二次方程的考查,熟练掌握公式法解一元二次方程是解决本题的关键.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段EF ,点A ,B ,E ,F 均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的矩形ABCD,点C,D都在小正方形的顶点上,且矩形ABCD的周长为65;(2)在方格纸中画出以EF为边的菱形EFGH,点G,H都在小正方形的顶点上,且菱形EFGH的面积为4;连接CH,请直接写出CH的长.【答案】(1)详见解析;(2)详见解析,22CH=【解析】【分析】(1)作出长,宽分别为25,5的矩形即可;(2)作出对角线分别为2,4的菱形即可.【详解】解:(1)22AB=+=,125÷-=,652525则作出长,宽分别为25,5的矩形如图所示;(2)如图,菱形EFGH即为所求,222222CH=+=【点睛】本题考查作图,勾股定理,矩形的判定和性质,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BAP轴,AC是射线.是线段,且BA x(1)当30x …,求y 与x 之间的函数关系式; (2)若小李6月份上网费用为66元,则他在该月份的上网时间是多少小时?【答案】(1)330y x =-;(2)6月份上网32个小时【解析】【分析】(1)设函数解析式为y=kx+b ,把A 、C 两点坐标代入列出方程组,解方程组即可;(2)求y=66时x 的值即可.【详解】解:(1)当30x ≥时,设函数关系式为y kx b =+,则30604090k b k b +=⎧⎨+=⎩, 解得330k b =⎧⎨=-⎩, 所以330y x =-;(2)当66y =时,66330x =-,解得32x =,所以6月份上网32个小时.【点睛】此题考查一次函数的应用,解题的关键是熟练掌握待定系数法确定函数解析式,属于中考常考题型.24.如图,矩形纸片ABCD ,点E 在BC 上,将CDE △沿DE 折叠,得到FDE V ,DF ,EF 分别交AB 于点G ,H ,且EH GH =.(1)求证:BG CE =;(2)若4AB =,3AD =,求AG 的长.【答案】(1)详见解析;(2)85AG =【解析】【分析】(1)由折叠得:∠C=∠DFE=90°,EC=EF ,DC=DF ,根据矩形的性质,可以证出FGH BEH △≌△,得到FH BH =,FG BE =,利用等量代换可得结论;(2)设AG=m ,表示出FG ,在Rt ADG V 中,由勾股定理可求出AG 的长.【详解】(1)证明:∵四边形ABCD 为矩形,∴90B C ∠=∠=︒,∵CDE △与FDE V 关于DE 对称,∴CDE FDE △≌△,∴90DFE C ∠=∠=︒,EF EC =, DF DC =,在FGH V 和BEH △中 F B FHG BHE GH EH ∠=∠⎧⎪∠=∠⎨⎪=⎩∴FGH BEH △≌△,∴FH BH =,FG BE =,∴FH EH BH GH +=+,即BG EF =,∴BG CE =;(2)∵四边形ABCD 为矩形,∴90A ∠=︒,3BC AD ==,4DF CD AB ===,令AG m =,则4CE BG m ==-,∴3(4)1FG BE m m ==--=-,4(1)5DG m m =--=-,在Rt ADG V 中,∵90A ∠=︒,∴222AD AG DG +=,∴2223(5)m m +=-,解得85m =, ∴85AG =. 【点睛】考查矩形的性质、轴对称的性质、三角形全等的性质和判定以及直角三角形的勾股定理等性质,合理地转化到一个三角形中是解决问题常用的方法.25.某地2016年为做好“精准扶贫”,投入资金1200万元用于异地安置,并规划投入异地安置资金的年平均增长率在三年内保持不变,已知2018年在2016年的基础上增加了投入异地安置资金1500万元. (1)2017年该地投入异地安置资金为多少元?(2)在2017年异地安置的具体实施中,该地要求投入用于优先搬迁租房奖励的资金不低于2017年该地投入异地安置资金的25%.规定前1000户(含第1000)户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.【答案】(1)2017年该地投入异地安置资金为18000000元;(2)2017年该地至少有1650户享受到优先搬迁租房奖励.【解析】【分析】(1)设年平均增长率为x ,根据2016年投入资金给×(1+增长率)2=2018年投入资金,列出方程,即可求得x 的值,从而可以求得2017年该地投入异地安置资金的数额;(2)设今年该地有y 户享受到优先搬迁租房奖励,根据前1000户获得的奖励总数+1000户以后获得的奖励总和不低于2017年该地投入异地安置资金的25%,可以列出相应的不等式,从而可以解答本题.【详解】解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意得21200(1)12001500x +=+,解得120.550%, 2.5x x ===-(舍),∴12000000(150%)18000000⨯+=(元),则2017年该地投入异地安置资金为18000000元;(2)设2017年该地有y 户享受到优先搬迁租房奖励,根据题意得81000400540(1000)1800000025%y ⨯⨯+⨯-≥⨯,解得1650y ≥,∴2017年该地至少有1650户享受到优先搬迁租房奖励,则2017年该地至少有1650户享受到优先搬迁租房奖励.【点睛】本题考查一元二次方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式,这是一道典型的增长率问题.26.已知:矩形ABCD ,点E 在AD 的延长线上,连接CE ,BE ,且BC CE =,DCE ∠的平分线CF 交BE 于点F .(1)如图1,求BFC ∠的大小;(2)如图2,过点F 作FN CF ⊥交BA 的延长线于点N ,求证:BN AD =;(3)如图3,在(2)的条件下,FN 交AD 于点M ,点Q 为MN 的中点,连接BQ 交AD 于点H ,点P 在AH 上,且DE PD =,连接BP ,且10BP =.延长MF 交CE 于点G ,连接CM ,若CGM △的周长与BHP V 的周长的差为2,求MN 的长.【答案】(1)45°;(2)详见解析;(3)25MN =【解析】【分析】(1)令EBC α∠=,由矩形的性质可得902DCE BCE BCD α∠=∠-∠=︒-,由三角形外角性质和角平分线的性质可得1452FCE DCE α∠=∠=︒-,从而求出∠BFC 的大小; (2)过点B 作BR FN ⊥于点R ,过点B 作BT FC ⊥交FC 的延长线于点T ,先证明BR BT =,再证NBR CBT △≌△,从而证明BN AD =;(3)延长CF 交AE 于点L ,先证明MEF CEF △≌△,得到EM EC BC ==,再证Rt AHB Rt DLC △≌△,得AH DL =,根据MCG △的周长与BPH V 的周长的差为2,求出1AP MD ==,设10BP a =,则4DE a =,10CM BP a ==,在Rt CDM V中和Rt EDC V 中,根据勾股定理求出a 的值,从而求出MN 的长度.【详解】(1)解:如图,令EBC α∠=,∴四边形ABCD 是矩形ABCD ,∴90BCD ∠=︒∵BC CE =,∴BEC EBC α∠=∠=,∴1801802BCE EBC BEC α∠=︒-∠-∠=︒-,∴902DCE BCE BCD α∠=∠-∠=︒-,又∵CF 平分DCE ∠, ∴1452FCE DCE α∠=∠=︒-, ∴45BFC FCE BEC ∠=∠+∠=︒;(2)证明:如图,过点B 作BR FN ⊥于点R ,过点B 作BT FC ⊥交FC 的延长线于点T ,∵四边形ABCD 是矩形,∴90ABC ∠=︒, AD BC = ,∵FN CF ⊥,∴90NFC ∠=︒,∵45BFC ∠=︒,∴45BFN BFC ∠=∠=︒ ,∴BR BT =,在四边形BTFR 中,36090909090RBT ∠=︒-︒-︒-︒=︒ ,∴90CBT CBR ∠+∠=︒,∵90NBR CBR ∠+∠=︒,∴CBT NBR ∠=∠,又∵90T BRN ∠=∠=︒,∴NBR CBT △≌△,∴BN BC AD ==;(3)解:如图,延长CF 交AE 于点L ,∵四边形ABCD 是矩形,∴AD BC ∥,AB CD =,90BAD CDA ∠=∠=︒,∴AEB EBC BEC α∠=∠=∠=,∴45EMF ECF α∠=︒-=∠,又∵EF EF =,∴MEF CEF △≌△,∴EM EC BC ==,∴四边形BCEM 是平行四边形,∴BM CE BC BN ===,∵Q 为MN 中点,∴BQ MN ⊥,∴90CFG BQM ∠=∠=︒ ,∴BH CL ∥,∴四边形BCLH 为平行四边形,∴CL BH =,∵MEG CEL ∠=∠,EM EC =,MEG CEL ∠=∠,∴MEG CEL △≌△ ,∴MG CL BH == ,LE GE =,∴ME LE EC EG -=-,∴ML CG =,又∵ME AD =,∴AM DE =,又∵PD DE =,∴AM PD =,∴AM PMPD PM -=-, ∴AP MD =,∴APB DMC △≌△,∴BP CM =,∵AB CD =,BH CL =,∴Rt AHB Rt DLC △≌△,∴AH DL =,又∵MCG △的周长与BPH V 的周长的差为2,∴()()2CM MG CG BP BH PH ++-++=,∴2CG PH -=,∴2ML PH -=,∴()22MD DL AH AP MD +--==,∴1AP MD ==, ∵104BP DE =, 设10BP a =,则4DE a =,10CM BP a ==,∴14CE ME a ==+,在Rt CDM V 中,22222(10)1CD CM DM a =-=-,在Rt EDC V 中,22222(14)(4)CD CE DE a a =-=+-,∴2222(10)1(14)(4)a a a -=+-解得11a =,215a =-(舍), ∴44DE a ==,5AD CE BC BN ====,∴223AB CD CE DE ==-=,∴2AN BN AB =-=,4AMAD MD =-=, ∴2225MN AM AN =+=.【点睛】本题是四边形综合题,考查了矩形的性质,菱形的判定和性质,等腰三角形的性质,全等三角形的判定和性质,勾股定理等知识,求出MD 的长是本题的关键.27.已知:在平面直角坐标系中,点O 为坐标原点,直线8(0)y kx k =+<分别交x 轴,y 轴于点C ,B ,点A 在第一象限,连接AB ,AC ,四边形ABOC 是正方形.(1)如图1,求直线BC 的解析式;(2)如图2,点,D E 分别在,AB OC 上,点E 关于y 轴的对称点为点F ,点G 在EF 上,且2EG FG =,连接DE ,DG ,设点G 的横坐标为t ,DEG △的面积为S ,求S 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)如图3,在(2)的条件下,连接BE ,BF ,CD ,点M 在BF 上,且FM EG =,点N 在BE 上,连接MN 交DG 于点H ,12BNM BEF ∠=∠,且MH NH =,若5CD BD =,求S 的值. 【答案】(1)8y x =-+;(2)1816023S EG DQ t t ⎛⎫=⨯=--< ⎪⎝⎭…;(3)32 【解析】【分析】(1)先求C 的坐标,再代入解析式可求出k ;(2)根据点E 关于y 轴的对称点为点F 和EG=2FG 可以得出OG 与OE 的关系,从而得出GE 与t 的关系,再根据三角形面积公式即可算出S ;(3)令BD n =,则5CD n =,8AD n =-,在Rt ACD V 中,根据勾股定理求出n ,延长MN 交x 轴于点P ,连接GM ,GN ,过点M 作MR BE ∥交x 轴于点R ,令BNM α∠=,则,2ENP BEF αα∠=∠=,从而证出4EG EL m ==,在Rt BOE △中,根据勾股定理求出m ,从而求出S.【详解】解:(1)当0x =时,8y =,∴(8,0)B ,∴8OB =,∵四边形ABOC 是正方形,∴8BO CO ==,∴(8,0)C ,代入解析式得088k =+,解得1k =-,∴8y x =-+;(2)如图,过点D 作DQ x ⊥轴于点Q ,∴90DQO QOB OBD ∠=∠=∠=︒,∴四边形BOQD 是矩形,∴8DQ BO ==,∵点E 与点F 关于y 轴对称,∴OF OE =,令3OE m =,∴6EF m =,∵2EG FG =, ∴243EG EF m ==, ∴OG EG OE m t =-==-,∴1184816160223S EG DQ m m t t ⎛⎫=⨯=⨯⨯==--< ⎪⎝⎭…;(3)如图,令BD n =,则5CD n =,8AD n =-, 在Rt ACD V 中,222AD AC CD +=,∴222(8)8(5)n n -+=,解得12n =,283n =-(舍), ∴2BD =,延长MN 交x 轴于点P ,连接GM ,GN ,过点M 作MR BE ∥交x 轴于点R , 令BNM α∠=,则,2ENP BEF αα∠=∠=, ∴2EPN ENP ααα∠=-==∠,。

2022—2023年人教版八年级数学下册期末测试卷(参考答案)

2022—2023年人教版八年级数学下册期末测试卷(参考答案)

2022—2023年人教版八年级数学下册期末测试卷(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 2.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0 B .1- 或0 C .1或2- D .1或1-3.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π 4.当22a a +-有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2 D .a ≠-25.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个6.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -________. 2.若不等式组130x a bx ->⎧⎨+≥⎩的解集是﹣1<x ≤1,则a =_____,b =_____. 3.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,在一次测绘活动中,某同学站在点A 的位置观测停放于B 、C 两处的小船,测得船B 在点A 北偏东75°方向900米处,船C 在点A 南偏东15°方向1200米处,则船B 与船C 之间的距离为______米.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、B5、C6、B7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-y -2、-2 -33、204、31-5、96、1500三、解答题(本大题共6小题,共72分)1、2x =2、3.3、(1)102b -≤≤;(2)2 4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.6、(1)2元;(2)至少购进玫瑰200枝.。

2022—2023年人教版八年级数学下册期末试卷(及参考答案)

2022—2023年人教版八年级数学下册期末试卷(及参考答案)

2022—2023年人教版八年级数学下册期末试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.523.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .65.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②∠EAG=45°;③CE=2DE ;④AG ∥CF ;⑤S △FGC =725.其中正确结论的个数是( )A .2个B .3个C .4个D .5个7.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④7.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是( )A .100米B .110米C .120米D .200米10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -化简的结果为________. 2.若不等式组130x a bx ->⎧⎨+≥⎩的解集是﹣1<x ≤1,则a =_____,b =_____. 3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是________.5.如图,在Rt △BAC 和Rt △BDC 中,∠BAC =∠BDC =90°,O 是BC 的中点,连接AO 、DO .若AO =3,则DO 的长为________.6.已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过D 作直线DE ⊥OA ,垂足为点E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.3.解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.4.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:游泳次数10 15 20 (x)方式一的总费用150 175 ______ …______(元)方式二的总费用90 135 ______ …______(元)(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、B5、C6、D7、C8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)12、-2 -33、60°或120°4、(﹣5,4).5、36、4.三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、-11x+,-143、则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.4、略.5、(1)略(2)90°(3)AP=CE6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。

人教版八年级下册数学期末试题(附答案)

人教版八年级下册数学期末试题(附答案)

2021——2022学年第二学期数学期末检测卷一、选择题(每小题3分,共30分)1.代数式11x -有意义,则x 的取值范围是( ) A . x ≥0 B . x ≠1 C . x >0 D . x ≥0且x ≠12.如果一次函数 y =x +k 的图象经过第一、三、四象限,那么 k 的取值范围是 ( ) k >0 B . k <0 C . k >1 D . k <13.如图,在平行四边形 ABCD 中,∠A =140∘,则 ∠B 的度数是 ( )A. 40∘B . 70∘C . 110∘D . 140∘ 书名 《西游记》 《水浒传》 《三国演义》 《红楼梦》销量量/本 180120 125 85 些《西游记》,你认为最影响该书店决策的统计量是( )A .平均数B .众数C .中位数D .方差5.已知点(-3,y 1)、(2,y 2)都在直线y =-2x +1上,则y 1、y 2的大小关系是( )A . y 1<y 2B . y 1=y 2C . y 1>y 2D . 不能比较6.ABC ∆中,点,D E 分别是ABC ∆的边AB ,AC 的中点,连接DE ,若68C ∠=︒,则AED =∠( )A .22︒B .68︒C .96︒D .112︒7.如图,一圆柱高8cm ,底面半径为cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm8.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5B .C .D .79.实数a ,b 在数轴上的位置如图所示,则化简√(a -2)2-√(a +b)2的结果是( )A.-b-2 B.b+2 C.b-2 D.-2a-b-210.如图,在平行四边形ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③EG=GF;④EA平分∠GEF.其中正确的是( )A.①②③B.①②④C.①③④D.②③④二、填空题(每小题3分,共12分)11.在二次根式√7,√14,√21,√28,√35,√42,√49中,属于最简二次根式的有个12.某校举办广播体操比赛,评分项目包括精神面貌,整齐程度,动作规范这三项,总评成绩按以上三项得分2:3:5的比例计算,已知八(1)班在比赛中三项得分依次是8分,9分,10分,则八(1)班这次比赛的总成绩为__________分.13.古希腊的哲学家柏拉图曾指出:如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是____________14.关于自变量x的函数y=(k-3)x+2k,下列结论:①当k≠3时,此函数是一次函数;②无论k取什么值,函数图象必经过点(-2,6);③若函数经过二、三、四象限,则k的取值范围是k<0;④若函数图象与x轴的交点始终在正半轴,则k的取值范围是k<3.其中结论正确的序号是__________.三、解答题(本大题共5小题,共58分.解答时应写出文字说明、证明过程或演算步骤)15.计算2132)4882-16.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.17.如图,在平面直角坐标系中,直线y=-12x -1与直线y =-2x +2相交于点P . (1)求交点P 的坐标; (2)请把图象中直线y =-2x +2在直线y =-12x -1上方的 部分描黑加粗,并写出不等式-2x +2>-12x -1的解集.18.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A (非常喜欢)、B (比较喜欢)、C (一般)、D (不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为 ;(2)条形统计图中存在错误的是 (填A 、B 、C 中的一个),并在图中加以正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人19.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题: x yO A BP y =-2x +2 y =-12x -1(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______. (2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.20.天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠()1020m m <<元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.答案:一、选择题1.B2.B C3.A4.B5.C6.B7.C8.C9.B 10.B二、填空题11.5 12.9.3 13. 20,99,101 14.②③三、解答题15.716.证明:∵BE ∥AC ,CE ∥DB ,∴四边形OBEC 是平行四边形,又∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠AOB=90°,∴平行四边形OBEC 是矩形.17. (1)(2,-2) (2)x<218. (1)200 (2)C (3)略(4)36019.解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=.故答案为:50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩;(3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.20.解:(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为()20x -元. 依题意得2000120020x x =-,解得50x =, 经检验50x =是原方程的解且符合题意当50x =时,2030x -=.答:A 种商品每件的进价为50元,B 种商品每件的进价为30元;(2)设购进A 种商品a 件,购进B 种商品()40a -件, 依题意得5030(40)15601(40)2a a a a +-⎧⎪⎨-⎪⎩ 解得40183a , ∵a 为整数∴14,15,16,17,18a =.∴该商店有5种进货方案;(3)设销售A 、B 两种商品总获利y 元,则()()()()805045304015600y m a a m a =--+--=-+.①当15m =时,150m -=,y 与a 的取值无关,即(2)中的五种方案都获利600元; ②当1015m <<时,150m ->,y 随a 的增大而增大,∴当18a =时,获利最大,即在(2)的条件下,购进A 种商品18件,购进B 种商品22件,获利最大;③当1520m <<时,150m -<,y 随a 的增大而减小,∴当14a =时,获利最大,∴在(2)的条件下,购进A 种商品14件,购进B 种商品26件,获利最大.。

2023年人教版八年级数学下册期末考试题及答案【完美版】

2023年人教版八年级数学下册期末考试题及答案【完美版】

2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。

人教版八年级下册数学期末测试卷(必刷题)

人教版八年级下册数学期末测试卷(必刷题)

人教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°2、如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有( )A. B. C. D.3、若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.4、计算的结果是()A.±3B.3C.﹣3D.5、在矩形ABCD中,E,P,G,H分别是边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中正确的是()①存在无数个四边形EFGH是平行四边形.②存在无数个四边形EFGH是矩形.③存在且仅有一个四边形EFGH是菱形.④除非矩形ABCD为正方形,否则不存在四边形EFGH是正方形.A.①②B.①②③C.①②④D.①③④6、如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为( )A.8B.9C.11D.127、以下列各组数为边长,不能构成直角三角形的是()A. B. C. D.8、如图,菱形ABCD的对角线BD、AC分别为2、2 ,以B为圆心的弧与AD、DC相切,则阴影部分的面积是()A.2 ﹣πB.4 ﹣πC.4 ﹣πD.29、某射击运动员在训练中射击了10次,成绩分别是:5,8,6,8,9,7,10,9,8,10。

下列结论不正确的是( )A.中位数是8B.众数是8C.平均数是8D.方差是210、已知:∠MON,如图,小静进行了以下作图:①在∠MON的两边上分别截取OA,OB,使OA=OB;②分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;③连接AC,BC,AB,OC.=4,则AB的长为()若OC=2,S四边形OACBA.5B.4C.3D.211、两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为()A. B. C.sinα D.112、若式子有意义,则实数x的取值范围是()A. B. 且 C. D. 且13、下列变形正确的是( )A. B. C.D.14、函数y= 中自变量x的取值范围是()A.x≥3B.x≥﹣3C.x≠3D.x>0且x≠315、下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________cm.17、已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于________ .18、A,B两地之间有一条6000米长的直线跑道,小月和小华分别从A,B两地同时出发匀速跑步,相向而行,第一次相遇后,小月将自己的速度提高25%,并匀速跑步到达B点,到达后原地休息;小华匀速跑步到达A点后,立即调头按原速返回B点(调头时间忽略不计),两人距各自出发点的距离之和记为y (米),跑步时间记为x(分钟),已知y(米)与x(分钟)之间的关系如图所示,则小月到达B点后,再经过________分钟小华回到B点.19、最简二次根式与是同类最简二次根式,则b=________.20、如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为________.21、如图,矩形OABC在第一象限,OA,OC分别于x轴,y轴重合,面积为6.矩形与双曲线y=(x>0)交BC于M,交BA于N,连接OB,MN,若2OB=3MN,则k=________22、化简=________23、如图,已知线段,P是AB上一动点,分别以AP,BP为斜边在AB 同侧作等腰和等腰,以CD为边作正方形DCFE,连结AE,BF,当时,为________.24、如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG 的周长是________.25、如图,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O, 若AB=12,EF=13,H为AB的中点,则DG=________.三、解答题(共5题,共计25分)26、计算(结果用根号表示)(+1)(﹣2)+227、已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF 交于点M.求证:AE=BF28、如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌的高CD (结果精确到0.1米,参考数据:≈1.41,≈1.73).29、如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.30、已知m=﹣,n=+ ,求代数式m2+mn+n2的值.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、B5、C6、D7、A8、D9、D10、B11、A12、C13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

人教版数学八年级下册《期末检测题》附答案

人教版数学八年级下册《期末检测题》附答案
9.如图,一次函数 与一次函数 的图象相交于点 ,则关于 的不等式 的解集是()
A. B. C. D.
【答案】D
【解析】
【分析】结合函数图象,写出一次函数y1=x+b图象在一次函数y2=kx+4的图象上方所对应的自变量的范围即可.
【详解】解:∵一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,−2),
解得 ,
【答案】B
【解析】
【分析】根据勾股定理 逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.
【详解】解:A、 ,故不是直角三角形,错误;
B、 ,故是直角三角形,正确;
C、 故不是直角三角形,错误;
D、 故不是直角三角形,错误.
故选:B.
【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
故选:B.
【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.
7.某校八年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的()
A. 中位数B. 众数C. 平均数D. 不能确定
21.如图,在四边形 中, , ,点 在 上,且 ,将 沿 折叠,点 恰好与点 重合.
(1)求线段 的长;
(2)求线段 的长.
22.甲、乙两名同学沿直线进行登山,甲、乙沿相同的路线同时从山脚出发到达山顶,甲同学到达山顶休息1小时后再沿原路下山,他们离山脚的距离 (千米)随时间 (小时)变化的图象如图所示.根据图象中的有关信息回答下列问题:

新人教版八年级数学(下册)期末试卷及答案(一套)

新人教版八年级数学(下册)期末试卷及答案(一套)

新人教版八年级数学(下册)期末试卷及答案(一套) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.分解因式:22a4a2-+=__________.3.若m+1m=3,则m2+21m=________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =.3.已知关于x 的分式方程311(1)(2)x k x x x -+=++-的解为非负数,求k 的取值范围.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、B6、D7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、()22a 1-3、74、10.5、36、6三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、3x3、8k ≥-且0k ≠.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、CD 的长为3cm.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。

人教版八年级数学下册期末学情评估附答案 (1)

人教版八年级数学下册期末学情评估附答案 (1)

人教版八年级数学下册期末学情评估一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列是最简二次根式的是()A. 2B.12C.15 D.a22.下列计算正确的是()A.4 5-3 5=1 B.2+5=7 C.6÷3=2 D.(-2)2=2 3.已知(1,y1),(2,y2)是直线y=3x+2上的两点,则y1,y2的大小关系是() A.y1>y2B.y1=y2C.y1<y2D.无法比较4.当b<0时,一次函数y=x+b的图象大致是()5.若直角三角形的两边长分别为12和5,则第三边长为()A.13 B.13或119 C.13或15 D.1196.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天健步走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.4,1.3C.1.4,1.35 D.1.3,1.3(第6题)(第8题) (第9题)7.已知数据a,b,c,d的方差是2,则数据a+3,b+3,c+3,d+3的方差是()A.2 B.5 C.6 D.98.如图,在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 的中点,要判定四边形DBFE 是菱形,下列所添加条件不正确的是( ) A .AB =AC B .AB =BC C .BE 平分∠ABC D .EF =CF9.如图,点P 是边长为1的菱形ABCD 的对角线AC 上的一个动点,点M ,N分别是AB ,BC 边的中点,则MP +PN 的最小值是( ) A.12 B .1 C. 2 D .210.已知直线y 1=kx +1(k <0)与直线y 2=mx (m >0)的交点坐标为⎝ ⎛⎭⎪⎫12,12m ,则不等式组mx -2<kx +1<mx 的解集为( ) A .x >12 B.12<x <32 C .x <32 D .0<x <32 二、填空题(本题共6小题,每小题4分,共24分) 11.计算:27-13=________.12.如图,要使平行四边形ABCD 是正方形,则应添加的一组条件是__________________(添加一组即可).(第12题) (第15题) (第16题)13.某校规定学生的数学综合成绩由平时、期中和期末三项成绩按3∶3∶4的比计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期的数学综合成绩是__________分.14.已知一次函数y =(2m -1)x +3-2m 的图象经过第一、二、四象限,则m 的取值范围是____________.15.如图是两个大小完全相同的矩形ABCD 和矩形AEFG ,连接FC ,若AB =4 cm ,BC =3 cm ,则FC =__________.16.如图,在矩形ABCD 中,AB =4,AD =5,点E ,F 分别是边AB ,BC 上的动点(点E 不与A ,B 重合),EF =AB ,G 是五边形AEFCD 内满足GE =GF 且∠EGF =90°的点.下列结论:①∠GEB 与∠GFB 一定互补; ②点G 到边AB ,BC 的距离一定相等; ③点G 到边AD ,DC 的距离可能相等; ④点G 到边AB 的距离的最大值为2 2. 其中正确的是________.(填序号)三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算: (1)12-3 3+|3-2|; (2)32×2-2 6÷2+12;(3)(2-3)2 023·(2+3)2 022-2⎪⎪⎪⎪⎪⎪-32-(-2)0.18.(8分)已知a ,b ,c 满足|a -7|+b -5+(c -4 2)2=0. (1)求a ,b ,c 的值;(2)判断以a ,b ,c 为边能否构成三角形,若能构成三角形,此三角形是什么形状?若不能构成三角形,请说明理由.19.(8分)阅读下面例题的解题过程.例:已知a=12+3,求2a2-8a+1的值.解:∵a=12+3=2-3(2+3)(2-3)=2-3,∴a-2=-3,∴(a-2)2=3,即a2-4a+4=3,∴a2-4a=-1,∴2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1. 请仿照上述方法,解决下列问题:(1)计算:12 023+ 2 022=________;(2)若a=110-3,求3a2-18a+5的值.20.(8分)某制衣厂加工车间为了调动员工的积极性,计划采用等级基本工资加计件工资的薪酬制度,基本方案是:按工人平均日制衣件数将他们分成初级工、中级工、高级工三个等级,分别给予每月2 500元、3 000元和4 000元的基本工资,另外再按每件衣服5元计算计件工资.为确定工人等级,制衣厂统计了车间30名工人最近三个月每人每天平均制衣件数(每月工作25天),数据如下表:(1)求这30名工人最近三个月每人每天平均制衣件数的中位数、众数和平均数;(2)制衣厂计划每月工人的工资总额不超过18万元,若以最近三个月平均每天制衣的件数为依据,将平均每天制衣18件以下(含18件)的工人确定为初级工,平均每天制衣29件以上(含29件)的工人确定为高级工,其余的工人确定为中级工.请通过计算判断该等级划分是否符合制衣厂要求.21.(8分)如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.22.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O,DE∥AC交BA 的延长线于点E.(1)求证:DB=DE;(2)若∠AOB=60°,BD=4,求四边形BCDE的面积.23.(10分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.24.(12分)A、B两个蔬菜基地要向C、D两城市运送蔬菜,已知A基地有蔬菜200吨,B基地有蔬菜300吨,C城市需要蔬菜240吨,D城市需要蔬菜260吨.从A基地运往C、D两城市的费用分别为每吨20元和每吨25元,从B 基地运往C、D两城市的费用分别为每吨15元和每吨18元,设从B基地运往C城市的蔬菜为x吨,A、B两个蔬菜基地的总运费为w元.(1)求w与x之间的函数解析式,并写出x的取值范围;(2)写出总运费最小时的运送方案,并求出此时的总运费;(3)如果从B基地运往C城市的费用每吨减少m元(0<m<15且m≠2),其余线路的运费不变,请直接写出总运费最小时的运送方案.25.(14分)如图,正方形ABCD中,E,F是对角线AC上的两点,∠EBF=45°,△ABE和△GBE关于直线BE对称.点G在BD上.(1)求∠FBC的度数.(2)延长BF交CD于点H,连接HG,FG.①求证:四边形GHCF是菱形;②CDCH的值为________.答案一、1.A 2.D 3.C 4.B 5.B 6.B 7.A 8.A 9.B10.B 提示:把点⎝ ⎛⎭⎪⎫12,12m 的坐标代入y 1=kx +1,可得12m =12k +1,解得k =m -2,∴y 1=(m -2)x +1.令y 3=mx -2,当y 3<y 1时,mx -2<(m -2)x +1,解得x <32;当y 1<y 2时,(m -2)x +1<mx ,解得x >12.∴不等式组mx -2<kx +1<mx 的解集为12<x <32. 二、11.8 33 12.AB =BC ,且AB ⊥BC (答案不唯一)13.88 14.m <12 15.5 2 cm 16.①②④三、17.解:(1)原式=2 3-3 3+2-3=2-2 3.(2)原式=3-2 3+2 3= 3.(3)原式=[(2-3)(2+3)]2 022·(2-3)-3-1=2-3-3-1=1-2 3. 18.解:(1)∵a ,b ,c 满足|a -7|+b -5+(c -4 2)2=0,∴|a -7|=0,b -5=0,(c -4 2)2=0, 解得a =7,b =5,c =4 2. (2)能构成三角形.∵a 2+b 2=(7)2+52=32,c 2=(4 2)2=32, ∴a 2+b 2=c 2,∴此三角形是直角三角形. 19.解:(1) 2 023- 2 022(2)∵a =110-3=10+3(10+3)(10-3)=10+3, ∴a -3=10,∴(a -3)2=10,∴a 2-6a +9=10,∴a 2-6a =1.∴3a 2-18a +5=3(a 2-6a )+5=3×1+5=8. 20.解:(1)中位数为21+222=21.5.众数为16.平均数为16×4+17×2+…+31×3+33×130=23.(2)因为这30名工人每月的基本工资总额为2 500×(4+2+2)+3 000×(1+3+3+3+2+2)+4 000×(2+2+3+1)=94 000(元), 这30名工人每月的计件工资总额为 23×30×25×5=86 250(元), 所以这30名工人每月的工资总额为 94 000+86 250=180 250(元). 因为180 250>180 000,所以该等级划分不符合制衣厂要求.21.解:(1)把A (-2,-1),B (1,3)的坐标代入y =kx +b ,得⎩⎨⎧-2k +b =-1,k +b =3,解得⎩⎪⎨⎪⎧k =43,b =53.∴该一次函数的解析式为y =43x +53.(2)把x =0代入y =43x +53,得y =53,∴点D 的坐标为⎝ ⎛⎭⎪⎫0,53.∴OD =53.∴易得S △AOB =S △AOD +S △BOD =12×53×2+12×53×1=52.22.(1)证明:∵四边形ABCD 是矩形,∴AC =BD ,AB ∥CD ,又∵DE ∥AC ,∴四边形ACDE 是平行四边形, ∴DE =AC ,∴DE =BD . (2)解:∵四边形ABCD 是矩形,∴AB =CD ,AO =BO =DO =12BD =2,∠BAD =90°, 又∵∠AOB =60°,∴△AOB 是等边三角形,∴AB =AO =2,∴CD =2,AD =BD 2-AB 2=16-4=2 3, ∵四边形ACDE 是平行四边形, ∴AE =CD =2.∴BE =4.∴四边形BCDE 的面积=12×(2+4)×2 3=6 3. 23.(1)证明:∵AD ∥BC ,AE ∥DC ,∴四边形AECD 是平行四边形.∵∠BAC =90°,E 是BC 的中点,∴EC =AE . ∴四边形AECD 是菱形.(2)解:如图,过点A 作AH ⊥BC 于点H .在Rt △ABC 中,∠BAC =90°,AB =6,BC =10, ∴由勾股定理得AC =8.∵S △ABC =12BC ·AH =12AB ·AC ,∴AH =245. ∵四边形AECD 是菱形,∴CD =CE .∵S 菱形AECD =CD ·EF =CE ·AH ,∴EF =AH =245.24.解:(1)由题意得w =20(240-x )+25[260-(300-x )]+15x +18(300-x )=2x+9 200,其中40≤x ≤240.(2)∵w =2x +9 200,且40≤x ≤240,∴当x =40时,w 最小,为2×40+9 200=9 280,∴总运费最小时的运送方案为:A 往C 运200吨,不往D 运,B 往C 运40吨,往D 运260吨,此时的总运费为9 280元.(3)当0<m <2时,总运费最小的运送方案为:A 往C 运200吨,不往D 运,B 往C 运40吨,往D 运260吨;当2<m <15时,总运费最小的运送方案为:A 往D 运200吨,不往C 运,B 往C 运240吨,往D 运60吨.25.(1)解:∵四边形ABCD是正方形,∴∠ABD=45°,∠ABC=90°,∵△ABE和△GBE关于直线BE对称,∴∠ABE=∠GBE=12∠ABD=22.5°,又∵∠EBF=45°,∴∠FBC=90°-22.5°-45°=22.5°.(2)①证明:∵四边形ABCD是正方形,∴∠BAC=∠ACD=45°,AB=BC,AC⊥BD,∵△ABE和△GBE关于直线BE对称,∴∠BGE=∠BAE=45°,AB=GB,∴GB=BC.又∵∠GBF=45°-22.5°=22.5°=∠CBF,BF=BF,∴△GBF≌△CBF.∴GF=CF.∵∠EBG=∠DBF=22.5°,AC⊥BD,∴∠BEF=∠BFE=67.5°,BD是EF的垂直平分线,∴易得∠BGF=∠BGE=45°,∴∠GFE=180°-90°-45°=45°=∠ACD,∴GF∥HC,∵∠CFH=∠BFE=67.5°,∠CHF=180°-90°-22.5°=67.5°,∴∠CFH=∠CHF,∴HC=CF,∴HC=GF,∴四边形GHCF是平行四边形,又∵HC=CF,∴四边形GHCF是菱形.②1+ 211。

人教版八年级下册数学期末考试卷及详细答案解析(部分试题选自全国各地中考真题)

人教版八年级下册数学期末考试卷及详细答案解析(部分试题选自全国各地中考真题)

人教版八年级下册数学期末考试卷附详细答案解析(部分试题选自全国各地中考真题)一、选择题(每小题3分,共30分)1.下列计算正确的是( )。

A.×=4 B.+= C.÷=2 D.=-152.要使式子错误!未找到引用源。

有意义,则x 的取值范围是( )。

A.x>0B.x ≥-2C.x ≥2D.x ≤23.矩形具有而菱形不具有的性质是( )。

A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等4.根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )。

A.1B.-1C.3D.-35.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )。

A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元x -2 0 1 y 3 p 0 工资(元) 2 000 2 200 2 400 2 600 人数(人) 1 3 4 26.如右图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )。

A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC7.如右图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )。

A.24B.16C.4错误!未找到引用源。

D.2错误!未找到引用源。

8.如右图,图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长( )A.错误!未找到引用源。

B.2错误!未找到引用源。

C.3错误!未找到引用源。

D.4错误!未找到引用源。

9.如图,正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<错误!未找到引用源。

2022—2023年人教版八年级数学(下册)期末试卷及答案(一套)

2022—2023年人教版八年级数学(下册)期末试卷及答案(一套)

2022—2023年人教版八年级数学(下册)期末试卷及答案(一套) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.已知一个多边形的内角和等于900º,则这个多边形是( ) A .五边形 B .六边形 C .七边形D .八边形 5.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .67.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .248.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____.3.计算22111m m m ---的结果是________. 4.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE 的长为______。

新人教版八年级数学下册期末测试卷(完美版)

新人教版八年级数学下册期末测试卷(完美版)

新人教版八年级数学下册期末测试卷(完美版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.248.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.21273=___________.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、D5、D6、B7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、523、32或424、10.5、36、15.三、解答题(本大题共6小题,共72分)1、x=32、x 2-,32-. 3、(1)12,32-;(2)略.4、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。

2023年人教版八年级数学(下册)期末测试及答案

2023年人教版八年级数学(下册)期末测试及答案

2023年人教版八年级数学(下册)期末测试及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.4的算术平方根为( )A .2±B .2C .2±D .2 2.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠33.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 5.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.如图,两条直线l 1∥l 2,Rt △ACB 中,∠C=90°,AC=BC ,顶点A 、B 分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°7.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见8.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B .800800402.25x x -=C .800800401.25x x -=D .800800401.25x x -= 9.如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,若添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,则这个条件是( )A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF10.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1二、填空题(本大题共6小题,每小题3分,共18分)1.若613-的整数部分为x ,小数部分为y ,则(213)x y +的值是________.2.比较大小:23________13.3.分解因式:2a 3﹣8a=________.4.如图所示的网格是正方形网格,则PAB PBA ∠∠+=________°(点A ,B ,P 是网格线交点).5.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=_________.6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解分式方程: 2216124x x x --=+-2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.解不等式组3(2)2513212x x x x +≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.4.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.5.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、A5、A6、C7、C8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、<3、2a(a+2)(a﹣2)4、45.5、40°6、40°三、解答题(本大题共6小题,共72分)1、原方程无解2、1 23、–1≤x<34、E(4,8) D(0,5)5、(1)略(2)菱形6、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。

人教版初中数学八年级下册期末测试题、参考答案

人教版初中数学八年级下册期末测试题、参考答案

人教版初中数学八年级下册期末测试卷一、选择题(本大题共个小题,每小题分,共分。

在每小题给出的四个选项中,只有一项是符合题目要求的).(分)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器的容积.(分)若二次根式有意义,则x的值不可以是()A.B.C.D..(分)下列各组数中,能够作为直角三角形的三边长的一组是()A.,,B.,,C.,,D.,,.(分)如图,A D,C E是△A B C的高,过点A作A F∥B C,则下列线段的长可表示图中两条平行线之间的距离的是()A.A B B.A D C.C E D.A C.(分)下列二次根式是最简二次根式的是()A.B.C.D..(分)一组数据:,,,,若添加一个数据,则发生变化的统计量是()A.平均数B.中位数C.方差D.众数.(分)实数不可以写成的形式是()A.B.﹣C.D.(﹣).(分)如图,在△A B C中,∠A C B=°,D是A B的中点,则下列结论不一定正确的是()A.C D=B D B.∠A=∠D C AC.B D=A C D.∠B∠A C D=°.(分)对于n(n>)个数据,平均数为,则去掉最小数据和最大数据后得到一组新数据的平均数()A.大于B.小于C.等于D.无法确定.(分)若点P(m,n)在直角坐标系的第二象限,则一次函数y=m x n的大致图象是()A.B.C.D..(分)如图,在平面直角坐标系中,已知点A(﹣,),B(,),以点A为圆心,A B长为半径画弧,交x轴的正半轴于点C,则点C的横坐标介于()A.和之间B.和之间C.和之间D.和之间.(分)某速度滑冰队从甲、乙、丙、丁四位选手中选取一名参加省冰雪运动会,对他们进行了十次测试,结果他们的平均成绩均相同,方差如下表:选手甲乙丙丁方差(秒)a若决定发挥最稳定的丁参加省运会,则a的值可以是()A.B.C.D..(分)已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段O P的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是()A.B.C.D..(分)勾股定理是人类最伟大的科学发现之一,在我国古算术《周髀算经》中早有记载.以直角三角形纸片的各边分别向外作正方形纸片,再把较小的两张正方形纸片按如图的方式放置在最大正方形纸片内.若已知图中阴影部分的面积,则可知()A.直角三角形纸片的面积B.最大正方形纸片的面积C.最大正方形与直角三角形的纸片面积和D.较小两个正方形纸片重叠部分的面积二、填空题(本小题共个小题,每个空分,共分).(分)计算的结果为..(分)如图,E F是△A B C的中位线,B D平分∠A B C交E F于D,B E=,D F=,则B C的长度为..(分)在四边形A B C D中,∠B=∠B A D,∠D=°,B C=,A C=,延长B C到E,若C D平分∠A C E,则A D=;点D到B C的距离是.三、解答题(本大题共个小题,满分分,解答题应写出必要的解题步骤或文字说明).(分)已知x=﹣,y=﹣,求(x y)..(分)如图,车高m(A C=m),货车卸货时后面挡板A B弯折落在地面A处,经过测量A C=m,求B C的长..(分)某公司销售部有营业员人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这人某月的销售量,如下表所示:月销售量件数人数()直接写出这名营业员该月销售量数据的平均数、中位数、众数;()如果想让一半左右的营业员都能达到月销售目标,你认为()中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由..(分)已知矩形A B C D,A E平分∠D A B交D C的延长线于点E,过点E作E F⊥A B,垂足F在边A B的延长线上,求证:四边形A D E F是正方形..(分)如图,直角坐标系x O y中,过点A(,)的直线l与直线l:y=k x﹣相交于点C(,),直线l与x轴交于点B.()求k的值及l的函数表达式;的值;()求S△A B C()直线y=a与直线l和直线l分别交于点M,N.直接写出点M,N都在y轴右侧时a的取值范围..(分)如图,菱形A B C D中,E,F分别为A D,A B上的点,且A E=A F,连接并延长E F,与C B的延长线交于点G,连接B D.()求证:四边形E G B D是平行四边形;()连接A G,若∠F G B=°,G B=A E=,求A G的长..(分)A城有肥料t,B城有肥料t.现要把这些肥料全部运往C、D两乡,C 乡需要肥料t,D乡需要肥料t,其运往C、D两乡的运费如下表:两城两乡C(元t)D(元t)AB设从A城运往C乡的肥料为x t,从A城运往两乡的总运费为y元,从B城运往两乡的总运费为y元()分别写出y、y与x之间的函数关系式(不要求写自变量的取值范围).()试比较A、B两城总运费的大小.()若B城的总运费不得超过元,怎样调运使两城总费用的和最少?并求出最小值.参考答案.B A D B D.C B C C B.B D A D...;.解:由题意可得:x y=(﹣)(﹣)=﹣﹣=﹣,∴(x y)=(﹣)=﹣()=﹣=﹣..解:由题意得,A B=A B,∠B C A=°,设B C=x m,则A B=A B=(﹣x)m,在R t△A B C中,A C B C=A B,即:x=(﹣x),解得:x=.答:B C的长为米.解:()这名营业员该月销售量数据的平均数==(件),中位数为件,∵出现了次,出现的次数最多,∴众数是件;()如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为件,月销售量大于和等于的人数超过一半,所以中位数最适合作为月销售目标,有一半以上的营业员能达到销售目标..解:∵四边形A B C D是矩形,∴∠D=∠D A B=°,∵A E平分∠D A B,∴∠E A F=°,∵E F⊥A B,∴∠D=∠D A F=∠F=°,∴四边形A F E D是矩形,∵∠E A F=°,∴∠A E F=°,∴∠E A F=∠A F E,∴A F=E F,∴矩形A D E F是正方形..解:()将C(,)代入y=k x﹣,得:=k﹣,解得:k=;设直线l的函数表达式为y=m x n(m≠),将A(,),C(,)代入y=m x n,得:,解得:,∴直线l的函数表达式为y=﹣x;()当y=时,x﹣=,解得:x=,∴点B的坐标为(,),∴A B=﹣=,∴S=A B•y C=××=;△A B C()当x=时,y=x﹣=﹣,y=﹣x=,∴M,N都在y轴右侧时a的取值范围为﹣<a<..证明:()连接A C,如图:∵四边形A B C D是菱形,∴A C平分∠D A B,且A C⊥B D,∵A F=A E,∴A C⊥E F,∴E G∥B D.又∵菱形A B C D中,E D∥B G,∴四边形E G B D是平行四边形.()过点A作A H⊥B C于H.∵∠F G B=°,∴∠D B C=°,∴∠A B H=∠D B C=°,∵G B=A E=,∴A B=A D=,在R t△A B H中,∠A H B=°,∴A H=,B H=.∴G H=,∴A G===..解:()根据题意得:y=x(﹣x)=﹣x,y=(﹣x)(﹣x)=x.()若y=y,则﹣x=x,解得x=,A、B两城总费用一样;若y<y,则﹣x<x,解得x>,A城总费用比B城总费用小;若y>y,则﹣x>x,解得<x<,B城总费用比A城总费用小.()依题意得:y=x≤,解得x≤,设两城总费用为y,则y=y y=﹣x,∵﹣<,∴y随x的增大而减小,∴当x=时,y有最小值.答:当从A城调往C乡肥料t,调往D乡肥料t,从B城调往C乡肥料t,调往D乡肥料t,两城总费用的和最少,最小值为元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级下册数学期末测试题(一)
一、选择题:(每小题3分,共30分)每小题只有一个选符合题目的要求,请你把你认为正确的选项的代号填入题后所给的括号内。

1.式子3
2221+-÷++x x x x
意义,则x 应满足的条件是( ) A .2±≠x 且23-≠x B. 2-≠x 且23-≠x C .2≠x 且23-≠x D .以上都不对 2.已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( )
A .(-a ,-b ) B. (a ,-b ) C .(-a ,b ) D .(0,0)
3.关于x 的方程
11
=+x a 的解是负数,则a 的取值范围是( ) A .1<a B .1<a 且0≠a C .1≤a D .1≤a 且0≠a 4.如图1,已知距形ABCD 沿着直线BD 折叠,使点C 落在'C 处,'BC ’交AD 于E ,4,8==AB AD ,则DE 的长为( )
A .cm 3
B .cm 4
C .cm 5
D .cm 6
5.已知等腰梯形ABCD 的中位线6=EF ,腰5=AD ,则该等腰梯形的周长为( )
A .11
B .16
C .17
D .22
6.5月12日,一场突如其来的强烈地震给我省汶川等地带来了巨大的灾难,“一方有难,八方支援”,某
则对全班捐款的45个数据,下列说法错误..
的是( ) A 、中位数是30元 B 、众数是20元 C 、平均数是24元 D 、极差是40元
7.四边形ABCD 中,O 是对角线的交点,下列条件能判定这个四边形是正方形的是( )
A .A
B ∥CD ,BD A
C C
D AB ==, B .AD ∥BC ,B A CD AB ∠=∠=,
C .B
D AC DO CO BO AO ⊥===, D .BC AB DO BO CO AO ===,,
8.等腰梯形的腰长为13cm ,两底差为10cm ,则高为 ( )
A .69cm B. 12cm C .69cm D .144cm
9.某气球充满一定质量的气体后,当温度不变时,气球内的气体的
气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图2所
示,当气球内的气压大于140kPa 时,•气球将爆炸,为了安全起见,
气体体积应( ).
A .不大于
33524m B .不小于33524m C .不大于33724m D .不小于337
24m 10.甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差=2甲S 4,乙同学成绩的方差
=2乙S 3.1,则对他们测试成绩的稳定性判断正确的是( )
A .甲的成绩较稳定
B .乙的成绩较稳定
C .甲、乙成绩都稳定性
D .稳定性无法比较
二、填空题:(每小题3分,共24分)
1.计算:()=⋅-2222ab b a 。

2.如图3所示,设A 为反比例函数x k y =
图象上一点,且矩形 ABOC 的面积为3,则这个反比例函数解析式为 。

3.如果直角三角形的两边分别为3、4,那么第三边的长为
4.某市广播电视局欲招聘播音员一名,对A B ,两名候选人进行了两项素质测试,两人的两项测试成绩如右表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么 (填A 或B )将被录用.
5.已知7=+y x 且12=xy ,则当y x <时,y
x 11-的值等于 6.如图4,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =3厘米,EF =4厘米,则边AD 的长是___________厘米.
7.在平面直角坐标系中,已知点A (0,2),B (32-,0),
C (0,2-),
D (32,0),则以这四个点为顶点的四边形ABCD 是
8.如图5,在梯形ABCD 中,AD//BC ,对角线AC ⊥BD ,且cm AC 5=, cm BD 12=,
则梯形中位线的长等于 cm
三、(每小题5分,共15分)
1.计算:x y y x x y y x 22222
223243÷+∙⎪⎪⎭⎫ ⎝⎛ 2.化简:⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+222
1111b a b a 3.如图6,公路MN 和公路PQ 在点P 处交汇,公路PQ 上点A 处有学校,点A 到公路MN 的距离为m 80,现有一拖拉机在公路MN 上以h km /18的速度沿PN 方向行驶,拖拉机行驶时周围m 100以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?
四、(每小题6分,共12 分)
1.已知21y y y +=,1y 与x 成正比例,2y 与x 成反比例,并且当1=x 时,1=y ,当3=x 时,5-=y

图6
求2
3=x 时,y 的值 2.如图7,在ABC ∆中,AC AB =,点P 是上任意一点,.//,//AC PF AB PE
(1)AB PF PE ,,之间有什么关系?并说明理由;
(2)点P 在什么位置时,这个图形是轴对称图形?说明这时四边形AEPF 是什么图形?
五、(每小题6分,共12分)
1.某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨?
2.振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3︰4︰5︰8︰6,又知此次调查中捐款25元和30元的学生一共42人.
(1)他们一共调查了多少人?
(2)这组数据的众数、中位数各是多少?
(3)若该校共有1560名学生,估计全校学生
捐款多少元?
六、(7分)如图,在直角梯形ABCD 中,,8,24,90,//0cm AB cm AD B BC AD ===∠
cm BC 26=,动点P 从A 开始沿AD 边向D 以s cm /1的速度运动;动点Q 从点C 开始沿CB 边向B 以s cm /3的速度运动。

P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts 。

(1)当t 为何值时,四边形PQCD 平行为四边形?
(2)当t 为何值时,四边形PQCD 为等腰梯形?
(3)当t 为何值时,四边形PQCD 为直角梯形?

9 图8。

相关文档
最新文档