普通异步电动机与变频电机的区别
变频能效等级
变频能效等级(实用版)目录1.变频电机无能效等级标准的原因2.变频电机与普通电机的区别3.高效节能电机与变频节能电机的区别4.结论:变频电机的节能问题应参照普通电机的能效等级标准正文变频电机在我国的应用越来越广泛,但是关于变频电机的能效等级问题一直存在争议。
不少业主和项目方在选用变频电机时,对其能效等级和节能问题存在疑虑。
接下来,我们将探讨变频电机为何没有能效等级标准,以及它与普通电机、高效节能电机的区别。
首先,变频电机没有能效等级标准的原因在于其效率测试与不同的变频器和调试方式有很大关系。
目前,国家对变频电机的能效并没有统一的标准。
因此,在实际应用中,变频电机的能效问题通常参照普通电机的能效等级标准。
其次,变频电机与普通电机存在明显的区别。
普通电机的能效等级可以参考 GB30254-2013 高压三相笼型异步电动机能效限定值及能效等级。
而变频电机的能效受变频器和调试方式的影响,没有统一的标准。
但是,这并不意味着变频电机的节能问题就不重要。
在实际应用中,变频电机的节能效果往往优于普通电机,因为它可以根据实际需求调整输出功率,减少能源浪费。
再来看看高效节能电机与变频节能电机的区别。
高效节能电机是指在设计、制造和使用过程中,具有较高能效水平的电机。
与之相比,变频节能电机则是通过变频技术来实现节能的电机。
这两者之间的区别在于,高效节能电机的能效等级更高,而且在运行过程中可以保持较高的能效水平;而变频节能电机则可以通过调整输出功率,进一步降低能耗。
综上所述,变频电机虽然没有能效等级标准,但其节能效果往往优于普通电机。
在实际应用中,变频电机的能效问题可以参照普通电机的能效等级标准。
变频器和电机如何选择
变频器和电机如何选择1.1恒转矩负载负载转矩tl与转速n无关,任何转速下tl总保持恒定或基本恒定。
例如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载都属于恒转矩负载。
变频器拖动恒转矩性质的负载时,低速下的转矩要足够大,并且有足够的过载能力。
如果需要在低速下稳速运行,应该考虑标准异步电动机的散热能力,避免电动机的温升过高。
1.2恒功率负载机床主轴和轧机、造纸机、塑料薄膜生产线中的卷取机、开卷机等要求的转矩,大体与转速成反比,这就是所谓的恒功率负载。
负载的恒功率性质应该是就一定的速度变化范围而言的。
当速度很低时,受机械强度的限制,tl不可能无限增大,在低速下转变为恒转矩性质。
负载的恒功率区和恒转矩区对传动方案的选择有很大的影响。
电动机在恒磁通调速时,最大允许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大允许输出转矩与速度成反比,属于恒功率调速。
如果电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相一致时,即所谓“匹配”的情况下,电动机的容量和变频器的容量均最小。
1.3风机、泵类负载在各种风机、水泵、油泵中,随叶轮的转动,空气或液体在一定的速度范围内所产生的阻力大致与速度n的2次方成正比。
随着转速的减小,转矩按转速的2次方减小。
这种负载所需的功率与速度的3次方成正比。
当所需风量、流量减小时,利用变频器通过调速的方式来调节风量、流量,可以大幅度地节约电能。
由于高速时所需功率随转速增长过快,与速度的三次方成正比,所以通常不应使风机、泵类负载超工频运行。
用户可以根据自己的实际工艺要求和运用场合选择不同类型的变频器。
在选择变频器时因注意以下几点注意事项:选择变频器时应以实际电机电流值作为变频器选择的依据,电机的额定功率只能作为参考。
另外,应充分考虑变频器的输出含有丰富的高次谐波,会使电动机的功率因数和效率变坏。
因此,用变频器给电动机供电与用工频电网供电相比较,电动机的电流会增加10%而温升会增加20%左右。
变频电机和普通电机的五大区别分析
变频电机和普通电机的五大区别分析来源:作者:2017年08月15日15:53关键词:变频电机电机在购买使用电机时很多时候都被推荐购买变频电机,那么变频电机和普通电机的区别到底有什么?变频电机一般分为恒转矩专用电动机,用于有反馈矢量控制的带测速装置的专用电动机以及中频电动机等。
在实际应用中我们发现变频电机和普通电机还是有蛮大区别的。
两者的稳定性和使用寿命是不一样的,而且变频电机更省电,它的使用范围更广泛。
变频电机的散热系统更强劲;变频电机加强了槽绝缘,一是绝缘材料加强,一是加大槽绝缘的厚度,以提高承受高频电压的水平。
同时变频电机增大了电磁负荷。
普通电机工作点基本在磁饱和拐点,如果用做变频,易饱和,产生较高的激磁电流,而变频电机在设计时增大了电磁负荷,使磁路不易饱和。
变频电机和普通电机的区别1,电机的效率和温升在变频驱动下,变频电机效率会高10%左右,而温升会小20%左右,尤其是在矢量控制或者直接转矩控制的低频区域。
2,变频电机对于需要频繁启动、频繁调速、频繁制动的场合,要优于普通电动机。
3,在电磁噪声和振动方面,变频电机在变频驱动时较普通电动机有更低的噪音和更小的电磁振动。
4,电动机的绝缘强度问题。
由于变频电机专为变频器驱动设计,所以能承受较大的du/dt,所以变频电动机的绝缘强度要高。
尤其是在DTC控制模式下,对电动机的绝缘强度是个很大的考验。
5,最主要的区别,还是变频电动机有额外的散热(采用独立的轴流风机强迫通风),在低频、直流制动和一些特殊应用场合下的散热要大大的优于普通的交流异步电动机。
变频电机的优缺点由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
调频技术对电机的要求主要是三个方面:第一,绝缘等级;第二,强制冷却;第三,转子轴承。
常用电动机类型及特点
电动机类型及特点一、同步电机与异步电机区别:〔均属交流电机〕结构:同步电机和异步电机的定子绕组是相同的,主要区别在于转子的结构. 同步电机的转子上有直流励磁绕组,所以需要外加励磁电源,通过滑环引入电流;而异步电机的转子是短路的绕组,靠电磁感应产生电流〔又称感应电机〕. 相比之下,同步电机较复杂,造价高.应用:同步电机大多用在大型发电机的场合.而异步电机那么几乎全用在电动机场合.同步电机效率较异步电机稍高,在2000KW以上的电动机选型时,一般要考虑是否选用同步电机.二、单相异步电动机与三相异步电动机:单项电动机:当单相正弦电流通过定子绕组时,电机就会产生一个交变磁场, 这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场.这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电机无法旋转.当我们用外力使电动机向某一方向旋转时〔如顺时针方向旋转〕,这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大.这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来.通常根据电动机的起动和运行方式的特点,将单相异步电动机分为单相电阻起动异步电动机、单相电容起动异步电动机、单相电容运转异步电动机、单相电容起动和运转异步电动机、单相罩极式异步电动机五种.区别:三相异步电动机采用380V三相供电,单相电机是用220V的电源,而且都是小功率的,最大只有2.2KW .相比于同转速同功率的三相电机,单项电机的效率低、功率因数低、运行平稳性差、且体积大,本钱高,但由于单相电源方便,且调速方便,因此广泛用于电开工具、医疗器械、家用电器等.三、无刷直流电机1、无刷直流电机:无刷直流电机是永磁式同步电机的一种,而并不是真正的直流电机.无刷直流电机不使用机械的电刷装置,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料,性能上相较一般的传统直流电机有很大优势,是当今最理想的调速电机.直流无刷电机由电动机主体和驱动器组成,在电动机内装有位置传感器检测电动机转子的极性,驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以限制电动机的启动、停止和制动;接受位置传感器信号和正反转信号, 用来限制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反应信号,用来限制和调整转速;提供保护和显示等等.特点:•全面替代直流电机调速、变频器+变频电机调速、异步电机+减速机调速;•具有传统直流电机的所有优点,同时又取消了碳刷、滑环结构;•可以低速大功率运行,可以省去减速机直接驱动大的负载;•体积小、重量轻、出力大;•转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小;•无级调速,调速范围广,过载水平强;•软启软停、制动特性好,可省去原有的机械制动或电磁制动装置;•效率高,电机本身没有励磁损耗和碳刷损耗,消除了多级减速耗,综合节电率可达20%〜60%,仅节电一项一年收回购置本钱;•可靠性高,稳定性好,适应性强,维修与保养简单;•耐颠簸震动,噪音低,震动小,运转平滑,寿命长;•没有无线电干扰,不产生火花,特别适合爆炸性场所,有防爆型;•根据需要可选梯形波磁场电机和正旋波磁场电机.2、无刷直流电机与有刷直流电机直流无刷电机和直流电机是2个概念.虽然直流无刷电机名字带直流,实际上是不是直流电机.从分类上来看,直流电机是一类,而直流无刷电机那么属于同步电机. 〔1〕无刷电机的优点•无电刷、低干扰:没有了有刷电机运转时产生的电火花,极大减少了电火花对遥控无线电设备的干扰.•噪音低,运转顺畅:没有了电刷,运转时摩擦力大大减小,运行顺畅,发热量低,效率高,噪音低,对于模型运行稳定性是一个巨大的支持.•寿命长,低维护本钱:无刷电机的磨损主要是在轴承上,从机械角度看,无刷电机几乎是一种免维护的电动机了,必要的时候,只需做一些除尘维护即可.但有刷电机低速扭力性能优异、转矩大等性能特点是无刷电机不可替代的〔2〕从趋势上论,无刷减速电机可能取代有刷减速电机•适用范围:无刷电机通常被使用在限制要求比拟高,转速比拟高的设备上, 如航模,精密仪器仪表等对电机转速限制严格,转速到达很高的设备;通常动力设备使用的都是有刷电机,如吹风机,工厂的电动机,家用的抽油烟机等;•使用寿命:无刷电机通常使用寿命在几万小时这个数量级,主要取决于轴承的不同;通常有刷电机的连续工作寿命在几百到1千多个小时,到达使用极限就需要更换碳刷;•使用效果:无刷电机通常是数字变频限制,可控性强,从每分钟几转,到每分钟几万转都可以很容易实现.碳刷电机启动以后工作转速恒定,调速不是很容易,串激电机也能到达20000转/秒,但是使用寿命会比拟短.•节能环保方面:相对而言,无刷电机采用变频技术限制的会比串激电机节能很多,最典型的就是变频空调和冰箱.•维修方面:碳刷电机需要更换碳刷,而无刷电机,使用寿命很长,日常维护根本不需要.•噪音方面:与是否是有刷电机无关,主要是看轴承和点击内部组件的配合情况.3、无刷直流电机与交流电机无刷直流电机,定子是旋转磁场,拖着转子磁场转动;交流同步电机,也是定子旋转磁场拖着转子磁场转动;它们的不同是,旋转磁场旋转的原因不同:〔1〕交流同步电机,定子磁场转动的原因是彼此落后120度的三相对称交流电,定子磁场的转动是交流电的变化快慢;〔2〕直流电机,是直流电源不变的恒定电压,与线圈连接实际位置的改变形成的,而且与线圈连接实际位置的改变是转子转动的快慢;这样,它们的调速方法就不同:〔1〕交流同步电机,定子磁场转动的原因是彼此落后120 度的三相对称交流电,定子磁场的转动是交流电的变化快慢;只要改变交流电变化的快慢,就能改变电机的转速,即变频调速;〔2〕直流电机,是直流电源不变的恒定电压,与线圈连接实际位置的改变形成的,而且与线圈连接实际位置的改变只与转子转动的快慢相关;只要改变转子的转速就可以调速,而转子的转速与电压成正比,改变电压就可改变转速,即调压调速;直流调速不改变电机的负载性质,而交流调速改变了负载的性质;交流调速〔变频〕,频率不同时,交流电机的感抗大小不同,负载性质随之改变,是一个极不稳定的系统,很难实现精细调速.直流调速〔变压〕,电压不同时,直流电机的电阻大小不变,负载性质不变,是一个非常稳定的系统,很容易实现精细调速,几个毫伏的电压速度都可以分辨.由于无刷直流电动机的励磁来源于永磁体,没有激磁损耗的问题,由于转子中无交变磁通,其转子上既无铜耗又无铁耗,综合效率比同容量异步电动机高出10〜20%左右〔依据功率大小而定〕.无刷直流电动机具有高效率、高转矩、高精度的三高特性,非常适合使用在24小时连续运转的机械,同时具有体积小, 重量轻,可作成各种体积形状,产品性能超越传统直流电机的所有优点,是当今最理想的调速电机.比拟:直流电机具有优良的启动特性和调速特性,但造价较高;交流电机造价低,电源方便,但启动特性和调速特性稍差;4、无刷直流电机与交流伺服电机直流无刷电机:无刷直流电机感应反电动势也是梯形波的.无刷直流电机的限制需要位置信息反应,必须有位置传感器或是采用无位置传感器估计技术, 构成自控式的调速系统.限制时各相电流也尽量限制成方波,逆变器输出电压根据有刷直流电机PWM 的方法进行限制即可.本质上,无刷直流电机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴.交流伺服电机:通常说的交流永磁同步伺服电机具有定子三相分布绕组和永磁转子,感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供.永磁同步电机限制系统常采用自控式,也需要位置反应信息,可以采用矢量限制〔磁场定向限制〕或直接转矩限制的先进限制方式.区别:方波和正弦波限制导致的设计理念不同.最后明确一个概念,无刷直流电机的所谓“直流变频〞实质上是通过逆变器进行的交流变频,从电机理论上讲,无刷直流电机与交流永磁同步伺服电机相似,应该归类为交流永磁同步伺服电机;但习惯上被归类为直流电机,由于从其限制和驱动电源以及限制对象的角度看,称之为“无刷直流电机〞也算是适宜的.四、电机调速1、直流电机调速:转子电路串联电阻〔短时调速〕、转子电路电压〔广泛应用,调节范围0—基速〕、改变磁通〔只能提升转速,基速以上,恒功率调速〕〔1〕电压调速:可控电源调速、PWM 〔脉宽调制〕调速〔广泛应用〕与老式的可控直流电源调速系统相比,PWM调速系统有以下优点:a、采用全控型器件的PWM调速系统,其脉宽调制电路的开关频率高,因此系统的频带宽,响应速度快,动态抗扰水平强.b、由于开关频率高,仅靠电动机电枢电感的滤波作用就可以获得脉动很小的直流电流,电枢电流容易连续,系统的低速性能好,稳速精度高,调速范围宽,同时电动机的损耗和发热都较小.c、PWM系统中,主电路的电力电子器件工作在开关状态,损耗小,装置效率高,而且对交流电网的影响小,没有晶闸管整流器对电网的“污染〞, 功率因数高,效率高.d、主电路所需的功率元件少,线路简单,限制方便.目前,受到器件容量的限制,PWM直流调速系统只用于中、小功率的系统.国内的超大功率调速还要依靠可控硅实现可控整流来实现直流电机的调压调速2、交流电机调速:〔1〕三相异步电动机:a、变极对数调速方法:改变定子绕组的接线方式来改变笼型电动机定子极对数到达调速目的. 特点:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、限制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性.本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等.b、变频调速:改变电动机定子电源的频率,从而改变其同步转速的调速方法.变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流一直流一交流变频器和交流一交流变频器两大类,目前国内大都使用交一直一交变频器.其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难.本方法适用于要求精度高、调速性能较好场合.c、串级调速:绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,到达调速的目的.根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%—90% 的生产机械上;调速装置故障时可以切换至全速运行,预防停产;晶闸管串级调速功率因数偏低, 谐波影响较大.本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用.九串入附加电阻:绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行.串入的电阻越大,电动机的转速越低.此方法设备简单,限制方便,但转差功率以发热的形式消耗在电阻上.属有级调速,机械特性较软.e、定子调压调速:由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻.为了扩大稳定运行范围,当调速在2:1以上的场合应采用反应限制以到达自动调节转速目的.调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种.晶闸管调压方式为最正确.调压调速的特点:调压调速线路简单,易实现自动限制;调压过程中转差功率以发热形式消耗在转子电阻中,效率较低.调压调速一般适用于100KW 以下的生产机械.f、电磁调速:特点:装置结构及限制线路简单、运行可靠、维修方便;调速平滑、无级调速;对电网无谐影响;速度失大、效率低.本方法适用于中、小功率,要求平滑动、短时低速运行的生产机械.g、液力耦合器调速:特点:功率适应范围大,可满足从几十千瓦至数千千瓦不同功率的需要;结构简单,工作可靠,使用及维修方便,且造价低;尺寸小,能容大;限制调节方便,容易实现自动限制.本方法适用于风机、水泵的调速.〔2〕单相异步电动机:〔和力矩电机相比,它恒转矩;和变频电机相比它不节能;和直流电机相比,它限制的精度低;〕单相异步电动机和三相异步电动机一样,它的转速调节较困难.如采用变频调速那么设备复杂、本钱高.为此一般只进行有极调速,主要的调速方法有:a、串电抗器调速(降压调速):将电抗器与电动机定子绕组串联,利用电抗器上产生的压降使加到电机定子绕组上的电压低于电源电压,从而到达降低电动机转速的目的.此种调速方法,只能是由电机的额定转速往低调.多用在吊扇及台扇上.b、电动机绕组内部抽头调速:通过调速开关改变中间绕组与启动绕组及工作绕组的接线方法,从而到达改变电动机内部气隙磁场的大小,到达调节电动机转速的目的.有L型和T型两种接法.c、交流晶闸管调速:利用改变晶闸管的导通角,来实现调节加在单相电动机上的交流电压的大小,从而到达调速的目的.此方法可以实现无级调速,缺点是有一些电磁干扰.常用于电风扇的调速上.五、电机启动1、直流电机启动(1)启动方法直接合闸起动:直接合闸起动就是将电动机直接接入到额定电压的电源上启动.由于直流电机电枢回路电阻和电感都较小,而转动体具有一定的机械惯性,起动的开始阶段电流很大最大可达额定电流的15〜20倍.由于电动机启动电流很大,所以启动转矩大,电动机启动迅速,但这一电流会使电网受到扰动、机组受到机械冲击、换向器发生火花.它只适用于功率不大于4千瓦小型电动机,如家用电器中的直流电机.串电阻起动:在启动时将一组启动电阻?串人电枢回路,以限制启动电流,而当转数上升到额定转数后,再把启动变阻器从电枢回路中切除.启动电流小,但是变阻器比拟笨重,启动过程中要消耗很多的能量.降电压起动:在启动时通过暂时降低电动机供电电压的方法来限制启动电濡要有一套可变电压的直流电源,这种方法只适合于大功率直流电机.〔2〕启动转矩直流电机的起动转矩由你自己设定,假设全压直接起动,可以到达额定转矩的多倍,这样将使机械损毁,所以必须参加启动电阻以减少起动电流从而减少起动转矩,一般参加的启动电阻使起动转矩为额定转矩的2-2.5倍左右,这样电机及机械可以承受,启动过程也能加快.2、交流电机启动〔1〕启动方法全压启动:在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动.优点是操纵限制方便,维护简单,而且比拟经济.主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw的电动机不宜用此方法.自耦减压起动:利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式.它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%.并且可以通过抽头调节起动转矩. 至今仍被广泛应用.Y-A起动:正常运行的定子绕组为三角形接法的鼠笼式异步电动机,在起动时将定子绕组接成星形,待起动完毕后再接成三角形,降低起动电流,减轻对电网的冲击.起动电流只是原来按三角形接法直接起动时的1/3,起动转矩也降为原来按三角形接法直接起动时的1/3.适用于无载或者轻载起动的场合.同任何别的减压起动器相比拟,其结构最简单,价格也最廉价.除此之外,当负载较轻时,可以让电动机在星形接法下运行,这样能使电动机的效率有所提升,并节约了电力消耗.软起动器:利用可控硅的移相调压原理来实现电动机的调压起动,起动效果好但本钱较高.可控硅工作时谐波干扰较大,对电网有一定的影响.另外电网的波动也会影响可控硅元件的导通,特别是同一电网中有多台可控硅设备时.因此可控硅元件的故障率较高,由于涉及到电力电子技术, 因此对维护技术人员的要求也较高.变频器:由于涉及到电力电子技术,微机技术,因此本钱高,对维护技术人员的要求也高,因此主要用在需要调速并且对速度限制要求高的领域.总之,星三角起动,自藕减压起动因其本钱低,维护相对软起动和变频限制容易,目前在实际运用中还占有很大的比重.但因其采用分立电气元件组装,限制线路接点较多,在其运行中,故障率相比照拟高.〔2〕启动转矩启动转矩表征了电动机的启动水平,启动转矩大于额定转矩,一般电机样板上标有两者的关系〔倍数〕,一般2倍左右,它与启动方式有关〔如星三角起动,变频调速起动等〕,直接起动鼠笼式一般为额定力矩的0.8到2.2倍.通常起动转矩为额定转矩的125%以上.与之对应的电流称为起动电流,通常该电流为额定电流的6倍左右.一般自耦变压器的抽头有65%和80%两组,需要较大启动转矩时接80%,否那么接65%;六、电机制动1、反接制动:在电机断开电源后,在电机的电源上加上与正常运行电源反相的电源,加快电机的减速.反接制动有一个最大的缺点:当电机转速为0时,如果不及时撤除反相后的电源,电时机反转.因此, 不允许反转的机械,如一些车床等,制动方法就不能采用反接制动了,而只能采用能耗制动或机械制动.2、能耗制动:定子绕组中通以直流电,从而产生一个固定不变的磁场,转子按旋转方向切割磁力线,产生一个制动力矩.由于是在定子绕组中通以直流电来制动,因而能耗制动又叫直流注入制动.在一些要求制动时间短和制动效果好的场合,一般不使用此制动方法.3、再生制动:当电机的转子速度超过电机同步磁场的旋转速度时,转子绕组所产生的电磁转矩的旋转方向和转子的旋转方向相反,电机处于制动状态.此时,可以采取一定的举措把产生的电能回馈给电网, 因此,再生制动也叫发电制动.再生制动会出现在以下两种场合:1、起重机重物下降时,电机转子在重物重力的手动下,转子的转速有可能超过同步转速,此时,电机处于再生制动状态.2、变频调速时,当变频器把频率降低时,同步转速也随之降低.但转子转速由于负载惯性的作用,不会马上降低,此时,电机也会处于再生制动状态,直至拖动系统的速度也下降为止.4、机械制动采用机械装置使电动机断开电源后迅速停转的制动方法.如电磁抱闸、电磁离合器等电磁铁制动器.七、伺服电机1、直流伺服电机与直流无刷电机直流无刷电机和直流伺服电机是2类,概念上不存在交集.简言之:直流伺服电机特指直流有刷电机.无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定.限制复杂,容易实现智能化,其电子换相方式灵活,可以正弦波换相.电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境.2、交流伺服电机与直流伺服电机直流伺服电机:就是把直流电机加上编码器形成闭环限制,电机通过改变电的大小来改变电机的扭矩、速度等参数.直流伺服电机的结构和普通直流电机差不多,只是直流电机为满足低惯量采用细长电枢,盘形或空心杯的,或者改成了永磁电机,是最理想的调速系统,这就导致直流伺服电机比拟容易实现调速,限制精度较高.缺点是直流伺服电机有碳刷,容易造成电机的磨损,而且维护本钱高操作麻烦.交流伺服电机:是交流电机的一种,通过伺服驱动器的矢量限制理论限制电机的扭矩,速度、位置等等,交流伺服电机的转子电阻一般很大,这样可以预防自转,当限制电压消失后,由于有励磁电压,此时的交流伺服电机中会有脉振磁动势,交流伺服就是是一种带编码器的同步电机,效果比直流伺服稍微差一点,但维护方便.缺点是价格高、精度没直流的好!推荐使用交流伺服电机, 直流伺服电机太热,限制精度不好,使用寿命短.永磁交流伺服电动机同直流伺服电动机比拟,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低.⑵定子绕组散热比拟方便.⑶ 惯量小,易于提升系统的快速性波纹管联轴器.⑷适应于高速大力矩工作状态. ⑸同功率下有较小的体积和重量.八、步进电机。
YVF2与Y2电机区别
普通异步电动机与变频电机的区别?一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
4、电动机对频繁启动、制动的适应能力由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
普通三相异步电动机与变频电动机的区别
普通三相异步电动机与变频电动机的区别集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-普通三相异步电动机与变频电动机的区别普通的三相异步电动机可以用变频器驱动吗?普通的三相异步电动机与变频调速的三相异电动机有何区别?普通异步电机与变频电机的区别——普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响:1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显着的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
普通异步电动机与变频电机的区别
普通异步电动机与变频电机的区别一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
4、电动机对频繁启动、制动的适应能力由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
变频能效等级
变频能效等级
【原创实用版】
目录
1.变频电机无能效等级标准的原因
2.普通电机和变频电机的区别
3.高效节能电机与变频节能电机的区别
正文
变频电机无能效等级标准的原因:
随着国家对节能要求越来越高,许多项目中对电动机的能效标准有要求。
关于普通电机的能效等级与变频电机的节能问题是经常被提及和业主所关心的。
但两者是有区别的,普通大中型高压异步电动机的能效等级划分可以参考 GB30254-2013 高压三相笼型异步电动机能效限定值及能效
等级。
而变频电机的效率测试因和不同的变频器以及调试方式均有很大的关系,目前国家是没有相关标准的,也就是变频电机没有能效等级的说法。
普通电机和变频电机的区别:
普通电机和变频电机在结构和功能上有很大的区别。
普通电机结构简单,通过调整电源频率来实现电机转速的变化。
而变频电机在设计时考虑了变频器的特性,使得电机在低速运行时仍能保持较高的效率。
因此,变频电机在节能方面具有优势。
高效节能电机与变频节能电机的区别:
高效节能电机是指在设计、制造和使用过程中,通过采用高新技术和优化设计方案,实现电机高效率、低能耗的电机。
而变频节能电机是指通过变频技术,调整电机运行频率,实现电机在低速运行时仍具有较高效率的电机。
第1页共1页。
变频电机转速范围
变频电机转速范围
(最新版)
目录
1.变频电机的概念和分类
2.变频电机的变频范围
3.变频电机的优势和应用
4.变频电机的调速方法
5.变频电机与普通电机的区别
正文
一、变频电机的概念和分类
变频电机是一种能够通过变频器调整输出频率和电压,从而实现转速调节的电机。
它主要分为两类:交直流变频电机和交流变频电机。
其中,交流变频电机根据电机的极数可分为二极、四极、六极和八极等。
二、变频电机的变频范围
变频电机的变频范围取决于其工作的频率范围和变频器的控制范围。
一般来说,变频电机的变频范围可以从低于额定转速到稍高于额定转速。
具体来说,对于三相异步电动机,其额定转速通常为 1500 或 3000 转/分,变频范围一般在 50Hz 到 100Hz 之间。
三、变频电机的优势和应用
变频电机具有调速范围广、启动和停止平稳、节能等优点。
它广泛应用于各种工业生产和民用场合,如风机、水泵、压缩机等。
四、变频电机的调速方法
变频电机的调速方法主要有以下几种:
1.电压调制:通过改变变频器的输出电压来控制电机的转速,一般用
于低功率电机的调速。
2.频率调制:通过改变变频器的输出频率来控制电机的转速,可用于大功率电机的调速。
五、变频电机与普通电机的区别
变频电机与普通电机的主要区别在于其应用于不同的场合。
普通电机通常用于固定转速的场合,而变频电机则适用于需要调整转速的场合。
此外,变频电机在设计、制造和使用过程中具有更高的要求,如独立的散热电机、更高的电压绝缘等级等。
电磁调速电机和变频调速电机的区别介绍
电磁调速电机和变频调速电机的区别一、技术特点不同1、电磁调速电机:具有调速范围广、速度调节开环、起动转矩大、控制功率小、有速度负反馈、自动调节系统时机械特性硬度高等一系列优点。
2、变频调速电机:噪声低,通过优化电磁设计、通风状况、结构尺寸等技术,电动机的噪声较低。
,轴承负载能力高,电动机选用深沟球轴承,寿命长。
二、原理不同1、电磁调速电机:由普通鼠笼式异步电动机、电磁滑差离合器和电气控制装置三部分组成。
异步电机作为原动机使用,当它旋转时带动离合器的电枢一起旋转,电气控制装置是提供滑差离合器励磁线圈励磁电流的装置。
2、变频调速电机:利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
三、应用不同1、电磁调速电机:在印刷机及骑马订书机、无线装订、高频烘干联动机、链条锅炉炉排控制中都得到广泛应用。
2、变频调速电机:特别是随着变频器在工业控制领域内日益广泛的应用,变频电机的使用也日益广泛起来,可以这样说由于变频电机在变频控制方面较普通电机的优越性,凡是用到变频器的地方我们都不难看到变频电机的身影。
电磁调速电机电磁调速异步电动机又称滑差电机,它是一种利用直流电磁滑差恒转矩控制的交流无级变速电动机。
由于它具有调速范围广、速度调节开环、起动转矩大、控制功率小、有速度负反馈、自动调节系统时机械特性硬度高等一系列优点,因此在印刷机及骑马订书机、无线装订、高频烘干联动机、链条锅炉炉排控制中都得到广泛应用。
变频调速电机变频调速电机简称变频电机,是变频器驱动的电动机的统称。
实际上为变频器设计的电机为变频专用电机,电机可以在变频器的驱动下实现不同的转速与扭矩,以适应负载的需求变化。
变频电动机由传统的鼠笼式电动机发展而来,把传统的电机风机改为独立出来的风机,并且提高了电机绕组的绝缘性能。
在要求不高的场合如小功率和频率在额定工作频率工作情况下,可以用普通鼠笼电动机代替。
变频能效等级
变频能效等级
【实用版】
目录
1.变频电机无能效等级标准
2.变频电机与普通电机的能效等级区别
3.变频电机的节能问题
4.高效节能电机与变频节能电机的区别
正文
一、变频电机无能效等级标准
变频电机在我国并没有能效等级标准。
尽管国家对节能要求越来越高,许多项目中对电动机的能效标准有要求,但变频电机的能效等级问题并未得到明确规定。
这与普通电机的能效等级划分是有区别的。
二、变频电机与普通电机的能效等级区别
普通大中型高压异步电动机的能效等级划分可以参考 GB30254-2013 高压三相笼型异步电动机能效限定值及能效等级。
而变频电机的效率测试因和不同的变频器以及调试方式均有很大的关系,目前国家并没有相关标准,因此变频电机没有能效等级的说法。
三、变频电机的节能问题
变频电机的节能问题与普通电机不同,它的节能主要取决于变频器的性能以及调试方式。
因此,在变频电机的节能问题上,需要关注变频器的选择与使用,以及合理的调试方法。
四、高效节能电机与变频节能电机的区别
高效节能电机与变频节能电机在节能方面有共同之处,但它们之间也存在区别。
高效节能电机主要通过提高电机本身的效率来实现节能,而变
频节能电机则通过调整电机的运行频率来实现节能。
因此,在实际应用中,需要根据具体需求选择合适的电机类型。
综上所述,变频电机虽然没有能效等级标准,但其节能问题同样值得关注。
变频电机与普通电机的区别
变频电机与普通电机的区别:一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响,即变频电机与普通电机的区别:1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动!普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
.4、电动机对频繁启动、制动的适应能力由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
普通电机是否可以使用电机变频器?需要注意什么?
普通电机是否可以使用电机变频器?需要注意什么?答:应该讲普通三相交流异步电动机是不能够作为变频调速电机使用的,其主要原因是二者从结构与使用的材料以及电磁设计方面都是有一定的差别。
如果在要求不高的情况下,例如普通电机50~60Hz,而使用变频器调速设定频率不超过电机额定频率情况时,普通电机可以使用变频器进行调速运行。
但是得将内部结构改造一下。
如果不对普通电机改造情况下,这种做法肯定是不可取的;改装方法是:在普通电机的尾部,将原理的塑料风扇叶去掉,再加装一个强制风冷电机,并且这个电机不受控于变频器电源;对于2极或4极被改电机,取被改电机额定功率的3%;6极电机的风扇,取被改电机的5%,至于风扇电机的极数一般为4极即可。
如果细心的人会发现变频电机的散热风机是独立出来的一个小的轴流恒速风机,而工频电机(50Hz交流电源)的散热是在主轴上装一个叶轮。
如果将工频电机变频使用的话这就是其中一个很严重的问题,在电机低频运行的时候电机转速很低,而这个时候电机本身的发热量是最大的时候,如果是工频电机的话通风风量反而变得比较小,这会造成风机散热不够引起电机过热。
变频电机与普通电机在电磁设计存在差异;对普通异步电动机来说,在设计时主要考虑的性能參数是过载能力、启动性能、效率和功率因数。
而变频电动机由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。
变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。
另一个方面电机本身的绝缘等级有很大的差异,首先它能让电机启动无冲击电流,更能实现无极调节电机的出力以达到节能的目的。
但变频器也会带来一个问题就是谐波,如果谐波频率与电机本身的固有频率一致时就会发生电磁共振,这会使电机运行的声音变得异常的大,严重的时候会损坏普通电机。
简述普通三相异步电动机与变频调速电动机的区别及应用
简述普通三相异步电动机与变频调速电动机的区别及应用摘要:本文就变频器对普通三相异步电动机的影响;变频电动机的特点;变频调速电机的应用进行分析,简要论述了变频电动机与普通异步电动机在结构、磁路、温升、效率、绝缘强度、震动、冷却的区别,以及变频调速节能装置的节能原理,变频调速在工农业应用领域的优缺点。
对变频改造系统中的电机选用有一定的参考价值。
关键词:电动机;变频器;节能中图分类号:tg333.7 文献标识码:a 文章编号:1009-914x (2013)23-568-010、引言电动机的调速与控制,是工农业各类机械及办公、民生电器设备的基础技术之一。
随着电力电子技术、微电子技术的惊人发展,采用“专用变频感应电动机+变频器”的交流调速方式,正在以其卓越的性能和经济性,在调速领域,引导了一场取代传统调速方式的更新换代的变革。
它给各行各业带来的福音在于:使机械自动化程度和生产效率大为提高、节约能源、提高产品合格率及产品质量、电源系统容量相应提高、设备小型化、增加舒适性,目前正以很快的速度取代传统的机械调速和直流调速方案。
1、变频器对普通三相异步电动机的影响普通三相异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对普通三相异步电动机的影响:1)电动机的效率和温升的问题不论哪种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
据资料介绍,以目前普遍使用的正弦波pwm型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。
伺服电机、变频电机、普通电机之间有什么区别?
伺服电机、变频电机、普通电机之间有什么区别?伺服的基本概念是准确、精确、快速定位。
变频是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速)。
但伺服将(电流)环速度环或者位置环都闭合进行控制,这是很大的区别。
除此外,(伺服电机)的构造与普通(电机)是有区别的,要满足快速响应和准确定位。
现在市面上流通的交流伺服电机多为永磁同步交流伺服,但这种电机受工艺限制,很难做到很大的功率,十几KW以上的同步伺服价格及其昂贵,这样在现场应用允许的情况下多采用交流异步伺服,这时很多驱动器就是高端(变频器),带(编码器)反馈闭环控制。
所谓伺服就是要满足准确、精确、快速定位,只要满足就不存在伺服变频之争。
一、两者的共同点交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节。
变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类(晶体管)((IGBT),IGCT等)通过载波频率和PWM调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/p ,n转速,f频率,p极对数)。
二、谈谈变频器简单的变频器只能调节交流电机的速度,这时可以开环也可以闭环,要视控制方式和变频器而定,这就是传统意义上的V/F控制方式。
现在很多的变频已经通过数学模型的建立,将交流电机的定子磁场UVW3相转化为可以控制电机转速和转矩的两个电流的分量,现在大多数能进行力矩控制的著名品牌的变频器都是采用这样方式控制力矩,UVW每相的输出要加霍尔效应的电流检测装置,采样反馈后构成闭环负反馈的电流环的(PI)D调节;ABB的变频又提出和这样方式不同的直接转矩控制技术,具体请查阅有关(资料)。
这样可以既控制电机的速度也可控制电机的力矩,而且速度的控制精度优于v/f控制,编码器反馈也可加可不加,加的时候控制精度和响应特性要好很多。
同步电机与异步电机区别(说的非常好)
一、同步电机和异步电机在设计上的不同:①同步与异步的最大区别就在于看他门的转子速度是不是与定子旋转的磁场速度一致,如果转子的旋转速度与定子是一样的,那就叫同步电动机,如果不一致,就叫异步电动机。
②当极对数一定时,电机的转速和频率之间有严格的关系,用电机专业术语说,就是同步。
异步电机也叫感应电机,主要作为电动机使用,其工作时的转子转速总是小于同步电机。
③所谓“同步”就是电枢(定子)绕组流过电流后,将在气隙中形成一旋转磁场,而该磁场的旋转方向及旋转速度均与转子转向,转速相同,故为同步。
异步电机的话,其旋转磁场与转子存在相对转速,即产生转距。
二、为什么会同步,为什么会不同步呢?同步电机和异步电机的定子绕组是相同的,主要区别在于转子的结构。
同步电机的转子上有直流励磁绕组,所以需要外加励磁电源,通过滑环引入电流;而异步电机的转子是短路的绕组,靠电磁感应产生电流。
相比之下,同步电机较复杂,造价高。
同步和异步电机均属交流动力电机,是靠50Hz交流电网供电而转动。
异步电机是定子送入交流电,产生旋转磁场,而转子受感应而产生磁场,这样两磁场作用,使得转子跟着定子的旋转磁场而转动。
其中转子比定子旋转磁场慢,有个转差,不同步所以称为异步机。
而同步电机定子与异步电机相同,但其转子是人为加入直流电形成不变磁场,这样转子就跟着定子旋转磁场一起转而同步,始称同步电机。
简单的说就是:异步电机的转子上没加直流励磁电流,同步电机的转子上加了一个直流励磁电流使转子的转速与定子与转子切割产生的磁场转速一致。
三、同步发电机转子为什么要通入直流励磁电流,而不通入交流励磁电流?按工频50HZ考虑,转子通入直流励磁电流,可在定子绕组中感应出50HZ电势。
转子通入交流励磁电流后,可分解为正向与反向两个旋转磁场,正向旋转磁场旋转速度与转子旋转速度迭加,在定子绕组中感应出100HZ电势;反向旋转磁场旋转速度与转子旋转速度抵消,与定子绕组相对静止,不产生电势,但定子磁通中出现直流分量,可能饱和。
步进电机、有刷和无刷电机、同步和异步电机区别
步进电机转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而异步电机和同步电机的区别异步电机又叫感应电机,转子上的电磁场是通过定子磁场感应出来的。
同步电机转子上要有自带的磁场。
异步电机的转速会随负载的不同,略有改变,而且这个转速是低于定子磁场的转速的,所以才叫异步电机。
同步电机转速严格的按定子磁场转速旋转,所以叫同步电机。
异步电动机可以直接启动。
同步电动机要有专门的启动装置或者启动绕组,所以制造工艺复杂,造价高。
异步电机一般用来做电动机,同步电机一般用来做发电机,也用来做补偿机。
同步与异步的最大区别就在于看他门的转子速度是不是与定子旋转的磁场速度一致,如果转子的旋转速度与定子是一样的,那就叫同步电动机,如果不一致,就叫异步电动机。
当极对数一定时,电机的转速和频率之间有严格的关系,用电机专业术语说,就是同步。
异步电机也叫感应电机,主要作为电动机使用,其工作时的转子转速总是小于同步电机。
所谓“同步”就是电枢(定子)绕组流过电流后,将在气隙中形成一旋转磁场,而该磁场的旋转方向及旋转速度均与转子转向,转速相同,故为同步。
异步电机的话,其旋转磁场与转子存在相对转速,即产生转距。
同步电机的转速是和频率极数恒定的满足转速=60乘以频率除以极对数(同步转速)不随负荷的改变而该改变异步电机的转速永远低于同步转速但是带额定负荷时转速很接近同步转速随着负荷的增加转速会下降。
所以叫异步电机同步电机的转子有转子线圈和鼠龙,通入励磁电流。
而异步电机只有鼠龙(铜条)。
同步电机转速恒定,而异步电机低于同步转速无刷电机和有刷电机到底有何区别着电动车普及率越来越高,市场竞争的异常激烈,不少企业和商家除了在产品价格和外观上大肆做文章外,还在电动车一般的小细节上也打起了广告,其中最多的便是对于电机有刷和无刷的宣传,而无刷电机的广告宣传则是其中一大亮点。
当您看到这个名词时,你不禁会想既然有无刷,那肯定有有刷,那么有刷和无刷的区别到底在哪里呢?下面小编就为您解答一番。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通异步电动机与变频电机的区别
一、普通异步电动机都是按标准正弦波恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响
1、电动机的效率和温升的问题
不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题
目前中小型变频器,不少是采用PWM的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动
普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
4、电动机对频繁启动、制动的适应能力
由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
5、低转速时的冷却问题
首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。
其次,普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。
二、变频电动机的特点
1、电磁设计
对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。
而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不再需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。
方式一般如下:
1)尽可能的减小定子和转子电阻。
减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增
2)为抑制电流中的高次谐波,需适当增加电动机的电感。
但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。
因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。
3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。
2、结构设计
再结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般注意以下问题:
1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。
2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。
3)冷却方式:一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。
4)防止轴电流措施,对容量超过160KW电动机应采用轴承绝缘措施。
主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。
5)对恒功率变频电动机,当转速超过3000/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。
同步电动机:
一、特点:
1、功率因数超前,一般额定功率因数为0.9,有利于改善电网的功率因数,增加电网容量。
2、运行稳定性高,当电网电压突然下降到额定值的80%时,其励磁系统一般能自动调节实行强行励磁,保证电动机的运行稳定。
3、过载能力比相应的异步电动机大。
4、运行效率高,尤其是低速异步电动机。
二、启动方式
1、异步启动法,,同步电动机多数在转子上装有类似与异步电机笼式绕组的启动绕组。
再励磁回路串接约为励磁绕组电阻值10倍的附加电阻来构成闭合电路,把同步电动机的定子直接接入电网,使之按异步电动机启动,当转速达到亚同步转速(95%)时,再切除附加电阻。
2、变频启动,用变频器启动,不在赘述。
三、应用
作过油田节电的师傅都知道,油田的抽油机电机,由于要求的启动转矩
大,工程师设计时一般将电机设计的很大,这就出现“大马拉小车”现象,如:55KW的抽油机电机,再平衡块基本调好后,其实际有功一般在十几个KW,有时还小。
我曾做过这样的改造,将抽油机55KW异步电动机改为22KW同步电机,后用变频器控制,当然也可以根据排液量或别的信号进行自动控制。
节电率可达40%。
因此,异步电动机,同步电动机,变频电动机三者各有特点,主要看您所控制的工况环境,当然还要根据工程成本,能用异步电机尽量用异步电动机。