锅炉热效率计算
锅炉的计算公式
锅炉的计算公式锅炉是一种用于产生蒸汽或热水的设备,它的运行需要一些计算公式来确定其性能和效率。
本文将介绍常见的锅炉计算公式。
1. 锅炉燃烧效率的计算公式锅炉的燃烧效率是指燃料转化为有用热量的比例。
常用的计算公式是以锅炉的燃料热值和排烟温度为基础的公式:燃烧效率(%)= [1 - (排烟温度/空气过热器出口温度)] * 100其中,排烟温度是指烟气排出锅炉后的温度,空气过热器出口温度是指空气在过热器中加热后的温度。
2. 锅炉热效率的计算公式锅炉的热效率是指锅炉产生的蒸汽或热水的有效能量比例。
常用的计算公式如下:热效率(%)= [锅炉额定输出的蒸汽或热水的热量 / 锅炉燃料的热值] * 100其中,锅炉额定输出的蒸汽或热水的热量是指锅炉在额定工况下产生的蒸汽或热水的热量,锅炉燃料的热值是指燃料单位质量所释放的热量。
3. 锅炉热损失的计算公式锅炉的热损失是指在工作过程中流失的热量。
常用的计算公式如下:热损失(%)= [(锅炉输入热量 - 锅炉输出热量)/ 锅炉输入热量] * 100其中,锅炉输入热量是指锅炉吸收的热量,锅炉输出热量是指锅炉产生的蒸汽或热水的热量。
4. 锅炉水处理剂的添加量计算公式锅炉水处理剂是为了防止锅炉管道结垢和腐蚀而添加的化学物质。
常用的计算公式如下:水处理剂的添加量(kg)= 锅炉水容量 * 投加剂的浓度 / 投加剂的质量浓度其中,锅炉水容量是指锅炉内的总水量,投加剂的浓度是指水处理剂的浓度,投加剂的质量浓度是指投加剂中活性成分的浓度。
总结以上是锅炉常见的计算公式,可以帮助我们了解锅炉的性能和效率。
根据实际情况,我们可以使用这些公式来进行相关计算和优化。
请注意,在使用公式时,确保使用正确的参数和单位。
锅炉效率计算
单位时间内锅炉有效利用热量占锅炉输入热量的百分比,或相应于每千克燃料(固体和液体燃料),或每标准立方米(气体燃料)所对应的输入热量中有效利用热量所占百分比为锅炉热效率,是锅炉的重要技术经济指标,它表明锅炉设备的完善程度和运行管理水平。
锅炉的热效率的测定和计算通常有以下两种方法:1.正平衡法用被锅炉利用的热量与燃料所能放出的全部热量之比来计算热效率的方法叫正平衡法,又叫直接测量法。
正平衡热效率的计算公式可用下式表示:热效率=有效利用热量/燃料所能放出的全部热量*100%=锅炉蒸发量*(蒸汽焓-给水焓)/燃料消耗量*燃料低位发热量*100%式中锅炉蒸发量——实际测定,kg/h;蒸汽焓——由表焓熵图查得,kJ/kg;给水焓——由焓熵图查得,kJ/kg;燃料消耗量——实际测出,kg/h;燃料低位发热量——实际测出,kJ/kg。
上述热效率公式没有考虑蒸汽湿度、排污量及耗汽量的影响,适用于小型蒸汽锅炉热效率的粗略计算。
从上述热效率计算公式可以看出,正平衡试验只能求出锅炉的热效率,而不能得出各项热损失。
因此,通过正平衡试验只能了解锅炉的蒸发量大小和热效率的高低,不能找出原因,无法提出改进的措施。
2.反平衡法通过测定和计算锅炉各项热量损失,以求得热效率的方法叫反平衡法,又叫间接测量法。
此法有利于对锅炉进行全面的分析,找出影响热效率的各种因素,提出提高热效率的途径。
反平衡热效率可用下列公式计算。
热效率=100%-各项热损失的百分比之和=100%-q2-q3-q4-q5-q6式中q2——排烟热损失,%;q3——气体未完全燃烧热损失,%;q4——固体未完全燃烧热损失,%;q5——散热损失,%;q6——灰渣物理热损失,%。
大多时候采用反平衡计算,找出影响热效率的主因,予以解决。
锅炉热效率计算
一、锅炉运行热效率简单计算公式的推导1、锅炉燃料消耗量的计算锅炉运行时,燃料送入锅炉的热量与锅炉有效利用热量及各项热损失的和相等,即我们所说的热平衡:Qr=Q1+Q2+Q3+Q4+Q5+Q6(1)Qr:燃料送入锅炉的热量(一般就是燃料应用基低位发热量,即Qr=Qydw),kj/kgQ1:锅炉有效利用热量,kj/kgQ2:排烟带走的热量,Q3:气体不完全燃烧损失的热量,kj/kgQ4:固体不完全燃烧损失的热量,kj/kgQ5:锅炉向周围空气散失的热量,kj/kgQ6:燃料中灰渣带走的热量,kj/kg将公式(1)两边分别除以Qr得:1=Q1/Qr+Q2/Qr+Q3/Qr+Q4/Qr+Q5/Qr+Q6/Qrq1=Q1/Qr×100%q2=Q2/Qr×100%q3=Q3/Qr×100%q4=Q4/Qr×100%q5=Q5/Qr×100%q6=Q6/Qr×100%q1=100-(q2+q3+q4+q5+q6)%(2)q1:锅炉有效利用热量占燃料带入锅炉热量的百分数,即热效率η,%q2:排烟热损失,%q3:气体不完全燃烧热损失,%q4:固体不完全燃烧热损失,%q5:锅炉散热损失,%q6:其它热损失,%锅炉有效利用热量一方面:Q1=η×Qr(3)另一方面:Q1=QGL/B(4)B:锅炉每小时燃料消耗量,kg/hQGL:锅炉每小时有效吸收热量,kj/h蒸汽锅炉QGL=D(iq-igs)×103+DPS(ips-igs)×103热水锅炉QGL=G(i2-i1)×103D:锅炉蒸发量,t/hiq:蒸汽焓,kj/kgigs:锅炉给水焓,kj/kgDPS:锅炉排污水量,t/hips:锅炉排污水焓,即锅炉工作压力下的饱和水焓,kj/kgG:热水锅炉每小时加水量,t/hi2:热水锅炉出水焓,kj/kgi1:热水锅炉进水焓,kj/kg由公式(3)、(4)可得:B=QGL/(η·Qr)(5)2、理论空气量的计算理论空气量的计算可以在已知燃料元素分析的基础上通过各可燃元素化学反应方程式得出。
锅炉热效率计算
一、锅炉热效率计算10.1 正平衡效率计算10.1.1输入热量计算公式:Qr=Qnet,v,ar+Qwl+Qrx+Qzy式中: Qr__——输入热量;Qnet,v,ar ——燃料收到基低位发热量;Qwl ——加热燃料或外热量;Qrx——燃料物理热;Qzy——自用蒸汽带入热量。
在计算时,一般以燃料收到基低位发热量作为输入热量。
如有外来热量、自用蒸汽或燃料经过加热(例:重油)等,此时应加上另外几个热量。
10.1.2饱和蒸汽锅炉正平衡效率计算公式:式中:η1——锅炉正平衡效率;Dgs——给水流量;hbq——饱和蒸汽焓;hgs——给水焓;γ——汽化潜热;ω——蒸汽湿度;Gs——锅水取样量(排污量);B——燃料消耗量;Qr_——输入热量。
10.1.3过热蒸汽锅炉正平衡效率计算公式:a. 测量给水流量时:式中:η1——锅炉正平衡效率;Dgs——给水流量;hgq——过热蒸汽焓;hg——给水焓;γ——汽化潜热;Gs——锅水取样量(排污量);B——燃料消耗量;Qr——输入热量。
b. 测量过热蒸汽流量时:式中:η1——锅炉正平衡效率;Dsc——输出蒸汽量;Gq——蒸汽取样量;hgq——过热蒸汽焓;hgs——给水焓;Dzy——自用蒸汽量;hzy——自用蒸汽焓;hbq——饱和蒸汽焓;γ——汽化潜热;ω——蒸汽湿度;hbq——饱和蒸汽焓;Gs——锅水取样量(排污量);B——燃料消耗量;Qr——输入热量。
10.1.4 热水锅炉和热油载体锅炉正平衡效率计算公式式中:η1——锅炉正平衡效率;G——循环水(油)量;hcs——出水(油)焓;hjs——进水(油)焓;B——燃料消耗量;Qr——输入热量。
10.1.5电加热锅炉正平衡效率计算公式10.1.5.1电加热锅炉输-出饱和蒸汽时公式为:式中:η1——锅炉正平衡效率;Dgs——给水流量;hbq——饱和蒸汽焓;hgs——给水焓;γ——汽化潜热;ω——蒸汽湿度;Gs——锅水取样量(排污量);N——耗电量。
锅炉平均运行热效率
锅炉平均运行热效率一、概述锅炉是一种将燃料中的化学能转化为热能的设备,广泛应用于工业、发电、供热等领域。
锅炉的运行热效率是指锅炉在单位时间内所释放的热量与燃料完全燃烧所需热量的比值,是衡量锅炉能量转换效率的重要指标。
本文将对锅炉平均运行热效率的计算、影响因素和提高措施进行探讨。
二、锅炉平均运行热效率的计算锅炉平均运行热效率的计算公式为:η = (Qout / Qin) × 100%,其中η为热效率,Qout为锅炉输出的热量,Qin为燃料完全燃烧所需的热量。
为了准确地计算锅炉平均运行热效率,需要测量和计算锅炉的输入和输出热量。
输入热量是指燃料完全燃烧所需的热量,可以通过燃料的元素分析、低位发热量等参数计算得出。
输出热量是指锅炉向外界输出的热量,可以通过测量蒸汽或热水的流量、温度和压力等参数计算得出。
在实际应用中,为了简化计算和提高准确性,可以采用一些经验公式或软件工具进行估算。
例如,对于常见的工业锅炉,可以采用基于输入和输出蒸汽或热水的参数的经验公式进行估算。
三、影响锅炉平均运行热效率的因素1.燃料品质燃料的品质对锅炉平均运行热效率的影响较大。
如果燃料的质量较差,例如低位发热量较低、含硫量较高,会导致燃烧不完全,降低热效率。
因此,选用高品质的燃料是提高锅炉运行热效率的重要措施。
2.燃烧工况燃烧工况的好坏直接影响着锅炉的燃烧效率和热效率。
如果燃烧工况不良,例如火焰颜色偏暗、烟气中有未燃尽的碳黑颗粒等,会导致燃烧不完全,降低热效率。
因此,保持合理的燃烧工况是提高锅炉运行热效率的关键。
3.设备维护状况设备的维护状况对锅炉的运行热效率也有影响。
如果设备维护不当,例如水垢积累过多、炉膛温度不均匀等,会导致传热效率下降,降低热效率。
因此,定期进行设备维护和保养是提高锅炉运行热效率的重要措施。
4.操作人员技能操作人员的技能水平对锅炉的运行热效率也有影响。
如果操作人员技能不足或操作不当,例如不能及时调整燃烧工况、不能合理控制蒸汽或热水流量等,会导致能量损失增加,降低热效率。
锅炉热效率计算
锅炉热效率计算 Last revised by LE LE in 20211兆帕(MPa)=10巴(bar)=9.8大气压(atm)约等于十个大气压,1标准大气压=76cm汞柱=1.01325×10^5Pa=10.336m水柱约等于十米水柱,所以1MPa大约等于100米水柱,一公斤相当于10米水柱水的汽化热为40.8千焦/摩尔,相当于2260千焦/千克.一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量.一吨水=1000千克每千克水2260千焦 1000千克就是2260 000千焦1吨蒸汽相当于60万千卡/1吨蒸汽相当于64锅炉马力/1锅炉马力相当于8440千卡热。
用量是70万大卡/H 相当于1.17吨的锅炉以表压力为零的蒸汽为例,每小时产一吨蒸汽所具有的热能,在锅内是分两步吸热获得的,第一步是把20度的一吨给水加热到100度的饱和水所吸收的热能,通常这部分热能为显热,其热能即为1000×(100-20)=8万/千卡时。
第二步则是将已处于饱和状态的热水一吨加热成饱和蒸汽所需要吸收的热能,这部分热为潜热,其热能即为1000×539=53.9万/千卡时。
把显热和潜热加起来,即是一吨蒸汽(其表压力为零时)在锅内所获得的热能,即:53.9+8=61.9万/千卡时。
这就是我们通常所说的蒸汽锅炉每小时一吨蒸发量所具有的热能,相当于热水锅炉每小时60万/大卡的容量。
天然气热值天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ产地、成分不同热值不同,大致在36000~40000kJ/Nm3,即每一标准立方米天然气热值约为36000至40000千焦耳,即36~40百万焦耳。
天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ。
锅炉热效率计算
1兆帕(MPa)=10巴(bar)=9.8大气压(atm)约等于十个大气压,1标准大气压=76cm汞柱=1.01325×10^5Pa=10.336m水柱约等于十米水柱,所以1MPa大约等于100米水柱,一公斤相当于10米水柱水的汽化热为40.8千焦/摩尔,相当于2260千焦/千克.一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量. 一吨水=1000千克每千克水2260千焦 1000千克就是2260 000千焦1吨蒸汽相当于60万千卡/1吨蒸汽相当于64锅炉马力/1锅炉马力相当于8440千卡热。
用量是70万大卡/H 相当于1.17吨的锅炉以表压力为零的蒸汽为例,每小时产一吨蒸汽所具有的热能,在锅内是分两步吸热获得的,第一步是把20度的一吨给水加热到100度的饱和水所吸收的热能,通常这部分热能为显热,其热能即为1000×(100-20)=8万/千卡时。
第二步则是将已处于饱和状态的热水一吨加热成饱和蒸汽所需要吸收的热能,这部分热为潜热,其热能即为1000×539=53.9万/千卡时。
把显热和潜热加起来,即是一吨蒸汽(其表压力为零时)在锅内所获得的热能,即:53.9+8=61.9万/千卡时。
这就是我们通常所说的蒸汽锅炉每小时一吨蒸发量所具有的热能,相当于热水锅炉每小时60万/大卡的容量。
天然气热值天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ 产地、成分不同热值不同,大致在36000~40000kJ/Nm3,即每一标准立方米天然气热值约为36000至40000千焦耳,即36~40百万焦耳。
天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ。
锅炉热效率计算
---------------------------------------------------------------最新资料推荐------------------------------------------------------锅炉热效率计算1 兆帕(MPa)=10 巴 (bar)=9.8 大气压 (atm) 约等于十个大气压 ,1 标准大气压 =76cm 汞柱=1.01325×10 Pa=10.336m 水柱约等于十米水柱,所以 1MPa 大约等于 100 米水柱,一公斤相当于 10 米水柱水的汽化热为 40.8 千焦/摩尔,相当于 2260 千焦/千克.一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量. 一吨水=1000 千克每千克水 2260 千焦 1000 千克就是 2260 000 千焦 1 吨蒸汽相当于 60 万千卡/1 吨蒸汽相当于 64 锅炉马力/1 锅炉马力相当于 8440 千卡热。
用量是 70 万大卡/H 相当于 1.17 吨的锅炉以表压力为零的蒸汽为例,每小时产一吨蒸汽所具有的热能,在锅内是分两步吸热获得的,第一步是把 20 度的一吨给水加热到 100 度的饱和水所吸收的热能,通常这部分热能为显热,其热能即为1000×(100-20)=8 万/千卡时。
第二步则是将已处于饱和状态的热水一吨加热成饱和蒸汽所需要吸收的热能,这部分热为潜热,其热能即为1000×539=53.9 万/千卡时。
把显热和潜热加起来,即是一吨蒸汽(其表压力为零时)在锅内所获得的热能,即:53.9+8=61.9 万/千卡时。
这就是我们通常所说的蒸汽锅炉每小时一吨蒸发量所具有的热能,相当于热水锅炉每小时 60 万/大卡的容量。
1/ 11天然气热值天燃气每立方燃烧热值为 8000 大卡至 8500 大卡,1 千卡/1 大卡/1000 卡路里(kcal)=4.1868 千焦(kJ),所以每立方米燃烧热值为 33494.4—35587.8KJ 产地、成分不同热值不同,大致在 36000~40000kJ/Nm3,即每一标准立方米天然气热值约为 36000 至 40000 千焦耳,即 36~40 百万焦耳。
锅炉热力计算
锅炉热力计算锅炉热力计算是指根据给定的燃料热值、锅炉效率、蒸汽参数等数据,计算出锅炉的热效率、蒸汽产量、烟气排放等相关参数的过程。
下面是锅炉热力计算的一些相关参考内容:1. 锅炉热力计算的基本原理:锅炉热力计算基于能量平衡原理,即燃料的能量输入必须等于锅炉输出的热能和热损失的总和。
根据能量平衡原理可以得出以下公式:燃烧器燃料输入 = 燃料热值 ×燃料用量锅炉热效率 = 锅炉输出热能 / 燃料热值 × 100%蒸汽产量 = 锅炉输出热能 / 蒸汽焓值2. 锅炉热力计算中的关键参数:(1) 燃料热值:指燃料所含热能的大小,不同燃料的热值有所差异,常用的单位是千焦/千克(kJ/kg)或大卡/千克(kcal/kg)。
(2) 锅炉效率:指锅炉从燃料中转化为有效热能的百分比。
锅炉效率受燃料的质量和燃烧过程的控制,常用的单位是百分比。
(3) 蒸汽参数:包括蒸汽压力、蒸汽温度和蒸汽湿度等,蒸汽参数直接影响锅炉的输出能力和蒸汽的质量。
(4) 烟气排放:指锅炉燃烧后产生的废气中的污染物种类和浓度,一般包括烟尘、SO2、NOx等,烟气排放直接关系到锅炉的环保性能。
3. 锅炉热力计算的步骤:(1) 确定锅炉运行工况:包括燃料种类、燃烧方式、蒸汽参数要求等。
(2) 选择合适的燃料:根据工况要求和燃料性能进行选择,同时考虑燃料的成本和环保性能。
(3) 计算燃料用量:根据燃料热值和锅炉热效率计算出燃烧器燃料输入。
(4) 计算锅炉热效率:根据锅炉输出热能和燃料热值计算出锅炉热效率。
(5) 计算蒸汽产量:根据锅炉输出热能和蒸汽焓值计算出蒸汽产量。
(6) 评估烟气排放:根据燃料成分和燃烧条件计算出烟气中污染物的生成量和浓度。
4. 锅炉热力计算的应用:锅炉热力计算广泛应用于锅炉设计、运行管理和节能改造等方面。
通过热力计算,可以准确评估锅炉的热效率和蒸汽产量,以指导合理的锅炉选择和操作管理。
此外,通过锅炉热力计算,还可以评估锅炉的污染物排放情况,以指导锅炉环保改造和减排工作。
锅炉热效率计算
锅炉热效率计算Company number:【0089WT-8898YT-W8CCB-BUUT-202108】1兆帕(MPa)=10巴(bar)=大气压(atm)约等于十个大气压,1标准大气压=76cm汞柱=×10^5Pa=水柱约等于十米水柱,所以1MPa大约等于100米水柱,一公斤相当于10米水柱水的汽化热为千焦/摩尔,相当于2260千焦/千克.一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量.一吨水=1000千克每千克水2260千焦 1000千克就是2260 000千焦1吨蒸汽相当于60万千卡/1吨蒸汽相当于64锅炉马力/1锅炉马力相当于8440千卡热。
用量是70万大卡/H 相当于吨的锅炉以表压力为零的蒸汽为例,每小时产一吨蒸汽所具有的热能,在锅内是分两步吸热获得的,第一步是把20度的一吨给水加热到100度的饱和水所吸收的热能,通常这部分热能为显热,其热能即为1000×(100-20)=8万/千卡时。
第二步则是将已处于饱和状态的热水一吨加热成饱和蒸汽所需要吸收的热能,这部分热为潜热,其热能即为1000×539=万/千卡时。
把显热和潜热加起来,即是一吨蒸汽(其表压力为零时)在锅内所获得的热能,即:+8=万/千卡时。
这就是我们通常所说的蒸汽锅炉每小时一吨蒸发量所具有的热能,相当于热水锅炉每小时60万/大卡的容量。
天然气热值天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=千焦(kJ),所以每立方米燃烧热值为—产地、成分不同热值不同,大致在36000~40000kJ/Nm3,即每一标准立方米天然气热值约为36000至40000千焦耳,即36~40百万焦耳。
天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=千焦(kJ),所以每立方米燃烧热值为—。
锅炉热效率计算
锅炉热效率计算1兆帕(MPa)=10巴(bar)=9.8大气压(atm)约等于十个大气压,1标准大气压=76cm汞柱=1.01325×10^5Pa=10.336m水柱约等于十米水柱,所以1MPa大约等于100米水柱,一公斤相当于10米水柱水的汽化热为40.8千焦/摩尔,相当于2260千焦/千克.一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量.一吨水=1000千克每千克水2260千焦 1000千克就是2260 000千焦1吨蒸汽相当于60万千卡/1吨蒸汽相当于64锅炉马力/1锅炉马力相当于8440千卡热。
用量是70万大卡/H 相当于1.17吨的锅炉以表压力为零的蒸汽为例,每小时产一吨蒸汽所具有的热能,在锅内是分两步吸热获得的,第一步是把20度的一吨给水加热到100度的饱和水所吸收的热能,通常这部分热能为显热,其热能即为1000×(100-20)=8万/千卡时。
第二步则是将已处于饱和状态的热水一吨加热成饱和蒸汽所需要吸收的热能,这部分热为潜热,其热能即为1000×539=53.9万/千卡时。
把显热和潜热加起来,即是一吨蒸汽(其表压力为零时)在锅内所获得的热能,即:53.9+8=61.9万/千卡时。
这就是我们通常所说的蒸汽锅炉每小时一吨蒸发量所具有的热能,相当于热水锅炉每小时60万/大卡的容量。
天然气热值天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ产地、成分不同热值不同,大致在36000~40000kJ/Nm3,即每一标准立方米天然气热值约为36000至40000千焦耳,即36~40百万焦耳。
天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ。
锅炉热效率计算
也就是说,理论上每产生一吨水蒸气,需要消耗约70-75方天然气
一吨锅炉相当于60万大卡的热水锅炉,1吨=0.7MW=60万大卡
1吨常压热水锅炉每小时最多提供热量60万大卡
1吨锅炉是指锅炉1小时产生的饱和蒸汽/饱和水或过热蒸汽量;它与你锅炉的参数有关。产生多少大卡的热量与你从锅炉内吸收的热量有关。即跟出去的介质与进入的介质的焓差有关。
天然气热值
天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ
产地、成分不同热值不同,大致在36000~40000kJ/Nm3,即每一标准立方米天然气热值约为36000至40000千焦耳,即36~40百万焦耳。
一吨水=1000千克 每千克水2260千焦 1000千克就是2260 000千焦
1吨蒸汽相当于60万千卡/1吨蒸汽相当于64锅炉马力/1锅炉马力相当于8440千卡热。
用量是70万大卡/H 相当于1.17吨的锅炉
以表压力为零的蒸汽为例,每小时产一吨蒸汽所具有的热能,在锅内是分两步吸热获得的,第一步是把20度的一吨给水加热到100度的饱和水所吸收的热能,通常这部分热能为显热,其热能即为1000×(100-20)=8万/千卡时。
锅炉热效率计算
1兆帕(MPa)=10巴(bar)=9.8大气压(atm)约等于十个大气压,1标准大气压=76cm汞柱=1.01325×10^5Pa=10.336m水柱约等于十米水柱,所以1MPa大约等于100米水柱,一公斤相当于10米水柱
水的汽化热为40.8千焦/摩尔,相当于2260千焦/千克.一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量.
锅炉额定热效率
锅炉额定热效率锅炉额定热效率是指锅炉在额定工况下的热能利用效率。
热效率是衡量锅炉性能的重要指标之一,对于提高能源利用效率和降低能源消耗具有重要意义。
本文将从定义、计算、影响因素、提高方法等方面对锅炉额定热效率进行详细讨论,旨在为锅炉设计、运行和维护提供参考。
一、定义与计算锅炉额定热效率是指在一定条件下,锅炉所转化为热能的实际输出热量与其燃烧所产生热量的比值。
通常以百分比来表示。
锅炉额定热效率计算公式如下:锅炉额定热效率(%)= 实际输出热量(kW)/燃烧热量(kW)×100%其中,实际输出热量是指锅炉在额定工况下所输出的有效热能,包括蒸发热、感热和凝结热等;而燃烧热量是指锅炉总热量,包括燃烧热、煤气化热和燃料中未完全燃烧产生的热量等。
二、影响因素1.锅炉设计参数:锅炉的设计参数包括锅炉结构、材料、燃烧方式等。
合理的设计参数可以提高燃烧效果,减少热损失。
2.燃料性质:燃料的热值、含碳量、灰分、挥发分等参数直接影响到锅炉的燃烧过程和热转化效率。
3.燃烧控制:燃烧控制是指燃料与空气混合的过程。
燃烧过程中的混合均匀性、燃烧温度、燃烧室的烟气流速等因素都会影响到锅炉的热效率。
4.燃烧系统:燃烧系统包括燃烧器、燃烧室和热交换器等组成。
燃烧器的设计和调试对于提高热效率起着关键作用。
5.设备运行管理:合理的设备运行管理可以保证锅炉的长期高效运行,减少热损失。
三、热效率提高方法1.提高锅炉的燃烧效率:通过改善燃烧系统和燃烧控制方式,提高燃烧效率,降低燃料消耗。
2.节能改造:利用先进的锅炉燃烧技术和余热回收技术,降低锅炉热损失,提高热效率。
3.设备运行管理:建立科学的运行管理制度,严格执行运行规范,保养设备,确保设备正常运行。
4.锅炉热控:通过烟气测温和换热表面清洗等措施,控制燃烧温度,减少热损失,提高热效率。
5.燃料选择:选择高热值、低含硫、低灰分的燃料,减少燃料特性对热效率的影响。
四、发展趋势1.锅炉节能技术的发展趋势:随着社会对节能环保的要求越来越高,热效率提升将成为锅炉技术发展的主要方向。
锅炉热效率的具体计算公式
锅炉热效率的具体计算公式锅炉的热效率受到多种热损失的影响,但比较而言,以机械不完全燃烧损失q4受锅炉燃烧状况影响最为复杂,飞灰含碳量受锅炉煤种和运行参数影响很大,相互关系很难以常规的计算公式表达,因此采用了人工神经网络对锅炉的飞灰含碳量特性进行了建模,并利用实炉测试试验数据对模型进行了校验,结果表明,人工神经网络能很好反映大型电厂锅炉各运行参数与飞灰含碳量特性之间的关系;采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、煤种特性,各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角作为神经网络的输入矢量,飞灰含碳量作为神经网络的输出,利用3层BP网络建模是比较合适的;目前锅炉运行往往根据试验调试人员针对锅炉的常用煤种进行燃烧调整,以获得最佳的各种锅炉运行参数供运行人员参考,从而实现锅炉的最大热效率;但这种方法会带来如下问题:①由于锅炉燃煤的多变性,针对某一煤种进行调整试验获得的最佳操作工况可能与目前燃用煤种的所需的最佳工况偏离;②由于调试试验进行的工况有限,试验获得的最佳工况可能并非全局最优值,即可能存在比试验最佳值更好的运行工况;本文在对某300MW四角切圆燃烧锅炉进行实炉工况测试并利用人工神经网络技术实现飞灰含碳量与煤种和运行参数关系的建模工作基础上,结合遗传算法这一全局寻优技术,对锅炉热效率最优化运行技术进行了研究,并在现场得到应用;2 遗传算法和神经网络结合的锅炉热效率寻优算法利用一个21个输入节点,1个输出节点,24个隐节点的BP网络来模拟锅炉飞灰含碳量与锅炉运行参数和燃用煤种之间的关系,获得了良好的效果,并证明了采用人工神经网络对锅炉这种黑箱对象建模的有效性1;人工神经网络的输入采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角和煤种特性,除煤种特性这一不可调节因素外,基本上包括了运行人员可以通过DCS进行调整的所有影响锅炉燃烧的所有参数;遗传算法是受生物进化学说和遗传学说启发而发展起来的基于适者生存思想的一种较通用的问题求解方法2,3,作为一种随机优化技术在解优化难题中显示了优于传统优化算法的性能;遗传算法目前在优化领域得到了广泛的应用,显示了其在优化方面的巨大能力3;遗传算法的一个显著优势是不需要目标函数明确的数学方程和导数表达式,同时又是一种全局寻优算法,不会象某些传统算法易于陷入局部最优解;遗传算法寻优的效率较高,搜索速度快;根据锅炉的反平衡计算公式,锅炉热效率η可由下式求得:η=100-q2+q3+q4+q5+q6% 1式中q2为排烟热损失,q3为可燃气体不完全燃烧热损失,q4为固体不完全燃烧损失,q5为锅炉散热损失,q6为其他热损失;根据遗传算法的要求,确定锅炉热效率η为遗传算法的目标函数,用式1计算;对该300MW锅炉,利用DCS与厂内MIS网的接口按每6s下载各运行参数,包括排烟氧量、排烟温度、锅炉负荷、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角等;锅炉飞灰含碳量可由飞灰含碳量监测仪在线监测或人工取样分析,燃用煤种由人工输入;这样锅炉的各项损失即可在线获得,并进而计算出各运行工况下的锅炉实时热效率;将排烟氧量和煤种特性等影响锅炉排烟热损失q2的参数按热效率计算,标准化为计算公式代入式1,而影响q4的各参数采用人工神经网络模型代入式1,其中炉渣含碳量对热效率影响由人工测试后输入;具体计算公式可参见锅炉热效率计算标准;由以上步骤建立了锅炉热效率和锅炉各运行参数及煤种的函数关系,即锅炉热效率作为因变量,而锅炉的各操作参数和煤质特性作为自变量,这样就可以利用遗传算法进行寻优计算,获得最佳的锅炉运行条件,实现锅炉热效率的最大化;火电厂锅炉运行中,为考虑到习惯运行方式和各种安全因素的影响,对各种可调因素的选择区域都有一定的范围限制,寻优范围必须控制在这些范围以内,这些限制构成了自变量的定义域;至此,完成了锅炉热效率最优化燃烧的结合神经网络的遗传算法优化过程,具体程序流程见图1;3 燃煤锅炉热效率的优化效果在电厂锅炉运行中,运行人员调节最为频繁的参数主要是各种配风方式,包括各二次风、燃尽风、由送引风机配合所确定的氧量等,其余影响锅炉燃烧的因素,如负荷和煤种,对于运行人员而言在某一工况下是不可调节因素,燃烧器的摆角出于汽温调节的需要,往往也不会对其调整以实现低的飞灰含碳量;作为示例,我们对影响燃烧的部分参数的寻优过程进行了模拟和验证;某个实际运行工况如表1所示,除煤种特性为事先取样分析人工输入外,其余参数均由集散控制系统DCS下载;考虑对锅炉的排烟氧量和各二次风门开度及燃尽风门开度进行寻优,其余参数维持该工况,利用软件寻优,遗传算法选择的参数种群规模为50,交换概率为0.8,突变概率为0.15,迭代次数500次,可调参数7个,计算获得优化后的各风门开度、氧量及锅炉效率和飞灰含碳量值,优化后的各值如表2所示;图2示出了不同迭代次数下的遗传算法计算得到的飞灰含碳量值和锅炉热效率,图中曲线1表示锅炉效率,曲线2表示省煤器后氧量,曲线3表示飞灰含碳量,可见遗传算法的收敛速度很快;对图2的寻优过程进行分析,发现飞灰含碳量曲线具有震荡,这是因为氧量同时影响到排烟热损失和飞灰含碳量,优化过程初期氧量较高,飞灰含碳量相应可以搜索到较低值,但由于排烟热损失比机械不完全燃烧损失数值更大,迫使优化过程向氧量较低的方向寻优,而氧量较低又导致飞灰含碳量有所增加,这种相互反作用的机理使飞灰含碳量曲线呈现震荡性,这种震荡性也是由遗传算法的寻优本质所决定的;图3对采用不同的遗传算法计算参数进行了比较,其中曲线1采用了交换概率为0.8,突变概率为0.15的计算参数;曲线2采用了交换概率为0.8,突变概率为0.3的计算参数;曲线3采用了交换概率为0.2,突变概率为0.1的计算参数;计算表明这几种参数下寻优过程均能成功收敛,但以曲线3为最佳,说明交换概率和突变概率的选取存在最佳值;增加迭代次数和种群规模,最终结果基本无变化,证明目前的迭代次数和种群规模已基本满足要求;由于遗传算法可以对多个自变量同时进行寻优,如果有需要,可以对任何需要的参数进行寻优,甚至对所有影响因素进行寻优,在软件编程上实现也很方便,这为遗传算法在锅炉优化运行中的应用提供了便利;对锅炉在中等负荷下的热效率优化过程也进行了试验,表3示出了某种中等负荷条件下锅炉实际运行工况;表4为中等负荷下遗传计算获得的优化结果;现场验证表明,按优化结果推荐的配风方式进行调节,工况调节后由DCS下载数据计算得到的锅炉效率与优化算法预测的锅炉效率基本相当;多个试验结果表明高负荷下的飞灰含碳量的预测和实测基本相当,而中等负荷下的飞灰含碳量预测略有偏低,这可能与神经网络建模时中等负荷下的样本数量偏少有一定关系;但由于本文研究的锅炉燃烧状况较好,燃料的灰分低而且挥发分和热值均较高,所以飞灰含碳量都较低,机械不完全燃烧损失也较小,对锅炉热效率的影响也较小;因此各工况下预报的锅炉热效率值与实测误差很小,一般在0.2%以内;针对现场实炉测试样本数据难以大量获得的问题,可采用DCS数据采集方法解决,获得稳定工况下的输入输出参数保存,利用这些样本来训练神经网络,这样既可获得大量的样本数据,而且样本数据可不断更新,从而使神经网络模型能代表锅炉的最新特性;对于燃用燃尽性能差和高灰分煤的锅炉,机械不完全燃烧损失占到锅炉效率损失的很大部分,由于排烟热损失的优化比较简单,而本文主要针对机械不完全燃烧损失进行优化,因此对于燃用劣质煤锅炉采取此优化方法具有更好的应用前景,能够确定锅炉最佳氧量和各风门开度;对锅炉热效率优化另一种方法也进行了研究,即将锅炉热效率与煤种特性、运行参数之间的关系直接采用人工神经网络建模,然后利用遗传算法优化,结果表明这种方法的效果远不如本文的方法;其原因经分析为,人工神经网络方法进行建模时存在一定的误差,由于热效率的绝对值较大对锅炉热效率直接建模,导致误差过大淹没了方案的可行性;4 结论本文在对大型燃煤电厂锅炉进行实炉多工况热态试验和采用人工神经网络进行锅炉飞灰含碳量特性建模的基础上,利用遗传算法对大型电厂锅炉提高热效率的优化运行方法进行了研究并经现场应用,表明采用人工神经网络和遗传算法进行锅炉燃烧优化是可行的;。
锅炉热效率的具体计算公式
锅炉热效率的具体计算公式锅炉的热效率受到多种热损失的影响,但比较而言,以机械不完全燃烧损失q4受锅炉燃烧状况影响最为复杂,飞灰含碳量受锅炉煤种和运行参数影响很大,相互关系很难以常规的计算公式表达,因此采用了人工神经网络对锅炉的飞灰含碳量特性进行了建模,并利用实炉测试试验数据对模型进行了校验,结果表明,人工神经网络能很好反映大型电厂锅炉各运行参数与飞灰含碳量特性之间的关系。
采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、煤种特性,各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角作为神经网络的输入矢量,飞灰含碳量作为神经网络的输出,利用3层BP网络建模是比较合适的。
目前锅炉运行往往根据试验调试人员针对锅炉的常用煤种进行燃烧调整,以获得最佳的各种锅炉运行参数供运行人员参考,从而实现锅炉的最大热效率。
但这种方法会带来如下问题:①由于锅炉燃煤的多变性,针对某一煤种进行调整试验获得的最佳操作工况可能与目前燃用煤种的所需的最佳工况偏离;②由于调试试验进行的工况有限,试验获得的最佳工况可能并非全局最优值,即可能存在比试验最佳值更好的运行工况。
本文在对某300MW四角切圆燃烧锅炉进行实炉工况测试并利用人工神经网络技术实现飞灰含碳量与煤种和运行参数关系的建模工作基础上,结合遗传算法这一全局寻优技术,对锅炉热效率最优化运行技术进行了研究,并在现场得到应用。
2 遗传算法和神经网络结合的锅炉热效率寻优算法利用一个21个输入节点,1个输出节点,24个隐节点的BP网络来模拟锅炉飞灰含碳量与锅炉运行参数和燃用煤种之间的关系,获得了良好的效果,并证明了采用人工神经网络对锅炉这种黑箱对象建模的有效性[1]。
人工神经网络的输入采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角和煤种特性,除煤种特性这一不可调节因素外,基本上包括了运行人员可以通过DCS进行调整的所有影响锅炉燃烧的所有参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、锅炉热效率计算
10.1 正平衡效率计算
10.1.1输入热量计算公式:
Qr=Qnet,v,ar+Qwl+Qrx+Qzy
式中: Qr__——输入热量;
Qnet,v,ar ——燃料收到基低位发热量;
Qwl ——加热燃料或外热量;
Qrx——燃料物理热;
Qzy——自用蒸汽带入热量。
在计算时,一般以燃料收到基低位发热量作为输入热量。
如有外来热量、自用蒸汽或燃料经过加热(例:
重油)等,此时应加上另外几个热量。
10.1.2饱和蒸汽锅炉正平衡效率计算公式:
式中:η1——锅炉正平衡效率;
Dgs——给水流量;
hbq——饱和蒸汽焓;
hgs——给水焓;
γ——汽化潜热;
ω——蒸汽湿度;
Gs——锅水取样量(排污量);
B——燃料消耗量;
Qr_——输入热量。
10.1.3过热蒸汽锅炉正平衡效率计算公式:
a. 测量给水流量时:
式中:η1——锅炉正平衡效率;
Dgs——给水流量;
hgq——过热蒸汽焓;
hg——给水焓;
γ——汽化潜热;
Gs——锅水取样量(排污量);
B——燃料消耗量;
Qr——输入热量。
b. 测量过热蒸汽流量时:
式中:η1——锅炉正平衡效率;
Dsc——输出蒸汽量;
Gq——蒸汽取样量;
hgq——过热蒸汽焓;
hgs——给水焓;
Dzy——自用蒸汽量;
hzy——自用蒸汽焓;
hbq——饱和蒸汽焓;
γ——汽化潜热;
ω——蒸汽湿度;
hbq——饱和蒸汽焓;
Gs——锅水取样量(排污量);
B——燃料消耗量;
Qr——输入热量。
10.1.4 热水锅炉和热油载体锅炉正平衡效率计算公式
式中:η1——锅炉正平衡效率;
G——循环水(油)量;
hcs——出水(油)焓;
hjs——进水(油)焓;
B——燃料消耗量;
Qr——输入热量。
10.1.5电加热锅炉正平衡效率计算公式
10.1.5.1电加热锅炉输-出饱和蒸汽时公式为:
式中:η1——锅炉正平衡效率;
Dgs——给水流量;
hbq——饱和蒸汽焓;
hgs——给水焓;
γ——汽化潜热;
ω——蒸汽湿度;
Gs——锅水取样量(排污量);
N——耗电量。
10.1.5.2电加热锅炉输-出热水(油)时公式为:
式中:η1——锅炉正平衡效率;
G——循环水(油)量;
hcs——出水(油)焓;
hjs——进水(油)焓;
B——燃料消耗量;
Qr_——输入热量
二、锅炉结焦的危害、原因及预防方法是什么?
在炉子的燃烧中心,火焰温度高达1450~1600℃,因此煤灰基本上处于溶化状态。
当与受热面碰撞后,溶渣就会粘附在管道或炉墙上,这就叫结焦。
如果炉内结了焦,炉膛部分的吸热量就要减少,到过热器部分的烟温就会增高,而造成个别管子的外壁温度超过它的允许范围,引起爆管,同时还会使主汽温度超温。
结焦严重时,会使吸热量的减少而减负荷,甚至停炉。
结焦还会使排烟热损失q2和机械热损失q4及风机耗电增加。
结焦的原因及预防:
(1)燃烧过程中的空气量不足,使燃烧不完全,由于烟气中存有一定的一氧化碳,灰的熔点就要大大降低,这时虽然炉膛出口温度并不高,但因有了一氧化碳等还原性气体存在,结焦就显得很剧烈。
所以要维持充足的空气量,使燃烧尽量完全。
(2)由于燃料与空气混合搅拌不好,即使供给了正常所需的空气量,也会出现空气不足的问题,因为混合搅拌不良的时候,空气有缺有盈,空气缺的地方燃烧则不完全。
如果一次风量过大而二次风量较小,煤粉颗粒未完全燃烧就粘在了受热面上而继续燃烧,此时炉墙温度非常高,它的粘性也很强,焦就易于形成。
所以要合理的调整一、二次风的比例,使其混合、搅拌均匀。
(3)火焰的偏斜是燃料和空气散布不均所造成的,在正常运行中,炉膛中心温度应该最高,由于火焰的偏斜将使最高火焰层移动到边侧,这样灰就得不到足够的冷却。
而灼热的灰粒与水冷壁受热面接触的时候,就很快的粘上去,形成焦。
运行中应调整好火焰中心。
采用四角喷燃的锅炉应尽量利用下排喷燃器,这样可使火焰中心下移。
(4)炉膛热负荷大,使炉膛温度及炉膛出口温度升高,灰的表面部分开始熔化而结焦。
应尽一切可能来提高锅炉效率,使在同样的负荷下燃煤尽量减少,以降低炉膛热负荷。
(5)清灰不及时。
在锅炉的某些受热面上,积灰使受热面变得粗糙,一有粘性的灰碰上去,就很容易附在上面,如不及时清灰,结焦就会变得极为严重甚至停炉。
所以要及时清焦吹灰,保持受热面清洁,同时也提高了传热效果。
另外锅炉设计或检修质量不佳,燃料中灰的熔点低等都容易造成结焦。
总之,要在运行中采取多方面的措施,消除漏风,降低炉膛出口烟温,保持适当的过剩空气量,保持炉内火焰的均匀分布,保持合适的煤粉细度,加强燃烧调整及时清焦、吹灰及掌握燃料的质量,保证检修质量并对设备进行改造,以减少结焦的可能性。
三、
1.保持最良好的排烟中的二氧化碳含量。
通过试验确定最良好的过剩空气系数,运行中经常注意二氧化碳表的指示,观察火焰颜色和排烟颜色,及时调整空气量。
过剩空气量因煤的挥发分不同而有所不同,挥发分大的煤,易着火、火焰长,过剩空气可以略小些;挥发分小的煤,难着火、火焰短,过剩空气可以略大些。
煤粉炉的过剩空气比链条炉要小些。
火焰呈麦黄色表示空气量比较合适;呈白色表示空气量过大;呈暗黄、暗红色或有绿色火苗表示空气量太小。
与此同时,烟气呈灰色表示空气量合适;呈白色表空气量过大;呈黑色表示容量太小。
锅炉在运行中值班人员应勤检查,勤调整,使之处于最佳状态下运行。
2.保持链条炉最合适的煤层厚度、炉排速度、分段风门开度和二次风压。
为了满足锅炉负荷的需要,炉排上的煤量多少要有变化,而煤重多少的变化要依靠调整灶层和炉排速度完成。
煤层厚度和炉排速度是相互配合的,在一定的煤层厚度下,要满足锅炉负荷的需要,就要变更炉排的速度,它们两者间的配合对于燃烧好坏影响很大。
链条炉经验操作调整方法为薄煤层,低风压,适当的速度。
四、锅炉露点腐蚀
当燃用含硫燃料时,硫燃烧后形成二氧化硫,其中一部分会进一步氧化成三氧化硫。
三氧化硫与烟气中水蒸汽结合成硫酸蒸汽。
烟气中硫酸蒸汽的凝结温度称为酸露点。
它比水露点要高很多。
烟气中三氧化硫含量愈多,酸露点就愈高。
烟气中硫酸蒸汽本身对受热面的工作影响不大。
但当它在壁温低于酸露点的受热面上凝结下来时,就会对受热面金属产生严重腐蚀作用。
这种由于金属壁低于酸露点而引起的腐蚀称为低温腐蚀。
强烈的低温腐蚀通常发生在低温级空气预热器中空气和烟气温度最低的区域。
烟气对受热面低温腐蚀常用酸露点的高低来表示。
露点愈高,腐蚀范围愈广,腐蚀也愈严重。
其腐蚀速度与金属壁面温度有很大关系,如图3所示。
由图3可见,随着金属壁面温度的降低,出现了两个严重腐蚀区和两个相对安全区。
对于一定的煤种及运行方式,腐蚀曲线也是一定的。
对于一般的管式空气预热器采用诸如提高排烟温度和热风再循环以及暖风机提高入口风温等措施,可以避开第一个严重腐蚀区,但是,第一个严重腐蚀区是难以避免的。
而对于热管空气预热器,在设计中,可根据锅炉工况特点调整热管加热段和冷凝段的长度,以及调整低温处热管冷、热两段翅片的间距、数量等办法来调整烟气侧与空气侧的热阻比,从而达到控制热管壁温。
使烟气侧壁温高于运行工况酸露点温度,而避开硫酸蒸汽的结露。