冰蓄冷设备
冰蓄冷制冷循环原理与装置
冰蓄冷制冷循环原理与装置
1.原理
冰蓄冷制冷循环利用冰的相变过程来实现制冷。
当电力供应充足时,制冷机通过压缩工质循环系统将热量从室内环境转移到室外环境,实现空调供冷效果。
同时,利用低负荷时段的廉价电力将额外的热量用于冷却储存设备,将水冷却至冰点以下形成冰块。
在高峰时段,制冷机暂停工作,系统利用储存的冷量通过冰块将室内温度降低至所需温度。
冰块通过冰水回路,通过换热器与室内热量进行热交换,将室内热源吸热,使冰块熔化,同时将室内温度降低。
通过此种方式,无需一直运行制冷机,从而降低了耗电量和维护成本。
2.装置
冷媒循环部分由制冷机组、蒸发器、冷凝器、膨胀阀等组成。
制冷机通过压缩工质循环系统将热量从室内环境转移到室外环境。
冷媒在蒸发器内吸收室内热量,变成气体,然后经过压缩,冷媒变成高温高压气体,释放热量到外界环境,然后通过膨胀阀,减压成低温低压气体,进入蒸发器循环。
蓄冷设备主要由冰蓄冷装置和换热器组成。
冰蓄冷装置包括冷水槽、冰块贮存器、冷却器等。
当低负荷时段的廉价电力供应充足时,制冷机将热量用于冷却储存设备,将水冷却至冰点以下形成冰块。
冷却水通过换热器与室内热量进行热交换,使冰块熔化,进行供冷。
总之,冰蓄冷制冷循环原理与装置通过充分利用低峰时段的廉价电力储存冷量,并在高峰时段供冷,从而实现了能源利用的最优化。
这种制冷方式不仅节约能源、降低耗电量,还能有效控制冷负荷,且具有较高的性
价比。
随着能源和环保问题的日益凸显,冰蓄冷制冷循环系统将成为重要的可持续发展解决方案之一。
冰蓄冷工作原理
冰蓄冷工作原理
冰蓄冷(Ice Storage)是一种利用制冷机组制备冰块的技术,
通过储存冰块来平衡供需差异,提高能源利用效率的方式。
具体工作原理如下:
1. 制冷机组工作:冰蓄冷系统一般采用蒸发冷凝循环制冷机组。
在制冷机组中,通过压缩机将制冷剂压缩成高压气体,然后通过冷凝器冷却成高压冷液。
制冷剂经过膨胀阀放大流量并且从高压冷液变成低温低压气体。
2. 冰块制备:制冷剂低温低压气体通过蒸发器与水进行换热,从而将水冷却至结冰温度以下。
水在与制冷剂进行换热过程中,逐渐形成冰块。
3. 冰块储存:制备好的冰块会存放在冰蓄冷装置中,通常是在大容器里的储冰槽或冰藏器中。
冰块在冷藏过程中会吸收周围的热量,使得周围环境温度下降。
4. 冰块利用:当需要降低室温时,制冷机组的蒸发器会传送制冷剂与冰块进行热量交换,使冰块开始融化。
在这个过程中,冰块释放吸收的热量,将热量传递给制冷剂,从而使制冷剂变成高温高压气体。
5. 冰蓄冷储能:在冰块融化的过程中,系统中的制冷剂会吸收大量的热量。
融化的冰块本身储存了冰蓄冷系统之前的制冷量,这样的储存方式称为“冰蓄冷储能”。
冰蓄冷储能可以在需要冷却时释放储存的制冷量来提供制冷效果。
通过冰蓄冷技术,能够在低负荷时段制备冰块存储储冷能量,在高负荷时段释放储存的制冷量,从而平衡供需差异,提高制冷系统的能源利用效率。
蓄冷冰水箱设备工艺原理
蓄冷冰水箱设备工艺原理引言蓄冷冰水箱是一种利用低温储能技术进行空调制冷的设备,它利用低峰期电源来制冷并储存,然后在高峰期供应冷冻水给空调系统使用。
本文将介绍蓄冷冰水箱的设备工艺原理。
设备概述蓄冷冰水箱由蓄冷装置、反渗透处理装置、水泵、控制系统等组成。
整个系统可以分为三个部分:蓄冷储能、冷冻水供应和控制系统。
蓄冷储能蓄冷装置主要包括冷水机组、板式换热器和冰蓄冷水箱。
冷水机组负责制冷,将制冷剂带动循环,向板式换热器传热,将水箱内的水制冷。
冷却后的水通过板式换热器,在蓄冷水箱内进行储存。
冷冻水供应冷冻水供应由水泵、反渗透处理装置和冷凝器组成。
水泵将蓄冷水箱中的冷冻水提取出来送往各个空调区域使用,同时经过反渗透处理装置进行净化。
之后,冷凝器将使用后的水再次送回蓄冷冰水箱进行储存。
控制系统控制系统主要负责整个设备的自动化控制和运行管理,包括自动调节储存温度、供水温度、水流量、湿度等参数。
此外,控制系统还可以通过网络连接实现对整个设备的远程监控与管理。
工艺原理蓄冷储能在低峰期,冷水机组开始工作,水泵将水送入板式换热器。
通常板式换热器采用倒置式的板式换热器,它能够更好地控制水的流速以及传热效率,从而保证制冷剂和水的传热时的高效性和稳定性。
通过板式换热器与冷水机组进行传热,将水箱内的水制冷,储存于冰蓄冷水箱内。
冷冻水供应在高峰期,水泵开始供应冷冻水给各个空调区域使用。
此时,反渗透处理装置发挥作用,它负责净化蓄冷水箱中的冷冻水,以避免水质不良引起空调系统故障。
经过反渗透处理装置净化过后的冷冻水,被送抵各个空调区域使用,起到空调降温的作用。
使用后的冷冻水流入冷凝器,再次被送回蓄冷冰水箱进行储存。
控制系统蓄冷冰水箱的控制系统可以进行自动化控制和运行管理。
通过设定储存温度,供水温度,水流量,湿度等参数,实现设备的有效监控与管理。
其中,网络连接技术可以实现设备的远程监控与管理,方便设备运维管理。
优缺点蓄冷冰水箱在空调节能降耗方面有显著的优点,能够将使用周期低或未使用的电源能量转化为冷媒能量进行储存,并在高峰期进行供应,延缓市电高峰期的出现,同时确保空调系统稳定运行。
冰蓄冷空调系统流程
系统流程图
PART 1
各运行模式下电动阀门开关情况
电动阀 模式
制冰模式
Vi1 Vi2 Vi Vi4 Vi5 Vi6 Vi7 Vi8 Vi9 Vi1 Vi1
3
01
开 关 关 开 -- -- 关 关 开 开 开
制冰+基载供冷模式
➢ 主机运行电流百分比:反映实际负荷占主机额定负荷的百分比;
➢ 冷冻水进出口压力:一般主机冷冻水进出口压力表上的表压差值在之间 ➢ 冷却水进出口压力:一般主机冷却水进出口压力表上的表压差值在之间
螺杆式冷水机组
01 主要操作:
手动开关:现场控制主机启动(-)、停止(○); 复位按钮:主机故障复位(非故障原因,建议不要 使用)。按钮摁下30秒后,旋转该按钮即可复位; 配电柜把手开关:接通和关断主机动力电源,系统停用或计划停电,应在主机停机后使用该开关切断主机电源;
• 注意事项: ➢ 防止蓄冰过量:手动蓄冰时,应注意观察冰槽液位,任一冰槽液位超过其最高液位,需立即终止蓄冰;一次蓄冰时间不能超过8小时; ➢ 防止重复蓄冰:手动蓄冰时,应该观察冰槽液位,分析冰槽中剩冰量多少,若有剩冰则必需缩短本次蓄冰时间;确保冰槽液位不超过最高液位; ➢ 防止冰槽水位过低:检查液位计液位,冰槽液位低于其最低液位0.02m,即冰槽水位过低,需补水至最低液位(注意不要高过最低液位)
冷冻水系统静压() 冷却水系统静压() 乙二醇系统静压() • e.检查要求启动的回路上的阀门是否正常开关; • f.上述各部位发现有不正常必须立即修正,方可正常投入运行。
开关机顺序
1、开机 表 》a 、, 开检 启查 各各 模电 式动 之阀 前门 ,状 应态 参是 照否 按《 照各 该运 模行 式模 要式 求下 到电 位动 ;阀 门 开 关 情 况 机 →b 、冷 阀水 门主 状机 态; 正 确 后 , 依 此 开 启 冷 冻 水 泵 → 冷 却 水 泵 → 冷 却 塔 风 c、各设备应在前一设备正常运行后,方可开启;
冰蓄冷简介_secret
第一节应用概念一、冰蓄冷空调“冰蓄冷空调”一词大家都一目了解,英文为‘ICE STORAGE’,日文为[冰蓄热],狭义的定义为[制冰蓄冷]的冷气系统。
早期称谓[COOL STORAGE (蓄冷)],此包含了[制冷水蓄冷]的冷气系统。
但在寒带国家降了[蓄冷]外,还要[蓄热],因此,广义的用语为[THERMAL (ENERGY)STORAGE AIR CONDITIONING SYSTEM (缩写为TES)],可译为[蓄能式空调系统]。
对于南方地区仅有夏季(冷气)电力过载的困扰,仅需[蓄冰空调]。
二、关于蓄冷系统的计量在常规的空调系统设计时,冷负荷是按照计算出建筑物所需要的多少“冷吨”、“千瓦”、“大卡/时”来计量,但是蓄冰系统是用“冷吨·小时”、“千瓦·小时”、“大卡”来计量。
图1-1代表100冷吨维持10小时冷却的一个理论上的冷负荷,也就是一个1000“冷吨·小时”的冷负荷。
图上100个方格中的每一格是代表10“冷吨·小时”。
事实上,建筑物的空调系统在全日的制冷周期中是不可能都以100%的容量运行的。
空调负荷的高峰出现多数是在下午2:00--4:00之间,此时室外环境温度最高。
图1-2代表了一幢典型大楼空调系统一个设计工作日中的负荷曲线。
如图可知,100冷吨冷水机组的全部制冷能力在10个小时的“制冷周期”中只有2个小时,在其它8个小时中,冷水机组只在“部分负荷”里操作,如果你数一数小方格的话,你会得到总数为75个方格,每一格代表10“冷吨·小时”,所以此建筑物的实际冷负荷为750“冷吨·小时”,但是常规的空调系统必须选用100冷吨的冷水机组来应付100冷吨的“峰值冷负荷”。
三、冷水机组的“参差率”定义的“参差率”为实际“冷负荷”与“冷水机组的总制冷潜力”之比,即:参差率(%)=(实际冷吨·小时数/总的冷吨·小时潜力)*100%=750/1000*100因此该冷水机组的“参差率”为75%,也就是冷水机组能提供1000“冷吨·小时”,而空调系统只要用750“冷吨·小时”。
冰蓄冷空调系统原理及应用
冰蓄冷空调系统原理及应用冰蓄冷空调系统是一种先用电动机将冷却剂冷却到低温,然后将其储存在蓄冷设备中的空调系统。
它可以在夜间低电价时段使用电力,将冷却剂冷却到较低温度,然后将其储存下来,白天通过蓄冷设备释放冷量,达到降温的目的。
1.电动机和压缩机:电动机将冷却剂吸入,并将其压缩成高压、高温的气体状态。
2.冷却剂管道和换热器:冷却剂通过管道传输,在换热器中与空气或水进行换热,从而将空气或水的温度降低。
3.蓄冷设备:蓄冷设备是冰蓄冷系统的核心部分,用于储存冷却剂。
在夜间低电价时段,电动机将冷却剂冷却到低温,并将其储存在蓄冷设备中。
白天,通过控制阀门的开启和关闭,冷却剂释放出来,用于降低室内温度。
4.控制系统:冰蓄冷空调系统的控制系统根据室内温度和外界环境条件,控制电动机的启停以及蓄冷设备的开启和关闭,以实现室内温度的精确控制。
1.节约能源:冰蓄冷空调系统通过在夜间低电价时段储存冷却剂,并在白天释放冷量,能够更高效地利用电力资源,减少能源消耗。
2.提高能源利用率:由于低温冷却剂的制备和蓄冷设备的储存,冰蓄冷空调系统能够提高制冷效果和能源利用率,从而降低运行成本。
3.灵活控制:冰蓄冷空调系统的控制系统可以根据室内温度和外界环境条件,实现对室内温度的精确控制。
并且,它可以根据能源价格的变化灵活调整运行模式。
4.方便维护:冰蓄冷空调系统的维护相对简单,只需要定期进行冷却剂的添加和设备的检查维护即可。
冰蓄冷空调系统在建筑物、工厂、商场、酒店等场所有着广泛的应用前景。
由于其节能环保的特点,越来越多的地区和国家开始采用冰蓄冷空调系统来替代传统的空调系统。
它能够有效降低能耗,减少电力需求峰值,提高能源的利用率,同时减少对地球环境的负荷,达到节能减排的目的。
总之,冰蓄冷空调系统通过先用电动机将冷却剂冷却到低温,然后将其储存在蓄冷设备中,通过控制系统实现精确控制。
它具有节约能源、提高能源利用率、灵活控制和方便维护等优点,广泛应用于各个领域中。
2024年冰蓄冷空调市场需求分析
2024年冰蓄冷空调市场需求分析1. 引言随着全球气候变暖问题的日益严重,空调成为人们生活中不可或缺的设备。
传统空调使用制冷剂来降低温度,对环境产生负面影响。
为了解决这一问题,冰蓄冷空调技术应运而生。
冰蓄冷空调利用峰谷电价,将电能转化为冷能储存在冰蓄冷装置中,在需要时释放出来供空调使用。
本文拟对冰蓄冷空调市场需求进行分析。
2. 市场概况目前,全球空调市场规模不断扩大,预计2025年市场规模将达到8000亿美元。
与此同时,人们对环境友好产品的需求也不断增加。
冰蓄冷空调作为一种环保节能产品,正逐渐受到消费者的关注。
据市场研究机构预测,冰蓄冷空调市场规模预计将在未来五年内以每年15%的增速增长。
3. 优势与劣势分析冰蓄冷空调相较于传统空调具有以下优势:•环保节能:冰蓄冷空调减少了对臭氧层的破坏和温室气体的排放,对环境友好。
•经济效益:冰蓄冷空调利用峰谷电价,降低了使用成本。
•能量利用高效:冰蓄冷技术可以在低负荷时段制冷,提高了能量利用效率。
•降噪性能好:冰蓄冷空调减少了空调运行时的噪音。
然而,冰蓄冷空调也存在一些劣势:•技术成熟度不高:由于冰蓄冷空调技术相对较新,其成熟度相对较低,可能存在性能稳定性等问题。
•初始投资高:相较传统空调,冰蓄冷空调的初始投资较高,可能影响消费者的购买意愿。
4. 市场需求分析4.1 消费者需求消费者对冰蓄冷空调的需求主要体现在以下几个方面:•环保节能:越来越多的消费者意识到环境保护的重要性,对环保节能产品的需求逐渐增加。
•能源成本:由于冰蓄冷空调可以利用峰谷电价,降低能源使用成本,因此受到注重节能的消费者的欢迎。
•室内舒适度:消费者对空调系统提供的舒适性有较高的要求,冰蓄冷空调通过稳定温度、减少噪音等方面满足了这一需求。
•智能化:随着智能家居的发展,消费者对空调系统的智能化程度提出了更高的要求,冰蓄冷空调在智能化方面具备一定的竞争优势。
4.2 市场竞争情况目前冰蓄冷空调市场上存在多家竞争对手,主要包括传统空调制造商以及冰蓄冷空调新进入者。
冰蓄冷空调系统原理及其技术
冰蓄冷空调系统原理及其技术
一、冰蓄冷空调系统原理
冰蓄冷空调系统属于利用化学反应,在冰蓄冷机组中形成的蓄冷湿冷
却塔,经冰蓄冷循环贮存介质,利用冰蓄冷机组将热能转换为冷能,冷能
之间转换到室外,以及室内“冷热机组”中,将冷能转换为热能,达到空
调系统调节温度和湿度的作用。
1、冰蓄冷机组:冰蓄冷机组由蒸发器、冷凝器、压缩机、再蒸发器、再凝结器和冰水泵组成,形成冷凝蒸发循环。
蒸发器、冷凝器和再蒸发器
由压差驱动器控制,冰水泵能够把自己的热量储存在冰水中,而且能够把
蓄冷介质的温度低于环境的温度。
2、冰水泵:冰水泵负责将蒸发器冷凝到冰池中的热量用压缩机和热
交换器蒸发,将冷凝器的热量用压缩机和热交换器冷凝,然后将冰池中的
冷凝器的冷凝热量带回室内,以实现调温和调湿的作用。
3、蒸发器、冷凝器、压缩机、再蒸发器和再凝结器:这些都是冰蓄
冷机的重要组成部分,用于将空气加热或冷却。
蒸发器的作用是将冷冻液
冷凝,将热量从空气中蒸发;冷凝器的作用是将冷冻液蒸发,将热量从空
气中冷凝;压缩机的作用是将冷冻液压缩,然后释放出热量。
冰蓄冷空调介绍
蓄冷技术原理简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并通过介质将冷量储存起来,在白天用电高峰时释放该冷量提供空调服务,从而缓解空调争用高峰电力的矛盾。
目前较为流行的蓄冷方式有三种,即水蓄冷、冰蓄冷、优态盐蓄冷[1]。
空调蓄冷系统合理利用峰谷电能,削峰填谷。
在电力结构峰谷差距不断加大的今天,蓄冷系统将会带来空调系统的革命,在平衡电力消耗方面将起到不可估量的作用。
冰蓄冷空调系统是在空调负荷很低的时间制冷蓄冰,而在空调负荷高峰时化冰取冷,以此来全部或部分转移制冷设备的运行时间,并采用此办法规避用电高峰,让出空调用电份额给其他生产部门,以创造更多的财富;另外利用夜间低价电,可降低运行费用,同时利用蓄冰技术,可减少制冷设备的装机容量,减少电力负荷,降低主机一次性投入,其主要优点有:1).利用蓄能技术移峰填谷,平衡电网峰谷荷,提高电厂发电设备的利用率,降低运行成本,节省建设投入。
2).利用峰谷荷电力差价,降低空调年运行费用。
3).减少冷水机组容量,降低主机一次性投资;总用电负荷少,减少配电容量与配电设施费,减少空调系统电力增容费。
4).使用灵活,过渡季节或者非工作时间加班,使用空调可由融冰定量提供,无需开主机,冷量利用率高,节能效果明显,运行费用大大降低。
5).具有应急冷源,提高空调系统的可靠性,特别是针对南昌地区线路老化,常停电。
6).冷冻水温度可降到1~4℃,可实现大温差低温送风,节省水、风系统的投资及能耗,相对湿度低,提高空调高品质,防止中央空调综合症。
总结蓄冷空调设计要点如下:一、设计前提条件制冷以电为驱动能源的空调工程,符合下列条件之一时,可采用蓄冰系统。
1.非全日制空调工程或昼夜负荷相差悬殊的空调工程;2.空调负荷峰谷悬殊的连续空调工程;3.无电力增容条件或限制增容的空调工程;4.某一时段限制空调制冷用电的空调工程;5.需备用冷源的空调工程;6.要求采用低温冷水或低温送风的空调工程;7.获得电力补贴或通过技术经济比较,确能获得经济效益的空调工程。
制冰机蓄冷设计施工方案
制冰机蓄冷设计施工方案一、简介制冰机是一种能够制造冰块的设备,它的作用是通过制冷技术将水冷却至冰点以下,使其凝固成冰块。
而蓄冷则是指提前制造冰块并储存起来,用于后续冷却过程,以减少制冰机的运行时间和能源消耗。
本文将介绍制冰机蓄冷设计的施工方案。
二、制冰机蓄冷设计要点1.蓄冷容器的选材和设计2.冷却介质的选择3.温度控制和监测装置的安装三、蓄冷容器的选材和设计蓄冷容器的选材应具有良好的隔热性能和耐腐蚀性能,以减少冰块的融化速度和延长冷却效果。
常用的蓄冷容器材料包括不锈钢、铝合金和聚乙烯等。
在设计上,应考虑容器的密封性能和加热性能,以防止冷却介质的损耗和外界热量的影响。
四、冷却介质的选择冷却介质的选择是制冰机蓄冷设计的关键。
常用的冷却介质包括冷冻液和冷冻盐水。
冷冻液常用的是乙二醇和水的混合物,可以降低冰点并增加蓄冷效果;冷冻盐水则是将普通盐和水混合,通过降低盐水的冰点来实现蓄冷作用。
在选择冷却介质时,应根据实际情况和需求进行合理选择。
五、温度控制和监测装置的安装为了保证制冰机蓄冷过程的效果,需要安装温度控制和监测装置。
温度控制装置用于调节冷却介质的温度,确保在适宜的范围内进行制冰和蓄冷,避免过冷或过热。
温度监测装置用于实时监测蓄冷容器的温度变化,以便及时调节和优化制冰机蓄冷效果。
六、施工流程1.准备工作:确认制冰机和蓄冷容器的安装位置,并确保有足够的空间进行施工。
2.安装制冰机:根据制冰机的说明书和图纸进行安装,包括连接水源管道、电源线和排水管道等。
3.安装蓄冷容器:根据蓄冷容器的设计图纸进行安装,确保容器的稳固和密封。
4.配置冷却介质:根据所选择的冷却介质类型和比例进行配置,并将其注入蓄冷容器中。
5.安装温度控制和监测装置:根据要求和设计,安装温度控制和监测装置,并进行调试和校准。
6.调试和验收:对整个制冰机蓄冷系统进行调试和验收,确保其正常运行和性能达到预期要求。
七、安全注意事项1.在安装和施工过程中,严格遵守相关安全规定和操作规程,确保人员和设备的安全。
冰蓄冷空调原理
冰蓄冷空调原理冰蓄冷空调利用了物质的相变潜热原理,能够在低峰耗气时段制冷,然后在高峰用气时段使用制冷效果,并同时采用了新的节能和环保技术。
一、冰蓄冷空调的工作原理冰蓄冷空调是一种采用物质的相变潜热原理制冷的空调设备,其制冷原理主要涉及两个方面:一是固液相变的变温作用;二是固气相变的变压作用。
1. 固液相变的变温作用冰蓄冷空调通过冰蓄体中的水在固液相变过程中的巨大热效应,对空气产生制冷作用。
冰蓄体中的水在0℃下结冰时会释放出热量,这个过程称为“潜热效应”。
换而言之,水从液态冷却到冰态的过程中会释放出冷量,这样就能制造低温环境,起到降温的作用。
2. 固气相变的变压作用冰蓄冷空调中,固态冰作为一个储存热量和冷量的介质,其另外一个重要作用是:通过蓄冰过程中的气体膨胀效应,往往可以分离出这份冷气以达到制冷的目的。
二、冰蓄冷空调与传统空调的差异1. 能耗方面相较于传统的空调,冰蓄冷空调的能耗表现稳定,可以在空调运行时采取蓄冰模式充分利用低谷电来为随后的高谷峰电时间段的需求提供足够的制冷能力。
2. 环境方面冰蓄冷空调具有清洁环保的优势。
传统的空调存在氟利昂等物质的排放,而冰蓄冷空调则不存在这种排放,因为它采用的是自然界中天然的水资源。
3. 经济方面冰蓄冷空调作为一种新型的技术,其市场发展空间较大,而且容易推广。
同时,采用冰蓄冷空调,可以提高空调系统的效率,从而减轻了企业的能耗费用。
三、冰蓄冷空调推广的不足1. 此类空调安装要求较高由于冰蓄冷空调具有较高的技术要求,需要考虑到热力平衡、热量传导、供水质量、控制系统等多方面问题,因此冰蓄冷空调的安装要求较高,需要专业的安装人员的安装和调整。
2. 比传统空调的价格要贵一些由于该装置对材料、技术要求等方面存在较高的要求,因而成本也相对较高,所以,在市场上它的售价要比传统空调的售价要高一些。
3. 冰蓄体本身造价较高要建立一套完整的冰蓄冷系统,必须同时建立冰蓄体和水泵、雾化喷淋系统等其他装置,这些设备需要额外投入资金,在建设成本上会增加一些额外的费用。
冰蓄冷空调系统原理
冰蓄冷空调系统原理冰蓄冷空调系统是一种新型的空调技术,它通过储存冰的方式来实现空调制冷,具有节能、环保的特点。
本文将从冰蓄冷空调系统的原理入手,介绍其工作原理和优势。
冰蓄冷空调系统利用低峰时段的电力来制冷,将电力转化为冷量,然后储存在冰蓄冷装置中。
当需要制冷时,系统便释放储存的冷量,实现空调制冷的目的。
这种系统不仅可以在低峰时段利用廉价的电力进行制冷,还可以减少高峰时段的电力需求,从而达到节能的效果。
冰蓄冷空调系统的核心是冰蓄冷装置,它由蓄冷罐、蓄冷管道、蓄冷泵等组成。
在低峰时段,蓄冷泵将冷冻液送入蓄冷罐中,使其在低温环境下结冰,储存冷量。
当需要制冷时,蓄冷泵将冷冻液从蓄冷罐中抽出,通过蓄冷管道送入蒸发器中,实现空调制冷。
冰蓄冷空调系统相比传统空调系统有许多优势。
首先,它可以利用廉价的电力进行制冷,降低能源成本。
其次,由于在低峰时段进行制冷,可以减少高峰时段的电力需求,缓解电网负荷压力。
此外,冰蓄冷系统还可以减少臭氧层破坏物质的排放,对环境更加友好。
冰蓄冷空调系统的原理简单清晰,但在实际应用中仍然存在一些挑战。
首先,需要充分利用低峰时段的电力,需要与电力部门进行合作,制定合理的用电政策。
其次,冰蓄冷装置的设计和制造需要满足一定的要求,以确保系统的稳定运行。
此外,冰蓄冷系统的运行需要一定的监控和管理,以确保系统的安全性和高效性。
总的来说,冰蓄冷空调系统是一种具有潜力的空调技术,它通过储存冰的方式实现空调制冷,具有节能、环保的特点。
随着能源问题的日益突出,冰蓄冷空调系统有望成为未来空调领域的发展趋势。
希望通过本文的介绍,能够更加深入了解冰蓄冷空调系统的原理和优势,为其推广应用提供一定的参考。
冰蓄冷空调系统原理
冰蓄冷空调系统原理
冰蓄冷空调系统是一种利用冰水蓄热与释热过程实现空调供暖与制冷的新型系统。
该系统利用低峰电时段使用电力将水冷却成冰,然后在高峰电时段将蓄存的冰释放,以供空调制冷。
冰蓄冷空调系统的工作原理如下:
1. 冰蓄冷系统主要由冰蓄冷装置、水系统、蒸发器和冷凝器组成。
2. 在低峰电时段,冰蓄冷装置会使用电力将水冷却至冰点以下,形成冰块。
这些冰块被储存起来,以备高峰电时段使用。
3. 在高峰电时段,冰块会通过水系统被输送到蒸发器。
蒸发器中的空气会接触到冰块,使冰块逐渐融化,并从冷凝器中吸收热量。
4. 冷凝器中的气体经过压缩,将热量传给外界,并变成高温高压气体。
然后,该气体会经过膨胀阀减压,变为低温低压气体,以供蒸发器使用。
5. 循环往复,不断地使冰块融化和冰化,从而实现空调制冷的过程。
同时,冰蓄冷系统可以吸收剩余热量,达到节能和环保的效果。
冰蓄冷空调系统的优点是可以充分利用低峰电时段的电力,将电能转化为冰能进行储存。
在高峰电时段,可以通过释放冰块来实现空调制冷,减少电力消耗。
此外,冰蓄冷系统还可以吸收室内外剩余的热量,提高系统的热效率。
综上所述,冰蓄冷空调系统通过冰蓄冷装置储存低峰电时段的
冰能,然后在高峰电时段实现空调制冷,从而实现节能和环保的目的。
冰蓄冷空调系统的应用与经济分析
冰蓄冷空调系统的应用与经济分析冰蓄冷空调系统是一种采用低温储能技术的空调系统,它利用低峰时段制冷并储存在冰蓄冷器中,然后在高峰时段利用储存的冰能来进行空调制冷,以达到节能减排的目的。
随着人们对环保节能的重视和对空调系统效能的要求不断提高,冰蓄冷空调系统逐渐成为了新一代节能环保型空调系统的首选方案。
本文将从应用与经济两个方面对冰蓄冷空调系统进行详细分析。
一、冰蓄冷空调系统的应用1. 工业领域在工业领域,冰蓄冷空调系统经常被用于大型厂房和办公楼等大型建筑的空调系统中。
这些场所的用电量通常较大,而冰蓄冷空调系统凭借其储冰和利用冰能的特点,可以在夜间低谷时段进行制冷和储能,然后在白天高峰时段释放储存的冰能进行制冷,有效减少用电峰值,降低用电成本,达到节能效果。
在商业领域,冰蓄冷空调系统也有着广泛的应用。
例如大型购物中心、写字楼、酒店等商业建筑,这些场所对空调系统的要求也非常高,而冰蓄冷空调系统则可以满足它们对于节能环保的需求。
冰蓄冷空调系统在商业领域的应用也能带来可观的经济效益,降低能源消耗,减少用电成本。
3. 居民领域在居民领域,虽然冰蓄冷空调系统的应用相对较少,但随着人们对健康环保的要求不断提高,以及能源价格的不断上涨,冰蓄冷空调系统也逐渐受到了更多家庭的关注。
冰蓄冷空调系统的应用可以减少能源消耗,降低家庭的用电成本,同时也更加环保,符合现代家庭节能环保的理念。
冰蓄冷空调系统在工业、商业和居民领域都有着广泛的应用前景,它不仅可以满足用户对于节能环保的需求,还能带来较大的经济效益。
1. 投资成本冰蓄冷空调系统一般来说需要较大的初期投资。
相较于传统的空调系统,冰蓄冷空调系统涉及到制冷设备、冰蓄冷器、管道系统等方面的投入,因此在初期投资方面会有一定的较大。
但随着制冷技术的发展和成本的不断降低,冰蓄冷空调系统的投资成本也在逐渐减少。
2. 运营成本冰蓄冷空调系统的运营成本相对较低。
冰蓄冷空调系统在能耗方面具有明显的优势,通过在低谷时段制冷和储存冰能,再在高峰时段释放冰能进行制冷,有效降低了能源消耗。
冰蓄冷原理
冰蓄冷
冰蓄冷就是将水制成冰的方式,利用冰的 相变潜热进行冷量的储存。由于冰蓄冷除 可以利用一定温差的水显热外,主要利用 的是:335KJ/Kg的相变潜热。因此,与水 蓄冷相比,储存同样多的冷量,冰蓄冷所 需的体积将比水蓄冷所需的体积小得多。
冰蓄冷
蓄冰槽内的水并不是全部都冻结成冰。为 此,常使用制冰率(IPF)来表示蓄冰槽中冰 所占的体积份额。这种特点促进了冰蓄冷 槽与制冷机一体机化机组的发展。蓄冰系 统的技术水平要求较高,它必须使用蒸发 温度低的制冷机组,要求制冷剂的蒸发压 力较低,所以压缩机能耗高;而且冰蓄冷 系统的设计和控制比水蓄冷系统复杂得多。
发展背景
我国是一个能源供应十分紧张的国家 。一 些大中城市空调用电量已占其高峰用电量 的30%以上,使得电力系统峰谷荷差加大, 有的电网峰谷差达40%多,造成机组频繁启 停。不仅增加能耗,而且影响机组寿命。 为此电力部门已明确提出到2000年电网移峰 填谷达1000~1200万kW。与其相配套的优 惠用电政策也相继出台,这给储能中央空 调的广泛应用带来了契机。
空调冷(热)源简介
பைடு நூலகம்
工业与民用建筑中,中央空调用冷热源常见的类 型如表 :
空调冷(热)负荷分析
综合分析一些已建成投运的建筑物,不难 发现其空调冷热负荷有以下一些基本特点: (1)空调年运行负荷率低,一般达到设计 负荷50%以下的运行时间占全年运行时间的 70%。
空调冷(热)负荷分析
(2)空调日负荷曲线一般同电网用电负荷 曲线同步。
冰蓄冷
所以,在空调工程中,选用蓄冰和低温送 风系统相结合的蓄冷供冷方式在初投资上 是可以和常规制冷空调系统相竞争的;且 在分时计费的电价结构下,其运行费用要 比常规制冷空调系统低得多。蓄冰和低温 送风系统相结合已成为建筑空调技术发展 的一个方向。
冰蓄冷空调原理
冰蓄冷空调原理在如今能源需求不断增长,环境问题日益严峻的情况下,各种节能技术应运而生。
冰蓄冷空调系统就是其中一项具有重要意义的创新技术。
那冰蓄冷空调到底是怎么一回事呢?它的工作原理又是怎样的呢?接下来,让我们一起揭开冰蓄冷空调原理的神秘面纱。
冰蓄冷空调系统,简单来说,就是在电力低谷时段将冷量储存起来,在电力高峰时段再把储存的冷量释放出来使用。
这就像是我们在便宜的时候买了很多东西存起来,等到价格贵的时候再拿出来用,能节省不少钱呢。
要理解冰蓄冷空调的原理,我们得先从传统空调系统说起。
传统空调系统通常是由压缩机、冷凝器、膨胀阀和蒸发器这四大部件组成。
压缩机就像一个大力士,把低温低压的制冷剂气体压缩成高温高压的气体。
冷凝器则像一个散热器,把高温高压的气体冷却成高温高压的液体。
膨胀阀就像是一个节流装置,让高温高压的液体变成低温低压的液体。
最后,蒸发器把低温低压的液体吸收周围的热量,变成低温低压的气体,从而实现制冷效果。
而冰蓄冷空调系统在此基础上增加了蓄冷装置。
常见的蓄冷装置有盘管式、封装式和冰晶式等。
在夜间电力低谷时段,制冷机组运行,产生的低温冷冻水会进入蓄冷装置。
这时,蓄冷装置中的水就会逐渐被冷却结冰,把冷量储存起来。
这个过程就像是冬天的湖水慢慢结冰,把寒冷的能量封存起来。
等到白天电力高峰时段,制冷机组可以少运行或者停止运行。
当需要制冷时,用户端的空调回水不再经过制冷机组,而是先进入蓄冷装置。
在蓄冷装置中,冰融化吸收热量,使回水温度降低,然后再送到空调末端,为室内提供冷量。
冰蓄冷空调系统之所以能够节能,主要有以下几个方面的原因。
首先,电力价格存在峰谷差异。
夜间低谷时段的电价通常比较低,而白天高峰时段的电价较高。
利用低谷时段的低价电来制冰蓄冷,在高峰时段使用,能够降低空调系统的运行费用。
其次,通过合理的控制策略,可以优化制冷机组的运行时间和负荷,提高机组的运行效率,延长机组的使用寿命。
再者,冰蓄冷空调系统能够起到移峰填谷的作用,减轻电网的负荷压力,提高电力系统的稳定性和可靠性。
冰蓄冷设备
冰蓄冷设备一、分类美国制冷工业协会(ARI)1994年出版的《蓄冷设备热性能指南》将蓄冷设备广义地分为显热式蓄冷和潜热式蓄冷,见表2-1。
表2-1*注:载冷剂一般为乙烯乙二醇水溶液。
最常用的蓄冷介质是水、冰和其他相变材料,不同蓄冷介质具有不同的单位体积蓄冷能力和不同的蓄冷温度。
二、冰盘管式(ICE-ON-COIL)冷媒盘管式(REFRIGERANT ICE-ON COIL)外融冰系统(EXTERNAL MELT ICE-ON COIL STORAGE SYSTEMS)该系统也称直接蒸发式蓄冷系统,其制冷系统的蒸发器直接放入蓄冷槽内,冰结在蒸发器盘管上。
此种形式的冰蓄冷盘管以美国BAC公司为代表。
盘管为钢制,连续卷焊而成,外表面为热镀锌。
管外径为1.05"(26.67mm),冰层最大厚度为1.4"(35.56mm),因此盘和换热表面积为5.2ft2/RTH(0.137m2/KWH),冰表面积为19.0ft2/RTH(0.502m2/KWH),制冰率IPF约为40-60%。
融冰过程中,冰由外向内融化,温度较高的冷冻水回水与冰直接接触,可以在较短的时间内制出大量的低温冷冻水,出水温度与要求的融冰时间长短有关(参见图2-1、2-2、2-3)。
这种系统特别适合于短时间内要求冷量大、温度低的场所,如一些工业加工过程及低温送风空调系统使用。
(1)10小时放热特性(图2-1)该蓄冷方式是由食品冷冻行业中应用多年的乳品冷却设备改制发展而成。
由此在乳品行业中经常采用。
最近天津雀巢咖啡生产厂,工艺要求所供应的冷冻水温在全过程中要求保证稳定在+1°C,采用BAC外融冰装置,冰盘管表面冰层厚度大约为2-3MM,冷冻机24小时连续运行。
在使用冷媒盘管式蓄冷槽时,有几点需注意:(1)当结冰厚度在1"-3.5"之间,若冷冻系统设计不当,制冰时冷冻蒸发温度较低,压缩机所需功率大,耗电率大,并且制冷时间长,用电量多;(2)若贮存的冰设有完全用掉而制冷时间已到,需要开始制冰,则必需隔着一层冰来制冰,由于冰是一种优良热阻,这将使制冷设备耗电率与用电量增加;(3)蓄冰槽内应保持约50%以上的水不冻成冰,否则无法正常抽取冷水使用进行融冰,故最好使用厚度控制器或增加盘管中心距,以避免冰桥产出;(4)在开放式系统中,蓄冰槽的进出口处(即水系统进出口管路上)应加装止回阀和稳压阀等近期制设备,以免仃泵时系统中的水回流,使蓄冰槽中水外溢。
某商场冰蓄冷空调系统方案选择
某商场冰蓄冷空调系统方案选择嘿,各位朋友们,今天咱们来聊聊一个相当高大上的话题——某商场冰蓄冷空调系统方案选择。
别看这名字挺专业的,其实里面的门道多了去了。
咱们这就开始吧!得明确一下,商场是个大空间,夏天要凉快,冬天要暖和,这空调系统可不能马虎。
那么,冰蓄冷空调系统是个啥呢?简单来说,就是利用夜间低谷电时段制冰,白天用电高峰时段用这些冰块来给商场降温,节能减排,绿色环保。
一、方案需求分析1.商场规模:得了解商场的规模,多大的地方,多大的空间,这直接关系到空调系统的选择。
2.客流量:商场的客流量也是一个重要因素,人越多,空调系统得越给力。
3.能源政策:我国各地能源政策不同,电价、补贴等政策都会影响冰蓄冷空调系统的选择。
二、方案选择1.冰蓄冷系统类型(1)全冰蓄冷系统:这种系统制冰能力较强,适合大型商场、数据中心等场所。
(2)部分冰蓄冷系统:这种系统制冰能力适中,适合中小型商场、酒店等场所。
2.制冷设备选择(1)冷水机组:冷水机组是空调系统的核心,选择时要注意其制冷能力、能效比等因素。
(2)冷却塔:冷却塔是空调系统的散热设备,选择时要考虑其散热能力、噪音等因素。
3.冰箱选择(1)蓄冷箱:蓄冷箱是存储冰块的设备,选择时要考虑其容量、保温性能等因素。
(2)蓄冷盘管:蓄冷盘管是另一种存储冰块的设备,与蓄冷箱相比,其制冷效果更稳定。
三、方案实施1.系统设计:根据商场规模、客流量等因素,进行系统设计,确保空调系统稳定可靠。
2.设备安装:设备安装要按照设计要求进行,确保系统运行正常。
3.调试运行:设备安装完成后,进行调试运行,确保系统各项指标达标。
4.维护保养:空调系统运行过程中,定期进行维护保养,确保系统稳定可靠。
四、案例分析方案实施后,商场夏季室内温度稳定在25度左右,冬季室内温度在20度左右,节能效果显著。
同时,商场还享受到了政府补贴,降低了运营成本。
冰蓄冷空调系统方案选择要考虑多种因素,包括商场规模、客流量、能源政策等。
冰蓄冷自动控制系统设备及功能说明
第三章机房自动控制系统一、冰蓄冷自动控制系统综述工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器件、系统配电柜、系统软件等部分组成。
系统结构图如下所示:PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。
上位机控制软件也可带采用CRYOGEL/(GEMINI)公司软件包的WinCC操作系统。
上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,确保实现系统的参数化,实现系统的智能化运行。
品。
蓄能系统控制具体功能如下:c、蓄冰装置及蓄热水箱进出口温度、显示与控制;d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数的显示;e、电动阀开关、调节显示;f、备用水泵选择功能;g、各时段用电量及电费自动记录;h、空调冷负荷以及室外温湿度监测;i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。
⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分析,而且所有的监测数据可进行打印。
⑸控制系统配置灵活的手动/自动转换功能。
现场控制柜可手动控制所有设备的启停。
⑹可根据负荷变化情况调整运行策略,进行系统的优化控制,最大限度发挥蓄冷系统转移高峰负荷的能力,以最大限度节省运行费用。
⑺具备无人值守功能、节假日特别控制功能。
⑻系统可通过电话线或局域网络,对本工程的蓄冷、蓄热与生活热水系统进行远程监控(可选的功能)。
二、蓄冷系统运转模式蓄冷系统按空调供回水温度7℃/12℃设计,可以通过不同阀门的开、关或调节来实现以下4种不同的运行模式:A、B、常规主机供冷+双工况主机+C、D、融冰单独供冷模式1通过低温的乙二醇溶液使蓄冰槽内的冰球蓄制冷主机的效率有相应的降低,乙二醇溶液仅在双工况主机双工况主机的出口温度逐步降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冰蓄冷设备一、分类美国制冷工业协会(ARI)1994年出版的《蓄冷设备热性能指南》将蓄冷设备广义地分为显热式蓄冷和潜热式蓄冷,见表2-1。
表2-1*注:载冷剂一般为乙烯乙二醇水溶液。
最常用的蓄冷介质是水、冰和其他相变材料,不同蓄冷介质具有不同的单位体积蓄冷能力和不同的蓄冷温度。
二、冰盘管式(ICE-ON-COIL)冷媒盘管式(REFRIGERANT ICE-ON COIL)外融冰系统(EXTERNAL MELT ICE-ON COIL STORAGE SYSTEMS)该系统也称直接蒸发式蓄冷系统,其制冷系统的蒸发器直接放入蓄冷槽内,冰结在蒸发器盘管上。
此种形式的冰蓄冷盘管以美国BAC公司为代表。
盘管为钢制,连续卷焊而成,外表面为热镀锌。
管外径为1.05"(26.67mm),冰层最大厚度为1.4"(35.56mm),因此盘和换热表面积为5.2ft2/RTH(0.137m2/KWH),冰表面积为19.0ft2/RTH(0.502m2/KWH),制冰率IPF约为40-60%。
融冰过程中,冰由外向内融化,温度较高的冷冻水回水与冰直接接触,可以在较短的时间内制出大量的低温冷冻水,出水温度与要求的融冰时间长短有关(参见图2-1、2-2、2-3)。
这种系统特别适合于短时间内要求冷量大、温度低的场所,如一些工业加工过程及低温送风空调系统使用。
(1)10小时放热特性(图2-1)该蓄冷方式是由食品冷冻行业中应用多年的乳品冷却设备改制发展而成。
由此在乳品行业中经常采用。
最近天津雀巢咖啡生产厂,工艺要求所供应的冷冻水温在全过程中要求保证稳定在+1°C,采用BAC外融冰装置,冰盘管表面冰层厚度大约为2-3MM,冷冻机24小时连续运行。
在使用冷媒盘管式蓄冷槽时,有几点需注意:(1)当结冰厚度在1"-3.5"之间,若冷冻系统设计不当,制冰时冷冻蒸发温度较低,压缩机所需功率大,耗电率大,并且制冷时间长,用电量多;(2)若贮存的冰设有完全用掉而制冷时间已到,需要开始制冰,则必需隔着一层冰来制冰,由于冰是一种优良热阻,这将使制冷设备耗电率与用电量增加;(3)蓄冰槽内应保持约50%以上的水不冻成冰,否则无法正常抽取冷水使用进行融冰,故最好使用厚度控制器或增加盘管中心距,以避免冰桥产出;(4)在开放式系统中,蓄冰槽的进出口处(即水系统进出口管路上)应加装止回阀和稳压阀等近期制设备,以免仃泵时系统中的水回流,使蓄冰槽中水外溢。
三、完全冻结式(TOTAL FREEZE-UP)卤水静态储冰(GLYCOL STATIC ICE)内融冰式(INTERNAL MELT ICE-ON-COIL STORAGE)该系统是将冷水机组制出的低温乙二醇水溶液(二次冷媒)送入蓄冰槽(桶)中的塑料管或金属管内,使管外的水结成冰。
蓄冰槽可以将90%以上的水冻结成冰,融冰时从空调负荷端流回的温度较高的乙二醇水溶液进入蓄冰槽,流过塑料或金属盘管内,将管外的冰融化,乙二醇水溶液的温度下降,再被抽回到空调负荷端使用。
这种蓄冰槽是内融冰式,盘管外可以均匀冻结和融冰,无冻坏的危险。
这种方式的制冰率最高,可达IPF=90%以上(指槽中水90%以上冻结成冰)。
生产这种蓄冰设备的厂家较多。
1、美国CALMAC蓄冰桶采用外径为16mm(也有13mm)的聚乙烯管绕成螺旋形盘管热交换器。
盘管冰层厚度为12mm,盘管换热表面积12ft2/RTH(0.317m2/KWH)。
蓄冰筒数量的选择设计步骤如下:1、确定系统的“冷吨小时数”TH TH=设计负荷*OH*DF2、确定冷水机组的“名义制冷量”CP CP=TH/[(CI*IH)+(CO*OH)]3、确定冰筒的数量N N=[TH-(CO*OH)]/冰筒的冷吨小时式中:DF--参差系数、设计“日平均负荷”除以“峰值负荷”,一般为0.65-0.90;TH--设计日系统的冷吨小时数; OH--制冷小时数;CP--机组“名义制冷量”; CI--冷水机组在制冰温度时的制冷量与空调额下制冷量之比;IH--制冷小时数; CO--冷水机组在“制冷工况下”的制冷量与额定制冷量之比,一般在1左右;例题:设计负荷200冷吨、OH=10小时、IH=12小时、DF=0.75、CI=0.65、CO=1。
图2-4图2-5采用1190蓄冰筒(190冷吨小时)。
冰筒入水温度为15.6°C,出水温度为8.9°C(日间),融冰放冷10小时,每个蓄冰筒可放冷166冷吨小时。
可查表2-3。
1、系统的冷吨小时数TH=200*10*0.75=1500冷吨小时2、冷水机组“名义制冷量”CP=1500/[(0.65*12)+10]=84.3冷吨3、冰筒数量N=[1500-(84.3*10)]/166=4个注:若全部蓄冰,OH=0。
表2-2 蓄冰筒性能和尺寸注:1、1320A型号(两筒组合)和1500型号(三筒组合),由于海运困难,未列入。
2、2150A型号适用于温度低和温差大一些的乙二醇溶液循环系统。
表2-3 每个冰筒的制冷容量(冷吨小时,1冷吨小时3.516Kwhr)我国天津福星大厦、天津立达公寓等蓄冰空调工程中采用。
2、美国DUNHAM-BUSH的ICE-CEL蓄冰罐采用外径为19mm的聚乙烯管组成的蛇形盘管热交换器。
3、我国南京安纳特科技实业有限公司生产ET系列储冰桶亦采用聚乙烯管组成的蛇形盘管热交换器。
4、美国FAFCO蓄冰槽由外径为6.35mm的耐高低温石腊脂塑料管制成平行流换热盘管垂直放入保温槽内构成,平均冰层厚度为10mm,盘管换热表面积为13ft2/RTH(0.345m2/KWH)。
它置于钢制或玻璃钢制槽体内构成,其构造见图4-6,整体式蓄冰槽也可置于钢筋混凝土槽内或筏基内。
图2-6 FAFCO 蓄冰槽构造图发克(FAFCO)蓄冰设备分为标准槽及非标换热器。
(1)发克标准槽a)材质:蓄冰槽外壳为1.6mm镀锌钢板,内部一层29.48M2h°C/kcal保温断热层,槽体内表面有一层0.76mm的聚氯乙烯防水膜,槽体钢架结构皆经过热浸镀锌处理。
b)型式:依其蓄冰容量分为 590型(600cm*244cm*208cm) 420型(462cm*244cm*208cm) 280型(305cm*244cm*208cm) 140型(168cm*244cm*208cm)c)标准槽详细规范:表2-4我国北京中央人民广播电台、深圳万德大厦等蓄冰空调工程中采用。
(2)发克(FAFCO)非标换热器配合建筑物规划充分利用机房或建筑结构做为钢筋混凝土蓄冰槽使用。
槽内外均需做防水处理,槽内另做保温断热层,以减少换热损失,并配合槽内净高选用适当尺寸的发科非标蓄冰换热器。
a)材质:由耐高、低温材料特殊石蜡脂制成。
b)型式:依其平展总长度分为 HXR-24、HXR-22、HXR-18、HXR-16、HXR-14、HXR-12、HXR-10八种型式。
c)非标换热器详细规范:表2-5我国北京国际贸易中心二期蓄冰空调工程中采用。
表2-6 即为采用各种不同发克蓄冰设备安装4000冷却小时对机房净高与平面面积的需求。
表2-65、美国BAC蓄冰槽里装有一个钢制的热交换器,其外径为1.05"( 26.67m),结冰厚度控制在0.9"(23mm)左右,虽然是属于内融冰方式,但冰与冰之间仍有极小的间隙,以便在融冰过程中,结在盘管周置的冰存在少量的活动空间,使得钢管与冰始终存在有直接接触的部位,因此导热较好,在整个融冰过程中蓄冰槽的出口二次冷媒温度始终可保持在3°C左右,并使冰几乎全部被融化来供冷。
其盘管构造如图2-7。
图2-7 BAC 盘管构造图制冰是通过重量比为25%的工业抑制性乙烯乙二醇溶液的循环,在蓄冰装置中的盘管上制冰。
此间,制冷机的工作状况受到监控,当离开制冷机的乙二醇达到最低出口温度时,制冷机即关闭。
图2-8描述了制冷机在制冰周期分别为8、10、12小时制冷机口的乙二醇温度。
对于一个典型的10小时制冰周期而言,乙二醇出口温度绝不低于22°F(-5.6°C)。
如图所示,若制冰周期超过10小时,乙二醇极限温度要高于22°F;如果制冰期短于10小时,乙二醇极限温度将在制冰循环终点时低于22°F。
这一性能是建立在5°F温差的制冷机流量基础上的,当所选制冷机温差更大时,其乙二醇出口温度将比图2-8所示要低。
图2-8 制冷机出口温度表2-7 BAC内融冰式蓄冰槽性能表我国中央电视台、上海浦东国际儿童医疗中心、杭州市建设银行办公大楼等蓄冰空调工程中采用。
6、北京清华人工环境工程公司生产RH-ICU系列盘管式冰蓄冷设备。
我国唐山市百货大楼、杭州虹桥饭店、清华智能楼等蓄冰空调工程中采用。
四、制冰滑落式(DYNAMIC ICE-MAKER)制冰机(ICE HARVESTER)系统动态制冰机(DYNAMIC ICE MAKER)系统(DYNAMIC ICE-HARVESTER)图2-9 制冰滑落式系统原理图该系统的基本组成是以制冰机作为制冷设备,以保温的槽体作为蓄冷设备,制冰机安装在蓄冰槽的上方,在若干块平行板内通入制冷剂作为蒸发器。
循环水泵不断将蓄冰槽中的水抽出至蒸发器的上方喷洒而下,而冰冷的板状蒸发器表面,结成一层薄冰,待冰达到一定厚度(一般在3-6. 5mm 之间)时,制冰设备中的四通阀切换,压缩机的排气直接进入蒸发器而加热板面,使冰脱落。
“结冰”,“取冰”反复进行,蓄冰槽的蓄冰率为40-50%。
不适合于大、中型系统。
其系统原理图见图2-9。
代表性厂家有美国的Turbo.Morris和Paul Mueller。
五、冰球式(Ice Ball)容器式(Encapsulated Ice)此种类型目前有多种形式,即冰球,冰板和蕊心褶囊冰球。
冰球又分为园形冰球,表面有多处凹涡冰球和齿形冰球。
(1)冰球式以法国CRISTOPIA为代表,蓄冰球外壳有高密度聚合烯烃材料制成,内注以具高凝固---融化潜热的蓄能溶液。
其相变温度为0°C,分为直径77mm(S型)和95mm(C型)两种。
以外径95mm冰球为例,其换热表面积为28.2ft2/RTH(0.75m2/KWH),每立方米空间可堆放1300个冰球;外径77mm冰球每立方米空间可堆放2550个冰球。
冰球结构图见图2-10。
冰球的性能参数见表2-8。
图2-10 冰球结构图表2-8 冰球的性能参数表注:(1)表内以蓄冷罐体积为1m3;(2)a:符合1991年5月12日O.E.C.D(经济合作和发展组织)会议的标准; (3)LD50:为一种口服毒性物质。
根据实验,当给不同的动物口服按其体重所调配而得的不同剂量的LD50,约50%的动物死亡。