二叉树的建立与遍历、深度

合集下载

二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)

二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)
如下图所示的是二叉树及其对应的二叉链表实现示意图。
A
B
D
C
E
F
G
头指针
二叉树的list实现
二叉树节点可以看成是一个三元组,元素是左、右子树和本节点数据。
Python的list可以用于组合这样的三个元素。
下面介绍用list构造二叉树的方法。
(1)空树用None表示。
(2)非空二叉树用包含三个元素的列表[d,l,r]表示,其中:d表示根节点的元素,l和r是两棵子树,采用与整个二叉树同样结构的list表示。
二叉树的遍历
在完成二叉树的建立操作后,就可以对二叉树的各个节点进行访问,即遍历操作。二叉树的遍历,是指按照一定的规则和次序访问二叉树中的所有节点,使得每个节点都被访问一次且仅被访问一次。按照不同的遍历方式对节点进行访问,其处理效率不完全相同。二叉树的遍历方式有很多,主要有前序遍历、中序遍历和后序遍历等。
1.数组实现
用数组来表示二叉树时,分为以下两种情况。
(1)完全二叉树从二叉树的根节点开始,按从上而下、自左向右的顺序对n个节点进行编号,根节点的编号为0,最后一个节点的编号为n-1。然后依次将二叉树的节点用一组连续的数组元素来表示,节点编号与数组的下标一一对应。如下图中图甲所示的完全二叉树所对应的一维数组表示如图乙所示。
A
B
C
A
B
C
甲 原二叉树
乙 补全后的二叉树
0
1
2
3
4
5
6
7
丙 数组实现示意图
A
B
C
对于完全二叉树而言,一维数组的表示方式既简单又节省存储空间。但对于一般的二叉树来说,采用一维数组表示时,结构虽然简单,却容易造成存储空间的浪费。

二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

/*一下总结一些二叉树的常见操作:包括建立二叉树先/中/后序遍历二叉树求二叉树的叶子节点个数求二叉树的单分支节点个数计算二叉树双分支节点个数计算二叉树的高度计算二叉树的所有叶子节点数*/#include<stdio.h> //c语言的头文件#include<stdlib.h>//c语言的头文件stdlib.h千万别写错了#define Maxsize 100/*创建二叉树的节点*/typedef struct BTNode //结构体struct 是关键字不能省略结构体名字可以省略(为无名结构体)//成员类型可以是基本型或者构造形,最后的为结构体变量。

{char data;struct BTNode *lchild,*rchild;}*Bitree;/*使用先序建立二叉树*/Bitree Createtree() //树的建立{char ch;Bitree T;ch=getchar(); //输入一个二叉树数据if(ch==' ') //' '中间有一个空格的。

T=NULL;else{ T=(Bitree)malloc(sizeof(Bitree)); //生成二叉树(分配类型*)malloc(分配元素个数*sizeof(分配类型))T->data=ch;T->lchild=Createtree(); //递归创建左子树T->rchild=Createtree(); //地柜创建右子树}return T;//返回根节点}/*下面先序遍历二叉树*//*void preorder(Bitree T) //先序遍历{if(T){printf("%c-",T->data);preorder(T->lchild);preorder(T->rchild);}} *//*下面先序遍历二叉树非递归算法设计*/void preorder(Bitree T) //先序遍历非递归算法设计{Bitree st[Maxsize];//定义循环队列存放节点的指针Bitree p;int top=-1; //栈置空if(T){top++;st[top]=T; //根节点进栈while(top>-1) //栈不空时循环{p=st[top]; //栈顶指针出栈top--;printf("%c-",p->data );if(p->rchild !=NULL) //右孩子存在进栈{top++;st[top]=p->rchild ;}if(p->lchild !=NULL) //左孩子存在进栈{top++;st[top]=p->lchild ;}}printf("\n");}}/*下面中序遍历二叉树*//*void inorder(Bitree T) //中序遍历{if(T){inorder(T->lchild);printf("%c-",T->data);inorder(T->rchild);}}*//*下面中序遍历二叉树非递归算法设计*/void inorder(Bitree T) //中序遍历{Bitree st[Maxsize]; //定义循环队列,存放节点的指针Bitree p;int top=-1;if(T){p=T;while (top>-1||p!=NULL) //栈不空或者*不空是循环{while(p!=NULL) //扫描*p的所有左孩子并进栈{top++;st[top]=p;p=p->lchild ;}if(top>-1){p=st[top]; //出栈*p节点,它没有右孩子或右孩子已被访问。

二叉树遍历操作的基本应用(复制、求深度、求叶子数、求节点数等)

二叉树遍历操作的基本应用(复制、求深度、求叶子数、求节点数等)

二叉树遍历操作的基本应用(复制、求深度、求叶子数、求节点数等)1. 引言1.1 概述二叉树是计算机科学领域中常用的数据结构之一,具有广泛的应用场景。

在二叉树的操作中,遍历是其中最基本和常见的操作之一。

通过遍历,我们可以按照特定规则依次访问二叉树中的所有节点。

本文将探讨二叉树遍历操作的基本应用,包括复制、求深度、求叶子数、求节点数等。

这些操作不仅在实际开发中有重要意义,而且对于理解和掌握二叉树数据结构及其相关算法也具有重要作用。

1.2 文章结构本文将分为五个部分进行论述。

首先,在引言部分(第1节)我们将概述文章的主题和目标。

紧接着,在第2节中,我们将介绍二叉树遍历的基本应用,包括复制、求深度、求叶子数和求节点数等。

在第3节中,我们将详细解析这些基本应用,并给出相应算法和实例分析。

接下来,在第4节中,我们将通过实际案例应用来验证并讨论这些基本应用的性能与适用范围。

最后,在第5节中总结全文内容,并对未来研究方向进行展望。

1.3 目的本文的目的是通过对二叉树遍历操作的基本应用进行详细剖析,帮助读者深入理解和掌握二叉树数据结构及其相关算法。

同时,我们希望通过实际案例应用与讨论,探讨如何优化算法性能、提高效率以及适应大规模二叉树遍历问题。

通过本文的阅读,读者将能够全面了解并应用二叉树遍历操作的基本方法,在实际开发中解决相关问题,并为进一步研究和探索提供思路与参考。

该部分主要介绍了文章的概述、结构和目的,引导读者了解全文并明确阅读目标。

2. 二叉树遍历的基本应用:二叉树是一种常见的数据结构,其遍历操作可以应用于多种实际问题中。

本节将介绍四个基本的二叉树遍历应用:复制二叉树、求二叉树的深度、求二叉树的叶子数和求二叉树的节点数。

2.1 复制二叉树:复制一个二叉树意味着创建一个与原始二叉树结构完全相同的新二叉树。

该应用场景在涉及对原始数据进行修改或者对数据进行独立操作时非常有用。

复制操作可以以递归方式实现,通过先复制左子树,再复制右子树,最后创建一个与当前节点值相等的新节点来完成。

二叉树

二叉树

我们也可以把递归过程改成用栈实现的非递归过程,下面给出先序 遍历的非递归过程: procedure inorder(bt:tree); var stack:array[1..n] of tree; {栈} top:integer; {栈顶指针} p:tree; begin top:=0; while not ((bt=nil)and(top=0)) do begin
• ⑴如果i=1,则结点i为根,无父结点;如果i>1,则其 父结点编号为trunc(i/2)。 • ⑵如果2*i>n,则结点i为叶结点;否则左孩子编号为 2*i。 • ⑶如果2*i+1>n,则结点i无右孩子;否则右孩子编号 为2*i+1。
存储结构
• 二叉树的存储结构和普通树的存储结构基本相同,有链 式和顺序存储两种方法。 • ⑴链式存储结构:有单链表结构或双链表结构,基本数 据结构定义如下: type tree=^node;{单链表结构} node=record data:char;{数据域} lchild,rchild:tree;{指针域:分别指向左、右孩子} end; var bt:tree;
• 输入: • 其中第一行一个整数n,表示树的结点数。接下来的n行 每行描述了一个结点的状况,包含了三个整数,整数之 间用空格分隔,其中:第一个数为居民人口数;第二个 数为左链接,为0表示无链接;第三个数为右链接。 • 输出: • 只有一个整数,表示最小距离和。

• • • • • • • •
样例 输入: 5 13 2 3 4 0 0 12 4 5 20 0 0 40 0 0
2、删除二叉树 procedure dis(var bt:tree); begin if bt<>nil then begin dis(bt^.lchild); dis(bt^.rchild); dispose(bt); end; end;

4.1树与二叉树教学设计高中信息技术浙教版选修1数据与数据结构

4.1树与二叉树教学设计高中信息技术浙教版选修1数据与数据结构
-定期检查学生的学习进度,及时发现问题并给予指导;
-通过问卷调查Leabharlann 访谈等形式,了解学生的学习需求和反馈意见。
7.延伸拓展,引导学生关注树与二叉树的前沿技术和应用,激发学生的创新意识;
-介绍树与二叉树在人工智能、大数据等领域的研究成果和最新应用;
-鼓励学生参加相关竞赛和科研项目,提升学生的综合素质。
四、教学内容与过程
1.采用启发式教学方法,引导学生自主探究树与二叉树的基本概念和性质,培养学生的自主学习能力;
2.利用实例分析,让学生从实际问题中抽象出树与二叉树的结构,培养学生将理论知识与实际应用相结合的能力;
3.通过小组合作,让学生在讨论、交流中掌握二叉树的遍历方法,培养学生的团队协作能力;
4.引导学生运用递归思想解决问题,培养学生的逻辑思维能力;
-例如,通过组织结构图引入树的概念,让学生了解树在现实生活中的应用;
-通过分析算术表达式的计算过程,引出二叉树的表达和求解方法。
2.利用直观教具和多媒体辅助教学,帮助学生建立树与二叉树的直观认识,降低学习难度;
-使用树形结构图和动画演示,直观展示树与二叉树的结构和操作过程;
-通过编程软件的实时演示,让学生更直观地理解算法实现。
4.1树与二叉树教学设计高中信息技术浙教版选修1数据与数据结构
一、教学目标
(一)知识与技能
1.理解树的基本概念,包括树的定义、基本术语(如根节点、叶子节点、子树、深度、高度等);
2.学会使用树的结构表示现实世界中的层次关系和数据组织结构;
3.掌握二叉树的特点,了解满二叉树、完全二叉树等特殊二叉树的概念;
-组织小组汇报,分享学习成果,培养学生的表达和沟通能力。
5.强化编程实践,通过上机操作和编程练习,提高学生的实际操作能力;

数据结构-C语言-树和二叉树

数据结构-C语言-树和二叉树

练习
一棵完全二叉树有5000个结点,可以计算出其
叶结点的个数是( 2500)。
二叉树的性质和存储结构
性质4: 具有n个结点的完全二叉树的深度必为[log2n]+1
k-1层 k层
2k−1−1<n≤2k−1 或 2k−1≤n<2k n k−1≤log2n<k,因为k是整数
所以k = log2n + 1
遍历二叉树和线索二叉树
遍历定义
指按某条搜索路线遍访每个结点且不重复(又称周游)。
遍历用途
它是树结构插入、删除、修改、查找和排序运算的前提, 是二叉树一切运算的基础和核心。
遍历规则 D
先左后右
L
R
DLR LDR LRD DRL RDL RLD
遍历规则
A BC DE
先序遍历:A B D E C 中序遍历:D B E A C 后序遍历:D E B C A
练习 具有3个结点的二叉树可能有几种不同形态?普通树呢?
5种/2种
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
(a + b *(c-d)-e/f)的二叉树
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
二叉树的抽象数据类型定义
特殊形态的二叉树
只有最后一层叶子不满,且全部集中在左边

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

【数据结构】二叉树

【数据结构】二叉树

【数据结构】⼆叉树【⼆叉树】 ⼆叉树是最为简单的⼀种树形结构。

所谓树形结构,其特征(部分名词的定义就不明确给出了,毕竟不是学术⽂章。

)在于: 1. 如果是⾮空的树形结构,那么拥有⼀个唯⼀的起始节点称之为root(根节点) 2. 除了根节点外,其他节点都有且仅有⼀个“⽗节点”;除此外这些节点还都可以有0到若⼲个“⼦节点” 3. 树中的所有节点都必须可以通过根节点经过若⼲次后继操作到达 4. 节点之间不会形成循环关系,即任意⼀个节点都不可能从⾃⾝出发,经过不重复的径路再回到⾃⾝。

说明了树形结构内部蕴含着⼀种“序”,但是不是线性表那样的“全序” 5. 从树中的任意两个节点出发获取到的两个任意⼦树,要不两者⽆交集,要不其中⼀者是另⼀者的⼦集 限定到⼆叉树,⼆叉树就是任意⼀个节点⾄多只能有两个⼦节点的树形结构。

也就是说,某个节点的⼦节点数可以是0,1或2。

由于可以有两个⼦节点,所以区别两个⼦节点可以将其分别定义为左⼦节点和右⼦节点。

但是需要注意的是,若⼀个节点只有⼀个⼦节点,那么也必须明确这个⼦节点是左⼦节点还是右⼦节点。

不存在“中⼦节点”或者“单⼦节点”这种表述。

由于上述规则对所有节点都⽣效,所以⼆叉树也是⼀个递归的结构。

事实上,递归就是⼆叉树⼀个⾮常重要的特点,后⾯还会提到很多通过递归的思想来建⽴的例⼦。

对于左⼦节点作为根节点的那颗⼆叉树被称为相对本节点的左⼦树,右⼦树是同理。

■ 基本概念 空树 不包含任何节点的⼆叉树,连根节点也没有 单点树 只包含⼀个根节点的⼆叉树是单点树 ⾄于兄弟关系,⽗⼦关系,长辈后辈关系是⼀⾔既明的就不说了。

树中没有⼦节点的节点被称为树叶(节点),其余的则是分⽀节点。

⼀个节点的⼦节点个数被称为“度数”。

正如上所说,⼆叉树任意节点的度数取值可能是0,1或2。

节点与节点之间存在关联关系,这种关联关系的基本长度是1。

通过⼀个节点经过若⼲个关联关系到达另⼀个节点,经过的这些关联关系合起来被称为⼀个路径。

数据结构与算法(3):二叉树

数据结构与算法(3):二叉树
证!
1.3.3 性质三
包含n个结点的二二叉树的高高度至至少为log2(n + 1);
证明:根据"性质2"可知,高高度为h的二二叉树最多有2{h}–1个结点。反之,对于包含n个节点的二二
叉树的高高度至至少为log2(n + 1)。
1.3.4 性质四
对任何一一颗二二叉树T,如果其终端结点数为n0 ,度为2的结点数为n2 ,则n0 = n2 + 1 证明:因为二二叉树中所有结点的度数均不不大大于2,所以结点总数(记为n)="0度结点数(n0)" + "1度 结点数(n1)" + "2度结点数(n2)"。由此,得到等式一一。(等式一一) n = n0 + n1 + n2
}
还有一一种方方式就是利利用用栈模拟递归过程实现循环先序遍历二二叉树。这种方方式具备扩展性,它模拟 了了递归的过程,将左子子树不不断的压入入栈,直到null,然后处理理栈顶节点的右子子树。
java
public void preOrder(Node root){ if(root==null)return;
2. 叶子子数为2h 3. 第k层的结点数是:2k−1; 4. 总结点数是2k − 1,且总节点数一一定是奇数。
1.4.2 完全二二叉树
定义:一一颗二二叉树中,只有最小小面面两层结点的度可以小小于2,并且最下一一层的叶结点集中在靠左 的若干干位置上。这样现在最下层和次下层,且最小小层的叶子子结点集中在树的左部。显然,一一颗 满二二叉树必定是一一颗完全二二叉树,而而完全二二叉树未必是满二二叉树。
} root = s.pop(); root = root.right;//如果是null,出栈并处理理右子子树 } }

二叉树的建立和遍历的实验报告

二叉树的建立和遍历的实验报告

竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告篇一:二叉树遍历实验报告数据结构实验报告报告题目:二叉树的基本操作学生班级:学生姓名:学号:一.实验目的1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。

2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。

二.实验学时:课内实验学时:3学时课外实验学时:6学时三.实验题目1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTreestructnode*lchild,*rchild;}binTnode;元素类型:intcreatebinTree(binTreevoidpreorder(binTreevoidInorder(binTreevoidpostorder(binTreevoidInordern(binTreeintleaf(bi nTreeintpostTreeDepth(binTree2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。

1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构3)实现过程:1、实现非递归中序遍历代码:voidcbiTree::Inordern(binTreeinttop=0;p=T;do{while(p!=nuLL){stack[top]=p;;top=top+1;p=p->lchild;};if(top>0){top=top-1;p=stack[top];printf("%3c",p->data);p=p->rchild;}}while(p!=nuLL||top!=0);}2、求二叉树高度:intcbiTree::postTreeDepth(binTreeif(T!=nuLL){l=postTreeDepth(T->lchild);r=postTreeDepth(T->rchil d);max=l>r?l:r;return(max+1);}elsereturn(0);}实验步骤:1)新建一个基于consoleApplication的工程,工程名称biTreeTest;2)新建一个类cbiTree二叉树类。

第六章树2

第六章树2

有六种遍历方法:D L R,L D R,L R D,D R L,R D L,R L D D R, R, D, L, L, 约定: R, R, 约定:先左后右,有三种遍历方法: D L R,L D R,L R D , 分别称为先序遍历,中序遍历,后序遍历
3
A,先序遍历(D L R)(前缀表示) D R 若二叉树非空 (1)访问根结点; (2)先序遍历左子树; D (3)先序遍历右子树; ; 例:先序遍历右图所示的二叉树
……
if (k== -1) T=NULL; else { } } // } // CrtBT
18
T=(BiTNode*)malloc(sizeof(BiTNode)); T->data = pre[ps]; if (k==is) T->Lchild = NULL; else CrtBT(T->Lchild, pre[], ino[], ps+1, is, k-is ); if (k=is+n-1) T->Rchild = NULL; else CrtBT(T->Rchild, pre[], ino[], ps+1+(k-is), k+1, n-(k-is)-1 );
2
2,对"二叉树"而言,可以有三条搜索路径: , 二叉树"而言,可以有三条搜索路径: 先上后下 先上后下的按层次遍历; 先左 先左(子树)后右 后右(子树)的遍历; 后右 先右 先右(子树)后左 后左(子树)的遍历. 后左
二叉树由根,左子树,右子树三部分组成 令: D:访问根结点 L:遍历左子树 R:遍历右子树 L D R
24
4,复制二叉树
(后序遍历) 后序遍历)
其基本操作为:生成一个结点. 其基本操作为:生成一个结点. T 根元素 左子树 左子树 右子树 右子树 左子树 NEWT 根元素 右子树

二叉树的各种遍历及直观打印

二叉树的各种遍历及直观打印

目录一.引言-----------------------------------------------------------------------21. 摘要---------------------------------------------------------------------------22. 关键字------------------------------------------------------------------------2 二.正文1. 需求分析-------------------------------------------------------------------------------------------22. 数据结构---------------------------------------------------------------------23. 算法设计---------------------------------------------------------------------3 3.1概要设计---------------------------------------------------------------------------------------------33.2详细设计--------------------------------------------------------------------------------------------44. 调试分析----------------------------------------------------------------------65. 测试结果----------------------------------------------------------------------66.源程序---------------------------------------------------------------------------97. 不足之处----------------------------------------------------------------------158.设计体会-----------------------------------------------------------------------16 四.参考文献-------------------------------------------------------------------16一. 引言二叉树是树形结构的一个重要类型,许多实际问题抽象出来的数据结构往往是二叉树的形式,即使是一般的树也能简单地转换为二叉树,因此,二叉树显得特别重要。

二叉树

二叉树

例.设结点的权集W ={10,12,4,7,5,18,2},建立一棵 哈夫曼树,并求出其带权路径长度。
5.什么是哈夫编码? 在数据通讯中,经常需要将传送的文字转换成由二进制 字符0,1组成的二进制代码,称之为编码。 如果在编码时考虑字符出现的频率,让出现频率高的字 符采用尽可能短的编码,出现频率低的字符采用稍长的编 码,构造一种不等长编码,则电文的代码就可能更短。哈 夫曼编码是一种用于构造使电文的编码总长最短的编码方 案。 6.求哈夫曼编码的方法 (1)构造哈夫曼树 设需要编码的字符集合为{d1,d2,…,dn},它们在电文 中出现的次数集合为{w1,w2,…,wn},以d1,d2,…, dn作为叶结点,w1,w2,…,wn作为它们的权值,构造 一棵哈夫曼树。
6.Insert操作 二叉树的插入操作与查找操作类似,为了将X插入到树 中,实际上就是先对二叉树进行查找操作。如果找到X,则 什么也不做或做一些“更新”。否则,将X插入到遍历路径 的最后一个节点上。 7.Delete操作 删除操作要比插入操作困难,主要是因为其要考虑的 情况比插入多。 如果要删除的节点是一片树叶,那么可以直接删除。 如果节点有一个儿子,则该节点可以在其父节点调整指针 绕过该节点后被删除。复杂的情况是处理有两个儿子的节 点。一般的删除策略是用其右子树的最小数据代替该节点 的数据并递归地删除那个节点。因为有子树中的最小节点 不可能有左儿子,所以第二次Delete要容易。
例.设有A,B,C,D,E,F 6个数据项,其出现的频度分别 为6、5、4、3、2、1,构造一棵哈夫曼树,并确定它们的 哈夫曼编码。
(2)在哈夫曼树上求叶结点的编码。 规定哈夫曼树中的左分支代表0,右分支代表1,则从根 结点到每个叶结点所经过的路径分支组成的0和1的序列便 为该结点对应字符的编码,上图编码为: A=11;B=01;C=00;D=100;E=1011;F=1010。 在哈夫曼编码树中,树的带权路径长度的含义是各个字 符的码长与其出现次数的乘积之和,也就是电文的代码总 长。采用哈夫曼树构造的编码是一种能使电文代码总长为 最短的、不等长编码。 求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从 叶结点开始,沿结点的双亲链域回退到根结点,每回退一 步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼 码值,由于一个字符的哈夫曼编码是从根结点到相应叶结 点所经过的路径上各分支所组成的0,1序列,因此先得到 的分支代码为所求编码的低位码,后得到的分支代码为所 求编码的高位码。

常见基本数据结构——树,二叉树,二叉查找树,AVL树

常见基本数据结构——树,二叉树,二叉查找树,AVL树

常见基本数据结构——树,⼆叉树,⼆叉查找树,AVL树常见数据结构——树处理⼤量的数据时,链表的线性时间太慢了,不宜使⽤。

在树的数据结构中,其⼤部分的运⾏时间平均为O(logN)。

并且通过对树结构的修改,我们能够保证它的最坏情形下上述的时间界。

树的定义有很多种⽅式。

定义树的⾃然的⽅式是递归的⽅式。

⼀棵树是⼀些节点的集合,这个集合可以是空集,若⾮空集,则⼀棵树是由根节点r以及0个或多个⾮空⼦树T1,T2,T3,......,Tk组成,这些⼦树中每⼀棵的根都有来⾃根r的⼀条有向的边所连接。

从递归的定义中,我们发现⼀棵树是N个节点和N-1条边组成的,每⼀个节点都有⼀条边连接⽗节点,但是根节点除外。

具有相同⽗亲的节点为兄弟,类似的⽅法可以定义祖⽗和孙⼦的关系。

从节点n1到nk的路径定义为节点n1,n2,...,nk的⼀个序列,并且ni是ni+1的⽗亲。

这个路径的长是路径上的边数,即k-1。

每个节点到⾃⼰有⼀条长为0的路径。

⼀棵树从根到叶⼦节点恰好存在⼀条路径。

对于任意的节点ni,ni的深度为从根到ni的唯⼀路径长。

ni的⾼是从ni到⼀⽚叶⼦的最长路径的长。

因此,所有的树叶的⾼度都是0,⼀棵树的⾼等于它的根节点的⾼。

⼀棵树的深度总是等于它最深叶⼦的深度;该深度等于这棵树的⾼度。

树的实现实现树的⼀种⽅法可以是在每⼀个节点除数据外还要有⼀些指针,使得该节点的每⼀个⼉⼦都有⼀个指针指向它。

但是由于每个节点的⼉⼦树可以变化很⼤⽽且事先不知道,故在各个节点建⽴⼦节点的链接是不可⾏的,这样将会浪费⼤量的空间。

实际的做法很简单:将每个节点的所有⼉⼦都放在树节点的链表中。

下⾯是典型的声明:typedef struct TreeNode *PtrToNodestruct TreeNode{ ElementType Element; PtrToNode FirstChild; PtrToNode NextSibling}下⾯是⼉⼦兄弟表⽰法的图⽰:树的遍历及应⽤⼀个常见的使⽤是操作系统中的⽬录结构。

第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码

第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
或 2k-1 ≤ n < 2k
即 k-1 ≤ log2 n < k
因为 k 只能是整数,因此, k =log2n + 1
问题:
一棵含有n个结点的二叉树,可能达 到的最大深度和最小深度各是多少?
1
答:最大n,
2
最小[log2n] + 1
第六章 树和二叉树教案
二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
树是常用的数据结构
•家族 •各种组织结构 •操作系统中的文件管理 •编译原理中的源程序语法结构 •信息系统管理 •。。。。
2
6.1 树的类型定义 6.2 二叉树的类型定义
6.2.3 二叉树的存储结构 6.3 二叉树的遍历
二叉树上每个结点至多有两棵子树, 则第 i 层的结点数 = 2i-2 2 = 2i-1 。
性质 2 :
深度为 k 的二叉树上至多含 2k-1 个 结点(k≥1)。
证明:
基于上一条性质,深度为 k 的二叉
树上的结点数至多为
20+21+ +2k-1 = 2k-1 。
(等比数列求和)
k
k
(第i层的最大结点数) 2i1 2k
i 1
i 1
性质 3 :
对任何一棵二叉树,若它含有n0 个叶 子结点(0度节点)、n2 个度为 2 的结 点,则必存在关系式:n0 = n2+1。
证明:
设 二叉树上结点总数 n = n0 + n1 + n2 又 二叉树上分支总数 b = n1+2n2
而 b = n-1 = n0 + n1 + n2 - 1 由此, n0 = n2 + 1 。

软件技术--树与二叉树

软件技术--树与二叉树
(2)若*p结点只有左子树PL或者只有右子树PR, 此时只要令PL或PR直接成为其双亲结点*f的左子 树即可。显然,作此修改也不会破坏二叉排序树 的特性。
(3 ) 若*p结点的左子树和右子树均不为空。
五、哈夫曼树的应用
1、什么是哈夫曼树
假设有n个权值{w1,w2,…,wn},试构造一棵有n 个叶子结点的二叉树,每个叶子结点带权wi,则其中带 权路径长度WPL最小的二叉树称作最优二叉树或哈夫 曼树。
2、 树的基本术语
结点的度:一个结点拥有的子树数称为该结点的度。 叶子结点:度为0的结点称为叶子(Leaf)或终端结点。 非终端结点:度不为0的结点称为非终端结点或分支结点。除根结 点之外,分支结点也称为内部结点。
树的度:树内各结点的度的最大值称为树的度。 树中结点之间的关系:在描述结点之间的关系时,通常用家族关 系来形象的称呼结点之间的联系。结点的子树的根称为该结点的孩 子(Child),相应的,该结点称为孩子的双亲(Parents)或父结点。 同一个双亲的孩子之间称为兄弟(Sibling)。 结点的层次(Level):一棵树从根开始定义起,根为第一层,根的 孩子为第二层,…,依此类推。若某结点在第i层,则其子树的根就 在第i+1层。其双亲在同一层的结点互为堂兄弟。
(4) 性质4: 具有n个结点的完全二叉树的深度为log2n+1。
3、几种特殊的二叉树
• 满二叉树:深度为K,且存在2K-1个结点的二叉树。 • 完全二叉树:至多只有最下面两层上的结点度数可以小于
2,并且最下层结点都集中在该层最左边的位置。 • 平衡二叉树:或是一棵空树,或是具有下列性质的二叉树:
每次插入一个结点的递归算法
struct node {anytype data; struct node *lchild; struct node *rchild; } *root; void insnode(t,d) struct node *t; anytype d;

二叉树的遍历

二叉树的遍历

T->rchild= CreatBiTree(); /*构造右子树*/ 扩展先序遍历序列
}
2021/2/21
return (T) ;}
A B Φ D Φ Φ C Φ 17Φ
T
T
T
ch=B
ch=Φ
Λ
T
T= Λ, Creat(T)
ch=A T
A
B creat(T L)
ΛB 返回
creat(T L)
creat(T R)
A
p=p->RChild;
}
2021/2/21
}
top
A
B
C
D
top
B
top
A
A
top
D
A
top
A
top
C
13
top
中序遍历二叉树的非递归算法:
A
void InOrder(BiTree T)
{ InitStack(&S); 相当于top=-1;
p=T;
B
C
while(p!=NULL | | !IsEmpty(S)) 相当于top==-1;
}
后序遍历二叉树的递归算法:
void PostOrder (BiTree T)
{ if(T!=NULL)
{ PostOrder (T->lchild);
PostOrder (T->rchild);
printf(T->data); }
2021/2/21
15
}
先序遍历二叉树的递归算法: void PreOder (BiTree T) { if(T! =NULL){ printf (T->data); PreOrder (T->lchild); PreOrder (T->rchild); } }

用C语言编写二叉树的建立与遍历

用C语言编写二叉树的建立与遍历

用C语言编写二叉树的建立与遍历1.对题目要有需求分析在需求分析中,将题目中要求的功能进行叙述分析,并且设计解决此问题的数据存储结构,设计或叙述解决此问题的算法。

给出实现功能的一组或多组测试数据,程序调试后,将按照此测试数据进行测试的结果列出来。

如果程序不能正常运行,写出实现此算法中遇到的问题和改进方法;2.对题目要有相应的源程序源程序要按照写程序的规则来编写。

要结构清晰,重点函数的重点变量,重点功能部分要加上清晰的程序注释。

(注释量占总代码的四分之一)程序能够运行,要有基本的容错功能。

尽量避免出现操作错误时出现死循环;3.最后提供的主程序可以象一个应用系统一样有主窗口,通过主菜单和分级菜单调用课程设计中要求完成的各个功能模块,调用后可以返回到主菜单,继续选择其他功能进行其他功能的选择。

二叉树的建立与遍历[问题描述]建立一棵二叉树,并对其进行遍历(先序、中序、后序),打印输出遍历结果。

[基本要求]从键盘接受输入,以二叉链表作为存储结构,建立二叉树,并对其进行遍历(先序、中序、后序),将遍历结果打印输出。

以下是我的数据结构实验的作业:肯定好用,里面还包括了统计树的深度和叶子数!记住每次做完一个遍历还要重新输入你的树哦!#include "stdio.h"#include "string.h"#define NULL 0typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;BiTree Create(BiTree T){char ch;ch=getchar();if(ch=='#')T=NULL;else{if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))printf("Error!");T->data=ch;T->lchild=Create(T->lchild);T->rchild=Create(T->rchild); }return T;}void Preorder(BiTree T){if(T){printf("%c",T->data); Preorder(T->lchild); Preorder(T->rchild);}}int Sumleaf(BiTree T){int sum=0,m,n;if(T){if((!T->lchild)&&(!T->rchild)) sum++;m=Sumleaf(T->lchild);sum+=m;n=Sumleaf(T->rchild);sum+=n;}return sum;}void zhongxu(BiTree T){if(T){zhongxu(T->lchild);printf("%c",T->data); zhongxu(T->rchild);}}void houxu(BiTree T){if(T){houxu(T->lchild);houxu(T->rchild);printf("%c",T->data);}}int Depth(BiTree T){int dep=0,depl,depr;if(!T) dep=0;else{depl=Depth(T->lchild);depr=Depth(T->rchild);dep=1+(depl>depr?depl:depr);}return dep;}main(){BiTree T;int sum,dep;T=Create(T);Preorder(T);printf("\n");zhongxu(T);printf("\n");houxu(T);printf("\n");sum=Sumleaf(T);printf("%d",sum);dep=Depth(T);printf("\n%d",dep);}在Turbo C的环境下,先按Ctrl+F9运行程序,此时就是建立二叉树的过程,例如输入序列ABC##DE#G##F###(其中的“#”表示空,并且输入过程中不要加回车,因为回车也有对应的ASCII码,是要算字符的,但是输入完之后可以按回车退出),然后再按ALT+F5显示用户界面,这时候就能够看到结果了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二叉树的创建、遍历、深度、叶子节点个数
2007-04-25 12:18749人阅读评论(0)收藏举报
#include<stdio.h>
#include<malloc.h>
typedef struct bnode
{
char data;
struct bnode*left,*right;
}btree;
btree*creat()
{
btree*t;
char p;
p=getchar();
if(p=='#')
return NULL;
else
{
t=(btree*)malloc(sizeof(btree));
t->data=p;
t->left=creat();
t->right=creat();
return t;
}
}
void preorder(btree*t)
{
if(t!=NULL)
{
printf("%3c", t->data);
preorder(t->left);
preorder(t->right);
}
}
void inorder(btree*t)
{
if(t!=NULL)
{
inorder(t->left);
printf("%3c", t->data);
inorder(t->right);
}
}
void postorder(btree*t)
{
if(t!=NULL)
{
postorder(t->left);
postorder(t->right);
printf("%3c", t->data);
}
}
int m=0;
int leaves(btree*t)
{
if(t!=NULL)
{
if(t->left==NULL&&t->right==NULL)
m++;
else
{
leaves(t->left);
leaves(t->right);
}
}
return m;
}
int depth(btree*t)
{
int dep1, dep2;
if(t==NULL)
return0;
else
{
dep1=depth(t->left);
dep2=depth(t->right);
return(dep1>dep2?dep1+1: dep2+1);
}
}
int main()
{
printf("输入创建二叉树的字符");
btree*tree_1=creat();
printf("先序遍历");
preorder(tree_1);
printf("");
printf("中序遍历");
inorder(tree_1);
printf("");
printf("后序遍历");
postorder(tree_1);
printf("");
int num=leaves(tree_1);
printf("叶节点的个数:%d", num);
printf("二叉树的深度:%d", depth(tree_1)); }。

相关文档
最新文档