高考数学专题8立体几何59垂直的判定与性质文
8-5 直线、平面垂直的判定及其性质
高考总复习 ·课标版 ·A
数学(理)
课前自主回顾
课堂互动探究
课时作业
与名师对话 考纲要求 以立体几 何的定 义、公理 和定理为 出发点, 认识和理 解空间中 线面垂直 的有关性 质与判定 定理.
高考总复习 ·课标版 ·A
数学(理)
考情分析
通过分析近三年的高考试题可以看出,在每年的高考 中,立体几何部分所占的比例相对稳定,一般是一至 两道客观题和一道分层设问的解答题,无论是哪种题 型,线线、线面、面面垂直的判定与性质都是考查的 重点之一.考查的具体问题可分为两个层次:一是将 定义、判定和性质结合起来,以客观题的形式出现, 判断某些命题的真假,如2012年安徽卷6、浙江卷 10;二是以常见几何体为背景,以解答题的形式出 现,证明几何体中的直线和平面的垂直关系,如2012 年江苏卷16、陕西卷18等. 预测:2013年高考对本节内容的考查仍以线面垂直、 面面垂直的证明和应用为主,以解答题的形式呈现考 查线面关系的相互转化.
提示:平行或在平面内.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
(对应学生用书P139)
证明直线和平面垂直的常用方法有: (1)利用判定定理. (2)利用平行线垂直于平面的传递性(a∥b,a⊥α⇒b⊥ α). (3)利用面面平行的性质(a⊥α,α∥β⇒a⊥β). (4)利用面面垂直的性质. 当直线和平面垂直时,该直线垂直于平面内的任一直 线,常用来证明线线垂直.
数学(理)
4.平面与平面的垂直 (1)定义:一般地,两个平面相交,如果它们所成的二 面角是
直二面角
,就说这两个平面互相垂直.
课前自主回顾
高中数学第八章立体几何初步-平面与平面垂直的判定课件及答案
则 AD⊥BC,SD⊥BC,∴∠ADS 为二面角 A-BC-S 的平面角.在 Rt△BSC
中,∵SB=SC=a,
∴SD=
22a,BD=B2C=
2 2 a.
在 Rt△ABD 中,AD= 22a.在△ADS 中, ∵SD2+AD2=SA2,∴∠ADS=90°,即二面角 A-BC-S 为直二面角,故平
面 ABC⊥平面 SBC.
(3)垂线法.过二面角的一个面内异于棱上的 A 点向另一个平面作垂线,垂 足为 B,由点 B 向二面角的棱作垂线,垂足为 O,连接 AO,则∠AOB 为二面 角的平面角或其补角.如图③,∠AOB 为二面角 α-l-β 的平面角.
【对点练清】
1.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两
D.AO⊥l,BO⊥l,且 AO⊂α,BO⊂β 答案:D
3.如图,在正方体 ABCD-A1B1C1D1 中,二面角 A-BC-A1 的平面 角等于 ________. 答案:45°
知识点二 平面与平面垂直
(一)教材梳理填空 1.面面垂直的定义:
一般地,两个平面相交,如果它们所成的二面角是_直__二__面__角__,就说 定义
D.不存在
()
答案:C 3.若平面 α⊥平面 β,平面 β⊥平面 γ,则
()
A.α∥γ
B.α⊥γ
C.α 与 γ 相交但不垂直 答案:D
D.以上都有可能
题型一 二面角的概念及其大小的计算
【学透用活】 (1)一个二面角的平面角有无数个,它们的大小是相等的. (2)构成二面角的平面角的三要素:“棱上”“面内”“垂直”,即二面角的 平面角的顶点必须在棱上,角的两边必须分别在两个半平面内,角的两边必须都 与棱垂直,这三个条件缺一不可. (3)当二面角的两个半平面重合时,规定二面角的大小是 0°;当二面角的两 个半平面合成一个平面时,规定二面角的大小是 180°,所以二面角的平面角 α 的取值范围是 0°≤α≤180°.
高考数学(文)《立体几何》专题复习
(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
几何中的垂直性质
几何中的垂直性质几何学是数学的一个重要分支,研究各种图形的性质和相互关系。
在几何学中,直线与直线之间的关系是非常重要的内容之一。
其中,垂直是一个特殊的直线关系,本文将深入探讨几何中的垂直性质。
一、垂直的定义和判定方法在几何学中,两条直线垂直是指它们之间的夹角为90度。
垂直性质的判定方法有多种,这里介绍两种常用的方法:1. 垂直性质的定义:若两条直线相交,且相交的角为90度,则称这两条直线垂直。
2. 垂直性质的判定方法:直线A和直线B垂直,可以通过判断它们的斜率之间的关系来确定。
如果直线A与直线B的斜率的乘积为-1,即斜率的乘积为-1,那么直线A和直线B是垂直的。
二、垂直线段垂直不仅可以用来描述两条直线之间的关系,还可以用来描述线段之间的关系。
在几何学中,垂直线段的定义如下:如果线段AB和线段CD的延长线相交于点O,并且角AOB与角COD互补,那么线段AB 和线段CD是垂直的。
垂直线段的性质有以下几点:1. 垂直线段的长度相等:如果线段AB和线段CD是垂直的,那么线段AB的长度等于线段CD的长度。
2. 垂直线段的乘积为零:如果线段AB和线段CD是垂直的,那么线段AB的长度与线段CD的长度的乘积等于零。
三、垂直平分线在几何学中,垂直平分线是指一个线段的中垂线与该线段垂直的直线。
垂直平分线具有以下性质:1. 垂直平分线的定理:一个线段的垂直平分线与该线段相交于线段的中点,且两条垂直平分线垂直。
2. 垂直平分线的长度相等:如果线段AB的垂直平分线与线段CD 的垂直平分线相交于点O,那么线段AO的长度等于线段CO的长度。
四、垂直角在几何学中,垂直的概念可以应用于角的关系。
垂直相交是指两条直线相交时,所成的两对相对角相等。
具体而言,若直线AB与直线CD相交于点O,那么角AOC与角BOD互为垂直角。
垂直角的性质有以下几点:1. 垂直角的度数相等:如果角AOC和角BOD是垂直角,那么角AOC的度数等于角BOD的度数。
数学课标通用(理科)一轮复习配套教师用书:第八章 立体几何 直线、平面垂直的判定与性质
§8.5 直线、平面垂直的判定与性质考纲展示►1.能以立体几何中的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质和判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的位置关系的简单命题.考点1 直线与平面垂直的判定与性质直线与平面垂直(1)直线和平面垂直的定义:直线l与平面α内的________直线都垂直,就说直线l与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:答案:(1)任意一条(2)两条相交直线a,b⊂αa∩b=O l⊥al⊥b平行a⊥αb⊥α(1)[教材习题改编]下列命题中不正确的是()A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ答案:A(2)[教材习题改编]如图,在三棱锥V-ABC中,∠VAB=∠VAC=∠ABC=90°,则构成三棱锥的四个三角形中直角三角形的个数为________.答案:4[典题1](1)[2017·上海六校联考]已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是()A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且α∥β[答案]C[解析]由线线平行性质的传递性和线面垂直的判定定理,可知C正确.(2)如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB ⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:①CD⊥AE;②PD⊥平面ABE.[证明] ①在四棱锥P-ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC。
而AE⊂平面PAC,∴CD⊥AE。
2020版高考数学一轮复习加练半小时资料:专题8立体几何第59练平行的判定与性质理(含解析)
第59练平行的判定与性质[基础保分练]1.在正方体ABCD-A1B1C1D1中,平面B1AC与平面A1B1C1D1的交线为l,则l与AC的关系是________.2.如图,在五面体FE-ABCD中,四边形CDEF为矩形,M,N分别是BF,BC的中点,则MN 与平面ADE的位置关系是________.第2题图第3题图3.(2018·常州模拟)在直三棱柱ABC-A1B1C1中,D为AA1中点,点P在侧面BCC1B1上运动,当P满足条件________时,A1P∥平面BCD.(答案不唯一,填一个满足题意的条件即可) 4.已知平面α和β,在平面α内任取一条直线a,在β内总存在直线b∥a,则α与β的位置关系是________.(填“平行”或“相交”)5.如图,在四棱锥S-ABCD中,底面ABCD为平行四边形,点E是SA上一点,当SE∶SA=________时,SC∥平面EBD.第5题图第6题图6.如图为正方体ABCD-A1B1C1D1切去一个三棱锥B1-A1BC1后得到的几何体,若点O为底面ABCD 的中心,则直线D1O与平面A1BC1的位置关系是________.7.有下列命题:①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中真命题的个数是________.8.已知直线m,n和平面α,β,且m⊂α,n⊂β,则“m∥β,n∥α”是“α∥β”的____________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 9.如图,正方体ABCD-A1B1C1D1中,AB=22,点E为A1D1的中点,点F在C1D1上,若EF∥平面ACB1,则EF=________.第9题图第10题图10.(2019·徐州质检)如图是一个正方体的表面展开图,B,N,Q都是所在棱的中点,则在原正方体中有以下命题:①AB与CD相交;②MN∥PQ;③AB∥PE;④MN与CD异面;⑤MN∥平面PQC.其中为真命题的是________.(填序号)[能力提升练]1.下列说法中正确的是________.(填序号)①如果一条直线和一个平面平行,那么它和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行.2.在正方体ABCD-A1B1C1D1中,M,N分别在线段AB1,BC1上,且AM=BN,以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面.其中有可能成立的是________.(填序号)3.已知直线a,b异面,给出以下命题:①一定存在平行于a的平面α使b⊥α;②一定存在平行于a的平面α使b∥α;③一定存在平行于a的平面α使b⊂α;④一定存在无数个平行于a的平面α与b交于一定点.则其中正确的命题是________.(填序号)4.α,β,γ是三个平面,a,b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________.(把所有正确条件的序号都填上)5.(2018·南师大附中期中)如图,正方体ABCD-A1B1C1D1中,E是DD1的中点,F是侧面CDD1C1上的动点,且B1F∥平面A1BE,则B1F与平面CDD1C1所成角的正切值的最大值是________.第5题图第6题图6.如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1C,C1B1,C1D1的中点,点H在四边形A1ADD1的边及其内部运动,则H满足条件________时,有BH∥平面MNP.答案精析基础保分练1.平行 2.平行 3.P 是CC 1中点 4.平行 5.1∶2 6.平行解析 如图,将其补成正方体ABCD -A 1B 1C 1D 1,设B 1D 1和A 1C 1交于点O 1,连结O 1B ,依题意可知,D 1O 1∥OB ,且D 1O 1=OB ,即四边形D 1OBO 1为平行四边形,则D 1O ∥O 1B ,因为O 1B ⊂平面A 1BC 1,D 1O ⊄平面A 1BC 1,所以直线D 1O ∥平面A 1BC 1. 7.18.必要不充分解析 由m ∥β,n ∥α不一定推出α∥β.由m ⊂α,α∥β,得m ∥β.由n ⊂β,α∥β,得n ∥α,所以“m ∥β,n ∥α”是“α∥β”的必要不充分条件. 9.2解析 设平面AB 1C ∩平面A 1C 1=m ,∵EF ∥平面AB 1C ,EF ⊂平面A 1C 1,平面AB 1C ∩平面A 1C 1=m ,∴EF ∥m , 又平面A 1C 1∥平面AC ,平面AB 1C ∩平面A 1C 1=m ,平面AB 1C ∩平面AC =AC , ∴m ∥AC ,又EF ∥m ,∴EF ∥AC , 又A 1C 1∥AC ,∴EF ∥A 1C 1, 又E 为A 1D 1的中点, ∴EF =12A 1C 1=2.10.①②④⑤解析 将正方体还原后如图所示,则N 与B 重合,A 与C 重合,E 与D 重合,所以①②④⑤为真命题.能力提升练1.①② 2.①②③④ 3.②③④解析 对于①,若存在平面α使得b ⊥α,则有b ⊥a ,而直线a ,b 未必垂直,因此①不正确;对于②,注意到过直线a ,b 外一点M 分别引直线a ,b 的平行线a 1,b 1,显然由直线a 1,b 1可确定平面α,此时平面α与直线a ,b 均平行,因此②正确;对于③,注意到过直线b上的一点B 作直线a 2与直线a 平行,显然由直线b 与a 2可确定平面α,此时平面α与直线a 平行,且b ⊂α,因此③正确;对于④,在直线b 上取一定点N ,过点N 作直线c 与直线a平行,经过直线c 的平面(除由直线a 与c 所确定的平面及直线c 与b 所确定的平面之外)均与直线a 平行,且与直线b 相交于一定点N ,因此④正确. 4.①③解析 ①中,由b ⊂β,b ⊂γ,得β∩γ=b ,又a ∥γ,a ⊂β,所以a ∥b (线面平行的性质定理).③中,由α∩β=a ,a ⊂γ得β∩γ=a ,又b ∥β,b ⊂γ,所以a ∥b (线面平行的性质定理). 5.2 2解析 设正方体的棱长为a ,设G ,H ,I 分别为CD ,CC 1,C 1D 1边上的中点, 则A 1,B ,G ,E 四点共面, 且平面A 1BGE ∥平面B 1HI , 又∵B 1F ∥平面A 1BE , ∴F 落在线段HI 上,∠B 1FC 1是B 1F 与平面CDD 1C 1所成的角, tan∠B 1FC 1=B 1C 1FC 1, 设HI 的中点为J ,则当F 与J 重合时FC 1最小, 此时B 1F 与平面CDD 1C 1所成角的正切值有最大值为a24a =2 2.6.H∈线段A1D解析连结A1B,A1D,BD,CB1,因为M,N分别是C1C,C1B1的中点,所以MN∥CB1,因为CD∥A1B1,且CD=A1B1,所以四边形CDA1B1是平行四边形,所以CB1∥DA1,所以MN∥DA1,又MN⊄平面A1BD,DA1⊂平面A1BD,所以MN∥平面A1BD.同理可证PN∥平面A1BD,又MN⊂平面MNP,PN⊂平面MNP,MN∩PN=N,所以平面A1BD∥平面MNP.当H∈线段A1D时,BH⊂平面A1BD,所以BH∥平面MNP.。
高考数学一轮复习 第八章 立体几何 8.4 垂直的判定与性质课件 理
2.正方体 ABCD-A′B′C′D′中,E 为 A′C′的中点,则直线 CE 垂直于( )
A.A′C′
B.BD
C.A′D′
D.AA′
解析 连接 B′D′, ∵B′D′⊥A′C′,B′D′⊥CC′, 且 A′C′∩CC′=C′, ∴B′D′⊥平面 CC′E. 而 CE⊂平面 CC′E, ∴B′D′⊥CE. 又∵BD∥B′D′,∴BD⊥CE.
斜线在平面上的射影是过斜足和垂足的一条直线,而不是线段.
1.思维辨析 (1)直线 l 与平面 α 内的无数条直线都垂直,则 l⊥α.( × ) (2)若直线 a⊥平面 α,直线 b∥α,则直线 a 与 b 垂直.( √ ) (3)直线 a⊥α,b⊥α,则 a∥b.( √ ) (4)若 α⊥β,a⊥β⇒a∥α.( × ) (5)a⊥α,a⊂β⇒α⊥β.( √ )
二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.我们 约定,二面角的取值范围是 [0°,180°]. 平面角是直角的二面角叫做直二面角.
(3)找二面角的平面角的方法 ①垂面法:由二面角的平面角的定义知,只需作与棱垂直的平面,则该平面与两个半平面的交线构成 的角即二面角的平面角. ②平移法:先分别在两个半平面内找一条垂直于棱的射线,然后平移到一起,两射线的夹角即二面角 的平面角. 5 平面与平面垂直的判定 (1)两个平面垂直的定义 如果两个相交平面所成的二面角是直二面角,那么就说这两个平面互相垂直.平面 α 与 β 垂直,记作 α⊥β.
2 直线与平面垂直的性质定理 自然语言:垂直于 同一个平面 的两条直线平行.
图形语言:如图 2 所示. 符号语言:a⊥α,b⊥α⇒a∥b. 3 直线与平面所成的角 平面的一条斜线和它在平面上的射影所成的 锐角 叫做这条直线和这个平面所成的角.
立体几何第五讲 垂直的性质和证明
[玩转典例]第五讲垂直的判定与性质[玩前必备]1.直线与平面垂直图形条件结论判定a ⊥b ,b ⊂α(b 为α内的任意直线)a ⊥αa ⊥m ,a ⊥n ,m 、n ⊂α,m ∩n =O a ⊥αa ∥b ,a ⊥αb ⊥α性质a ⊥α,b ⊂αa ⊥ba ⊥α,b ⊥αa ∥b2.两个平面垂直(1)平面与平面垂直的定义如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理(3)平面与平面垂直的性质定理2∴AG ∥EF .∵PA =AD ,G 是 PD 的中点,∴AG ⊥PD ,∴EF ⊥PD ,题型一直线与平面垂直的判定与性质例1如图所示,在四棱锥P —ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ;(2)PD ⊥平面ABE .证明(1)在四棱锥P —ABCD 中,∵PA ⊥底面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD .∵AC ⊥CD ,PA ∩AC =A ,∴CD ⊥平面PAC .而AE ⊂平面PAC ,∴CD ⊥AE .(2)由PA =AB =BC ,∠ABC =60°,可得AC =PA .∵E 是PC 的中点,∴AE ⊥PC .由(1),知AE ⊥CD ,且PC ∩CD =C ,∴AE ⊥平面PCD .而PD ⊂平面PCD ,∴AE ⊥PD .∵PA ⊥底面ABCD ,∴PA ⊥AB .又∵AB ⊥AD 且PA ∩AD =A ,∴AB ⊥平面PAD ,而PD ⊂平面PAD ,∴AB ⊥PD .又∵AB ∩AE =A ,∴PD ⊥平面ABE .[玩转跟踪]1.如图所示,在四棱锥P —ABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,E 、F 分别是AB 、PC 的中点,PA =AD.求证:(1)CD ⊥PD ;(2)EF ⊥平面PCD .证明(1)∵PA ⊥底面ABCD ,∴CD ⊥PA .又矩形ABCD 中,CD ⊥AD ,且AD ∩PA =A ,∴CD ⊥平面PAD ,又PD ⊂平面PAD ,∴CD ⊥PD.(2)取PD 的中点G ,连接AG ,FG .又∵G 、F 分别是PD 、PC的中点,∴GF 綊1CD ,∴GF 綊AE ,∴四边形AEFG是平行四边形,3∵CD ⊥平面PAD ,AG ⊂平面PAD .∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD .题型二平面与平面垂直的判定与性质例2(2018·全国Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.(1)证明由已知可得,∠BAC =90°,即BA ⊥AC .又BA ⊥AD ,AD ∩AC =A ,AD ,AC ⊂平面ACD ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)解由已知可得,DC =CM =AB =3,DA =32.又BP =DQ =23DA ,所以BP =22.如图,过点Q 作QE⊥AC ,垂足为E ,则QE ∥DC 且QE =13DC .由已知及(1)可得,DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q -ABP 的体积为V Q -ABP =1×S △ABP ×QE=13×12×3×22sin 45°×1=1.[玩转跟踪]1.(2018·江苏高考)在平行六面体ABCD A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1.求证:(1)AB ∥平面A 1B 1C ;(2)平面ABB 1A 1⊥平面A 1BC .[证明](1)在平行六面体ABCD A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C ,所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又因为AA 1=AB ,所以四边形ABB 1A 1为菱形,因此AB 1⊥A 1B .因为AB 1⊥B 1C 1,BC ∥B 1C 1,所以AB 1⊥BC .因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC ,所以AB 1⊥平面A 1BC .因为AB 1⊂平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC .2.(2020·安徽淮北一中模拟)如图,四棱锥P ABCD 的底面是矩形,PA ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且PA =AD .求证:(1)AF ∥平面PEC ;(2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG ,∵F 为PD 的中点,G 为PC 的中点,∴FG 为△CDP 的中位线,∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点,∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE ,∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC ,∴AF ∥平面PEC .(2)∵PA =AD ,F 为PD 中点,∴AF ⊥PD ,∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD ,又∵CD ⊥AD ,AD ∩PA =A ,∴CD ⊥平面PAD ,∵AF ⊂平面PAD ,∴CD ⊥AF .又PD ∩CD =D ,∴AF ⊥平面PCD .由(1)知EG ∥AF ,∴EG ⊥平面PCD ,又EG ⊂平面PEC ,∴平面PEC ⊥平面PCD .题型三直线、平面垂直的综合应用例3如图所示,在四棱锥P —ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知BD =2AD =8,AB =2DC =45.(1)设M 是PC 上的一点,求证:平面MBD ⊥平面PAD ;(2)求四棱锥P —ABCD 的体积.思维点拨(1)因为两平面垂直与M 点位置无关,所以在平面MBD 内一定有一条直线垂直于平面PAD ,考虑证明BD ⊥平面PAD .(2)四棱锥底面为一梯形,高为P 到面ABCD 的距离.(1)证明在△ABD 中,∵AD =4,BD =8,AB =45,∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面PAD .又BD ⊂平面MBD ,∴平面MBD ⊥平面PAD .(2)解过P 作PO ⊥AD ,∵平面PAD ⊥平面ABCD ,∴PO ⊥平面ABCD ,即PO 为四棱锥P —ABCD 的高.又△PAD 是边长为4的等边三角形,∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高.∴S 四边形ABCD =25+452×855=24.∴V P —ABCD =13×24×23=16 3.[玩转跟踪]1.(江西)如图,直四棱柱ABCD -A 1B 1C 1D 1中,AB ∥CD ,AD ⊥AB ,AB =2,AD =2,AA 1=3,E 为CD 上一点,DE =1,EC =3.(1)证明:BE ⊥平面BB 1C 1C ;(2)求点B 1到平面EA 1C 1的距离.(1)证明过B 作CD 的垂线交CD 于F ,则BF =AD =2,EF =AB -DE =1,FC =2.在Rt △BFE 中,BE = 3.在Rt △CFB 中,BC = 6.在△BEC 中,因为BE 2+BC 2=9=EC 2,故BE ⊥BC .由BB 1⊥平面ABCD 得BE ⊥BB 1,又BB 1∩BC =B ,所以BE ⊥平面BB 1C 1C .(2)解三棱锥E -A 1B 1C 1的体积V =13AA 1·111A B C S = 2.在Rt △A 1D 1C 1中,A 1C 1=A 1D 21+D 1C 21=32.同理,EC 1=EC 2+CC 21=32,A 1E =A 1A 2+AD 2+DE 2=2 3.故11A C E S =3 5.设点B 1到平面A 1C 1E 的距离为d ,则三棱锥B 1-A 1C 1E 的体积V =13·d ·11A C E S =5d ,从而5d =2,d =105.即点B 1到平面EA 1C 1的距离为105.题型四垂直的探索性综合应用例4如图,在三棱台ABC DEF 中,CF ⊥平面DEF ,AB ⊥BC .(1)设平面ACE ∩平面DEF =a ,求证:DF ∥a ;(2)若EF =CF =2BC ,试问在线段BE 上是否存在点G ,使得平面DFG ⊥平面CDE ?若存在,请确定G 点的位置;若不存在,请说明理由.[听前试做](1)证明:在三棱台ABC DEF 中,AC ∥DF ,AC ⊂平面ACE ,DF ⊄平面ACE ,∴DF ∥平面ACE .又∵DF ⊂平面DEF ,平面ACE ∩平面DEF =a ,∴DF ∥a .(2)线段BE 上存在点G ,且BG =13BE ,使得平面DFG ⊥平面CDE .证明如下:取CE 的中点O ,连接FO 并延长交BE 于点G ,连接GD ,∵CF =EF ,∴GF ⊥CE .在三棱台ABC DEF 中,AB ⊥BC ⇒DE ⊥EF .由CF ⊥平面DEF ⇒CF ⊥DE .又CF ∩EF =F ,∴DE ⊥平面CBEF ,∴DE ⊥GF .GF ⊥CEGF ⊥DE CE ∩DE =GF ⊥平面CDE .又GF ⊂平面DFG ,∴平面DFG ⊥平面CDE .此时,如平面图所示,∵O 为CE 的中点,EF =CF =2BC ,由平面几何知识易证△HOC ≌△FOE ,∴HB =BC =12EF .由△HGB ∽△FGE 可知BGGE =12,即BG =13BE .[玩转跟踪]1.(2020·郑州模拟)如图,已知三棱柱ABC A ′B ′C ′的侧棱垂直于底面,AB =AC ,∠BAC =90°,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面AA ′C ′C ;(2)设AB =λAA ′,当λ为何值时,CN ⊥平面A ′MN ,试证明你的结论.解:(1)证明:如图,取A ′B ′的中点E ,连接ME ,NE .因为M ,N 分别为A ′B 和B ′C ′的中点,所以NE ∥A ′C ′,ME ∥AA ′.又A ′C ′⊂平面AA ′C ′C ,A ′A ⊂平面AA ′C ′C ,所以ME ∥平面AA ′C ′C ,NE ∥平面AA ′C ′C ,所以平面MNE ∥平面AA ′C ′C ,因为MN ⊂平面MNE ,所以MN ∥平面AA ′C ′C .(2)连接BN ,设AA ′=a ,则AB =λAA ′=λa ,由题意知BC =2λa ,CN =BN =a 2+12λ2a 2,因为三棱柱ABC A ′B ′C ′的侧棱垂直于底面,所以平面A ′B ′C ′⊥平面BB ′C ′C ,因为AB =AC ,点N 是B ′C ′的中点,所以A ′N ⊥平面BB ′C ′C ,所以CN ⊥A ′N ,要使CN ⊥平面A ′MN ,只需CN ⊥BN 即可,所以CN 2+BN 2=BC 2,即2+12λ22λ2a 2,解得λ=2,故当λ=2时,CN ⊥平面A ′MN .[玩转练习]1.已知直线a ∥b ,平面α∥β,a ⊥α,则b 与β的位置关系是()A .b ⊥βB .b ∥βC .b ⊂βD .b ⊂β或b ∥β答案A解析∵a ⊥α,a ∥b ,∴b ⊥α,又∵α∥β,∴b ⊥β.2.已知空间四边形ABCD 的四边相等,则它的两对角线AC 、BD 的关系是()A .垂直且相交B .相交但不一定垂直C .垂直但不相交D .不垂直也不相交答案C解析如图,取BD 中点O ,连接AO ,CO ,则BD ⊥AO ,BD ⊥CO ,AO ∩OC =O ,∴BD ⊥平面AOC ,BD ⊥AC ,又BD 与AC 异面,故选C.3.如图,在正方形ABCD 中,E 、F 分别为边BC 、CD 的中点,H 是EF 的中点.现沿AE 、AF 、EF 把这个正方形折成一个几何体,使B 、C 、D 三点重合于点G ,则下列结论中成立的是________.(填序号)①AG ⊥平面EFG ;②AH ⊥平面EFG ;③GF ⊥平面AEF ;④GH ⊥平面AEF .答案①解析∵AG ⊥GF ,AG ⊥GE ,GF ∩GE =G ,∴AG ⊥平面EFG .4.如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC .求证:(1)MN ∥AD 1;(2)M 是AB 的中点.证明(1)∵ADD 1A 1为正方形,∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1,∴CD ⊥AD 1.∵A 1D ∩CD =D ,∴AD 1⊥平面A 1DC .又∵MN ⊥平面A 1DC ,∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中,A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM .又∵MN ∥OA ,∴四边形AMNO 为平行四边形,∴ON =AM .∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点.5.如图所示,PA ⊥平面ABC ,△ABC 中BC ⊥AC ,则图中直角三角形的个数为()A .4B .3C .2D .1答案A解析PA ⊥平面BC ⊂平面⇒PA ⊥BCAC ⊥BC PA ∩AC =⇒BC ⊥平面PAC ⇒BC ⊥PC ,∴直角三角形有△PAB 、△PAC 、△ABC 、△PBC .6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,过A 点作平面A 1BD 的垂线,垂足为点H ,有下列三个结论:①点H 是△A 1BD 的中心;②AH 垂直于平面CB 1D 1;③AC 1与B 1C 所成的角是90°.其中正确结论的序号是________.答案①②③解析①正确,因为AH ⊥平面A 1BD ,AA 1=AB =AD ,所以Rt △AHA 1≌Rt △AHD ≌Rt △AHB ,所以HA 1=HB =HD ,所以点H 是△A 1BD 的外心,又因为A 1B =BD =DA 1,所以点H 是△A 1BD 的中心.②正确.易证平面A 1BD ∥平面CB 1D 1,又因为AH ⊥平面A 1BD ,所以AH 垂直于平面CB 1D 1.(2)平面 A 1FD ⊥平面 BB 1C 1C .证明 (1)由 E 、F 分别是 A 1B 、A 1C 的中点知 EF ∥BC .因为 EF ⊄平面 ABC ,BC ⊂平面 ABC .所以 EF ∥平面 ABC .(2)由三棱柱 ABC —A 1B 1C 1 为直三棱柱知 CC 1⊥平面 A 1B 1C 1.又 A 1D ⊂平面 A 1B 1C 1,故 CC 1⊥A 1D .又因为 A 1D ⊥B 1C 1,CC 1∩B 1C 1=C 1,故 A 1D ⊥平面 BB 1C 1C ,又 A 1D ⊂平面 A 1FD ,③正确.易证A 1D ⊥平面ABC 1D 1,所以AC 1⊥A 1D ,又A 1D ∥B 1C ,所以AC 1⊥B 1C ,所以AC 1与B 1C 所成的角是90°.7.如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN ⊥PM ,N为垂足.(1)求证:AN ⊥平面PBM .(2)若AQ ⊥PB ,垂足为Q ,求证NQ ⊥PB .证明(1)∵AB 为⊙O 的直径,∴AM ⊥BM .又PA ⊥平面ABM ,∴PA ⊥BM .又∵PA ∩AM =A ,∴BM ⊥平面PAM .又AN ⊂平面PAM ,∴BM ⊥AN .又AN ⊥PM ,且BM ∩PM =M ,∴AN ⊥平面PBM .(2)由(1)知AN ⊥平面PBM ,PB ⊂平面PBM ,∴AN ⊥PB .又∵AQ ⊥PB ,AN ∩AQ =A ,∴PB ⊥平面ANQ .又NQ ⊂平面ANQ ,∴PB ⊥NQ .8.如图,在直三棱柱ABC —A 1B 1C 1中,E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C 1.求证:(1)EF ∥平面ABC;所以平面A1FD⊥平面BB1C1C.9.(2020·淄博模拟)如图,在四棱锥PABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明:PA∥平面EDB;(2)证明:PB⊥平面EFD.证明:(1)连接AC交BD于O,连接EO.∵底面ABCD是矩形,∴点O是AC的中点.又∵E是PC的中点,∴在△PAC中,EO为中位线.∴PA∥EO,而EO⊂平面EDB,PA⊄平面EDB,∴PA∥平面EDB.(2)由PD⊥底面ABCD,得PD⊥BC.∵底面ABCD是矩形,∴DC⊥BC,且PD∩CD=D,∴BC⊥平面PDC,而DE⊂平面PDC,∴BC⊥DE.①∵PD=DC,E是PC的中点,∴△PDC是等腰三角形,故DE⊥PC.②由①和②及BC∩PC=C,得DE⊥平面PBC,而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.10.(2016·全国乙卷)如图,已知正三棱锥PABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.解:(1)证明:因为P在平面ABC内的正投影为D,所以AB⊥PD.因为D在平面PAB内的正投影为E,所以AB⊥DE.因为PD∩DE=D,所以AB⊥平面PED,故AB⊥PG.又由已知可得,PA =PB ,所以G 是AB 的中点.(2)如图,在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E在平面PAC 内的正投影.理由如下:由已知可得PB ⊥PA ,PB ⊥PC ,又EF ∥PB ,所以EF ⊥PA ,EF ⊥PC .又PA ∩PC =P ,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG .由题设可得PC ⊥平面PAB ,DE ⊥平面PAB ,所以DE ∥PC ,因此PE =23PG ,DE =13.由已知,正三棱锥的侧面是直角三角形且PA =6,可得DE =2,PE =2 2.在等腰直角三角形EFP 中,可得EF =PF =2,所以四面体PDEF 的体积V =13S △PEF ·|DE |=13×12×2×2×2=43.11.(2015·新课标全国卷Ⅰ)如图,四边形ABCD 为菱形,G 为AC与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ACD 的体积为63,求该三棱锥的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x2.因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E ACD 的体积V 三棱锥E ACD =13×12·AC ·GD ·BE =624x 3=63,故x =2.从而可得AE =EC =ED = 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥EACD的侧面积为3+2 5.。
立体几何平行与垂直的判定与性质
• 平行与垂直的基本概念 • 平行线的判定 • 垂直线的判定 • 平行与垂直的性质 • 立体几何平行与垂直的应用
目录
01
平行与垂直的基本概念
平行的定义
总结词
在立体几何中,如果两条直线在同一平面内,且永远不会相交,则这两条直线 被称为平行的。
详细描述
在平面几何中,两条平行线被定义为在同一平面内,且永远不会相交的两条直 线。这个定义在立体几何中同样适用。在三维空间中,两条平行线可能位于不 同的平面,但它们永远不会在任何平面上相交。
在三维建模软件中,平行和垂直关系 也是构建复杂几何体的基础。通过设 定平行或垂直的约束条件,可以确保 模型的准确性和一致性。
实际生活中的平行与垂直应用
在城市规划和建筑设计中,平行和垂直的应用同样广泛。例如,确定道路、建筑 物的位置和方向时,需要利用平行和垂直关系来确保规划的科学性和合理性。
在机械设计和制造中,平行和垂直关系也是非常重要的。例如,在制造精密仪器 或机械设备时,需要确保各个部件之间的平行和垂直关系,以保证设备的准确性 和稳定性。
总结词
平行和垂直是两种互为对立的几何关系,它 们在三维空间中共同构成了直线之间的基本 关系。
详细描述
平行和垂直是直线之间最重要的两种关系。 在三维空间中,除了平行和垂直之外,直线 之间还可以是斜交的。平行和垂直的对立关 系使得它们在解决几何问题时具有重要的作 用。例如,在建筑设计和工程实践中,垂直 关系常常用于确定物体的位置和方向,而平 行关系则常常用于确定物体的尺寸和比例。
详细描述
在立体几何中,如果两条直线被第三条直线所截,并且内错角相等,则这两条直 线平行。这是因为内错角相等说明两条直线在同一平面内,并且没有交点,因此 它们是平行的。
立体几何(垂直关系的证明)
立体几何(垂直关系的证明)1. 什么是垂直关系垂直关系是指两条线、两个平面或者一条线和一个平面之间的互相垂直的关系。
在立体几何中,垂直关系是非常重要的,它涉及到角度、边长和面积等概念。
2. 垂直关系的证明方法证明两条线或者一个线和一个平面垂直可以采用不同的方法,以下是一些常见的证明方法:2.1. 利用垂直的性质证明当两个线段的斜率乘积为-1时,这两个线段就互相垂直。
这是一个常用的方法来证明两条直线的垂直关系。
例如,如果两条直线的斜率分别为m1和m2,并且m1 * m2 = -1,则可以证明这两条直线是垂直的。
2.2. 利用垂直线段的性质证明对于一个平面内的几条垂直线段来说,其平分线是相交于一个点,并且平分线与原始线段之间的夹角为90度。
这可以用来证明两条线段是垂直的。
2.3. 利用垂直平分线的性质证明对于一个多边形来说,如果一条线段能够将另外两条线段的中点连接起来并且垂直于它们,那么这条线段就是垂直于这两条线段的平分线。
这个原理可以用来证明线段和平面的垂直关系。
2.4. 利用垂直距离的性质证明如果一个点到一直线的距离为0,并且这个点在另外一条直线上,那么这两条直线是垂直的。
这个方法可以用来证明直线和平面的垂直关系。
3. 如何选择合适的证明方法在选择合适的证明方法时,需要根据具体问题的要求和条件进行判断。
通常来说,可以根据已知的条件和所需证明的结论来选择并结合不同的证明方法。
4. 总结在立体几何中,垂直关系的证明是一个重要的内容。
通过掌握不同的证明方法,我们可以更好地理解和应用垂直关系,进一步深入研究立体几何的问题。
高考数学一轮复习第八章立体几何第5讲直线平面垂直的判定及性质理新人教A版
触类旁通 证明线面垂直的常用方法及关键
(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传 递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂 直的性质.
2证明线面垂直的关键是证线线垂直,而证明线线垂直有时需借助线面 垂直的性质.
即时训练 3.如图,在四棱锥 P-ABCD 中,底面 ABCD 是菱形,∠BAD=60°, PA=PD=AD=2,点 M 在线段 PC 上,且 PM=2MC,N 为 AD 的中点.
答案
∠ACB=45°.
在△OCM 中根据余弦定理可求得 OM=235,CH=OC·MCO·sMin∠ACB=
45 5.
所以点
C
到平面
POM
的距离为4
5
5 .
答案
(2)如图,在直三棱柱 ABC-A1B1C1 中,AB=BC=BB1,AB1∩A1B=E, D 为 AC 上的点,B1C∥平面 A1BD.
答案
设点 E 到平面 ABD′的距离为 d, 由 VE-ABD′=VD′-ABE,得31×2 3d=13× 2×4, ∴d=2 3 6.
答案
(2) (2019·江苏模拟)如图,在直三棱柱 ABC-A1B1C1 中,∠ABC=90°, AB=AA1,M,N 分别是 AC,B1C1 的中点.
求证:①MN∥平面 ABB1A1; ②AN⊥A1B.
答案
解析
4.(2017·全国卷Ⅲ)在正方体 ABCD-A1B1C1D1 中,E 为棱 CD 的中点, 则( )
A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC 答案 C 解析 如图,∵A1E 在平面 ABCD 上的投影为 AE,而 AE 不与 AC,BD 垂直,∴B,D 错误;
2022届高考一轮复习第8章立体几何第5节直线与平面垂直的判定及其性质课时跟踪检测理含解
第八章立体几何第五节直线与平面垂直的判定及其性质A级·基础过关|固根基|1.(2019届成都市二诊)已知a,b是两条异面直线,直线c与a,b都垂直,则下列说法正确的是( )A.若c⊂平面α,则a⊥αB.若c⊥平面α,则a∥α,b∥αC.存在平面α,使得c⊥α,a⊂α,b∥αD.存在平面α,使得c∥α,a⊥α,b⊥α解析:选C 对于A,直线a可以在平面α内,也可以与平面α相交;对于B,直线a可以在平面α内,或者b在平面α内;对于D,如果a⊥α,b⊥α,则有a∥b,与条件中两直线异面矛盾.2.(2019届武汉市调研测试)已知两个平面相互垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线;②一个平面内已知直线必垂直于另一个平面内的无数条直线;③一个平面内任意一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题个数是( )A.3 B.2C.1 D.0解析:选C 构造正方体ABCD-A1B1C1D1,如图,在正方体ABCD-A1B1C1D1中,平面ADD1A1⊥平面ABCD,A1D⊂平面ADD1A1,但A1D与平面ABCD不垂直,故①错;在正方体ABCD-A1B1C1D1中,平面ADD1A1⊥平面ABCD,设l是平面ADD1A1内的任意一条直线,l与平面ABCD内同AB平行的所有直线垂直,故②正确;在正方体ABCD-A1B1C1D1中,平面ADD1A1⊥平面ABCD,A1D⊂平面ADD1A1,但A1D与平面ABCD不垂直,故③错;在正方体ABCD-A1B1C1D1中,平面ADD1A1⊥平面ABCD,且平面ADD1A1∩平面ABCD=AD,过交线AD上的点作交线的垂线l,则l可能与另一平面垂直,也可能与另一平面不垂直,故④错.故选C.3.(2019届合肥市一检)平面α外有两条直线a,b,它们在平面α内的投影分别是直线m,n,则下列命题正确的是( )A.若a⊥b,则m⊥nB.若m⊥n,则a⊥bC.若m∥n,则a∥bD.若m与n相交,则a与b相交或异面解析:选D 对于选项A,当直线a,b相交,且所在平面与平面α垂直时,直线m,n重合,故A 不正确;对于选项B,不妨在正方体ABCD-A1B1C1D1中考虑,取面对角线AB1,AD1,其所在直线分别记为a,b,其在平面ABCD上的投影分别为AB,AD,记为m,n,此时m⊥n,但a与b不垂直,故B不正确;对于选项C,不妨在正方体ABCD-A1B1C1D1中考虑,取面对角线AB1,CD1,其所在直线分别记为a,b,其在平面ABCD上的投影分别为AB,CD,记为m,n,此时m∥n,但a与b不平行,故C不正确;对于选项D,若m 与n相交,则a与b不可能平行,只能是相交或异面,故D正确.4.(2019届合肥市二检)如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A.2对B.3对C.4对D.5对解析:选C 由三视图知该几何体是一个四棱锥,它有一个侧面与底面垂直,且顶点在底面上的射影在底面的一条边的中点处,即如图所示的四棱锥S-ABCD,平面SCD⊥平面ABCD.因为AD⊥DC,BC⊥DC,且平面SCD∩平面ABCD=DC,所以AD⊥平面SCD,BC⊥平面SCD,所以平面SAD⊥平面SCD,平面SBC⊥平面SCD.又由三视图知SC⊥SD,同时由AD⊥平面SCD,知AD⊥SC,又SD∩AD=D,所以SC⊥平面SAD,所以平面SBC⊥平面SAD.综上可知,该多面体各表面所在平面互相垂直的有4对,故选C.5.(2019届湖北七市高三联考)设直线m与平面α相交但不垂直,则下列说法中正确的是( ) A.在平面α内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面α垂直C.与直线m垂直的直线不可能与平面α平行D.与直线m平行的平面不可能与平面α垂直解析:选B 在平面α内可能有无数条直线与直线m垂直,这些直线是互相平行的,A错误;只要m⊄α,过直线m必有并且也只有一个平面与平面α垂直,B正确;类似于A,在平面α外可能有无数条直线垂直于直线m并且平行于平面α,C错误;与直线m平行且与平面α垂直的平面有无数个,D错误.故选B.6.(2019届贵阳监测)如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC解析:选B 因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC.又BC⊂平面PBC,所以AP⊥BC,故A、D正确;因为平面BPC⊥平面APC且平面BPC∩平面ACP=PC,BC⊥PC,所以BC⊥平面APC.又AP⊂平面APC,所以AP⊥BC,故C正确;选项B中的条件不能判断出AP⊥BC,故选B.7.(2019届南昌市一模)如图,在四棱台ABCD-A1B1C1D1中,底面ABCD是菱形,CC1⊥底面ABCD,且∠BAD=60°,CD=CC1=2C1D1=4,E是棱BB1的中点.(1)求证:AA1⊥BD;(2)求三棱锥B1-A1C1E的体积.解:(1)证明:因为CC1⊥底面ABCD,所以CC1⊥BD.如图,连接AC,因为底面ABCD是菱形,所以BD⊥AC.由四棱台ABCD-A1B1C1D1知,A1,A,C,C1四点共面.又AC∩CC1=C,所以BD⊥平面ACC1A1.所以BD⊥AA1.(2)连接BA1,BC1,CA1,CB1,由已知,得V三棱锥B1-A1C1E=V三棱锥E-A1B1C1=12V三棱锥B-A1B1C1=12V三棱锥C-A1B1C1,又V三棱锥C-A1B1C1=13S△A1B1C1·CC1=13×12×22×sin 120°×4=433,所以三棱锥B1-A1C1E的体积V三棱锥B1-A1C1E=233.8.(2019届广州市调研测试)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB =2,BC=EF=1,AE=6,DE=3,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:BD⊥平面AED .证明:(1)如图,取BD 的中点O ,连接OE ,OG ,在△BCD 中,因为G 是BC 的中点, 所以OG∥DC 且OG =12DC =1.因为EF∥AB,AB∥DC,EF =1, 所以EF∥OG 且EF =OG , 所以四边形OGFE 是平行四边形, 所以FG∥OE.又FG ⊄平面BED ,OE ⊂平面BED , 所以FG∥平面BED .(2)在△ABD 中,AD =1,AB =2,∠BAD=60°, 由余弦定理得BD =12+22-2×1×2×12= 3.因为BD 2+AD 2=3+1=4=AB 2, 所以BD⊥AD.因为平面AED⊥平面ABCD ,BD ⊂平面ABCD ,平面AED∩平面ABCD =AD , 所以BD⊥平面AED .9.(2019届贵阳市高三第一次适应性考试)如图,在四棱锥P -ABCD 中,四边形ABCD 为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥平面ABCD ,Q ,M 分别为AD ,PC 的中点,PA =PD =2,BC =12AD =1,CD = 3.(1)求证:平面PBC⊥平面PQB ; (2)求三棱锥P -QMB 的体积.解:(1)证明:∵AD∥BC,Q 为AD 的中点,BC =12AD ,∴BC ═∥QD , ∴四边形BCDQ 为平行四边形. ∵∠ADC =90°,∴BC⊥BQ.∵PA =PD ,Q 为AD 的中点,∴PQ⊥AD,又平面PAD ⊥平面ABCD ,平面PAD∩平面ABCD =AD ,∴PQ ⊥平面ABCD ,∴PQ⊥BC.又PQ∩BQ=Q ,∴BC⊥平面PQB . ∵BC ⊂平面PBC ,∴平面PBC⊥平面PQB .(2)解法一:∵在Rt △PQB 中,PQ =PA 2-AQ 2=3,BQ =CD =3,∴S △PQB =12PQ ·QB =32.由(1)知BC⊥平面PQB ,连接QC , ∴V 三棱锥C -PQB =13S △PQB ×BC =13×32×1=12.又M 是线段PC 的中点,∴V 三棱锥P -QMB =V 三棱锥M -PQB =12V 三棱锥C -PQB =12×12=14,故三棱锥P -QMB 的体积为14.解法二:如图,连接QC ,记QC 的中点为E ,连接ME.在△PQC 中,∵M 为PC 的中点,E 为QC 的中点,∴ME 为△PQC 的中位线,则ME =12PQ 且PQ∥ME.由(1)可知PQ⊥平面ABCD , ∴ME ⊥平面ABCD .在△PAD 中,∵PA=PD =AD =2,Q 为AD 的中点, ∴PQ = 3.∵BC =12AD =1,AD∥BC,∠ADC=90°,∴四边形BCDQ 为长方形. 又CD =3,∴QB=3, ∴S △BQC =12BC ·QB =32.∴V三棱锥P -QMB=V三棱锥P -BQC-V三棱锥M -BQC=13(PQ -ME)×S △BQC =13×12PQ ×S △BQC =16×3×32=14,故三棱锥P -QMB 的体积为14.B 级·素养提升 |练能力|10.如图,在直三棱柱ABC -A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB=90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E.要使AB 1⊥平面C 1DF ,则线段B 1F 的长为( )A .12B .1C .32D .2解析:选A 设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF ,所以AB 1⊥DF.由已知可得A 1B 1=2,设Rt △AA 1B 1斜边AB 1上的高为h ,则DE =12h.又2×2=h 22+(2)2,所以h =233,DE =33.在Rt △DB 1E 中,B 1E =⎝ ⎛⎭⎪⎫222-⎝ ⎛⎭⎪⎫332=66.在Rt △DB 1F 中,由面积相等得66× x 2+⎝ ⎛⎭⎪⎫222=22x ,解得x=12,即线段B 1F 的长为12. 11.(2019届武汉调研)在矩形ABCD 中,AB<BC ,现将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC 与直线BD 垂直; ②存在某个位置,使得直线AB 与直线CD 垂直; ③存在某个位置,使得直线AD 与直线BC 垂直. 其中正确结论的序号是________.解析:①假设AC 与BD 垂直,过点A 作AE⊥BD 于E ,连接CE ,则⎭⎪⎬⎪⎫AE ⊥BD ,BD⊥AC,AE∩AC=A ⇒BD ⊥平面AEC ⇒BD ⊥CE ,而在平面BCD 中,CE 与BD 不垂直,故假设不成立,①不正确;②假设AB⊥CD,∵AB⊥AD,CD∩AD=D ,∴AB⊥平面ACD ,∴AB⊥AC,由AB<BC 可知,存在这样的等腰直角三角形,使AB⊥CD,故假设成立,②正确;③假设AD⊥BC,∵CD⊥BC,AD∩CD=D ,∴BC⊥平面ACD ,∴BC⊥AC,即△ABC 为直角三角形,且AB 为斜边,而AB<BC ,故矛盾,假设不成立,③不正确.综上,填②.答案:②12.如图所示,在四棱锥P -ABCD 中,PA⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD⊥平面PCD .(只要填写一个你认为是正确的条件即可)解析:连接AC ,BD ,则AC⊥BD,因为PA⊥底面ABCD ,所以PA⊥BD.又PA∩AC =A ,所以BD⊥平面PAC ,所以BD⊥PC.所以当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD .又PC ⊂平面PCD ,所以平面MBD⊥平面PCD .答案:DM⊥PC(或BM⊥PC)(答案不唯一)13.如图所示,在长方形ABCD 中,AB =2,BC =1,E 为CD 的中点,F 为线段EC 上(端点除外)一动点.现将△AFD 沿AF 折起,使平面ABD⊥平面ABCF.在平面ABD 内过点D 作DK⊥AB,K 为垂足.设AK =t ,则t 的取值范围是________.解析:如图①所示,过点K 作KM⊥AF 于点M ,连接DM ,易得DM⊥AF,与折前的图形对比,可知折前的图形中D ,M ,K 三点共线且DK⊥AF(如图②所示),于是△DAK∽△FDA,所以AK AD =AD DF ,即t 1=1DF ,所以t=1DF .又DF∈(1,2),故t∈⎝ ⎛⎭⎪⎫12,1.答案:⎝ ⎛⎭⎪⎫12,114.如图所示,在四棱锥P -ABCD 中,底面ABCD 是∠DAB=60°且边长为a 的菱形,侧面PAD 为正三角形,其所在平面垂直于底面ABCD ,若G 为AD 的中点.(1)求证:BG⊥平面PAD ; (2)求证:AD⊥PB;(3)若E 为BC 边的中点,能否在棱PC 上找到一点F ,使平面DEF⊥平面ABCD ?并证明你的结论. 解:(1)证明:在菱形ABCD 中,∠DAB=60°,G 为AD 的中点, 所以BG⊥AD.又平面PAD⊥平面ABCD ,平面PAD∩平面ABCD =AD ,BG ⊂平面ABCD , 所以BG⊥平面PAD .(2)证明:如图,连接PG ,因为△PAD 为正三角形,G 为AD 的中点,所以PG⊥AD. 由(1)知BG⊥AD,又PG∩BG=G ,所以AD⊥平面PGB .因为PB ⊂平面PGB ,所以AD⊥PB. (3)当F 为PC 的中点时,满足平面DEF⊥平面ABCD . 证明:如图,取PC 的中点F ,连接DE ,EF ,DF.在△PBC 中,FE∥PB,又FE ⊂平面DEF ,PB ⊄平面DEF ,所以PB∥平面DEF.在菱形ABCD 中,GB∥DE,又DE ⊂平面DEF ,GB ⊄平面DEF ,所以GB∥平面DEF.又PB ⊂平面PGB ,GB ⊂平面PGB ,PB∩GB=B ,所以平面DEF∥平面PGB .因为BG⊥平面PAD ,PG ⊂平面PAD ,所以BG⊥PG. 又因为PG⊥AD,AD∩BG=G ,所以PG⊥平面ABCD . 又PG ⊂平面PGB ,所以平面PGB⊥平面ABCD , 所以平面DEF⊥平面ABCD .。
2023年新高考数学一轮复习8-5 直线、平面垂直的判定及性质(知识点讲解)含详解
专题8.5 直线、平面垂直的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的垂直关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】1.直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直. (2)判定定理与性质定理的两条相交直线都垂直,2.(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角. (2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°. (3)范围:[0,]2π.3.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角. (3)范围:[0,π]. 4.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理5.(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线. (2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. (3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直. (5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.【常考题型剖析】题型一:与线、面垂直相关命题的判定例1.(浙江·高考真题(理))下列命题中错误的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β例2.(2023·全国·高三专题练习)设m ,n 是不同的直线,α,β,γ是不同的平面,则下面说法正确的是( )A .若αβ⊥,αγ⊥,则//βγB .若αβ⊥,//m α,则m β⊥C .若m α⊥,//m β,则αβ⊥D .若//m n ,n ⊂α,则//m α例3.(江苏·高考真题)设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; (2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题的序号 (写出所有真命题的序号)例4.(2019·北京高考)已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: . 【方法技巧】判定定理与性质定理的合理转化是证明垂直关系的基本思想;另外,在解题中要重视平面几何知识,特别是正、余弦定理及勾股定理的应用. 题型二:直线与平面垂直的判定与性质例5.(2021·浙江·高考真题)如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCD D .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B例6.【多选题】(2021·全国·高考真题)如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N为正方体的顶点.则满足MN OP ⊥的是( )A . B .C .D .【总结提升】证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想. 题型三:平面与平面垂直的判定与性质例8. (2022·江西·高三阶段练习(理))如图,在四面体ABCD 中,AB CD ⊥,1AB CD ==,BD =,BC AD == )A .2B .3C .4D .5例9.(2021·全国·高考真题(文))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.例10. (2020·全国·高考真题(文))如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【总结提升】1.在垂直关系的证明中,线线垂直是问题的核心,可以根据已知的平面图形通过计算的方式(如勾股定理)证明线线垂直,也可以根据已知的垂直关系证明线线垂直.2.垂直关系的转化:3.判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β). 4.证面面垂直的思路(1)关键是考虑证哪条线垂直哪个面.这必须结合条件中各种垂直关系充分发挥空间想象综合考虑. (2)条件中告诉我们某种位置关系,就要联系到相应的性质定理,如已知两平面互相垂直,我们就要联系到两平面互相垂直的性质定理. 题型四:平行和垂直的综合问题例11.(2018·江苏·高考真题)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥. 求证:(1)11//AB A B C 平面; (2)111ABB A A BC ⊥平面平面.例12.(2019·北京·高考真题(文))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面P AC ;(Ⅱ)若∠ABC =60°,求证:平面P AB ⊥平面P AE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面P AE ?说明理由.例13.(2020·全国·高三专题练习)如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,12AA =.(1)求证:1//B C 平面1A BM ; (2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AAC C ?如果存在,求此时1BNBB 的值;如果不存在,请说明理由.例14.(2018·全国·高考真题(文))如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q为线段AD上一点,P为线段BC上一点,且23BP DQ DA==,求三棱锥Q ABP-的体积.【规律方法】1.对命题条件的探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题.2.解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”.(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变.3.探索性问题(1)处理空间中平行或垂直的探索性问题,一般先根据条件猜测点的位置,再给出证明.探索点存在问题,点多为中点或n等分点中的某一个,需根据相关的知识确定点的位置.(2)利用向量法,设出点的坐标,结论变条件,求出点的坐标,并指明点的位置.专题8.5 直线、平面垂直的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的垂直关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】1.直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直. (2)判定定理与性质定理的两条相交直线都垂直,2.(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角. (2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°. (3)范围:[0,]2π.3.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)范围:[0,π].4.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理5.(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.【常考题型剖析】题型一:与线、面垂直相关命题的判定例1.(浙江·高考真题(理))下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β【答案】D【解析】【分析】利用面面垂直的性质定理和线面平行的判定定理证明A正确;利用面面垂直的判定定理证明B正确;利用面面垂直的性质定理和线面垂直的判定定理证明C正确;举反例可得D错误.【详解】对于A ,设平面α∩平面β=直线a , 设直线b α⊂,且b //a , 则显然直线b ⊄平面β,根据线面平行的判定定理可得直线b //β, 故A 正确;对于B ,如果α内存在直线与β平行,则由面面垂直的判定定理可知平面α⊥平面β, 与已知矛盾,故B 正确;对于C ,设平面α平面a =,平面β平面γb =, 在γ内作直线,m a n b ⊥⊥,由面面垂直的性质定理可得,m n αβ⊥⊥, 又∵直线,l l αβ⊂⊂,∴,m l n l ⊥⊥, 又∵α∩β=l ,∴,m n 为相交直线, 又∵⊂m,n 平面γ,∴l ⊥平面γ, 故C 正确;平面α⊥平面β,设平面α∩平面βa =, 在平面α内与a 平行的直线都不与平面β垂直, 故 D 项错误. 故选:D.例2.(2023·全国·高三专题练习)设m ,n 是不同的直线,α,β,γ是不同的平面,则下面说法正确的是( )A .若αβ⊥,αγ⊥,则//βγB .若αβ⊥,//m α,则m β⊥C .若m α⊥,//m β,则αβ⊥D .若//m n ,n ⊂α,则//m α 【答案】C 【解析】【分析】由线面、面面的位置关系,结合平面的基本性质、面面垂直的判定等判断各选项的正误.【详解】A :由αβ⊥,αγ⊥,则//βγ或,βγ相交,错误;B :由αβ⊥,//m α,则//m β或m β⊂或,m β相交,错误;C :由//m β,则存在直线l β⊂且//l m ,而m α⊥则l α⊥,根据面面垂直的判定易知αβ⊥,正确;D :由//m n ,n ⊂α,则//m α或m α⊂,错误.故选:C例3.(江苏·高考真题)设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直;(4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直.上面命题中,真命题的序号 (写出所有真命题的序号)【答案】(1)(2)【解析】【详解】由线面平行的判定定理知,(2)正确;相应地(1)可转化为一个平面内有两相交直线分别平行于另一个平面,所以这两个平面平行.直线与平面垂直必须直线与平面内两条相交直线垂直,所以(3)(4)都不正确. 例4.(2019·北京高考)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: .【答案】②③⇒①或①③⇒②【解析】已知l ,m 是平面α外的两条不同直线,由①l ⊥m 与②m ∥α,不能推出③l ⊥α,因为l 可以与α平行,也可以相交不垂直;由①l ⊥m 与③l ⊥α能推出②m ∥α;由②m ∥α与③l ⊥α可以推出①l ⊥m .故正确的命题是②③⇒①或①③⇒②.【方法技巧】 判定定理与性质定理的合理转化是证明垂直关系的基本思想;另外,在解题中要重视平面几何知识,特别是正、余弦定理及勾股定理的应用.题型二:直线与平面垂直的判定与性质例5.(2021·浙江·高考真题)如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B【答案】A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【详解】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项C 错误,选项A 正确.故选:A.例6.【多选题】(2021·全国·高考真题)如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是( )A .B .C .D .【答案】BC【分析】根据线面垂直的判定定理可得BC 的正误,平移直线MN 构造所考虑的线线角后可判断AD 的正误.【详解】 设正方体的棱长为2,对于A ,如图(1)所示,连接AC ,则//MN AC ,故POC ∠(或其补角)为异面直线,OP MN 所成的角,在直角三角形OPC ,OC 1CP =,故tanPOC ∠==, 故MN OP ⊥不成立,故A 错误.对于B ,如图(2)所示,取NT 的中点为Q ,连接PQ ,OQ ,则OQ NT ⊥,PQ MN ⊥,由正方体SBCM NADT -可得SN ⊥平面ANDT ,而OQ ⊂平面ANDT ,故SN OQ ⊥,而SN MN N =,故OQ ⊥平面SNTM ,又MN ⊂平面SNTM ,OQ MN ⊥,而OQ PQ Q =,所以MN ⊥平面OPQ ,而PO ⊂平面OPQ ,故MN OP ⊥,故B 正确.对于C ,如图(3),连接BD ,则//BD MN ,由B 的判断可得OP BD ⊥,故OP MN ⊥,故C 正确.对于D ,如图(4),取AD 的中点Q ,AB 的中点K ,连接,,,,AC PQ OQ PK OK ,则//AC MN ,因为DP PC =,故//PQ AC ,故//PQ MN ,所以QPO ∠或其补角为异面直线,PO MN 所成的角,因为正方体的棱长为2,故122PQ AC ==,22123OQ AO AQ =+=+=,PO 222QO PQ OP <+,故QPO ∠不是直角,故,PO MN 不垂直,故D 错误.故选:BC.例7.(2019·全国高考真题(文))已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________.【解析】作,PD PE 分别垂直于,AC BC ,PO ⊥平面ABC ,连CO ,知,CD PD CD PO ⊥⊥,=PD OD P , CD 平面PDO ,OD ⊂平面PDO ,CD OD ∴⊥PD PE ==∵,2PC =.sin sin PCE PCD ∴∠=∠=, 60PCB PCA ︒∴∠=∠=, PO CO ∴⊥,CO 为ACB ∠平分线,451,OCD OD CD OC ︒∴∠=∴===2PC =,PO ∴==【总结提升】证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.题型三:平面与平面垂直的判定与性质例8. (2022·江西·高三阶段练习(理))如图,在四面体ABCD 中,AB CD ⊥,1AB CD ==,BD =,BC AD == )A .2B .3C .4D .5【答案】B【解析】【分析】分别证明出平面ABC ⊥平面BCD ,平面ABD ⊥平面BCD ,平面ACD ⊥平面ABD ,即可得到答案.【详解】因为1AB =,BD =AD =所以222AB BD AD +=,所以AB BD ⊥.又AB CD ⊥,BD CD D ⋂=,BD ⊂平面BCD ,CD ⊂平面BCD .所以AB ⊥平面BCD .又AB 平面ABC ,AB 平面ABD ,所以平面ABC ⊥平面BCD ,平面ABD ⊥平面BCD .因为1CD =,BD =,BC =所以222CD BD BC +=,所以CD BD ⊥.又CD AB ⊥,BD AB B ⋂=,BD ⊥平面ABD ,AB ⊥平面ABD ,所以CD ⊥平面ABD ,又CD ⊂平面ACD ,所以平面ACD ⊥平面ABD ,综上可知有3对.故选:B.例9.(2021·全国·高考真题(文))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(2 【分析】(1)由PD ⊥底面ABCD 可得PD AM ⊥,又PB AM ⊥,由线面垂直的判定定理可得AM ⊥平面PBD ,再根据面面垂直的判定定理即可证出平面PAM ⊥平面PBD ;(2)由(1)可知,AM BD ⊥,由平面知识可知,~DAB ABM ,由相似比可求出AD ,再根据四棱锥P ABCD -的体积公式即可求出.【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD ,所以PD AM ⊥,又PB AM ⊥,PB PD P =,所以AM ⊥平面PBD ,而AM ⊂平面PAM ,所以平面PAM ⊥平面PBD .(2)由(1)可知,AM ⊥平面PBD ,所以AM BD ⊥,从而~DAB ABM ,设BM x =,2AD x =,则BM AB AB AD =,即221x =,解得x =AD = 因为PD ⊥底面ABCD ,故四棱锥P ABCD -的体积为(1113V =⨯⨯. 例10. (2020·全国·高考真题(文))如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积. 【答案】(1)证明见解析;(2)24.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V -.【详解】(1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC 中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BB MN BC ⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN ∴BC ⊥平面1A AMN 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC 又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN ∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN ⋂平面11EB C F NP =//AO NP ∴又//NO AP∴6AO NP ==O 为111A B C △的中心.∴1111sin 606sin 6033ON AC =︒=⨯⨯︒=故:ON AP ==3AM AP ==平面11EB C F ⊥平面1A AMN ,平面11EB C F ⋂平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F 又在等边ABC 中EF AP BC AM=即2AP BC EF AM ⋅=== 由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⋅⨯=四边形 111113B EBC F EB C F V S h -∴=⋅四边形,h 为M 到PN 的距离sin 603MH =︒=, ∴1243243V =⨯⨯=. 【总结提升】1.在垂直关系的证明中,线线垂直是问题的核心,可以根据已知的平面图形通过计算的方式(如勾股定理)证明线线垂直,也可以根据已知的垂直关系证明线线垂直.2.垂直关系的转化:3.判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).4.证面面垂直的思路(1)关键是考虑证哪条线垂直哪个面.这必须结合条件中各种垂直关系充分发挥空间想象综合考虑.(2)条件中告诉我们某种位置关系,就要联系到相应的性质定理,如已知两平面互相垂直,我们就要联系到两平面互相垂直的性质定理.题型四:平行和垂直的综合问题例11.(2018·江苏·高考真题)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.求证:(1)11//AB A B C 平面;(2)111ABB A A BC ⊥平面平面.【答案】(1)见解析(2)见解析【解析】【详解】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB 1A 1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.-中,PA⊥平面ABCD,底部ABCD为菱形,例12.(2019·北京·高考真题(文))如图,在四棱锥P ABCDE为CD的中点.(Ⅰ)求证:BD⊥平面P AC;(Ⅱ)若∠ABC=60°,求证:平面P AB⊥平面P AE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面P AE?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.【详解】(Ⅰ)证明:因为PA ⊥平面ABCD ,所以PA BD ⊥;因为底面ABCD 是菱形,所以AC BD ⊥;因为PA AC A =,,PA AC ⊂平面PAC ,所以BD ⊥平面PAC .(Ⅱ)证明:因为底面ABCD 是菱形且60ABC ∠=︒,所以ACD ∆为正三角形,所以AE CD ⊥,因为//AB CD ,所以AE AB ⊥;因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以AE PA ⊥;因为PA AB A =所以AE ⊥平面PAB ,AE ⊂平面PAE ,所以平面PAB ⊥平面PAE .(Ⅲ)存在点F 为PB 中点时,满足//CF 平面PAE ;理由如下:分别取,PB PA 的中点,F G ,连接,,CF FG EG ,在三角形PAB 中,//FG AB 且12FG AB =; 在菱形ABCD 中,E 为CD 中点,所以//CE AB 且12CE AB =,所以//CE FG 且CE FG =,即四边形CEGF 为平行四边形,所以//CF EG ;又CF ⊄平面PAE ,EG ⊂平面PAE ,所以//CF 平面PAE .例13.(2020·全国·高三专题练习)如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AAC C ?如果存在,求此时1BN BB 的值;如果不存在,请说明理由. 【答案】(1)证明见解析;(2)证明见解析;(3)存在,112BN BB =. 【解析】【分析】(1)连接1AB 与1A B ,两线交于点O ,连接OM ,利用三角形中位线性质得到1//OM B C ,再利用线面平行的判定即可证.(2)应用线面垂直的性质、判定可得BM ⊥平面11ACC A ,从而得到1BM AC ⊥,根据11AC C A MA ∠=∠和111190AC C C AC A MA C AC ∠+∠=∠+∠=得到11A M AC ⊥,再利用线面垂直的判定即可证. (3)当点N 为1BB 的中点,设1AC 的中点为D ,连接DM ,DN ,易证四边形BNDM 为平行四边形,从而得到//BM DN ,进而有DN ⊥平面11ACC A ,再利用面面垂直的判定即可证.(1)连接1AB 与1A B ,两线交于点O ,连接OM ,在1B AC △中M ,O 分别为AC ,1AB 的中点,所以1//OM B C ,又OM ⊂平面1A BM ,1B C ⊄平面1A BM ,所以1//B C 平面1A BM .(2)因为1AA ⊥底面ABC ,BM ⊂平面ABC ,所以1AA BM ⊥.又M 为棱AC 的中点,AB BC =,所以BM AC ⊥.因为1AA AC A =,1AA ,AC ⊂平面11ACC A , 所以BM ⊥平面11ACC A ,1AC ⊂平面11ACC A ,所以1BM AC ⊥.因为2AC =,所以1AM =.又1AA =在1Rt ACC 和1Rt A AM中,11tan tan AC C AMA ∠=∠ 所以11AC C A MA ∠=∠,即111190AC C C AC A MA C AC ∠+∠=∠+∠=,所以11A M AC ⊥,又1BMA M M =,BM ,1A M ⊂平面1A BM ,所以1AC ⊥平面1A BM .(3)当点N 为1BB 的中点,即112BN BB =时,平面1AC N ⊥平面11AAC C . 证明如下:设1AC 的中点为D ,连接DM ,DN ,因为D ,M 分别为1AC ,AC 的中点,所以1//DM CC 且112DM CC =,又N 为1BB 的中点, 所以//DM BN 且DM BN =,所以四边形BNDM 为平行四边形,故//BM DN ,由(2)知:BM ⊥平面11ACC A ,所以DN ⊥平面11ACC A ,又DN ⊂平面1AC N ,所以平面1AC N ⊥平面11ACC A .例14.(2018·全国·高考真题(文))如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析.(2)1.【解析】【详解】分析:(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且ACAD A =,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC . (2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以BP = 作QE ⊥AC ,垂足为E ,则QE =13DC . 由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ABP -的体积为111131332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=. 【规律方法】1.对命题条件的探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题.2.解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”.(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变.3.探索性问题(1)处理空间中平行或垂直的探索性问题,一般先根据条件猜测点的位置,再给出证明.探索点存在问题,点多为中点或n 等分点中的某一个,需根据相关的知识确定点的位置.(2)利用向量法,设出点的坐标,结论变条件,求出点的坐标,并指明点的位置.。
高中数学立体几何专题线面垂直典型例题的判定与性质
线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a ⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】 题设主要条件是AB 1⊥BC ,而结论是AB 1⊥A 1C ,题设,题断有对答性,可在ABB 1A 1上作文章,只要取A 1B 1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A 1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断AB 1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A 1D 垂直于AB 1,事实上DBD 1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段AB ,BC ,CD ,AB ⊥BC ,BC ⊥CD ,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,CD 1=6,AD 1的长是AD 的最小值,其中AH ⊥CD 1,AH =BC =4,HD 1=3,∴AD 1=5;在直角△AHD 2中,CD 2=6,AD 2是AD 的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a 、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①②B.①②③C.②③④D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF 中,必有 ( )A.DP ⊥平面PEFB.DM ⊥平面PEFC.PM ⊥平面DEFD.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交B.过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直C.过a 一定可以作一个平面与b 垂直D.过a 一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l =β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有 ( )A.α⊥γ且l ⊥mB.α⊥γ且m ∥βC.m ∥β且l ⊥mD.α∥β且α⊥γ6.AB 是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若BC =1,AC =2,PC =1,则P 到AB 的距离为 ( )A.1B.2C.552D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1C.2D.38.d 是异面直线a 、b 的公垂线,平面α、β满足a ⊥α,b ⊥β,则下面正确的结论是 ( )第3题图A.α与β必相交且交线m ∥d 或m 与d 重合B.α与β必相交且交线m ∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C.②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m ;②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③C.②与④D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A ′,B ′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,BB ′=5cm ,CC ′=4cm ,则△A ′B ′C ′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —ABC 中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB —C 的大小为30°,求VC 与平面ABC所成角的大小.第11题图 第12题图第13题图 第14题图15.如图所示,P A⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.第15题图16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD =2,侧棱PB=15,PD=3.(1)求证:BD⊥平面P AD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第18题图第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,DP ⊥PF ,PE ⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a ,b ′确定的平面与直线b 平行.5.A 依题意,m ⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l ⊥m ,故选A.6.D 过P 作PD ⊥AB 于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l ⊥α,∴l ⊥m 11.23cm 2 设正三角A ′B ′C ′的边长为a . ∴AC 2=a 2+1,BC 2=a 2+1,AB 2=a 2+4,又AC 2+BC 2=AB 2,∴a 2=2. S △A ′B ′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D 1—ABCD 中当底面四边形ABCD 满足条件AC ⊥BD (或任何能推导出这个条件的其它条件,例如ABCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面VAB .14.(1)证明:∵H 为△VBC 的垂心,∴VC ⊥BE ,又AH ⊥平面VBC ,∴BE 为斜线AB 在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥AB ,VC ⊥BE ,∴VC ⊥平面ABE ,在平面ABE 上,作ED ⊥AB ,又AB ⊥VC ,∴AB ⊥面DEC .∴AB ⊥CD ,∴∠EDC 为二面角E —AB —C 的平面角,∴∠EDC =30°,∵AB ⊥平面VCD ,∴VC 在底面ABC 上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥AB ,VC ⊥BE ,∴VC ⊥面ABE ,∴VC ⊥DE ,∴∠CED =90°,故∠ECD=60°,∴VC 与面ABC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN ∥CD ∥AB ∥AM ,EN =21CD =21AB =AM ,故AMNE 为平行四边形. ∴MN ∥AE .∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面P AD .(2)∵P A ⊥平面ABCD ,∴P A ⊥AB .又AD ⊥AB ,∴AB ⊥平面P AD .∴AB ⊥AE ,即AB ⊥MN .又CD ∥AB ,∴MN ⊥CD .(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥PD ,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面PCD .16.如图(1)证:由已知AB =4,AD =2,∠BAD =60°,故BD 2=AD 2+AB 2-2AD ·AB cos60°=4+16-2×2×4×21=12.又AB 2=AD 2+BD 2,∴△ABD 是直角三角形,∠ADB =90°,即AD ⊥BD .在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥BD .又PD ∩AD =D ,∴BD ⊥平面P AD .(2)由BD ⊥平面P AD ,BD 平面ABCD .∴平面P AD ⊥平面ABCD .作PE ⊥AD 于E ,又PE 平面P AD ,∴PE ⊥平面ABCD ,∴∠PDE 是PD 与底面ABCD 所成的角.∴∠PDE =60°,∴PE =PD sin60°=23233=⨯.作EF ⊥BC 于F ,连PF ,则PF ⊥BF ,∴∠PFE 是二面角P —BC —A 的平面角.又EF =BD =12,在Rt △PEF 中,tan ∠PFE =433223==EF PE .故二面角P —BC —A 的大小为arctan 43. 第15题图解第16题图解17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C 1,∴∠A 1MC 1+∠AC 1C =∠A 1MC 1+∠MA 1C 1=90°.∴A 1M ⊥AC 1,又ABC -A 1B 1C 1为直三棱柱,∴CC 1⊥B 1C 1,又B 1C 1⊥A 1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M ,因B 1C 1⊥平面AC 1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△CPB ,且MD =21BC , ∴DP ∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP ∥DD ′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵NP ∥DD ′∥CC ′,∴NP 、CC ′在同一平面内,CC ′为平面NPC 与平面CC ′D ′D 所成二面角的棱. 又由CC ′⊥平面ABCD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △MCD 中可知∠MCD =arctan 21,即为所求二面角的大小. (3)由已知棱长为a 可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D ′MB 的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。
垂直的判定及其性质
考纲下载 1.立体几何中的定义、公理和定理为出发点,认识和理解空 间中线面垂直的有关性质和判定定理. 2.能运用公理、定理和已获得的结论,证明一些有关空间图 形的位置关系的简单命题.
一、思考辨析 判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)直线l与平面α内无数条直线都垂直,则l⊥α.( )
(2)若平面α内的一条直线垂直于平面β内的无数条直线,则 α⊥β.( )
(3)若两平面垂直,则其中一个平面内的任意一已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置 关系为( ) B.b∥α D.b与α相交 A.b α C.b α或b∥α
A.若m∥α,n∥α,则m∥n B.若m⊥α,n α,则m⊥n C.若m⊥α,m⊥n,则n∥α D.若m∥α,m⊥n,则n⊥α
角度二:以多面体为载体,证明线面垂直问题 [例3] (2014· 湖北高考)如图,在正方体 ABCD A1B1C1D1中,
E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的 中点.求证: (1)直线BC1∥平面EFPQ; (2)直线AC1⊥平面 PQMN.
3.二面角的有关概念 (1)二面角:从一条直线出发的 所组成的图形 叫做二面角. (2)二面角的平面角:以二面角的棱上任一点为端点,在两 个半平面内分别作 的两条射线,这两条射线所成的 角叫做二面角的平面角.
4. 平面与平面垂直的判定定理 4. 平面与平面垂直的判定定理
二、必记结论 直线与平面垂直的五个结论 (1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内 的任意直线. (2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于 这个平面. (3)垂直于同一条直线的两个平面平行. (4)过一点有且只有一条直线与已知平面垂直. (5)过一点有且只有一个平面与已知直线垂直.
高考数学专题8立体几何59垂直的判定与性质文
【步步高】(江苏专用)2017版高考数学专题8 立体几何 59 垂直的判定与性质文训练目标会应用线、面垂直的定理及性质证明直线与平面垂直、平面与平面垂直的位置关系.训练题型(1)证明直线与平面垂直;(2)证明平面与平面垂直;(3)利用线、面垂直的性质证明线线垂直.解题策略证明线面垂直、面面垂直都必须通过证明线线垂直来完成,特殊图形中的垂直关系(如等腰三角形中线、直角三角形、矩形等)往往是解题突破点,也可利用线面垂直的性质证明线线垂直.如图所示,已知PA垂直于圆O所在的平面,AB是圆O的直径,点C是圆O上任意一点,过A 作AE⊥PC于E,AF⊥PB于F,求证:(1)AE⊥平面PBC;(2)平面PAC⊥平面PBC;(3)PB⊥EF.2.(2015·南京、盐城第一次联考)如图,在正方体ABCD-A1B1C1D1中,O,E分别为B1D,AB的中点.求证:(1)OE∥平面BCC1B1;(2)平面B1DC⊥平面B1DE.3.(2015·德阳四校联考)如图,在正方体ABCD-A1B1C1D1中,E为棱C1D1的中点,F为棱BC的中点.(1)求证:AE⊥DA1;(2)在线段AA1上求一点G,使得直线AE⊥平面DFG.4.(2015·张掖第二次诊断)如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,且△ABC为正三角形,AA1=AB=6,D为AC 的中点.(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A1;(3)求三棱锥C-BC1D的体积.5.如图,已知平行六面体ABCD-A1B1C1D1的底面是菱形,且∠C1CB=∠C1CD=∠BCD=60°. (1)证明:C1C⊥BD;(2)当CDCC1的值为多少时,A1C⊥平面C1BD?答案解析1.证明 (1)因为AB 是圆O 的直径,所以∠ACB =90°, 即AC ⊥BC .因为PA ⊥圆O 所在平面,即PA ⊥平面ABC ,而BC ⊂平面ABC ,所以BC ⊥PA .又因为AC ∩PA =A ,AC ⊂平面PAC ,PA ⊂平面PAC ,所以BC ⊥平面PAC .因为AE ⊂平面PAC ,所以BC ⊥AE .又已知AE ⊥PC ,PC ∩BC =C ,PC ⊂平面PBC ,BC ⊂平面PBC ,所以AE ⊥平面PBC .(2)由(1)知AE ⊥平面PBC ,且AE ⊂平面PAC ,所以平面PAC ⊥平面PBC .(3)因为AE ⊥平面PBC ,且PB ⊂平面PBC ,所以AE ⊥PB .又AF ⊥PB 于F ,且AF ∩AE =A ,AF ⊂平面AEF ,AE ⊂平面AEF ,所以PB ⊥平面AEF .又因为EF ⊂平面AEF ,所以PB ⊥EF .2.证明 (1)如图,连结BC 1,设BC 1∩B 1C =F ,连结OF .因为O ,F 分别是B 1D 与B 1C 的中点,所以OF ∥DC ,且OF =12DC . 又E 为AB 的中点,所以EB ∥DC ,且EB =12DC , 从而OF ∥EB ,OF =EB ,即四边形OEBF 是平行四边形,所以OE ∥BF .又OE ⊄平面BCC 1B 1,BF ⊂平面BCC 1B 1,所以OE ∥平面BCC 1B 1.(2)因为DC ⊥平面BCC 1B 1,BC 1⊂平面BCC 1B 1,所以BC 1⊥DC .又BC 1⊥B 1C ,DC ∩B 1C =C ,DC ⊂平面B 1DC ,BC 1⊂平面B 1DC ,所以BC 1⊥平面B 1DC .而BC 1∥OE ,所以OE ⊥平面B 1DC ,又OE ⊂平面B 1DE ,所以平面B 1DC ⊥平面B 1DE .3.(1)证明如图所示,连结BC 1,AD 1,由正方体的性质可知,DA 1⊥AD 1,DA 1⊥AB .又AB ∩AD 1=A ,AB ⊂平面ABC 1D 1,AD 1⊂平面ABC 1D 1,∴DA 1⊥平面ABC 1D 1,又AE ⊂平面ABC 1D 1,∴DA 1⊥AE .(2)解如图所示,G 点即为A 1点.证明如下:由(1)可知AE ⊥DA 1,连结A 1F ,取CD 的中点H ,连结AH ,EH , 因为DF ⊥AH ,DF ⊥EH ,AH ∩EH =H ,AH ⊂平面AHE ,EH ⊂平面AHE ,所以DF ⊥平面AHE ,∵AE ⊂平面AHE ,∴DF ⊥AE . 又DF ∩A 1D =D ,DF ⊂平面DFA 1,A 1D ⊂平面DFA 1, ∴AE ⊥平面DFA 1,即AE ⊥平面DFG .4.(1)证明 连结B 1C 交BC 1于点O ,连结OD ,如图,则点O 为B 1C 的中点.∵D 为AC 的中点,∴AB 1∥OD .∵OD ⊂平面BC 1D ,AB 1⊄平面BC 1D ,∴直线AB 1∥平面BC 1D .(2)证明 ∵AA 1⊥底面ABC ,BD ⊂底面ABC , ∴AA 1⊥BD .∵△ABC 是正三角形,D 是AC 的中点,∴BD ⊥AC . ∵AA 1∩AC =A ,AA 1⊂平面ACC 1A ,AC ⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1.∵BD ⊂平面BC 1D ,∴平面BC 1D ⊥平面ACC 1A 1.(3)解 由(2)知,在△ABC 中,BD ⊥AC , BD =BC sin 60°=33, ∴S △BCD =12×3×33=932, ∴V 三棱锥C -BC 1D =V 三棱锥C 1-BCD =13×932×6=9 3. 5.(1)证明如图,连结A 1C 1、AC ,AC 和BD 交于点O ,连结C 1O , ∵四边形ABCD 是菱形,∴AC ⊥BD ,BC =CD . 又∵∠BCC 1=∠DCC 1,C 1C 是公共边,∴△C 1BC ≌△C 1DC ,∴C 1B =C 1D .∵DO=OB,∴C1O⊥BD,又AC⊥BD,AC∩C1O=O,AC⊂平面ACC1,C1O⊂平面ACC1,∴BD⊥平面ACC1,又C1C⊂平面ACC1,∴C1C⊥BD.(2)解由(1)知BD⊥平面ACC1,∵A1C⊂平面ACC1,∴BD⊥A1C,当CDCC1=1时,平行六面体的六个面是全等的菱形,同理可证BC1⊥A1C,又∵BD∩BC1=B,BD⊂平面C1BD,BC1⊂平面C1BD,∴A1C⊥平面C1BD.故当CDCC1=1时,A1C⊥平面C1BD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【步步高】(江苏专用)2017版高考数学专题8 立体几何 59 垂
直的判定与性质文
如图所示,已知PA垂直于圆O所在的平面,AB是圆O的直径,点C是圆O上任意一点,过
A作AE⊥PC于E,AF⊥PB于F,求证:
(1)AE⊥平面PBC;
(2)平面PAC⊥平面PBC;
(3)PB⊥EF.
2.(2015·南京、盐城第一次联考)
的中点.
AB ,D 1B 分别为E ,O 中,1D 1C 1B 1A -ABCD 如图,在正方体 ;
1B 1BCC 平面∥OE (1)求证: .
DE 1B 平面⊥DC 1B 平面(2)
3.(2015·德阳四校联考)
的中点.
BC 为棱F 的中点,1D 1C 为棱E 中,1D 1C 1B 1A -ABCD 如图,在正方体 ;
1DA ⊥AE 求证:(1) .
DFG 平面⊥AE ,使得直线G 上求一点1AA 在线段(2)
4.(2015·张掖第二次诊断)
AC
为D ,6=AB =1AA 为正三角形,ABC △,且ABC 底面⊥1AA 中,1C 1B 1A -ABC 如图,在三棱柱的中点.
;
D 1BC 平面∥1AB 求证:直线(1) ;
1A 1ACC 平面⊥D 1BC 求证:平面(2) 的体积.
D 1BC -C 求三棱锥(3)
5.
60°.
=BCD ∠=CD 1C ∠=CB 1C ∠且的底面是菱形,1D 1C 1B 1A -ABCD 如图,已知平行六面体
;
BD ⊥C 1C 证明:(1) BD?1C 平面⊥C 1A 的值为多少时,CD CC1
当(2)
答案解析
1.证明 (1)因为AB 是圆O 的直径,所以∠ACB =90°,
即AC ⊥BC .
因为PA ⊥圆O 所在平面,
即PA ⊥平面ABC ,而BC ⊂平面ABC ,
所以BC ⊥PA .
又因为AC ∩PA =A ,AC ⊂平面PAC ,PA ⊂平面PAC ,
所以BC ⊥平面PAC .
因为AE ⊂平面PAC ,所以BC ⊥AE .
又已知AE ⊥PC ,PC ∩BC =C ,
PC ⊂平面PBC ,BC ⊂平面PBC ,
所以AE ⊥平面PBC .
(2)由(1)知AE ⊥平面PBC ,且AE ⊂平面PAC ,
所以平面PAC ⊥平面PBC .
(3)因为AE ⊥平面PBC ,且PB ⊂平面PBC ,
所以AE ⊥PB .
又AF ⊥PB 于F ,
且AF ∩AE =A ,AF ⊂平面AEF ,AE ⊂平面AEF ,
所以PB ⊥平面AEF .
又因为EF ⊂平面AEF ,所以PB ⊥EF .
.
OF ,连结F =C 1B ∩1BC ,设1BC 如图,连结(1) .证明2
的中点,
C 1B 与
D 1B 分别是F ,O 因为 .DC 12
=OF ,且DC ∥OF 所以 又E 为AB 的中点,
所以EB ∥DC ,
,DC 12
=EB 且 从而OF ∥EB ,OF =EB ,
即四边形OEBF 是平行四边形,
所以OE ∥BF .
,
1B 1BCC 平面⊂BF ,1B 1BCC 平面⊄OE 又 .
1B 1BCC 平面∥OE 所以 ,
1B 1BCC 平面⊂1BC ,1B 1BCC 平面⊥DC 因为(2) .
DC ⊥1BC 所以 ,
C =C 1B ∩DC ,C 1B ⊥1BC 又 ,
DC 1B 平面⊂1BC ,DC 1B 平面⊂DC .
DC 1B 平面⊥1BC 所以 ,
DC 1B 平面⊥OE ,所以OE ∥1BC 而 ,
DE 1B 平面⊂OE 又 .
DE 1B 平面⊥DC 1B 所以平面 3.(1)证明
,由正方体的性质可知,
1AD ,1BC 如图所示,连结 .
AB ⊥1DA ,1AD ⊥1DA ,
1D 1ABC 平面⊂1AD ,1D 1ABC 平面⊂AB ,A =1AD ∩AB 又 ,
1D 1ABC 平面⊥1DA ∴ ,
1D 1ABC 平面⊂AE 又 .
AE ⊥1DA ∴ (2)解
点.
1A 点即为G 如图所示, ,
EH ,AH ,连结H 的中点CD ,取F 1A ,连结1DA ⊥AE 可知(1)证明如下:由 因为DF ⊥AH ,DF ⊥EH ,AH ∩EH =H ,AH ⊂平面AHE ,EH ⊂平面AHE ,
所以DF ⊥平面AHE ,∵AE ⊂平面AHE ,∴DF ⊥AE .
,
1DFA 平面⊂D 1A ,1DFA 平面⊂DF ,D =D 1A ∩DF 又
.
DFG 平面⊥AE ,即1DFA 平面⊥AE ∴ ,如图,
OD ,连结O 于点1BC 交C 1B 连结 证明(1).4
的中点.
C 1B 为O 则点 ∵
D 为AC 的中点,
.
OD ∥1AB ∴ ,
D 1BC 平面⊄1AB ,D 1BC 平面⊂OD ∵ .
D 1BC 平面∥1AB 直线∴ ,
ABC 底面⊂BD ,ABC 底面⊥1AA ∵ 证明(2) .
BD ⊥1AA ∴ ∵△ABC 是正三角形,D 是AC 的中点,∴BD ⊥AC . ,
1A 1ACC 平面⊂AC ,A 1ACC 平面⊂1AA ,A =AC ∩1AA ∵ .
1A 1ACC 平面⊥BD ∴ .
1A 1ACC 平面⊥D 1BC 平面∴,D 1BC 平面⊂BD ∵ (3)解 由(2)知,在△ABC 中,BD ⊥AC ,
,
33=sin 60°BC =BD ,932=3×3×312=BCD △S ∴ .39=×6932
×13=BCD -1C 三棱锥V =D 1BC -C 三棱锥V ∴ 5.(1)证明
,
O 1C ,连结O 交于点BD 和AC ,AC 、1C 1A 如图,连结 ∵四边形ABCD 是菱形,∴AC ⊥BD ,BC =CD .
是公共边,
C 1C ,1DCC ∠=1BCC ∵∠又 .
D 1C =B 1C ∴,DC 1C ≌△BC 1C ∴△ ,
O =O 1C ∩AC ,BD ⊥AC ,又BD ⊥O 1C ∴,OB =DO ∵ ,
1ACC 平面⊂O 1C ,1ACC 平面⊂AC .
BD ⊥C 1C ∴,1ACC 平面⊂C 1C ,又1ACC 平面⊥BD ∴ ,
1ACC 平面⊂C 1A ∵,1ACC 平面⊥BD 知(1)由 解(2) 时,1=CD CC1
,当C 1A ⊥BD ∴ 平行六面体的六个面是全等的菱形,
,
C 1A ⊥1BC 同理可证 ,
BD 1C 平面⊂1BC ,BD 1C 平面⊂BD ,B =1BC ∩BD ∵又 .
BD 1C 平面⊥C 1A ∴ .BD 1C 平面⊥C 1A 时,1=CD CC1
故当。