冰蓄冷系统技术总结
冰蓄冷知识点总结
冰蓄冷知识点总结一、冰蓄冷技术的原理1. 制冷原理:冰蓄冷技术利用低温时段利用外部电力或太阳能等能源,把水制冷冰冻,制得冰块。
当需要冷却的时候,释放储存的冷能,以此降低制冷系统的负荷,降低能耗。
2. 蓄冷原理:制冷设备在低峰时段运行,将冰制造好保存起来。
在高峰时段不需要开启制冷设备,通过释放储存的冷能来满足需求。
二、冰蓄冷技术的优点1. 节约能源:冰蓄冷技术能够在低峰时段利用便宜的电力或者太阳能等能源,制冷并储存冷能,降低高峰时段的能耗成本。
2. 减少负荷峰值:通过在低峰时段制冷并储存,可以在高峰时段释放冷能,降低空调系统的负荷峰值,减少对电网的压力。
3. 环保节能:使用冰蓄冷技术可以减少碳排放,降低能源消耗,对环境更加友好。
4. 应用广泛:冰蓄冷技术不仅可以应用在建筑空调系统,还可以应用在食品零售行业、交通车辆、工业生产等领域。
5. 维护便利:冰蓄冷系统相比于传统直接蒸发式制冷系统,维护成本更低,寿命更长。
三、冰蓄冷技术的应用领域1. 建筑空调系统:在商业建筑和住宅楼宇的空调系统中广泛应用,通过在夜间低峰时段制冷,白天释放冷能来降低空调系统运行成本。
2. 食品零售行业:冰蓄冷技术在超市、冷藏库等场所使用,能够减少制冷系统的耗电量,降低运行成本,同时保持食品的新鲜。
3. 交通工具:在公共交通工具和商用车辆中,冰蓄冷技术可以减少车辆空调系统的能耗,提高燃油利用率。
4. 工业生产:在一些工业生产过程中,例如塑料加工、化工等领域,冰蓄冷技术可以用来降低生产过程中的制冷成本。
四、冰蓄冷技术的发展趋势1. 太阳能结合:将太阳能与冰蓄冷技术结合,可以更好地利用清洁能源,增加系统的可持续性。
2. 智能化控制:通过智能传感器和控制系统,可以实现对冰蓄冷系统的精确监控和调节,进一步提高能效。
3. 新材料应用:利用新型材料和制冷技术的发展,可以提高冰蓄冷系统的效率和环保性。
4. 多元化应用:冰蓄冷技术不仅可以应用于空调制冷,还可以拓展到其它工业和生活领域,提高其市场应用的多元性。
冰蓄冷空调的系统设计及节能优化措施(全文)
冰蓄冷空调的系统设计及节能优化措施(全文)模板一:冰蓄冷空调的系统设计及节能优化措施一:引言冰蓄冷空调系统是一种先进的节能环保技术,广泛应用于建筑物的空调系统中。
本文将详细介绍冰蓄冷空调系统的系统设计和节能优化措施。
二:冰蓄冷空调系统的原理1. 概述冰蓄冷空调系统利用夜间电力溢价时段,通过将低温蓄冷剂储存为冰块,然后在白天高峰用电时段,利用冰块的蓄冷效果制冷,从而实现节能的目的。
2. 系统组成冰蓄冷空调系统主要由以下组成部分组成:- 蓄冷装置:用于储存冰块的蓄冷装置,包括冰蓄冷槽、冷却设备等。
- 制冷蒸发器:用于吸收室内热量并进行制冷的设备。
- 冷凝器:用于将制冷剂释放出去,使其重新循环的设备。
- 制冷剂循环系统:负责将制冷剂在各个设备之间循环运行的系统。
- 控制系统:负责控制冰蓄冷空调系统的运行和节能优化的系统。
三:冰蓄冷空调系统的设计要点1. 冰蓄冷槽的设计- 冰蓄冷槽的尺寸和容量应根据建筑物的需求和制冷负荷进行合理设计。
- 冰蓄冷槽的材料应选用具有良好保温性能和强度的材料,以减少冷量的损失。
2. 制冷蒸发器的设计- 制冷蒸发器的选型应根据建筑物的使用场所和制冷需求进行选择。
- 制冷蒸发器的数量和布置应根据建筑物的结构和建筑物内部气流的要求进行合理设计。
3. 冷凝器的设计- 冷凝器的选型应考虑制冷剂的特性和建筑物的冷却需求。
- 冷凝器的热交换面积应根据制冷负荷和建筑物冷却需求进行合理计算和设计。
4. 控制系统的设计- 控制系统应具备实时监测和控制的功能,以实现冰蓄冷空调系统的智能化和自动化控制。
- 控制系统的算法应考虑建筑物的使用情况和能耗数据,优化冰蓄冷空调系统的节能效果。
四:冰蓄冷空调系统的节能优化措施1. 蓄冷装置的优化- 进一步提高蓄冷装置的保温性能,减少冷量的损失。
- 优化冷却设备的设计和运行方式,提高能效和性能。
2. 制冷蒸发器的优化- 优化制冷蒸发器的传热效果,提高制冷效率。
- 选择高效制冷剂,减少制冷剂的损失和能耗。
冰蓄冷空调系统的优点和缺点
冰蓄冷空调系统的优点和缺点模板1:【冰蓄冷空调系统的优点和缺点】一:冰蓄冷空调系统的优点1.1 节能环保冰蓄冷空调系统采用冰蓄冷技术,能够利用夜间电力峰谷时段进行蓄冷,白天通过释放冷能来供应空调需求。
相比传统空调系统,冰蓄冷系统的能效更高,可节约能源,减少能源消耗与排放。
1.2 调节性好冰蓄冷空调系统具有良好的调节性能,能够根据室内空调需求实时调节制冷量,保持室内舒适温度,提高的使用体验。
1.3 降峰填谷冰蓄冷空调系统的蓄冷技术使其能够利用夜间电力低谷时段进行蓄冷,实现降峰填谷。
这不仅可以缓解白天用电高峰时段的电力压力,还能提高电网供电的稳定性和安全性。
1.4 声音低冰蓄冷空调系统的主要制冷设备通常安装在室外或者室内的专用机房中,因此室内的噪音较低,对的生活和工作不会造成太大的干扰。
二:冰蓄冷空调系统的缺点2.1 设备成本高由于冰蓄冷空调系统需要配备专门的设备和蓄冷设施,其设备成本相对较高。
对于一些小型场所来说,可能无法承担这种高额设备投资。
2.2 维护成本较高冰蓄冷空调系统需要定期进行维护和检修,确保设备的正常运行。
这就需要投入额外的人力和财力成本,对于一些资源有限的来说会增加一定的负担。
2.3 系统复杂冰蓄冷空调系统由多个组成部分组成,包括冷源设备、储冷设备、供冷系统等,系统复杂度相对较高。
这就需要操作人员具备一定的专业知识和技能,才能保证系统正常运行。
2.4 储冰空间需求大冰蓄冷空调系统需要专门的蓄冷设施来储存冷能,而这些设施通常占地较大,对于一些场所空间有限的地方来说,可能无法满足储冷需求。
【文档结束】本文档涉及附件:无【法律名词及注释】1. 能效:能源效率,衡量能源利用程度的指标。
2. 降峰填谷:利用低谷时段进行电力供应,平衡电力负荷。
模板2:【冰蓄冷空调系统的优点和缺点】一:冰蓄冷空调系统的优点1.1 能量利用率高冰蓄冷空调系统通过储存冷能,在夜间低谷时段制冷,白天供应冷空气,能充分利用电能,并提高能量利用率。
冰蓄冷、水蓄冷方面总结
1 本资料由“江南雨”整理总结 共1页冷蓄冷系统特点:1、电力移峰填谷、均衡电力负荷,社会效益显著;2、享受峰谷电价,与常规空调相比,运行费用大大降低,经济效益显著;3、降低电力设施投资(无电力增容费),冷机无需按峰值负荷造型,冷机容量和装设功率小于常规空调系统,一般可减少30%~50%,电力高压侧和低压侧容量减少,降低电力建设费用;4、充分利用设备,冰蓄冷空调制冷满负荷运行比例增大,提高冷机COP值和运行效率,冷机工作状态稳定,提高设备利用率并延长机组寿命;5、投资比较,冰蓄冷空调一次性投资比常规空调略高(仅机房部分,末端设备与常规空调系统相同),但若计入配电设施建设费等,有可能投资相当或增加不多,甚至可能投资降低。
效率比较:夜间冷机制冷工况进行时,由于气温下降带来的得益可补偿由蒸发温度下降所带来的损失。
全负荷蓄冰空调系统运行电费最省,但由于设备的使用效率低(主机高峰期不运行),所需的主机和储冰器的容量较大,与主机配套的冷却塔和电力设备也大,一次投资费用最多。
因此全负荷蓄冰空调在实际工程中较少采用。
部分负荷蓄冰空调在日间电力高峰期,由储冰器和制冷主机联合供冷,设备的使用效率高,相对于全负荷蓄冰模式,主机和储冰器的容量最多可减少至近一半,可实现最少的初投资和最短的投资回收期。
但该模式的运行电费比全负荷蓄冰模式高。
新建项目的投资比较:水蓄冷空调增加了水蓄冷槽、蓄冷放冷泵,但减少了主机系统的配置容量,因此初投资与常规空调系统基本相当,甚至低于常规空调系统。
冷蓄冷空调由于需增加双工况主机、冰蓄冷设备、乙二醇溶液、乙二醇泵、低温板换等设备,因此初投资明显高出常规空调系统。
系统效率比较:水蓄冷空调系统在蓄冷时比常规系统出水温度低3℃左右,主机的COP值降低有限,考虑到整个系统节能性(如蓄冷时夜间气温比较低,冷却效率高)水蓄冷系统基本不增加耗电量,多数系统甚至可节省电量,真正做到节钱又节能。
冷蓄冷空调系统在制冰时,其乙二醇溶液温度需降至‐6℃左右,比常规空调系统温度降低了13℃左右,因此冰蓄冷空调比常规空调的COP值下降了30%~35%。
冰蓄冷工程设计经验总结
冰蓄冷工程设计经验总结1.蓄冰槽容量不宜过大年夜,会使蓄冰槽因自重变形,必须增长槽的壁厚以及进行加固,还会给制造安装和运输带来困难,同时也增长了费用。
在蓄冰槽的扩散管的排布上,会因扩散管的排布过密而白费大年夜量的空间,还会阻碍冻冰及融冰的后果。
2.冷冻站平日位于大年夜厦的地下部分,而地下部分又往往是泊车库、站房、办公集中的部位;应用面积专门重要、造价昂贵;在蓄冰槽的设置及排布上应尽量应用可应用的空间地位。
3.乙二醇溶液100%的价格大年夜约是7100元/吨,价格昂贵。
在体系中,假如因为检修或体系渗漏会造成专门大年夜的不须要的经济损掉,同时对情形造成污染。
在施工中,管道及设备用设立稳固的支、吊架,同时体系应进行严格的严密性实验。
假如有可能在乙二醇溶液充注进步行水溶液的试运转,不雅察全部体系的运转情形;及自控体系的测点及电动阀门的动作合营。
4.蓄冰槽在安装过程中,槽与下面的支撑必须进行隔冷处理,以免局部形成冷桥,槽的本体必须进行绝热保温设计以削减冷损掉。
乙二醇溶液在蓄冰过程中平日在-2.19℃/-5.56℃范畴内,与四周情形的温差大年夜;假如隔热后果不行,在日常平凡的运行中会造成专门大年夜的白费。
因此蓄冰槽的本体的保温厚度应大年夜于标准工况的冷冻水的保温厚度,保温层应严密尽量削减冷损掉。
5.蓄冰槽不管是立槽照样卧槽在设计中必须推敲载冷剂(即25%的乙二醇溶液)的分派平均性。
在槽的进口和出口设均流管。
本工程采取了DN200扩散管,均流管供、回各一根,在体系冻冰及融冰过程中流向相反。
将载冷溶液平均有效地传给槽内蓄冰球。
6.在蓄冰槽的设计中还推敲人孔以便填充球,在填充蓄冰球时,对高于2M的卧槽或立槽,应预先在槽中充入1/3槽的水以削减填球时的冲击使球平均地填充(因为冰球的密度比水小,冰球浮于水面有利于冰球的扩散);同时水不宜过多,晦气于冰球填满全部冰槽(造成冰槽底部无冰球);槽的底部设卸球孔,也可作排污用。
冰蓄冷空调系统原理及其技术
冰蓄冷空调系统原理及其技术冷冻机组是冰蓄冷空调系统的核心组成部分,采用蓄冷装置进行蓄冷。
在低峰电时段,冷冻机组将制冷剂吸热并通过冷凝器将热量散出,使制冷剂冷却并转化为液态,然后将制冷剂送入蓄冷器,将蓄冷器中的水逐渐冷却,冷却后的水变成冰,并储存在蓄冷器内。
在高峰电时段,蓄冷负荷系统将冷负荷循环水泵系统启动,将蓄冷器内的冷水泵入冷源回水系统,通过冷负荷系统传递给需要制冷的场所,实现制冷效果。
冷水循环使用后返回冷却塔进行冷却,然后再次送往蓄冷器进行蓄冷。
在冰蓄冷空调系统的控制系统中,通过对冷冻机组、蓄冷装置和蓄冷负荷系统的控制,可以实现对系统运行状态的监控和调节。
通过控制系统中的传感器和控制器,可以监测和控制系统的温度、湿度、压力等参数,实现自动化的控制和调节。
冰蓄冷空调系统的技术主要包括制冷技术和控制技术两个方面。
制冷技术方面,冰蓄冷空调系统使用了高效、环保的冷冻机组和蓄冷器,通过冷凝器散热,将热量排出系统,从而实现制冷效果。
控制技术方面,冰蓄冷空调系统采用了先进的控制系统,通过对温度、湿度、压力等参数的监测和调节,实现冰蓄冷空调系统的智能化控制和运行。
冰蓄冷空调系统具有多种优点。
首先,冰蓄冷空调系统能够在低峰电时段利用廉价的电力进行制冷,从而节约能源成本。
其次,冰蓄冷空调系统具有较高的制冷效果,能够满足大型建筑物和集中供冷系统的制冷需求。
此外,冰蓄冷空调系统对环境的影响较小,减少了对大气环境的污染。
总结起来,冰蓄冷空调系统是一种具有节能高效、环境友好的空调制冷技术。
通过利用低温物质冰的蓄热特性,实现在低峰时段制冷,高峰时段释放冷量,从而节约能源,减少对环境的影响。
冰蓄冷空调系统的原理及其技术的不断发展和创新将为空调制冷领域的发展带来新的机遇和挑战。
(42)冰蓄冷水蓄冷方面总结
(42)冰蓄冷水蓄冷方面总结(42)冰蓄冷、水蓄冷方面总结1本资料由“江南雨”整理总结共1页冷蓄冷系统特点:1、电力移峰填谷、平衡电力负荷,社会效益明显;2、享用峰谷电价,与常规空调较之,运转费用大大降低,经济效益明显;3、减少电力设施投资(并无电力增容费),冷机无须按峰值负荷造型,冷机容量和装设功率大于常规空调系统,通常可以增加30%~50%,电力高压两端和扰动两端容量增加,减少电力建设费用;4、充分利用设备,冰蓄冷空调空调满负荷运转比例减小,提升冷机cop值和运转效率,冷机工作状态平衡,提升设备利用率并缩短机组寿命;5、投资比较,冰蓄冷空调一次性投资比常规空调略低(仅机房部分,末端设备与常规空调系统相同),但若扣除配电设施建设费等,有可能投资相当或减少不多,甚至可能将投资减少。
效率比较:夜间冷机空调工况展开时,由于气温上升增添的获益可以补偿由冷却温度上升所增添的损失。
全负荷蓄冰空调系统运行电费最省,但由于设备的使用效率低(主机高峰期不运行),所需的主机和储冰器的容量较大,与主机配套的冷却塔和电力设备也大,一次投资费用最多。
因此全负荷蓄冰空调在实际工程中较少采用。
部分负荷蓄冰空调在日间电力高峰期,由储冰器和空调主机联手供冷,设备的采用效率高,相对于全系列负荷蓄冰模式,主机和储冰器的容量最多可以增加至近一半,可实现最少的初投资和最长的投资回收期。
但该模式的运转电费比全负荷蓄冰模式低。
新建项目的投资比较:水蓄冷空调增加了水蓄冷槽、蓄冷放冷泵,但减少了主机系统的配置容量,因此初投资与常规空调系统基本相当,甚至低于常规空调系统。
冷蓄冷空调由于需增加双工况主机、冰蓄冷设备、乙二醇溶液、乙二醇泵、低温板换等设备,因此初投资明显高出常规空调系统。
系统效率比较:水蓄热空调系统在白唇热时比常规系统水温度高3℃左右,主机的cop值减少非常有限,考虑到整个系统节能环保性(例如白唇热时夜间气温比较高,加热效率高)水蓄热系统基本不减少耗电量,多数系统甚至可以节省电量,真正努力做到节钱又节能环保。
冰蓄冷系统技术总结报告精选
冰蓄冷系统技术总结报告精选冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。
1.削峰填谷、平衡电力负荷。
2.改善发电机组效率、减少环境污染。
3.减小机组装机容量、节省空调用户的电力花费。
4.改善制冷机组运行效率。
5.蓄冷空调系统特别合适用于负荷比较集中、变化较大的场合加体育馆、影剧院、音乐厅等。
6.应用蓄冷空调技术,可扩大空调区域使用面积。
7.合适于应急设备所处的环境,计算机房、军事设施、机房和易燃易爆物品仓库等。
〔1〕节省电费。
(2)节省电力设备费用与用电困扰。
(3)蓄冷空调效率高。
(4)节省冷水设备费用。
(5)节省空调箱倒设备费用。
(6)除湿效果合格。
(7)断电时利用一般功率发电机仍可保持室内空调运行。
(8)可快速达到冷却效果。
(9)节省空调及电力设备的保养成本。
(10)降低噪乱冷水流量与循环风上减少,即水泵与空调机组运转振动及噪音降低。
(11)使用寿命长。
〔1〕关于冰蓄冷系统,其运行效率将降低。
(2)增加了蓄冷设备费用及其占用的空间。
(3)增加水管和风管的保温费用。
(4)冰蓄冷空调系统的制冷主机性能系数〔COP〕要下降。
蓄冷系统工作模式是指系统在充冷还是供冷,供冷时蓄冷装置及制冷机组是各自单独工作还是共同工作。
蓄冷系统必需在规定的几种方式下运行,以满足供冷负荷的要求常用的工作模式有如下几种:(1)机组制冰模式(2)制冰同时供冷模式(3)单制冷机供冷模式(4)单融冰供冷模式(5)制冷机与融冰同时供冷冰蓄冷空调制冰机组分出很多种类像冰球制冷、钢盘管内〔外〕融冰、冰浆、冰蕊等制冰方式2.我想写一篇关于冰蓄冷的论文,帮忙提供点素材一、什么是冰蓄冷技术:利用夜间用电负荷较低并且电价偏低的低价电打开主机制冷蓄冰,白天在用电高峰并电价偏高的时候,融冰释放冷量制冷的技术,我们称它为冰蓄冷技术。
冰蓄冷技术及节能作用
S y s t e m) , 此 形式 是不完 全冻 结式 , 在蓄 水槽 内充 满
着水。由于水和冰的充分接触, 可以在较短的时间内
产生大量 的低温冷 冻水 。 释冷量 的大小取 决于回水温
度的高低以及回水流量的大小。 低温冷冻水的出水温 度与要求融冰时间长短有关 , 一般来讲 , 融冰时间愈 长, 出水温度愈低 ; 融冰时间愈短 , 出水温度愈高。
_ _ _ 一
剂 没 有充 满球 体 , 留有 一 定 的空 气 , 外 壳使 用 的 是
图 2 内 融冰
H D P E聚乙烯材料。
2)外融 冰 如 图 3所示 ,融 冰过程 中温度较 高的冷 冻水 回 水 与冰 直接接触 , 冰 由外 向内融化 , 所以, 也 称为外融
冰 系 统 ( e x t e r n a l Me l t I c e o n C o i l S t o r a g e
境保 护 . 2 0 0 9 .
增加了余热回收系统运行的可靠性。
5 结 束 语
『 3 1 王 晓 露 .无 油 螺 杆 空 气 压 缩 机 热 回 收 系 统
空 压机 运 行 产 生 的热 量 , 如 果 不释 放 掉 , 可 引 起 电机 高温 及排气 高温 , 不但 影 响空压 机 的使 用寿
图 4 冰 球
…
O N SER V ATI ON
再 2 9 1
节 能 技 术 和 产
品
热 量排放 , 不 但浪 费 了能源 , 更会 造成 热 污染 。 本 文
介绍了几种典型的空压机余热回收系统 , 包括喷油 螺杆空压机、 无油螺杆空压机 、 离心式空压机 , 并单
独 分析 了水 冷式 空压机 , 使得 各 种 空压机 都 有适 合
冰蓄冷技术
冰蓄冷技术近年来,随着社会需求日益增加,人们越来越重视能源节约和环境保护问题。
冰蓄冷技术已经成为重要的可持续发展理念之一。
冰蓄冷技术也被称为“冰蓄冷机”,是一种省电、环保和可持续发展的节能技术。
它可以按照社会的要求,通过冰蓄冷机的技术在夏季的冷热天气中进行存储冷热,从而实现冷热的蓄存和节能的目的。
冰蓄冷技术原理很简单。
在夜晚空气温度较低的条件下,通过冰蓄冷机将空气中的低温热量进行蓄存,由此形成一种蓄冷器,以保持冷暖的状态。
随后在高温日子,可以从蓄冷器里取出低温热量,它的优势在于能够维护室内的低温环境,从而节约能源和环境。
冰蓄冷技术主要是通过以下两个方法来实现冷热储存:一是通过采用低温储存系统,将外部的低温热量储存在室内的蓄冷器中,实现建筑物内外温度的梯度分布,实现节能效果;二是采用太阳能设备,利用太阳能蓄冷技术,将太阳能转换热能,储存在室内的太阳能蓄冷器中,实现建筑物内外温度的梯度分布,实现节能效果。
冰蓄冷技术对于节能环保有着重要的意义。
它的原理可以改善建筑物的冷热分布,改善室内空气的循环,减少空调使用,降低能源消耗,从而节约能源、保护环境,是一种非常有效的节能节能技术。
在冰蓄冷技术的应用中,要考虑到不同地区的环境条件,在不同的环境条件下,使用不同的冰蓄冷技术,才能真正发挥冰蓄冷技术的最大优势,实现节能的目的。
目前,冰蓄冷技术已经发展成熟,在经济建筑、低碳建筑、新能源建筑中应用广泛。
冰蓄冷技术可以有效提高建筑物的节能效果,同时也可以改善室内空气的质量,进一步保护环境。
总之,冰蓄冷技术不仅可以有效节能,而且还可以确保空气的清新、有利于环境的绿色发展。
它是一项新型的、技术含量高的、可持续发展的节能技术,有望在我国的建筑行业和工业发展中发挥重要作用。
冰蓄冷技术
方案甲
国际大厦空调计算冷负荷为 7700kW。 制冷机房设于地下三层。 楼层分为上下2个分区。 上区16~33层冷负荷4200kW, 下区 1~14层冷负荷 3500kW。
1:3台 离心式冷水机组 ,设于地下三层 ; 2:板式换热器 ,设于 1 5层 3: 3台低区冷冻水泵 ; 4: 3台高区冷冻水泵 ; 5:末端设备。 3台方型冷却塔设于 3 4层屋面; 3台冷却水泵设于地下三层。
半蓄冰式
在用谷值期间 ,制冷机用于蓄冰制冰运行 ,在白天里 ,一部分负荷由蓄冰器 承担 ,另一部分则由制冷机直接负担 ,这种方式可由下面三种方法运行
冰水并联系统 系统中空调器只需一个盘管 ,空调期间 ,冷媒不直接送入空调器而是在另 一组蒸发器中蒸发 ,制成冰水送入制冰器中与冰换热 ,进一步冷却成低温 冷水 ,再送入空调器盘管使用 ,蓄冰器与制冰水蒸发器回路是并联的.
案将获得更大经济效益。 6.乙方案由于夜间制冰有可能提供 18:00~24:00部分房
间需要之冷量。
9.3冰蓄冷在唐山百货大楼空调系统改造中的应用
设计资料
唐山百货大楼建筑面积 40 000m2 ,分为超级商场和条式楼两部 分。 超级商场面积 8000m2,地下 1层 ,地上 4层 ,集中空调系统于 1 992年建成 ; 条式楼面积 32000m2,地下 1层 ,地上 5层 ,集中空调系统于 1 996年建成。 大楼空调用电占大楼总用电近 70 %,原有变压器严重超负荷运 行,不得不限电运行或限制其他项目发展。
盐水间接冷却蓄冰系统
盐水不冻液蓄冰则是将冰桶与蒸发器分开 ,因此制冷时的运 作不会影响蒸发器。盐水不冻液间接冷却虽增加盐水输送部 分费用 ,但系统整个COP较高 ,长期运转费用会降低。因此 , 笔者建议 ,在条件具备时 ,应优先采用间接冷却制冰。
冰蓄冷技术
冰蓄冷技术周明一、冰蓄冷空调技术及其发展背景蓄冰空调系统即是在电力负荷很低的夜间用电低谷期,采用电制冷机制冷,将冷量以冰的形式贮存起来。
在电力负荷较高的白天也就是用电高峰期,把储存的冷量释放出来,以满足建筑物空调负荷的需要。
同时在空调负荷较小的春秋季减少电制冷机的开启,尽量融冰释冷,提供空调负荷。
蓄冰空调系统是“转移用电负荷”或“平衡用电负荷”的有效方法。
电力工业是国民经济的基础产业,目前我国的发电装机容量已居世界第二位,但仍不能满足电力消费量;同时电力消费出现夏季冬季差值持续加大的现象,而同一天的上午和晚上电力消费量亦较其他时段达到高峰。
过去国家实行供电侧调节,主要靠新建电厂和建设蓄能电站,但仍满足不了每年用电量以5~7%增长的需要,同时电力系统峰谷差也急剧增加,电网负荷率明显下降,极大影响了发电的成本和电网的安全运行。
由于电能本身不易储存,因此近年来国家从电用户方面考虑并制定了一系列的移峰填谷和节约用电政策加强对用电需求侧的管理(DSM),由于高峰用电量中空调用电一般占了30%以上,建筑物用电的40~60%左右,采用蓄冰空调后可大大缓解由于空调用电负荷在用电峰谷时段的不均衡而造成的电网不均衡。
因此现在全国有许多城市的电力部门都适时推出了分时电价结构和许多相关的优惠政策,以鼓励人们使用蓄冰空调。
冰蓄冷空调技术是实现电网削峰填谷主要方法之一,目前该项技术在世界上属于成熟的技术,正被世界各国广泛的应用于各个领域。
根据权威机构99年的资料显示,蓄冰工程已有1.5万个在全球各地正常运行,仅我国台湾省到2000年末就有近500个蓄冰空调系统正在运行。
国内目前也有150个蓄冰空调系统工程在运行或建设之中,发展势头十分迅猛。
国家电力公司也在有关文件中提出积极推广蓄冰空调技术,转移高峰电力,提高电网经济运行和资源综合利用水平,以达到节能和环境保护的目的。
二、冰蓄冷空调系统主要特点冰蓄冷空调系统相对于常规空调系统具有以下一些特点:1. 冷水机组高效率运行,系统运行灵活,冷量一比一的配置对负荷变化的适应性很强。
冰蓄冷的优缺点介绍
冰蓄冷的优缺点介绍冰蓄冷空调的原理和优缺点介绍一、冰蓄冷的技术原理:冰蓄冷中央空调是指在夜间低谷电力段开启制冷主机,将建筑物所需的空调部分或全部制备好,并以冰的形式储存于蓄冷装置中,在电力高峰时段将冰融化提供空调用冷,由于充分应用了夜间低谷电力,由此使中央空调的运行费用(在有夜间低谷电力费用的地区)降低。
在有夜间低谷电力费用的地区,冰蓄冷中央空调不仅为用户节约大量的运行费用,而且对电网具有卓越的移峰填谷功能,提高电网运行的经济性。
国家发改委在《节能中长期专项规划》中,将应用电力蓄冷、蓄热作为节能降耗的十大措施之一。
二、冰蓄冷技术与普通空调相比所具有的优势:1、优化空调系统:原中央空调系统设计属于耗能型中央空调系统设计,通过冰蓄冷系统的设计可将原系统进行优化,使空调运行过程更趋于合理。
2、降低运行电费:充分利用电价优惠政策,在夜间低电谷电价时段制冷,在高峰电价时段放冷使用,能够做到部分移峰,从而降低空调运行电费。
3、节省空调运行电量:a、由于充冷过程在夜间进行,夜间气温相比白天较低,制制冷单耗下降。
B、由于充冷时制冷机满负荷地高效运行,避免了正常供冷时难以避免的“小马拉大车”的现象。
4、增加了空调系统的运行的灵活性:b、然停电时,不需开主机,只需开供冷泵,因此,使用备用电源仍可维持空调供冷。
b、应紧张,供电部门对正常中央空调要限电使用,但在全国各地,蓄冷中央空调往往得到额外支持,不在限制范围。
c、行方式灵活,空调可按原有系统单独运行,也可与增加蓄冷系统结合运行。
三、冰蓄冷技术与普通空调相比所具有的缺点:1、通常在不计电力增容费的前提下,其一次性投资比常规空调大。
2、蓄冷装置要占用一定的建筑空间,而且增加了蓄冷设备费用。
3、制冷蓄冰时制冷主机的制冷效率要比在空调工况下低,其空调系统的制冷性能系数(COP)要下降。
4、与普通空调系统相比需增加水管和风管的保温费用。
5、设计与调试相对比较复杂,效能的完全发挥受环境影响较大。
冰蓄冷技术
冰蓄冷技术
冰蓄冷技术是一种在室外应用先用过夜时间从室外空气中获得的冷量,并储存起来,
然后在白天拿出储存的冷量来使空调系统运转及空调系统的新鲜空气的冷却制冷剂的一种
优化方法。
这一技术综合利用夜间的低温和冷却剂的潜热,为白天冷却系统提供可靠的节
能制冷和冷却服务。
它能够在有限的设备下实现高效制冷,并具有节能、低成本、无噪音
等优势。
冰蓄冷技术在工业冷冻设备和空调设备中都具有广泛的应用,主要包括保护市政地热,该技术利用低热值冷却剂,在晚上将室外低差温空气经由管道和换热器传输到系统中,储
存及分配冰晶能量,从而实现日间顶冷;在冰箱节能空调设备中,该技术通过电控系统实
时监测室外环境特点,从而实现冰蓄冷能量储存和分配,使节能设备运行效果最佳;在用
户端设备中,主要集成以低温技术和节能技术实现整机的节能升级、整体用能改善,也可
以实现温度智能调节管理等功能。
冰蓄冷技术是一种循环利用冷量的新型节能制冷技术,经过多年发展,造就技术先进,性能稳定,技术先进,效果稳定,安全可靠等优点,在各类节能空调设备中的地位也正在
日益增强。
据不完全统计,冰蓄冷技术在工业冷冻用冷设备中,其节能率可达10%以上,100%;在居家用冷设备中,能耗降低可达50%以上,安全可靠性良好,逐渐替代传统冷藏
技术,取得节能效果,带来用户得实惠。
冰蓄冷工程设计经验总结
冰蓄冷工程设计经验总结
在建筑空调系统中,冰蓄冷技术是一种节能环保的方法,通过在夜间低峰期制冷并将冷量储存在冰蓄冷装置中,然后在白天高峰期利用这部分冷量降低建筑物的空调负荷。
经过多年的实践和总结,以下是一些冰蓄冷工程设计经验的总结:
1. 制冷系统设计
在进行冰蓄冷系统的设计时,首先需要充分了解建筑物的热负荷特性,合理确定冰蓄冷装置的容量。
此外,还需要考虑制冷机组的选型、管道布局等因素,确保系统能够稳定高效运行。
2. 蓄冷装置设计
蓄冷装置是冰蓄冷系统的关键部件,其设计需考虑蓄冷罐的容量、材质、保温性能等因素。
合理的蓄冷装置设计能够保证冰的长时间储存和稳定释放,提高系统的整体效率。
3. 控制系统设计
冰蓄冷系统的控制系统设计至关重要,需要实现对制冷机组、冰蓄冷装置等设备的精确控制。
合理的控制系统设计能够提高系统的响应速度和节能效果。
4. 运行维护
冰蓄冷系统的运行维护对系统的长期稳定运行至关重要。
定期检查设备运行状态、清洁设备表面、检查制冷剂循环系统等措施能够延长系统的使用寿命并保证系统性能。
5. 技术更新
随着科技的不断发展,冰蓄冷技术也在不断更新。
设计人员需要保持对新技术的了解,不断提升自己的专业水平,为冰蓄冷工程的设计和应用提供更好的解决方案。
通过对冰蓄冷工程设计经验的总结,可以更好地指导未来的冰蓄冷工程设计和应用实践,提高系统的效率和节能性能,为建筑空调系统的可持续发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冰蓄冷系统技术总结第一讲应用概念一、冰蓄冷空调“冰蓄冷空调”一词大家都一目了解,英文为‘ICE STORAGE’,日文为[冰蓄热],狭义的定义为[制冰蓄冷]的冷气系统。
早期称谓[COOL STORAGE(蓄冷)],此包含了[制冷水蓄冷]的冷气系统。
但在寒带国家降了[蓄冷]外,还要[蓄热],因此,广义的用语为[THERMAL (ENERGY)STORAGE AIR CONDITIONING SYSTEM (缩写为TES)],可译为[蓄能式空调系统]。
对于南方地区仅有夏季(冷气)电力过载的困扰,仅需[蓄冰空调]。
二、关于蓄冷系统的计量在常规的空调系统设计时,冷负荷是按照计算出建筑物所需要的多少“冷吨”、“千瓦”、“大卡/时”来计量,但是蓄冰系统是用“冷吨·小时”、“千瓦·小时”、“大卡”来计量。
图1-1代表100冷吨维持10小时冷却的一个理论上的冷负荷,也就是一个1000“冷吨·小时”的冷负荷。
图上100个方格中的每一格是代表10“冷吨·小时”。
事实上,建筑物的空调系统在全日的制冷周期中是不可能都以100%的容量运行的。
空调负荷的高峰出现多数是在下午2:00--4:00之间,此时室外环境温度最高。
图1-2代表了一幢典型大楼空调系统一个设计工作日中的负荷曲线。
如图可知,100冷吨冷水机组的全部制冷能力在10个小时的“制冷周期”中只有2个小时,在其它8个小时中,冷水机组只在“部分负荷”里操作,如果你数一数小方格的话,你会得到总数为75个方格,每一格代表10“冷吨·小时”,所以此建筑物的实际冷负荷为750“冷吨·小时”,但是常规的空调系统必须选用100冷吨的冷水机组来应付100冷吨的“峰值冷负荷”。
三、冷水机组的“参差率”定义的“参差率”为实际“冷负荷”与“冷水机组的总制冷潜力”之比,即:参差率(%)=(实际冷吨·小时数/总的冷吨·小时潜力)*100%=750/1000*100因此该冷水机组的“参差率”为75%,也就是冷水机组能提供1000“冷吨·小时”,而空调系统只要用750“冷吨·小时”。
低的“参差率”,则系统的投资亦低。
将建筑物总的“冷吨·小时”被“制冷机工作小时”数除而得到的商,即为大楼在整个“制冷周期”中平均负荷。
如果可以将空调负荷转移到峰值以外的时间去,或者与平均负荷相平衡,则只需选用较小制冷能力的冷水机组即可达到100%的参差率,而导致较好的投资效率。
四、全部蓄能与部分蓄能采用蓄冷系统时,有两种负荷管理策略可考虑。
当电费价格在不同时间里有差别时,我们可以将全部负荷转移到廉价电费的时间里运行。
可选用一台能蓄存足够能量的传统冷水机组,将整个负荷转移到高峰以外的时间去,这称之为“全部蓄能系统”。
图1-3表示了同一建筑物空调负荷的曲线,是采用了将全部冷负荷转移到“峰值时间”以外的14个小时中,冷水机组在夜间在蓄冷装置中进行制冷蓄冰。
然后在白天将蓄存在0o C冰中的能量作为所要求的750“冷吨·小时”的制冷量用。
平均负荷已进一步减少到53.6冷吨(750冷吨·小时/14=53.6冷吨),这导致大大地减少耗电量费用。
这种方式常常用于改建工程中利用原有的冷水机组,只需加设蓄冷设备和有关的辅助装置,但需注意原有冷水机组是否适用于冰蓄冷系统。
这种方式也适用于特殊建筑物,需要瞬时大量释冷,如体育馆建筑物。
在新建的建筑中,部分蓄能系统是最实用的,也是一种投资有效的负荷管理策略。
在这种负荷均衡的方法中,冷水机组连续运行,它在夜间用来制冷蓄存,在白天利用蓄存的制冷量为建筑物提供制冷。
将运行时数从14小时扩展到24小时,可以得到最低的平均负荷(750冷吨·小时/24=31.25冷吨),如图1-4所示。
需电量费用大大地减少,而是冷水机组的制冷能力也可减少50-60%或者更多一些。
五、蓄冰率蓄冰率一般英文简写为IPF(ICE PACKING FACTOR),即蓄冰槽内制冰容积与蓄冰槽容积之比值。
IPF=蓄冰槽内制冰容积M3/蓄冰槽容积M3*100% (日本冷冻协会)一般用它来决定蓄冰槽的大小。
目前各种蓄冰设备,其IPF约在20-70%范围内。
另一称之为制冰率,其英文简写也为IPF,即蓄冰槽中水的最大制冰量与全水量(槽中充水的容积)之比值。
IPF=槽中水的最大制冰量kg/全水量kg*100% (日本电力空调研究会)通过它可了解结冰多少,有的蓄冰设备,此值可达90%以上。
应注意,国外两个定义都用IPF表示。
各种冰蓄冷设备的两种蓄冰率数据见表1-1。
表1-1 冰蓄冷设备的蓄冰率美国多以Void(Space)Ratio[无效(空间)比]来表示,故蓄冰率IPF=1-Void Ratio.六、融冰能力 DISCHARGE CAPACITY蓄冰槽中之冰,实际可溶解而用于空调的蓄冷量。
七、融冰效率 DISCHARGE EFFICIENCY实际可用于应付空调负荷之[融冰能量]除以[总蓄冰能量]之值。
八、蓄冷效率 STORAGE(THERMAL)EFFICIENCY指实际可用于应付空负荷之[融冰能量]除以[用以制冰蓄冷的能量]之值。
此值与融冰效率不同,但有时蓄冷效率也定义为融冰效率。
九、过冷现象 SUPER COOLING指超过流体的冻结点而仍不冻结的现象。
例如:纯水的冻结点为0o C,但水温需先降至-7o C左右,才会形成[冰核]再冻结成冰,(一般水之过冷现象约为-5o C,此现象将增加制冰初期的耗能量。
)如图1-5所示。
如要设法提高成核温度,减少过冷度,就要添加成核剂,但使用不同的成核剂配方,效果也各不相同。
有些单位在研究和试验。
十、蓄冷介质比较表1-2注:1RTH=12670KJ=3.516KWH=3024Kcal。
对于水蓄冷来说,如果加大蓄冷温度(如12o C-4o C水,Δt=8o C),就提高了蓄冷密度,则蓄冷水池的体积就可减少(这时第1000RTH需360M3)。
对于冰蓄冷来说,占有空间的大小,与蓄冰设备的构造和蓄冰率(IPF)的大小有密切关系,考虑桶和热交换设备占有的空间,每1000RTH需占有空间体积比全部是冰占有35.3M3的体积要大得多。
第二讲冰蓄冷设备一、分类美国制冷工业协会(ARI)1994年出版的《蓄冷设备热性能指南》将蓄冷设备广义地分为显热式蓄冷和潜热式蓄冷,见表2-1。
表2-1*注:载冷剂一般为乙烯乙二醇水溶液。
最常用的蓄冷介质是水、冰和其他相变材料,不同蓄冷介质具有不同的单位体积蓄冷能力和不同的蓄冷温度。
二、冰盘管式(ICE-ON-COIL)冷媒盘管式(REFRIGERANT ICE-ON COIL)外融冰系统(EXTERNAL MELT ICE-ON COIL STORAGE SYSTEMS)该系统也称直接蒸发式蓄冷系统,其制冷系统的蒸发器直接放入蓄冷槽内,冰结在蒸发器盘管上。
此种形式的冰蓄冷盘管以美国BAC公司为代表。
盘管为钢制,连续卷焊而成,外表面为热镀锌。
管外径为1.05"(26.67mm),冰层最大厚度为1.4"(35.56mm),因此盘和换热表面积为5.2ft2/RTH(0.137m2/KWH),冰表面积为19.0ft2/RTH(0.502m2/KWH),制冰率IPF约为40-60%。
融冰过程中,冰由外向内融化,温度较高的冷冻水回水与冰直接接触,可以在较短的时间内制出大量的低温冷冻水,出水温度与要求的融冰时间长短有关(参见图2-1、2-2、2-3)。
这种系统特别适合于短时间内要求冷量大、温度低的场所,如一些工业加工过程及低温送风空调系统使用。
(1)10小时放热特性(图2-1)该蓄冷方式是由食品冷冻行业中应用多年的乳品冷却设备改制发展而成。
由此在乳品行业中经常采用。
最近天津雀巢咖啡生产厂,工艺要求所供应的冷冻水温在全过程中要求保证稳定在+1°C,采用BAC外融冰装置,冰盘管表面冰层厚度大约为2-3MM,冷冻机24小时连续运行。
在使用冷媒盘管式蓄冷槽时,有几点需注意:(1)当结冰厚度在1"-3.5"之间,若冷冻系统设计不当,制冰时冷冻蒸发温度较低,压缩机所需功率大,耗电率大,并且制冷时间长,用电量多;(2)若贮存的冰设有完全用掉而制冷时间已到,需要开始制冰,则必需隔着一层冰来制冰,由于冰是一种优良热阻,这将使制冷设备耗电率与用电量增加;(3)蓄冰槽内应保持约50%以上的水不冻成冰,否则无法正常抽取冷水使用进行融冰,故最好使用厚度控制器或增加盘管中心距,以避免冰桥产出;(4)在开放式系统中,蓄冰槽的进出口处(即水系统进出口管路上)应加装止回阀和稳压阀等近期制设备,以免仃泵时系统中的水回流,使蓄冰槽中水外溢。
三、完全冻结式(TOTAL FREEZE-UP)卤水静态储冰(GLYCOL STATIC ICE)内融冰式(INTERNAL MELT ICE-ON-COIL STORAGE)该系统是将冷水机组制出的低温乙二醇水溶液(二次冷媒)送入蓄冰槽(桶)中的塑料管或金属管内,使管外的水结成冰。
蓄冰槽可以将90%以上的水冻结成冰,融冰时从空调负荷端流回的温度较高的乙二醇水溶液进入蓄冰槽,流过塑料或金属盘管内,将管外的冰融化,乙二醇水溶液的温度下降,再被抽回到空调负荷端使用。
这种蓄冰槽是内融冰式,盘管外可以均匀冻结和融冰,无冻坏的危险。
这种方式的制冰率最高,可达IPF=90%以上(指槽中水90%以上冻结成冰)。
生产这种蓄冰设备的厂家较多。
1、美国CALMAC蓄冰桶采用外径为16mm(也有13mm)的聚乙烯管绕成螺旋形盘管热交换器。
盘管冰层厚度为12mm,盘管换热表面积12ft2/RTH(0.317m2/KWH)。
蓄冰筒数量的选择设计步骤如下:1、确定系统的“冷吨小时数”TH TH=设计负荷*OH*DF2、确定冷水机组的“名义制冷量”CP CP=TH/[(CI*IH)+(CO*OH)]3、确定冰筒的数量N N=[TH-(CO*OH)]/冰筒的冷吨小时式中:DF--参差系数、设计“日平均负荷”除以“峰值负荷”,一般为0.65-0.90;TH--设计日系统的冷吨小时数; OH--制冷小时数;CP--机组“名义制冷量”; CI--冷水机组在制冰温度时的制冷量与空调额下制冷量之比;IH--制冷小时数; CO--冷水机组在“制冷工况下”的制冷量与额定制冷量之比,一般在1左右;例题:设计负荷200冷吨、OH=10小时、IH=12小时、DF=0.75、CI=0.65、CO=1。
图2-4图2-5采用1190蓄冰筒(190冷吨小时)。
冰筒入水温度为15.6°C,出水温度为8.9°C(日间),融冰放冷10小时,每个蓄冰筒可放冷166冷吨小时。