2021年春人教版九年级数学中考考点特训—— 尺规作图及定义、命题、定理

合集下载

2023年中考数学复习第一部分考点梳理第七章图形变换第1节尺规作图

2023年中考数学复习第一部分考点梳理第七章图形变换第1节尺规作图

第七章图形变换7.1尺规作图1.(2021·长春)在△ABC中,∠BAC=90°,AB≠AC.用无刻度的直尺和圆规在BC边上找一点D,使△ACD 为等腰三角形.下列作法不正确的是(A)AB的长为半径画弧,两弧交2.(2021·湖南益阳)如图,在△ABC中,AC>BC,分别以点A,B为圆心,以大于12于点D,E,经过点D,E作直线分别交AB,AC于点M,N,连接BN.下列结论正确的是(B)A.AN=NCB.AN=BNBC D.BN平分∠ABCC.MN=123.如图,OG平分∠MON,A,B是射线OM,ON上的点,连接AB.按以下步骤作图:①以点B为圆心,任意长为半CD长为半径作弧,两弧相交于点径作弧,交AB于点C,交BN于点D;②分别以点C和点D为圆心,大于12E;③作射线BE,交OG于点P.若∠ABN=140°,∠MON=50°,则∠OPB的度数为(B)A.35°B.45°C.55°D.65°4.(2022·北京)如图,在平面直角坐标系中,点A的坐标为(-2,0),点B在y轴正半轴上,以点B为圆心,BA 长为半径作弧,交x轴正半轴于点C,则点C的坐标为(2,0).第4题图第5题图AC的长5.(2022·江苏苏州)如图,在平行四边形ABCD中,AB⊥AC,AB=3,AC=4,分别以A,C为圆心,大于12为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF,则四边形AECF的周长为10.6.(2021·黑龙江绥化)(1)如图,已知△ABC,P为边AB上一点,请用尺规作图的方法在边AC上求作一点E,使AE+EP=AC;(保留作图痕迹,不写作法)(2)在(1)的条件下,若AC=6 cm,AP=3 cm,则△APE的周长是9cm.解:(1)如图所示,点E即为所求.7.(2021·湖北鄂州)如图,∠AOB=40°,按下列步骤作图:①在OA边取一点D,以点O为圆心,OD长为半径画MN,交OB于点C,连接CD;②以点D为圆心,DO长为半径画GH,交OB于点E,连接DE.则∠CDE的度数为(B)A.20°B.30°C.40°D.50°【解析】由作法得OD=OC,DO=DE,∴∠OCD=∠ODC=1(180°-∠COD)=70°,∠DEO=∠DOE=40°,∴∠CDE=2∠OCD-∠DEO=30°.8.[一题多解]如图,在平面直角坐标系中,△ABC为等腰直角三角形,已知点A(-√2-1,0),B(0,√2+1).根据作图痕迹,可知点E的坐标为(C)A.(1,1)B.(√2,4-2√2)C.(1,√2)D.(√2+1,2√2-2)【解析】过点E作EH⊥AC于点H.解法1:由作图痕迹知,AE是∠CAB的平分线.又∵△ABC为等腰直角三角形,∴EH=EB,AB=AH,△CEH为等腰直角三角形,∴EH=CH.由题知OA=OB=OC=√2+1,∴AH=AB=2+√2,∴OH=AH-OA=1,∴EH=CH=OC-OH=√2,∴点E的坐标为(1,√2).解法2:易得AB=BC=2+√2,△CEH为等腰直角三角形,EB=EH.设EH=x,可得CE=2+√2-x=√2EH=√2x,解得x=√2,∴OH=OC-CH=1,∴点E的坐标为(1,√2).过点E作EH⊥AC于点H.解法1:由AB=AH,得出CH的值,即可求解;解法2:由△CEH为等腰直角三角形,CE=√2EH=√2BE,即可求解.9.(2022·浙江绍兴)如图,在△ABC中,∠ABC=40°,∠BAC=80°,以点A为圆心,AC长为半径作弧,交射线BA于点D,连接CD,则∠BCD的度数是10°或100°.【解析】在△ABC中,∠ABC=40°,∠BAC=80°,∴∠ACB=60°.分两种情况:①当点D在线段BA上时,由作图可知AC=AD,∴∠ACD=∠ADC=1×(180°-80°)=50°,∴∠BCD=∠ACB-∠ACD=10°;②当点D在射线2BA 上时,由作图可知AC =AD ,∴∠ACD =∠ADC =40°,∴∠BCD =∠BCA +∠ACD =100°.综上所述,∠BCD 的度数是10°或100°.10.如图,四边形DEFG 是△ABC 的内接正方形,点D ,G 分别在AB ,AC 上,点E ,F 在BC 上. (1)用尺规作出△ABC 的高线AH ;(保留作图痕迹,不写作法) (2)在(1)的条件下,若正方形DEFG 的边长为8,BC =18,求AH 的长.解:(1)如图所示,AH 即为所求.(2)设AH 交DG 于点K.∵四边形DEFG 是正方形,∴DG ∥EF , ∴△ADG ∽△ABC ,∴AK AH =DGBC . ∵BC =18,DG =DE =8, ∴AH−8AH =818,∴AH =725.。

考点18 尺规作图与定义、命题、定理-备战2021年中考数学考点一遍过

考点18 尺规作图与定义、命题、定理-备战2021年中考数学考点一遍过

考点18 尺规作图与定义、命题、定理本考点内容以考查尺规作图和真假命题为主,年年考查,是广大考生的得分点,分值为6分左右。

预计2021年各地中考还将继续考查这两个知识点,重要题型有尺规作图的五种基本作法和与其他几何知识结合考查,为避免丢分,学生应扎实掌握。

一、尺规作图1.尺规作图的定义:在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.2.五种基本作图1)作一条线段等于已知线段;2)作一个角等于已知角;3)作一个角的平分线;4)作一条线段的垂直平分线;5)过一点作已知直线的垂线.3.根据基本作图作三角形1)已知三角形的三边,求作三角形;2)已知三角形的两边及其夹角,求作三角形;3)已知三角形的两角及其夹边,求作三角形;4)已知三角形的两角及其中一角的对边,求作三角形;5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图1)过不在同一直线上的三点作圆(即三角形的外接圆);2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键1)先分析题目,读懂题意,判断题目要求作什么;2)读懂题意后,再运用几种基本作图方法解决问题. 2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角.三、定义与命题1.一般地,对某一名称或术语进行描述或作出规定就叫做该名称或术语的定义.2.判断一件事情的语句叫做命题.3.命题的组成:命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.4.命题的表达形式:命题可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.二、真命题、假命题1.正确的命题叫做真命题.2.要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明(推理、证明).3.要说明一个命题是假命题,只需举一个反例即可.三、逆命题1.把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题.2.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.如果把其中的一个命题叫做原命题,那么另一个命题就叫做它的逆命题.3.正确写出一个命题的逆命题的关键是能够正确区分这个命题的题设和结论.4.每个命题都有逆命题,但原命题是真命题,它的逆命题不一定是真命题.四、公理与定理1.如果一个命题的正确性是人们在长期实践中总结出来的,并把它作为判断其他命题真假的原始依据,这样的真命题叫做公理.2.如果一个命题可以从公理或其他命题出发,用逻辑推理的方法判断它是正确的,并且可以进一步作为判断其他命题真假的依据,这样的命题叫做定理.3.公理和定理都是真命题,都可作为证明其他命题是否为真命题的依据.4.由定理直接推出的结论,并且和定理一样可作为进一步推理依据的真命题叫做推论.五、互逆命题1.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.2.任何一个命题都有逆命题,而一个定理并不一定有逆定理.3.角平分线性质定理及其逆定理、线段的垂直平分线性质定理及其逆定理、勾股定理及其逆定理等都是互逆定理.六、反证法1.定义:假设命题的结论不成立,即命题结论的反面成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种证明方法叫做反证法.2.反证法的步骤:①假设命题结论的反面正确;②从假设出发,经过逻辑推理,推出与公理、定理、定义或已知条件相矛盾的结论;③说明假设不成立,从而得出原命题正确.考向一基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:1)作一条线段等于已知线段;2)作一个角等于已知角;3)作一个角的平分线;4)作一条线段的垂直平分线;5)过一点作已知直线的垂线.1.(2020·陕西中考真题)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)【答案】详见解析【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使∠PBC=45°即可.【详解】解:如图,点P即为所求.作法:(1)以点C为圆心,以任意长为半径画弧交AC于D,交BC于E,(2)以点B 为圆心,以CD 长为半径画弧,交BC 于F ,(3)以点F 为圆心,以DE 长为半径画弧,交前弧于点M ,(3)连接BM ,并延长BM 与AC 交于点P ,则点P 即为所求.【点睛】本题考查了作图——基本作图.解决本题的关键是掌握基本作图方法.2.(2020·湖北襄阳市·中考真题)如图,Rt ABC 中,90ABC ∠=︒,根据尺规作图的痕迹判断以下结论错误的是( )A .DB DE =B .AB AE =C .EDC BAC ∠=∠D .DAC C ∠=∠【答案】D 【分析】由尺规作图可知AD 是∠CAB 角平分线,DE ⊥AC ,由此逐一分析即可求解.【详解】解:由尺规作图可知,AD 是∠CAB 角平分线,DE ⊥AC ,在△AED 和△ABD 中:∵=90⎧∠=∠⎪∠=∠⎨⎪=⎩AED ABD EAD BAD AD AD ,∴△AED ≌△ABD(AAS),∴DB=DE ,AB=AE ,选项A 、B 都正确,又在Rt △EDC 中,∠EDC=90°-∠C ,在Rt △ABC 中,∠BAC=90°-∠C ,∴∠EDC=∠BAC ,选项C 正确, 选项D ,题目中缺少条件证明,故选项D 错误.故选:D.【点睛】本题考查了尺规作图角平分线的作法,熟练掌握常见图形的尺规作图是解决这类题的关键.3.(2020·浙江台州市·中考真题)如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( )A .AB 平分∠CADB .CD 平分∠ACBC .AB ⊥CD D .AB=CD【答案】D 【分析】根据作图判断出四边形ACBD 是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案【详解】解:由作图知AC=AD=BC=BD ,∴四边形ACBD 是菱形,∴AB 平分∠CAD 、CD 平分∠ACB 、AB ⊥CD ,不能判断AB=CD ,选:D .【点睛】本题主要考查线段垂直平分线的尺规作图、菱形的判定方法等,解题的关键是掌握菱形的判定与性质.1.(2020·湖南湘西·中考真题)已知AOB ∠,作AOB ∠的平分线OM ,在射线OM 上截取线段OC ,分别以O 、C 为圆心,大于12OC 的长为半径画弧,两弧相交于E ,F .画直线EF ,分别交OA 于D ,交OB 于G .那么,ODG 一定是( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形 【答案】C【分析】根据题意知EF 垂直平分OC ,由此证明△OMD ≌△ONG ,即可得到OD=OG 得到答案.【详解】如图,连接CD 、CG ,∵分别以O 、C 为圆心,大于12OC 的长为半径画弧,两弧相交于E ,F ∴EF 垂直平分OC ,设EF 交OC 于点N ,∴∠ONE=∠ONF=90°,∵OM 平分AOB ∠,∴∠NOD=∠NOG ,又∵ON=ON ,∴△OMD ≌△ONG ,∴OD=OG ,∴△ODG 是等腰三角形,故选:C.【点睛】此题考查基本作图能力:角平分线的做法及线段垂直平分线的做法,还考查了全等三角形的判定定理及性质定理,由此解答问题,根据题意得到EF 垂直平分OC 是解题的关键.2.(2020·广东深圳市·中考真题)如图,已知AB =AC ,BC =6,尺规作图痕迹可求出BD =( )A .2B .3C .4D .5【答案】B 【分析】根据尺规作图的方法步骤判断即可.【详解】由作图痕迹可知AD 为∠BAC 的角平分线,而AB=AC ,由等腰三角形的三线合一知D 为BC 重点,BD=3,故选B【点睛】本题考查尺规作图-角平分线及三线合一的性质,关键在于牢记尺规作图的方法和三线合一的性质. 3.(2020·河北中考真题)如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长 C .a 有最小限制,b 无限制 D .0a ≥,12b DE <的长【答案】B【分析】根据作角平分线的方法进行判断,即可得出结论.【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ;∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长;第三步:画射线BP .射线BP 即为所求.综上,答案为:0a >;12b DE >的长, 故选:B .【点睛】本题主要考查了基本作图,解决问题的关键是掌握作角平分线的方法.考向二 复杂作图利用五种基本作图作较复杂图形.1.(2020·福建中考真题)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得//CD AB ,且2CD AB =;(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为,M N ,求证:,,M P N 三点在同一条直线上.【答案】(1)详见解析;(2)详见解析【分析】(1)按要求进行尺规作图即可;(2)通过证明角度之间的大小关系,得到180∠+∠=︒CPN CPM ,即可说明,,M P N 三点在同一条直线上.【详解】解:(1)则四边形ABCD 就是所求作的四边形.(2)∵AB CD ∥,∴ABP CDP ∠=∠,BAP DCP ∠=∠,∴ABP CDP ∆∆∽,∴AB AP CD CP . ∵,M N 分别为AB ,CD 的中点,∴2AB AM =,2CD CN =,∴=AM AP CN CP. 连接MP ,NP ,又∵BAP DCP ∠=∠, ∴∽∆∆APM CPN ,∴∠=∠APM CPN ,∵点P 在AC 上∴180∠+∠=︒APM CPM ,∴180∠+∠=︒CPN CPM ,∴,,M P N 三点在同一条直线上.【点睛】本题考查尺规作图、平行线的判定与性质、相似三角形的性质与判定等基础知识,考查推理能力、空间观念与几何直观,考查化归与转化思想.2.(2020·柳州市柳林中学中考真题)通过如下尺规作图,能确定点D 是BC 边中点的是( ) A . B . C . D .【答案】A【分析】作线段BC 的垂直平分线可得线段BC 的中点.【详解】作线段BC 的垂直平分线可得线段BC 的中点.由此可知:选项A 符合条件,故选A .【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.1.(2020·浙江衢州市·中考真题)过直线l 外一点P 作直线l 的平行线,下列尺规作图中错误的是( ) A . B . C . D .【答案】D【分析】根据平行线的判定方法一一判断即可.【详解】A 、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点睛】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.2.(2020·甘肃兰州市·中考真题)如图,在Rt ABC中.()1利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;()2利用尺规作图,作出()1中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【答案】()1作图见解析;(2)作图见解析.∠平分线上,再根据角平分线的尺【分析】()1由点P到AB的距离(PD的长)等于PC的长知点P在BAC规作图即可得(以点A为圆心,以任意长为半径画弧,与AC、AB分别交于一点,然后分别以这两点为圆心,以大于这两点距离的一半长为半径画弧,两弧交于一点,过点A及这个交点作射线交BC于点P,P即为要求的点);()2根据过直线外一点作已知直线的垂线的尺规作图即可得(以点P为圆心,以大于点P到AB的距离为半径画弧,与AB交于两点,分别以这两点为圆心,以大于这两点间距离一半长为半径画弧,两弧在AB的一侧交于一点,过这点以及点P作直线与AB交于点D,PD即为所求).【详解】()1如图,点P即为所求;()2如图,线段PD即为所求.【点睛】本题考查了作图-复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题.考向三圆中的作图问题1.(2020·浙江嘉兴市·中考模拟)如图,已知,.(1)在图中,用尺规作出的内切圆,并标出与边,,的切点,,(保留痕迹,不必写作法);(2)连接,,求的度数.【答案】(1)作图见解析;(2)70°.【解析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.解析:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.考点:1.作图—复杂作图;2.三角形的内切圆与内心.2.(2020·浙江嘉兴市·中考真题)如图,在等腰△ABC中,AB=AC=BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于1 2EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于12AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.B.10C.4D.5【答案】D【分析】如图,设OA交BC于T.解直角三角形求出AT,再在Rt△OCT中,利用勾股定理构建方程即可解决问题.【详解】解:如图,设OA交BC于T.∵AB=AC=AO平分∠BAC,∴AO⊥BC,BT=TC=4,∴AE2==,在Rt△OCT中,则有r2=(r﹣2)2+42,解得r=5,故选:D.【点睛】本题考查作图——复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.1.(2020·黑龙江绥化市·中考真题)(1)如图,已知线段AB 和点O ,利用直尺和圆规作ABC ,使点O 是ABC 的内心(不写作法,保留作图痕迹);(2)在所画的ABC 中,若90,6,8C AC BC ∠=︒==,则ABC 的内切圆半径是______.【答案】(1)作法:如图所示,见解析;(2)2.【分析】(1)内心是角平分线的交点,根据AO 和BO 分别是∠CAB 和∠CBA 的平分线,作图即可; (2)连接OC ,设内切圆的半径为r ,利用三角形的面积公式,即可求出答案.【详解】解:(1)作法:如图所示:①作射线AO 、BO ; ②以点A 为圆心,任意长为半径画弧分别交线段AB ,射线AO 于点D ,E ; ③以点E 为圆心,DE 长为半径画弧,交上一步所画的弧于点F ,同理作出点M ; ④作射线AF ,BM 相交于点C ,ABC 即所求.(2)如图,连接OC ,∵90,6,8C AC BC ∠=︒==,由勾股定理,得:10AB ==,∴168242ABC S=⨯⨯=; ∵ABC AOB AOC BOC SS S S ∆∆∆=++,∴11124222AB r AC r BC r •+•+•=,∴1(1068)242r ⨯++•=, ∴2r ,∴ABC 的内切圆半径是2;故答案为:2;【点睛】本题考查了求三角形内切圆的半径,角平分线的性质,勾股定理,以及三角形的面积公式,解题的关键是作出图形,利用所学的知识正确求出三角形内切圆的半径.2.(2020·江苏盐城市·中考真题)如图,点O 是正方形,ABCD 的中心.(1)用直尺和圆规在正方形内部作一点E (异于点O ),使得;EB EC =(保留作图痕迹,不写作法) (2)连接,EB EC EO 、、求证:BEO CEO ∠=∠.【答案】(1)见解析;(2)见解析【分析】(1)作BC 的垂直平分线即可求解;(2)根据题意证明EBO ECO ≅即可求解.【详解】()1如图所示,点E 即为所求.()2连接OB OC 、 由()1得:EB EC =O 是正方形ABCD 中心,,OB OC ∴=∴在EBO △和ECO 中,EB EC EO EO OB OC =⎧⎪=⎨⎪=⎩(),EBO ECO SSS ∴≅BEO CEO ∴∠=∠. 【点睛】此题主要考查正方形的性质与证明,解题的关键是熟知正方形的性质、垂直平分线的作图及全等三角形的判定与性质.考向四逻辑推理1.(2020·北京中考真题)如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.【答案】丙,丁,甲,乙【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可.【详解】解:丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选:6,8.乙选:10,12,14.∴顺序为丙,丁,甲,乙.(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.2.(2020·北京平谷区·九年级二模)如图,是某企业甲、乙两位员工的能力测试结果的网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;②缺少探索学习的能力是甲自身的不足;③与甲相比乙需要加强与他人的沟通合作能力;④乙的综合评分比甲要高.其中合理的是( ) A .①③B .②④C .①②③D .①②③④ 【答案】D【分析】根据甲、乙两位员工的能力测试结果的网状图一一判断即可得到答案;【详解】因为甲、乙两位员工的动手操作能力均是5分,故甲乙两人的动手操作能力都很强,故①正确; 因为甲的探索学习的能力是1分,故缺少探索学习的能力是甲自身的不足,故①正确;甲的与他人的沟通合作能力是5分,乙的与他人的沟通合作能力是3分,故与甲相比乙需要加强与他人的沟通合作能力,故①正确;乙的综合评分是:3+4+4+5+5=22分,甲的综合评分是:1+4+4+5+5=19分,故乙的综合评分比甲要高,故①正确;故选:D ;【点睛】本题主要考查图象信息题,能从图象上获取相关的信息是解题的关键;1.(2020·北京门头沟区·九年级一模)疫情期间,甲、乙、丙、丁4名同学约定周一至周五每天做一组俯卧撑.为了增加趣味性,他们通过游戏方式确定每个人每天的训练计划.首先,按如图方式摆放五张卡片,正面标有不同的数字代表每天做俯卧撑的个数,反面标有1x ,2x ,3x ,4x ,5x 便于记录. 具体游戏规则如下:甲同学:同时翻开1x ,2x ,将两个数字进行比较,然后由小到大记录在表格中,3x ,4x ,5x 按原顺序记录在表格中;乙同学:同时翻开1x ,2x ,3x ,将三个数字进行比较,然后由小到大记录在表格中,4x ,5x 按原顺序记录在表格中;以此类推,到丁同学时,五张卡片全部翻开,并由小到大记录在表格中.下表记录的是这四名同学五天的训练计划:根据记录结果解决问题:(1)补全上表中丙同学的训练计划;(2)已知每名同学每天至少做30个,五天最多做180个.①如果236x =,340x =,那么1x 所有可能取值为__________________________;②这四名同学星期_________做俯卧撑的总个数最多,总个数最多为_________个.【答案】(1)见解析;(2)①41,42,43;②三,162.【分析】(1)由题意同时翻开1234x x x x ,,,将四个数字进行比较,然后由小到大记录在表格中,x 5按原顺序记录在表格中即可.(2)①由题意44523123303640x x x x x x x x ===,<<<<,,,推出x 5可以取31,32,33,34,35,x 1>40,应用列举法即可解决问题.②观察表格可知星期三的做俯卧撑的总个数最多,不妨设453031x x ==,,当x 2=32时,x 3+x 1的最大值为180-30-31-32=87,若x 1=44,则x 3=43,此时星期三的做俯卧撑的总个数为162.应用列举法即可解决问题.【详解】解:(1)由题意同时翻开1234x x x x ,,,将四个数字进行比较,由乙同学可知231x x x <<,又结合丁同学可知42x x <,所以4231x x x x <<<,然后由小到大记录在表格中,x 5按原顺序记录在表格中补全表中丙同学的训练计划:42315x x x x x ,,,,.故答案为:42315x x x x x ,,,,.(2)①由题意x 4=30,∵45231233640x x x x x x x ==<<<<,,,∴x 5可以取31,32,33,34,35,x 1>40,当x 5=31时,x 1的最大值为43,当x 5=32时,x 1的最大值为42,当x 5=33时,x 1的最大值为41,当x 5=34或35时,x 1的值不符合题意,∴x 1的可能取41,42,43.故答案为:41,42,43.②观察表格可知星期三的做俯卧撑的总个数最多,不妨设x 4=30,x 5=31,当x 2=32时,x 3+x 1的最大值为180-30-31-32=87,若x 1=44,则x 3=43,此时星期三的做俯卧撑的总个数为162.当x 2=33时,x 3+x 1的最大值为180-30-31-33=86, 若x 1=44,则x 3=42,此时星期三的做俯卧撑的总个数为161,当x 2=34时,x 3+x 1的最大值为180-30-31-34=85,若x 1=43,则x 3=42,此时星期三的做俯卧撑的总个数为161,当x 2=35时,x 3+x 1的最大值为180-30-31-33=84, 若x 1=43,则x 3=41,此时星期三的做俯卧撑的总个数为160,综上所述,星期三的做俯卧撑的总个数的最大值为162.故答案为:162.【点睛】本题考查推理与论证,统计等知识,解题的关键是理解题意,学会推理论证的方法.考向五 真命题、假命题1.判断语句是否为命题要抓住两条:①命题必须是一个完整的带有判断性的句子,通常是陈述句(包括肯定句和否定句),而疑问句和命令性语句都不是命题;②命题必须对某件事作出肯定或否定的判断. 2.辨别命题的真假时,对命题的正确性理解一定要准确,进行辨别时要熟练掌握相关的定理、公理、定义.要说明一个命题是假命题,通常可以通过举反例的方法解决.命题的反例是具备命题的条件,但不具备命题的结论的实例.1.(2020·云南昆明市·中考真题)下列判断正确的是( )A .北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B .一组数据6,5,8,7,9的中位数是8C .甲、乙两组学生身高的方差分别为S 甲2=2.3,S 乙2=1.8.则甲组学生的身高较整齐D .命题“既是矩形又是菱形的四边形是正方形”是真命题【答案】D【分析】根据抽样调查、中位数定理、命题的判断进行分析即可;【详解】解:A .北斗系统第五十五颗导航卫星发射前的零件检查,应选择全面调查,所以A 选项错误; B .一组数据6,5,8,7,9的中位数是7,所以B 选项错误;C .甲、乙两组学生身高的方差分别为S 甲2=2.3,S 乙2=1.8.则乙组学生的身高较整齐,所以C 选项错误;D .命题“既是矩形又是菱形的四边形是正方形”是真命题,所以D 选项正确.故选:D .【点睛】本题主要考查了数据分析的知识点应用,准确判断是解题的关键.2.(2020·内蒙古通辽市·中考真题)从下列命题中,随机抽取一个是真命题的概率是( )(1)无理数都是无限小数;(2)因式分解()()211ax a a x x -=+-;(3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ;(4)弧长是20cm π,面积是2240cm π的扇形的圆心角是120︒.A .14B .12C .34D .1【答案】C【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解()()211ax a a x x -=+-,是真命题, (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ,是真命题,(4)设扇形半径为r ,圆心角为n ,∵弧长是20cm π,则180n r π=20π,则3600nr =, ∵面积是2240cm π,则2360n r π=240π,则2nr =360×240,则2360240243600nr r nr ⨯===,则n=3600÷24=150°, 故扇形的圆心角是150︒,是假命题,则随机抽取一个是真命题的概率是34,故选C. 【点睛】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.1.(2020·广西贵港市·中考真题)下列命题中真命题是( )A 2B .数据2,0,3,2,3的方差是65C .正六边形的内角和为360°D .对角线互相垂直的四边形是菱形 【答案】B【分析】A.根据算术平方根解题;B.根据方差、平均数的定义解题;C.根据多边形的内角和为180(n 2)︒⨯-解题;D.根据菱形、梯形的性质解题.【详解】A. 2=,2A 错误;B. 数据2,0,3,2,3的平均数是20323=25++++,方差是 2222216(22)(02)(32)(22)(32)55⎡⎤-+-+-+-+-=⎣⎦,故B 正确; C. 正六边形的内角和为180(62)720︒⨯-=︒,故C 错误;D. 对角线互相垂直的四边形不一定是菱形,可能是梯形,故D 错误,故选:B .【点睛】本题考查判断真命题,其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识,是基础考点,难度较易,掌握相关知识是解题关键.2.(2020·湖南岳阳市·中考真题)下列命题是真命题的是( )A .一个角的补角一定大于这个角B .平行于同一条直线的两条直线平行C .等边三角形是中心对称图形D .旋转改变图形的形状和大小【答案】B 【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案.【详解】解:A 、一个角的补角不一定大于这个角,故A 错误;B 、平行于同一条直线的两条直线平行,故B 正确;C 、等边三角形是轴对称图形,不是中心对称图形,故C 错误;D 、旋转不改变图形的形状和大小,故D 错误;故选:B .【点睛】本题考查了补角的定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,解题的关键是熟练掌握所学的知识,分别进行判断.考向六 互逆命题与互逆定理1.如果两个命题的题设和结论正好相反,那么这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,则称这两个定理互为逆定理,其中一个定理叫做另一个定理的逆定理.3.“题设与结论正好相反”可理解为第一个命题的题设是第二个命题的结论,第一个命题的结论是第二个命题的题设.1.(2020·上海市九年级期中)下列定理中,没有逆定理的是( ).A .两直线平行,同旁内角互补B .线段垂直平分线上的任意一点到这条线段两个端点的距离相等C .等腰三角形两个底角相等D .同角的余角相等【答案】D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A 、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B 、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故选项不符合题意;C 、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D 、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故选项符合题意.故选:D .【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理. 2.(2020·内蒙古包头市·)下列命题:(1)对于(0)k y k x=≠,当0k >时,y 随x 的增大而减小;(2)菱。

人教版中考数学第19讲《尺规作图与命题、证明》ppt课件

人教版中考数学第19讲《尺规作图与命题、证明》ppt课件

考点三 证 明 1.证明:根据题设、定义、公理及定理,经过逻
辑推理来判断一个命题是否正确,这一推理过程称为 证明.
2.证明的一般步骤:(1)审题,找出命题的 题设 和结论;(2)由题意画出图形,要有一般性;(3)用数学 语言写出已知、求证;(4)分析证明的思路;(5)写出证 明过程,每一步应有根据,要推理严密.
6.如图,在△AEC 和△DFB 中,∠E=∠F,点 A,B,C,D 在同一条直线上.有如下三个关系式: ①AE∥DF;②AB=CD;③CE=BF.
(1)请用其中两个关系式作为条件,另一个作为结 论,写出你认为正确的所有命题(用序号写出命题书写
格式:“如果⊗,⊗,那么⊗”);
(2)选择(1)中你写出的一个命题,说明它正确的理 由.
第19讲 尺规作图与命题、证明
考点一 尺规作图
1.尺规作图:限定用直尺(没有刻度)和圆规作图. 2.基本作图 (1)作一条线段等于已知线段; (2)作一个角等于已知角; (3)作一个角的平分线; (4)作一条线段的垂直平分线; (5)过一点作已知直线的垂线.
3.利用基本作图作三角形 (1)已知三边作三角形; (2)已知两边及其夹角作三角形; (3)已知两角及其夹边作三角形; (4)已知底边及底边上的高作等腰三角形; (5)已知一直角边和斜边作直角三角形.
解:(1)命题 1:如果①,②,那么③;命题 2:如 果①,③,那么②.
(2)命题 1 的证明: ∵AE∥DF,∴∠A=∠D. ∵AB=CD, ∴AB+BC=CD+BC,即 AC=DB.
在△AEC 和△DFB 中, ∵∠E=∠F,∠A=∠D,AC=DB, ∴△AEC ≌△DFB(AAS). ∴CE=BF(全等三角形对应边相等).
考点二 定义、命题、定理、公理

中考数学知识点专题分类复习:第35讲尺规作图

中考数学知识点专题分类复习:第35讲尺规作图
【能力检测】 1. (2017 绥化)如图,A、B、C 为某公园的三个景点,景点 A 和景点 B 之间有一条笔直 的小路,现要在小路上建一个凉亭 P,使景点 B、景点 C 到凉亭 P 的距离之和等于景点 B 到景点 A 的距离,请用直尺和圆规在所给的图中作出点 P.(不写作法和证明,只保留作图 痕迹)
A.6 B.8 C.10 D.12 【考点】N2:作图—基本作图;L5:平行四边形的性质. 【分析】连接 EG,由作图可知 AD=AE,根据等腰三角形的性质可知 AG 是 DE 的垂直平 分线,由平行四边形的性质可得出 CD∥AB,故可得出∠2=∠3,据此可知 AD=DG,由等 腰三角形的性质可知 OA= AG,利用勾股定理求出 OA 的长即可. 【解答】解:连接 EG, ∵由作图可知 AD=AE,AG 是∠BAD 的平分线, ∴∠1=∠2, ∴AG⊥DE,OD= DE=3. ∵四边形 ABCD 是平行四边形, ∴CD∥AB, ∴∠2=∠3, ∴∠1=∠3, ∴AD=DG. ∵AG⊥DE,
P
O
N
Q
已知:如图,∠AOB,
A
求作:射线 OP, 使∠AOP=∠BOP(即 OP 平分∠AOB)。 M
作法:
(1)以 O 为圆心,任意长度为半径画弧, 分别交 OA,OB 于 M,N;
O
N
(2)分别以 M、N为圆心,大于
的线段长
为半径画弧,两弧交∠AOB 内于P;
(3) 作射线 OP。
则射线 OP 就是∠AOB 的角平分线。 (4)题目四:作一个角等于已知角。
A.40° B.50° C.60° D.70° 【考点】N2:作图—基本作图;KG:线段垂直平分线的性质. 【分析】根据作法可知直线 l 是线段 AB 的垂直平分线,故可得出 AC=BC,再由三角形外 角的性质即可得出结论. 【解答】解:∵由作法可知直线 l 是线段 AB 的垂直平分线, ∴AC=BC, ∴∠CAB=∠CBA=25°, ∴∠BCM=∠CAB+∠CBA=25°+25°=50°. 故选 B. 4. (2017 湖北襄阳)如图,在△ABC 中,∠ACB=90°,∠A=30°,BC=4,以点 C 为圆心,

2021年中考数学复习专题25:尺规作图(含中考真题解析)2

2021年中考数学复习专题25:尺规作图(含中考真题解析)2

专题25 尺规作图☞解读考点知识点名师点晴尺规作图尺规作图概念了解什么是尺规作图五种根本作图1.画一条线段等于线段会用尺规作图法完成五种根本作图,了解五种根本作图的理由,会使用精练、准确的作图语言表达画图过程.2.画一个角等于角3.画线段的垂直平分线4.过点画直线的垂线5.画角平分线会利用根本作图画较简单的图形.1.画三角形会利用根本作图画三角形较简单的图形.2.画圆会利用根本作图画圆.☞2年中考【2021年题组】1.〔2021深圳〕如图,△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,那么以下选项正确的选项是〔〕A.B.C.D.【答案】D.考点:作图—复杂作图.2.〔2021三明〕如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长〔大于12AB〕为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,以下结论错误的选项是〔〕A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC【答案】D.【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.应选D.考点:1.作图—根本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线.3.〔2021福州〕如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为〔〕A.80°B.90°C.100°D.105°【答案】B.【解析】试题分析:如图,AB是以点C为圆心,BC长为半径的圆的直径,因为直径对的圆周角是90°,所以∠AMB=90°,所以测量∠AMB的度数,结果为90°.应选B.考点:1.等腰三角形的性质;2.作图—根本作图.4.〔2021潍坊〕如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.假设BD=6,AF=4,CD=3,那么BE的长是〔〕A.2 B.4 C.6 D.8【答案】D.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—根本作图.5.〔2021嘉兴〕数学活动课上,四位同学围绕作图问题:“如图,直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.〞分别作出了以下四个图形.其中作法错误的选项是〔〕A.B.C.D.【答案】A.考点:作图—根本作图. 6.〔2021衢州〕数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB=c ,一条直角边BC=a .小明的作法如下图,你认为这种作法中判断∠ACB 是直角的依据是〔 〕A .勾股定理B .直径所对的圆心角是直角C .勾股定理的逆定理D .90°的圆周角所对的弦是直径 【答案】B . 【解析】试题分析:由作图痕迹可以看出O 为AB 的中点,以O 为圆心,AB 为半径作圆,然后以B 为圆心BC=a 为半径花弧与圆O 交于一点C ,故∠ACB 是直径所对的圆周角,所以这种作法中判断∠ACB 是直角的依据是:直径所对的圆心角是直角.应选B . 考点:1.作图—复杂作图;2.勾股定理的逆定理;3.圆周 角定理. 7.〔2021自贡〕如图,将线段AB 放在边长为1的小正方形网格,点A 点B 均落在格点上,请用无刻度直尺在线段AB 上画出点P ,使AP=3172,并保存作图痕迹.〔备注:此题只是找点不是证明,∴只需连接一对角线就行〕【答案】作图见试题解析.考点:作图—应用与设计作图.8.〔2021北京市〕阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.〞请答复:小芸的作图依据是.【答案】到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线.考点:1.作图—根本作图;2.作图题.9.〔2021百色〕⊙O为△ABC的外接圆,圆心O在AB上.〔1〕在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D〔保存作图痕迹,不写作法与证明〕;〔2〕如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC 于F.①求证:OD⊥BC;②求EF的长.【答案】〔1〕作图见试题解析;〔2〕①证明见试题解析;②321 7.【解析】试题分析:〔1〕按照作角平分线的方法作出即可;〔2〕①由AD是∠BAC的平分线,得到CD BD=,再由垂径定理推论可得到结论;②由勾股定理求得CF的长,然后根据平行线分线段成比例定理求得34EF FDCE AC==,即可求得37EFCF=,继而求得EF的长.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.勾股定理;4.圆周角定理;5.作图—复杂作图;6.压轴题.10.〔2021南京〕如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.〔要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3〕【答案】答案见试题解析.【解析】试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取试题解析:满足条件的所有图形如下图:考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质;5.综合题;6.压轴题.11.〔2021镇江〕图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.〔1〕如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH〔不写作法,保存作图痕迹〕;〔2〕在〔1〕的前提下,连接OD ,OA=5,假设扇形OAD 〔∠AOD <180°〕是一个圆锥的侧面,那么这个圆锥底面圆的半径等于 .【答案】〔1〕作图见试题解析;〔2〕158.【解析】 试题分析:〔1〕作AE 的垂直平分线交⊙O 于C ,G ,作∠AOG ,∠EOG 的角平分线,分别交⊙O 于H ,F ,反向延长 FO ,HO ,分别交⊙O 于D ,B 顺次连接A ,B ,C ,D ,E ,F ,G ,H ,八边形ABCDEFGH 即为所求;〔2〕由八边形ABCDEFGH 是正八边形,求得∠AOD 的度数,得到AD 的长,设这个圆锥底面圆的半径为R ,根据圆的周长的公式即可求得结论. 试题解析:〔1〕如下图,八边形ABCDEFGH 即为所求;〔2〕∵八边形ABCDEFGH 是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD 的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R ,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图. 12.〔2021广安〕手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在以下四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积〔注:不同的分法,面积可以相等〕【答案】答案见试题解析.〔2〕正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;〔3〕正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;〔4〕正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.试题解析:根据分析,可得:.考点:1.作图—应用与设计作图;2.操作型.13.〔2021孝感〕如图,一条公路的转弯处是一段圆弧〔AB〕.〔1〕用直尺和圆规作出AB所在圆的圆心O;〔要求保存作图痕迹,不写作法〕〔2〕假设AB的中点C到弦AB的距离为20m,AB=80m,求AB所在圆的半径.【答案】〔1〕作图见试题解析;〔2〕50m .试题解析:〔1〕如图1,点O 为所求;〔2〕连接OA ,OC ,OC 交AB 于D ,如图2,∵C 为AB 的中点,∴OC ⊥AB ,∴AD=BD=12AB=40,设⊙O 的半径为r ,那么OA=r ,OD=OD ﹣CD=r ﹣20,在Rt △OAD 中,∵222OA OD BD =+,∴222(20)40r r =-+,解得r=50,即AB 所在圆的半径是50m .考点:1.作图—复杂作图;2.勾股定理;3.垂径定理的应用;4.作图题.14.〔2021宜昌〕如图,一块余料ABCD ,AD ∥BC ,现进行如下操作:以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点G ,H ;再分别以点G ,H 为圆心,大于12GH 的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.〔1〕求证:AB=AE;〔2〕假设∠A=100°,求∠EBC的度数.【答案】〔1〕证明见试题解析;〔2〕40°.考点:1.作图—根本作图;2.等腰三角形的判定与性质.15.〔2021随州〕如图,射线PA切⊙O于点A,连接PO.〔1〕在PO的上方作射线PC,使∠OPC=∠OPA〔用尺规在原图中作,保存痕迹,不写作法〕,并证明PC是⊙O的切线;〔2〕在〔1〕的条件下,假设PC切⊙O于点B,AB=AP=4,求AB的长.【答案】〔1〕作图见试题解析,证明见试题解析;〔2839.【解析】试题分析:〔1〕按照作一个角等于角的作图方法作图即可,连接OA,作OB⊥PC,由角平分线的性质证明OA=OB即可证明PC是⊙O的切线;〔2〕先证明△PAB是等边三角形,那么∠APB=60°,进而∠POA=60°,在Rt△AOP中求出OA,用弧长公式计算即可.试题解析:〔1〕作图如右图,连接OA,过O作OB⊥PC,∵PA切⊙O于点A,∴OA⊥PA,又∵∠OPC=∠OPA ,OB ⊥PC ,∴OA=OB ,即d=r ,∴PC 是⊙O 的切线;〔2〕∵PA 、PC 是⊙O 的切线,∴PA=PB ,又∵AB=AP=4,∴△PAB 是等边三角形,∴∠APB=60°,∴∠AOB=120°,∠POA=60°,在Rt △AOP 中,tan60°=4OA ,∴OA=433,∴431203180AB l π⨯⨯==839π.考点:1.切线的判定与性质;2.弧长的计算;3.作图—根本作图.16.〔2021广州〕如图,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB=30°.〔1〕利用尺规作∠ABC 的平分线BD ,交AC 于点E ,交⊙O 于点D ,连接CD 〔保存作图痕迹,不写作法〕;〔2〕在〔1〕所作的图形中,求△ABE 与△CDE 的面积之比.【答案】〔1〕作图见试题解析;〔2〕12.试题解析:〔1〕如下图;考点:1.作图—复杂作图;2.圆周角定理.17.〔2021吉林省〕图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按以下要求画图:〔1〕在图①中,以格点为顶点,AB为一边画一个等腰三角形;〔2〕在图②中,以格点为顶点,AB为一边画一个正方形;〔3〕在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.【答案】〔1〕作图见试题解析;〔2〕作图见试题解析;〔3〕作图见试题解析.【解析】试题分析:〔1〕根据勾股定理,结合网格结构,作出两边分别为5的等腰三角形即可;〔2〕根据勾股定理逆定理,结合网格结构,作出边长为5的正方形;〔3〕根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.试题解析:〔1〕如图①,符合条件的C点有5个:;〔3〕如图③,边长为10的正方形ABCD的面积最大..考点:作图—应用与设计作图.18.〔2021哈尔滨〕图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.〔1〕在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;〔2〕在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于〔1〕中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余〔画出一种即可〕.【答案】〔1〕答案见试题解析;〔2〕答案见试题解析.试题解析:〔1〕如图1所示;〔2〕如图2、3所示;考点:作图—应用与设计作图.19.〔2021六盘水〕如图,Rt △ACB 中,∠C =90°,∠BAC =45°.〔1〕〔4分〕用尺规作图,在CA 的延长线上截取AD =AB ,并连接BD 〔不写作法,保存作图痕迹〕;〔2〕〔4分〕求∠BDC 的度数;〔3〕〔4分〕定义:在直角三角形中,一个锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ,根据定义,利用图形求cot22.5°的值.【答案】〔1〕答案见试题解析;〔2〕22.5°;〔321+.试题解析:〔1〕如图,〔2〕∵AD=AB ,∴∠ADB=∠ABD ,而∠BAC=∠ADB+∠ABD ,∴∠ADB=12∠BAC=12×45°=22.5°,即∠BDC 的度数为22.5°;〔3〕设AC=x ,∵∠C=90°,∠BAC=45°,∴△ACB 为等腰直角三角形,∴BC=AC=x ,AB=2AC=2x ,∴AD=AB=2x ,∴CD=2x x +=(21)x +,在Rt △BCD 中,cot∠BDC=DC BC =(21)xx +=21+,即cot22.5°=21+.考点:1.作图—复杂作图;2.解直角三角形;3.新定义;4.综合题.20.〔2021山西省〕如图,△ABC 是直角三角形,∠ACB=90°.〔1〕尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保存作图痕迹,不写作法,请标明字母;〔2〕在你按〔1〕中要求所作的图中,假设BC=3,∠A=30°,求DE 的长.【答案】〔1〕作图见试题解析;〔232.试题解析:〔1〕如图,⊙C为所求;〔2〕∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt△BCD中,∵cos∠BCD=CDBC ,∴CD=3cos30°=332,∴DE的长=33602180π⋅=32π.考点:1.作图—复杂作图;2.切线的性质;3.弧长的计算;4.作图题.21.〔2021济宁〕如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母〔保存作图痕迹,不写作法〕〔1〕作∠DAC的平分线AM;〔2〕作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜测并判断四边形AECF的形状并加以证明.【答案】〔1〕作图见试题解析;〔2〕作图见试题解析,四边形AECF的形状为菱形.【解析】考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质;4.作图题;5.探究型;6.菱形的判定.22.〔2021宁波〕在边长为1的小正方形组成的方格纸中,假设多边形的各顶点都在方格纸的格点〔横竖格子线的交错点〕上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为b ,那么格点多边形的面积可表示为1-+=nb ma S ,其中m ,n 为常数.〔1〕在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形〔非菱形〕、菱形;〔2〕利用〔1〕中的格点多边形确定m ,n 的值.【答案】〔1〕答案见试题解析;〔2〕112m n =⎧⎪⎨=⎪⎩.〔2〕∵格点多边形内的格点数为a ,边界上的格点数为b ,那么格点多边形的面积可表示为:1-+=nb ma S ,其中m , n 为常数,∴三角形:3816S m n =+-=,平行四边形:3816S m n =+-=,菱形:5416S m n =+-=,那么38165416m n m n +-=⎧⎨+-=⎩,解得:112m n =⎧⎪⎨=⎪⎩.考点:作图—应用与设计作图.23.〔2021杭州〕“综合与实践〞学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.〔1〕用记号〔a ,b ,c 〕〔a≤b≤c 〕表示一个满足条件的三角形,如〔2,3,3〕表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.〔2〕用直尺和圆规作出三边满足a <b <c 的三角形〔用给定的单位长度,不写作法,保存作图痕迹〕.【答案】〔1〕共9种:〔2,2,2〕,〔2,2,3〕,〔2,3,3〕,〔2,3,4〕,〔2,4,4〕,〔3,3,3〕,〔3,3,4〕,〔3,4,4〕,〔4,4,4〕;〔2〕答案见试题解析.【解析】试题分析:〔1〕应用列举法,根据三角形三边关系列举出所有满足条件的三角形;〔2〕首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB ,且取AB=4;②以点A 为圆心,3为半径画弧;以点B 为圆心,2为半径画弧,两弧交于点C ; ③连接AC 、BC .那么△ABC 即为满足条件的三角形.考点:1.作图—应用与设计作图;2.三角形三边关系.24.〔2021温州〕各顶点都在方格纸格点〔横竖格子线的交错点〕上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克〔G•Pick ,1859~1942年〕证明了格点多边形的面积公式121-+=b a S ,其中a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图,4=a ,6=b ,616214=-⨯+=S . 〔1〕请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.〔2〕请在图乙中画一个格点三角形,使它的面积为27,且每条边上除顶点外无其它格点.〔注:图甲、图乙在答题纸上〕【答案】.【解析】试题分析:〔1〕根据皮克公式画图计算即可;〔2〕根据题意可知a=3,b=3,画出满足题意的图形即可.试题解析:〔1〕方法不唯一,如图①或图②所示:〔2〕方法不唯一,如图③或图④所示:考点:作图—应用与设计作图.25.〔2021青岛〕【问题提出】用n根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】〔1〕用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.〔2〕用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.〔3〕用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?假设分成1根木棒、1根木棒和3根木棒,那么不能搭成三角形.假设分成2根木棒、2根木棒和1根木棒,那么能搭成一种等腰三角形.所以,当n=5时,m=1.〔4〕用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?假设分成1根木棒、1根木棒和4根木棒,那么不能搭成三角形.假设分成2根木棒、2根木棒和2根木棒,那么能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①n 3 4 5 6m 1 0 1 1【探究二】〔1〕用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?〔仿照上述探究方法,写出解答过程,并将结果填在表②中〕〔2〕用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?〔只需把结果填在表②中〕表②n 7 8 9 10m你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?〔设n 分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中〕表③n 4k﹣1 4k 4k+1 4k+2m【问题应用】:用2021根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?〔写出解答过程〕,其中面积最大的等腰三角形每腰用了根木棒.〔只填结果〕【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.试题解析:〔1〕用7根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,能搭成二种等腰三角形,即分成2根木棒、2根木棒和3根木棒,那么能搭成一种等腰三角形用10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?分成3根木棒、3根木棒和4根木棒,那么能搭成一种等腰三角形分成4根木棒、4根木棒和2根木棒,那么能搭成一种等腰三角形所以,当n=10时,m=2.故答案为:2;1;2;2.问题解决:由规律可知,答案为:k;k﹣1;k;k.问题应用:2021÷4=504,504﹣1=503,当三角形是等边三角形时,面积最大,2021÷3=672,∴用2021根相同的木棒搭一个三角形,能搭成503种不同的等腰三角形,其中面积最大的等腰三角形每腰用672根木棒.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型;5.综合题;6.压轴题.【2021年题组】1.〔2021·安顺〕用直尺和圆规作一个角等于角,如图,能得出∠A′O′B′=∠AOB的依据是〔〕A.SAS B.SSS C.ASA D.AAS【答案】B.考点:作图—根本作图;全等三角形的判定与性质.2.〔2021涉县一模〕如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:甲:①作OD的垂直平分线,交⊙O于B,C两点.②连接AB,AC.△ABC即为所求作的三角形.乙:①以D为圆心,OD的长为半径作圆弧,交⊙O于B,C两点.②连接AB,BC,CA.△ABC即为所求作的三角形.对于甲、乙两人的作法,可判断〔〕A.甲、乙均正确B.甲、乙均错误C.甲正确,乙错误D.甲错误,乙正确【答案】A.【解析】试题分析:根据甲的思路,作出图形如下:连接OB,BD,∵OD=BD,OD=OB,∴OD=BD=OB,∴△BOD为等边三角形,∴∠OBD=∠BOD=60°,又BC垂直平分OD,∴OM=DM,∴BM为∠OBD的平分线,∴∠OBM=∠DBM=30°,又OA=OB,且∠BOD为△AOB的外角,∴∠BAO=∠ABO=30°,∴∠ABC=∠ABO+∠OBM=60°,同理∠ACB=60°,∴∠BAC=60°,∴∠ABC=∠ACB=∠BAC,∴△ABC 为等边三角形,故乙作法正确,应选A考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.3.〔2021·玉林〕如图,BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O〔保存作图痕迹,不写作法,注意最后用墨水笔加黑〕,并直接写出旋转角度是.【答案】90°.【解析】试题分析:如下图:旋转角度是90°.考点:作图-旋转变换.4.〔2021•河南〕如图,在△ABC中,按以下步骤作图:①分别以B,C 为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,假设CD=AC,∠B=25°,那么∠ACB的度数为【答案】105°.考点:作图—根本作图;线段垂直平分线的性质.5.〔2021•梅州〕如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于12AC长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE,那么:〔1〕∠ADE= ;〔2〕AE EC;〔填“=〞“>〞或“<〞〕〔3〕当AB=3,AC=5时,△ABE的周长=【答案】〔1〕90°;〔2〕=;〔3〕7.考点:线段垂直平分线的性质;勾股定理的应用.☞考点归纳归纳1:作三角形根底知识归纳:利用根本作图作三角形〔1〕三边作三角形;〔2〕两边及其夹角作三角形;〔3〕两角及其夹边作三角形;〔4〕底边及底边上的高作等腰三角形;〔5〕一直角边和斜边作直角三角形.注意问题归纳:用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.【例1】:线段a、c和∠β〔如图〕,利用直尺和圆规作△ABC,使BC=a,AB=c,∠ABC=∠β.〔不写作法,保存作图痕迹〕.【答案】作图见解析.考点:作图—根本作图.归纳2:用角平分线、线段的垂直平分线性质画图根底知识归纳:角平分线的性质:角的平分线上的点到角的两边的距离相等.线段垂直平分线的性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.根本做图如图:【例2】两个城镇A,B与两条公路ME,MF位置如下图,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.【答案】作图见解析.考点:作图—应用与设计作图.归纳3:与圆有关的尺规作图根底知识归纳:〔1〕过不在同一直线上的三点作圆〔即三角形的外接圆〕;〔2〕作三角形的内切圆;〔3〕作圆的内接正方形和正六边形.注意问题归纳:关键是找准圆周心作出圆.【例3】如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A,D两点作⊙O〔用尺规作图,不写作法,保存作图痕迹,并把作图痕迹用黑色签字笔加黑〕【答案】考点:作图—复杂作图.☞1年模拟1.〔2021届山东省胶南市校级模拟〕:用直尺和圆规作图,〔不写作法,保存作图痕迹,〕如图,在∠AOB内,求作点P,使P点到OA,OB的距离相等,并且P点到M,N的距离也相等.【答案】作图见解析.【解析】试题分析:点P到M、N两点的距离相等即作MN的垂直平分线;点P到OA、OB的距离也相等.即作角平分线,两线的交点就是点P的位置.试题解析:如下图:考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质.2.〔2021届广东省黄冈中学校级模拟〕△ABC中,∠C=90°,请利用尺规作出△ABC的内切圆O〔不写作法,请保存作图痕迹〕【答案】作图见解析.考点:1.三角形的内切圆与内心;2.作图—复杂作图.3.〔2021届湖北省宜昌市兴山县模拟考试〕如图:在△ABC中,AD⊥BC,垂足是D.〔1〕作△ABC的外接圆O,作直径AE〔尺规作图〕;〔2〕假设AB=8,AC=6,AD=5,求△ABC的外接圆直径AE的长.【答案】〔1〕作图见解析;〔2〕9.6.试题解析:〔1〕如图:〔2〕证明:由作图可知AE为⊙O的直径,∴∠ABE=90°,〔直径所对的圆周角是直角〕∵AD⊥BC,∴∠ADC=90°,∴∠ABE=∠ADC,∵AB AB=∴∠E=∠C,∴△ABE∽△ADC,∴AC ADAE AB=,即658AB=,∴AE=9.6.考点:1.三角形的外接圆与外心;2.作图—复杂作图.4.〔2021届江苏省盐城模拟考试〕实践操作:如图,在Rt△ABC中,∠ABC=90°,利用直尺和圆规按以下要求作图,并在图中标明相应的字母〔保存作图痕迹,不写作法〕〔1〕作∠BCA的角平分线,交AB于点O;〔2〕以O为圆心,OB为半径作圆.综合运用:在你所作的图中,〔1〕AC与⊙O的位置关系是〔直接写出答案〕〔2〕假设BC=6,AB=8,求⊙O的半径.【答案】实践操作:画图见解析;综合运用:〔1〕相切;〔2〕3.试题解析:实践操作:〔1〕如下图:CO即为所求;〔2〕如下图:⊙O即为所求;综合运用:〔1〕AC与⊙O的位置关系是:相切;考点:1.作图—复杂作图;2.直线与圆的位置关系.。

中考数学知识点复习:尺规作图全面版

中考数学知识点复习:尺规作图全面版

如何利用尺规作图解决最值问题?
最值问题的求解
最值问题是一类求解最优解的问题,可以利用尺规作图来解决。例如,在几何、代数等领域中,经常需要使用尺规作 图来求解最值问题。
作图方法
利用尺规作图求解最值问题,需要先了解问题的具体内容,然后根据问题内容进行尺规作图。在作图过程中,需要注 意图形绘制的准确性和规范性,以保证求解的准确性。
03
多边形的尺规作图
作已知线段的垂线
01
总结词:通过一个已知点,作 已知线段的垂线,是尺规作图
的基础。
02
详细描述
03
04
1. 分别以线段的两个端点为 圆心,以大于线段的一半为半 径画圆弧,得到两个交点。
2. 连接两个交点,得到的直 线即为已知线段的垂线。
已知二线段平行的垂线段的中垂线
总结词:找到一个已知的平行线段的中垂线,是尺规作 图的进阶技能。
1. 以平行线段的一个端点为圆心,以适当长度为半径画 圆弧,与平行线段相交于两点。
详细描述
2. 连接这两个交点得到的直线即为已知平行线段的中垂 线。
作已知直线的平行线
01
总结词:通过一个已知点,作已知直线的平行线,是尺规作图的基本 技能之一。
02
详细描述
03
1. 以已知点为圆心,以适当长度为半径画圆弧,与直线相交于两点。
04
2. 连接这两个交点得到的直线即为已知直线的平行线。
作已知二线段的中垂线
01 总结词:通过两个已知点,作已知二线段 的中垂线,是尺规作图的高级技能。
02
详细描述
Hale Waihona Puke 031. 以两个已知点为圆心,以适当长度为半 径画圆弧,得到两个交点。
04

中考复习专题:尺规作图课件(共38张PPT)

中考复习专题:尺规作图课件(共38张PPT)

优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(共38 张PPT)
下列结论中错误的是( C )
A.∠CEO=∠DEO
C.∠OCD=∠ECD
B.CM=MD D.S 四边形 OCED=12CD·OE
优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(成:过不在同一直线上的三点作圆;作三角形的外接圆、内 切圆;作圆的内接正方形和正六边形.
4.在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出作法.
考情分析:尺规作图是中考的高频考点,但是很少单独考查,具有鲜明的特点:
一是利用尺规作图作三角形、作已知角的平分线、作已知线段的垂直平分线以及过 一点作已知直线的垂线等,同时给出作图语言让学生补全图形,并结合图形条件进 行推理和计算;二是利用尺规作图结合图形变化进行图案设计,均为解答题.考查 的难度、操作与开放的力度或会增加,建议复习时要特别关注作图要求的训练落 实.
1.分别以点A,B为圆心,以 大大于于12AABB的的长长 为 半径,两弧交于M,N两点;2.作直线MN,则 直直线线MMNN 即为线段AB的垂直平分线
过一点作已
知直线的垂 线(已知点P 和直线l)
点P在直线l上
大于 1AB 的长 1.以点P为圆心,以适当长2 为半径 作弧,分别交 直线l于A,B两点;2.分别以点A,B为圆心,以 大于适当长A为B半的径长 为半径作弧,交于M,N两点; 3.过点M,N作直线,则直线MN即为所求垂线
人教版九年级数学
中考复习专题
尺规作图
课标解读:1.能用尺规完成以下基本作图:作一条线段等于已知线段;作一个
角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的 垂线.

中考数学知识点专题分类复习:第35讲尺规作图

中考数学知识点专题分类复习:第35讲尺规作图

中考数学知识点专题分类复习:第35讲尺规作图【知识巩固】1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;(1)题目一:作一条线段等于已知线段。

已知:如图,线段a .求作:线段AB,使AB = a .作法:(1)作射线AP;(2)在射线AP上截取AB=a .则线段AB就是所求作的图形。

(2)题目二:作已知线段的中点。

已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:(1)分别以M、N为圆心,大于的相同线段为半径画弧,两弧相交于P,Q;(2)连接PQ交MN于O.则点O就是所求作的MN的中点。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB,求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。

作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、N为圆心,大于的线段长为半径画弧,两弧交∠AOB内于P;(3)作射线OP。

则射线OP就是∠AOB的角平分线。

(4)题目四:作一个角等于已知角。

已知:如图,∠AOB。

求作:∠A’O’B’,使A’O’B’=∠AOB作法:(1)作射线O’A’;(2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N;(3)以O’为圆心,以OM的长为半径画弧,交O’A’于M’;(4)以M’为圆心,以MN的长为半径画弧,交前弧于N’;(5)连接O’N’并延长到B’。

则∠A’O’B’就是所求作的角。

(5)题目五:经过直线上一点做已知直线的垂线。

已知:如图,P是直线AB上一点。

求作:直线CD,是CD经过点P,且CD⊥AB。

作法:(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;(2)分别以M 、N 为圆心,大于MN 21的长为半径画弧,两弧交于点Q ; (3)过D 、Q 作直线CD 。

中考数学必考考点专题32尺规作图含解析

中考数学必考考点专题32尺规作图含解析

专题32 尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。

3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。

4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。

【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。

中考尺规作图

中考尺规作图

中考数学专项复习—-尺规作图一、理解“尺规作图”的含义1。

在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差。

二、熟练掌握尺规作图题的规范语言1。

用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2。

用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×。

三、了解尺规作图题的一般步骤1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3。

作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要。

尺规作图是中考的高频考点

尺规作图是中考的高频考点

尺规作图是中考的高频考点,难度不大,但是细节却容易出错,以下是老师给大家整理的中考数学五种作图技巧,2016中考生同学们赶紧一起来看看吧!基本概念1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图。

2.基本作图:最基本、最常用的尺规作图,通常称基本作图.3.五种常用的基本作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)平分已知角;(4)作线段的垂直平分线。

(5)经过一点作已知直线的垂线4.掌握以下几何作图语句:(1)过点×、点×作直线××;或作直线××,或作射线××;(2)连结两点×、×;或连结××;(3)在××上截取××=××;(4)以点×为圆心,××为半径作圆(或弧);(5)以点×为圆心,××为半径作弧,交××于点×;(6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××;(7)延长××到点×,或延长××到点×,使××=××。

5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了,如:(1)作线段××=××;(2)作∠×××=∠×××;(3)作××(射线)平分∠×××;(4)过点×作××⊥××,垂足为×;(5)作线段××的垂直平分线××.五种基本作图方法演示一、作线段等于已知线段已知:线段a求作:线段AB,使AB=a作法:1、作射线AC2、在射线AC上截取AB=a ,则线段AB就是所要求作的线段二、作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′.(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.三、作角的平分线已知:∠AOB,求作:∠AOB内部射线OC,使:∠AOC=∠BOC,作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C.(3)作射线OC.OC就是所求作的射线。

2021年春人教版河北省数学九年级中考《 尺规作图》专题复习

2021年春人教版河北省数学九年级中考《 尺规作图》专题复习

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯尺规作图1.(2020·河北中考)如图1,已知∠ABC ,用尺规作它的角平分线. 如图2,步骤如下,第一步:以点B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以点D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .a >0,b >12 DE 的长C .a 有最小限制,b 无限制D .a ≥0,b <12 DE 的长2.(2018·河北中考)尺规作图要求: Ⅰ.过直线外一点作这条直线的垂线; Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线; Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC.①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ3.(2020·邢台沙河市模拟)如图①、图②,在给定的一张矩形纸片上作一个正方形,甲、乙两人的作法如下:甲:以点A为圆心,AD长为半径画弧,交AB于点E,以点D为圆心,AD长为半径画弧,交CD于点F,连接EF,则四边形AEFD即为所求;乙:作∠DAB的平分线,交CD于点M,同理作∠ADC的平分线,交AB于点N,连接MN,则四边形ADMN即为所求.对于以上两种作法,可以做出的判定是()A.甲正确,乙错误 B.甲、乙均正确C.乙正确,甲错误 D.甲、乙均错误4.(2020·遵化市三模)已知Rt△ABC中,∠BAC=90°,过点A作一条直线,使其将△ABC分成两个相似的三角形.观察下列各图中尺规作图痕迹,作法错误的是()5.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD6.(2017·河北中考)如图,依据尺规作图的痕迹,计算∠α=°.7. (2020·衡水景县模拟)如图,在已知的△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于12BC的长为半径作弧,两弧相交于点M,N;②作直线MN交AB于点D,连接CD.若CD=AD,∠B=20°,则下列结论中错误的是()A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心D.∠ACB=90°8.如图所示,小兰用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于12DE的长为半径作弧,两弧交于点F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D,E;④取一点K,使K和B在AC的两侧.所以,BH就是所求作的高.其中顺序正确的作图步骤是()A.①②③④ B.④③①②C.②④③① D.④③②①9.(2020·唐山开平区一模)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四种作图中,正确的作法有()A.1种 B.2种C.3种 D.4种10.如图,M,N为两个居民区,现要在道路AB,AC的交叉区域内建一个奶站P,使P到两条道路的距离相等,同时到两个小区的距离也相等,用尺规确定点P,则下列作图痕迹符合要求的是()11.(2020·河池中考)观察下列作图痕迹,所作CD为△ABC的边AB上的中线是()12.(2020·衢州中考)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()13.(2020·嘉兴中考)如图,在等腰△ABC中,AB=AC=25,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径作弧相交于点H,作射线AH;②分别以点A ,B 为圆心,大于12 AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心,线段OA 长为半径作圆. 则⊙O 的半径为( )A.25 B .10 C .4 D .514.(2020·绍兴中考)如图,已知边长为2的等边三角形ABC 中,分别以点A ,C 为圆心,m 为半径作弧,两弧交于点D ,连接BD .若BD 的长为23 ,则m 的值为13.(2020·武汉中考)在8×5的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为O (0,0),A (3,4),B (8,4),C (5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90°,画出对应线段CD ; (2)在线段AB 上画点E ,使∠BCE =45°(保留画图过程的痕迹); (3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.尺规作图1.(2020·河北中考)如图1,已知∠ABC ,用尺规作它的角平分线. 如图2,步骤如下,第一步:以点B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以点D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是(B )A .a ,b 均无限制B .a >0,b >12 DE 的长C .a 有最小限制,b 无限制D .a ≥0,b <12 DE 的长2.(2018·河北中考)尺规作图要求: Ⅰ.过直线外一点作这条直线的垂线; Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线; Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是(D)A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC.①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ3.(2020·邢台沙河市模拟)如图①、图②,在给定的一张矩形纸片上作一个正方形,甲、乙两人的作法如下:甲:以点A为圆心,AD长为半径画弧,交AB于点E,以点D为圆心,AD长为半径画弧,交CD于点F,连接EF,则四边形AEFD即为所求;乙:作∠DAB的平分线,交CD于点M,同理作∠ADC的平分线,交AB于点N,连接MN,则四边形ADMN即为所求.对于以上两种作法,可以做出的判定是(B)A.甲正确,乙错误 B.甲、乙均正确C.乙正确,甲错误 D.甲、乙均错误4.(2020·遵化市三模)已知Rt△ABC中,∠BAC=90°,过点A作一条直线,使其将△ABC分成两个相似的三角形.观察下列各图中尺规作图痕迹,作法错误的是(B)5.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是(A)A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD6.(2017·河北中考)如图,依据尺规作图的痕迹,计算∠α=°.7. (2020·衡水景县模拟)如图,在已知的△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于12BC的长为半径作弧,两弧相交于点M,N;②作直线MN交AB于点D,连接CD.若CD=AD,∠B=20°,则下列结论中错误的是(A)A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心D.∠ACB=90°8.如图所示,小兰用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于12DE的长为半径作弧,两弧交于点F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D,E;④取一点K,使K和B在AC的两侧.所以,BH就是所求作的高.其中顺序正确的作图步骤是(B)A.①②③④ B.④③①②C.②④③① D.④③②①9.(2020·唐山开平区一模)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四种作图中,正确的作法有(C)A.1种 B.2种C.3种 D.4种10.如图,M,N为两个居民区,现要在道路AB,AC的交叉区域内建一个奶站P,使P到两条道路的距离相等,同时到两个小区的距离也相等,用尺规确定点P,则下列作图痕迹符合要求的是(D)11.(2020·河池中考)观察下列作图痕迹,所作CD为△ABC的边AB上的中线是( B )12.(2020·衢州中考)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是( D )13.(2020·嘉兴中考)如图,在等腰△ABC中,AB=AC=25,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E ,F 为圆心,大于12 EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点A ,B 为圆心,大于12 AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心,线段OA 长为半径作圆.则⊙O 的半径为(D ) A.25 B .10 C .4 D .514.(2020·绍兴中考)如图,已知边长为2的等边三角形ABC 中,分别以点A ,C 为圆心,m 为半径作弧,两弧交于点D ,连接BD .若BD 的长为23 ,则m 的值为215.(2020·武汉中考)在8×5的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为O (0,0),A (3,4),B (8,4),C (5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90°,画出对应线段CD ;(2)在线段AB 上画点E ,使∠BCE =45°(保留画图过程的痕迹);(3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.解:(1)如图,线段CD 即为所求;(2)如图,∠BCE即为所求;(3)如图,连接OE交AC于点H,连接BH并延长交OA于点F,点F即为所求.一天,毕达哥拉斯应邀到朋友家做客。

专题32 尺规作图(原创版)2021年中考数学必考34个考点高分三部曲

专题32 尺规作图(原创版)2021年中考数学必考34个考点高分三部曲

专题32 尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。

3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。

4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2020•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【例题2】(2020山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【例题3】(2020年贵州安顺模拟题)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)【例题4】(2020•山东青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.一一、选择题1.(2020•广西北部湾)如图,在△ABC中,AC=BC, ∠A=400,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.400B.450 C.500D.6002.(2020·贵州贵阳)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2B.3C.D.3.(2020•河北省)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.4.(2020•山东潍坊)如图,已知∠AO B.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接C D.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()专题典型训练题A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD•OE 5.(2020•湖北宜昌)通过如下尺规作图,能确定点D是BC边中点的是( )A.B.C.D.6.(经典题)作一条线段等于已知线段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尺规作图及定义、命题、定理历年中考题1.下列叙述正确的是()A.方差越大,说明数据就越稳定B.在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C.不在同一直线上的三点确定一个圆D.两边及其一边的对角对应相等的两个三角形全等2.(2020年,20,5分)如图,Rt△ABC中,∠BAC=90°,AB=6,sin C=35,以点A为圆心,AB长为半径作弧交AC于点M,分别以点B,M为圆心,以大于12BM长为半径作弧,两弧相交于点N,射线AN与BC相交于点D,则AD的长为 .考点自测1.(2019·德州中考)下列命题是真命题的是()A.两边及其中一边的对角分别相等的两个三角形全等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等2.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A B C D3.(2020·安顺中考)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于12DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,点P为AB上一动点,则GP的最小值为()A.无法确定 B.1 2C.1 D.2(第3题图)(第4题图)4.(2019·宁夏中考)如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则S△BCDS△ABD=.5.(2020·嘉兴中考)如图,在等腰△ABC中,AB=AC=2 5 ,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于12AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.2 5 B.10 C.4 D.56.(2019·毕节中考)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为°.课后特训1.(2019·贵港中考)下列命题中假命题是()A.对顶角相等B.直线y=x-5不经过第二象限C.五边形的内角和为540°D.因式分解x3+x2+x=x(x2+x)2.已知下列命题:①若a>b,则a2>b2;②若a>1,则(a-1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是()A.4 B.3C.2 D.13.(2019·广安中考)下列命题是假命题的是()A.函数y=3x+5的图象可以看作由函数y=3x-1的图象向上平移6个单位长度而得到B.抛物线y=x2-3x-4与x轴有两个交点C.对角线互相垂直且相等的四边形是正方形D.垂直于弦的直径平分这条弦4.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A B C D5.(2019·济宁中考)如图,点M和点N在∠AOB内部.(1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.6.已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2-2x-1的图象上,且满足x1<x2<1,则y1>y2>-2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4 B.3 C.2 D.17.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图.则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC.①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ尺规作图及定义、命题、定理历年中考题1.下列叙述正确的是CA.方差越大,说明数据就越稳定B.在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C.不在同一直线上的三点确定一个圆D.两边及其一边的对角对应相等的两个三角形全等2.(2020年,20,5分)如图,Rt△ABC中,∠BAC=90°,AB=6,sin C=35,以点A为圆心,AB长为半径作弧交AC于点M,分别以点B,M为圆心,以大于12BM长为半径作弧,两弧相交于点N,射线AN与BC相交于点D,则AD的长为2427.考点自测1.(2019·德州中考)下列命题是真命题的是CA.两边及其中一边的对角分别相等的两个三角形全等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等2.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是DA B C D3.(2020·安顺中考)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于12DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,点P为AB上一动点,则GP的最小值为CA.无法确定 B.1 2C.1 D.2(第3题图)(第4题图)4.(2019·宁夏中考)如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则S△BCDS△ABD=12.5.(2020·嘉兴中考)如图,在等腰△ABC中,AB=AC=2 5 ,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于12AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为DA.2 5 B.10 C.4 D.56.(2019·毕节中考)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为34°.课后特训1.(2019·贵港中考)下列命题中假命题是DA.对顶角相等B.直线y=x-5不经过第二象限C.五边形的内角和为540°D.因式分解x3+x2+x=x(x2+x)2.已知下列命题:①若a>b,则a2>b2;②若a>1,则(a-1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是D A.4 B.3C.2 D.13.(2019·广安中考)下列命题是假命题的是CA.函数y=3x+5的图象可以看作由函数y=3x-1的图象向上平移6个单位长度而得到B.抛物线y=x2-3x-4与x轴有两个交点C.对角线互相垂直且相等的四边形是正方形D.垂直于弦的直径平分这条弦4.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是CA B C D5.(2019·济宁中考)如图,点M和点N在∠AOB内部.(1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.解:(1)如图,点P到点M和点N的距离相等,且到∠AOB两边的距离也相等;(2)理由:角的内部角的平分线上的点到角的两边的距离相等,垂直平分线上的点到线段两端点的距离相等.6.已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2-2x-1的图象上,且满足x1<x2<1,则y1>y2>-2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是C A.4 B.3 C.2 D.17.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图.则正确的配对是DA.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC.①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ。

相关文档
最新文档