九年级数学同步测试题

合集下载

人教版九年级数学上册《24.1.1圆》同步测试题带答案

人教版九年级数学上册《24.1.1圆》同步测试题带答案

人教版九年级数学上册《24.1.1圆》同步测试题带答案一、单选题1.下列命题中正确的有( ) A .长度相等的弧是等弧 B .相等的圆心角所对的弦相等 C .等边三角形的外心与内心重合D .任意三点可以确定一个圆2.如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,下列叙述正确的是( )A .只有甲是扇形B .只有乙是扇形C .只有丙是扇形D .只有乙、丙是扇形3.如图AB 为⊙O 的定直径,过圆上一点C 作弦CD AB ⊥,OCD ∠的平分线交⊙O 于点P ,当点C (不包括A ,B 两点)在⊙O 上移动时,点P ( )A .到CD 的距离保持不变B .位置不变C .等分弧DBD .随C 点移动而移动4.下列命题中,⊙直径是圆中最长的弦;⊙长度相等的两条弧是等弧;⊙半径相等的两个圆是等圆;⊙半径不是弧,半圆包括它所对的直径,其中正确的个数是( ) A .1B .2C .3D .45.如图,以三角形三个顶点为圆心画半径为2的圆,则阴影部分面积之和为( )A .πB .2πC .3πD .4π6.如图,在Rt ⊙ABC 中,⊙ACB =90°, AC =3,以点C 为圆心、CA 为半径的圆与AB 交于点D ,若点D 巧好为线段AB 的中点,则AB 的长度为( )A .32B .3C . 6D .9二、填空题7.到点O 的距离等于7cm 的点的集合是 .8.下图中,点O 是( ),线段OA 是圆的( ),线段BC 是圆的( ).9.已知,如图AB ,AD 是O 的弦 30B ∠=︒,点C 在弦AB 上,连结CO 并延长交O 于点D ,35D ∠=︒则BAD ∠的度数是 .10.如图,半径为r 的O 沿着边长为a 的正方形ABCD 的边作无滑动地滚动一周回到原来的位置,O 自身转动的圈数是 .(用含a r ,的代数式表示)11.下列说法:⊙直径是弦;⊙弦是直径;⊙大于半圆的弧是优弧;⊙长度相等的弧是等弧,其中正确的是 .12.顶点在圆外,并且两边都和圆相交的角叫做圆外角.圆外角的两边所夹的两条弧的度数与该角的度数之间的数量关系是:圆外角的度数等于 .三、解答题13.如图,O 的弦,AB CD 的延长线交于点P ,连接OP ,且OP 平分APC ∠.求证:PA PC =.14.如图,点O 是同心圆的圆心,大圆半径OA ,OB 分别交小圆于点C ,D ,求证:AB CD ∥.15.如图所示,AB 为O 的直径,CD 是O 的弦,AB CD ,的延长线交于点E ,已知220AB DE AEC =∠=︒,.求AOC ∠的度数.16.如图,O 的半径5cm OA =,AB 是弦,C 是AB 上一点,且OC OA ⊥,OC BC =求A ∠的度数.17.如图,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于C,交弦AB 于D .(1)求作此残片所在的圆的圆心(不写作法,保留作图痕迹); (2)若AB=8cm,CD=2cm,求(1)中所作圆的半径.18.如图,在O 中,AB 是直径,CD 是弦,延长AB ,CD 相交于点P ,且2AB DP = 18P ∠=︒ 求AOC ∠的度数.题号 1 2 3 4 5 6 答案CBBCD C7.以点O 为圆心,7cm 为半径的圆 8. 圆心 半径 直径 9.65︒ 10.21a r π+/21arπ+ 11.①③/③①12.两条弧度数差值的绝对值的一半 15.60AOC ∠=︒ 16.30︒17.(2) 圆的半径为5cm. 18.54。

九年级数学《名校课堂》同步测试题(1)

九年级数学《名校课堂》同步测试题(1)

九年级数学《一元二次方程的解法》同步练习(3)姓名:得分:2.2.1配方法第1课时根据平方根的意义解一元二次方程知识点1一元二次方程的根的定义1.关于x的一元二次方程x2+x+a-1=0的一个根是0,则实数a的值为( ) A.-1 B.0 C.1 D.-1或12.若a是方程2x2-x-3=0的一个解,则2a2-a的值为( )A.3 B.-3 C.9 D.-93.下列是方程3x2+x-2=0的解的是( )A.x=-1 B.x=1 C.x=-2 D.x=24.已知m是方程x2-x-1=0的一个根,求代数式5m2-5m+2 004的值.知识点2根据平方根的意义解一元二次方程5.根据平方根的意义解方程(x-2 015)2=1,得方程的根为( )A.2 018 B.2 014或2 016C.2 017或1 D.2 016或06.(江岸区校级模拟)如果x=-3是一元二次方程ax2=c的一个根,那么该方程的另一个根是( ) A.3 B.-3C.0 D.17.若x+1与x-1互为倒数,则实数x为( )A.0 B. 2C.±1 D.± 28.下面解方程的过程中,正确的是( )A.x2=2,解:x= 2 B.2y2=16,解:2y=±4,∴y1=2,y2=-2C.2(x-1)2=8,解:(x-1)2=4,x-1=±4,x-1=±2,∴x1=3,x2=-1D.x2=-2,解:x1=-2,x2=--29.解下列方程:(1)14x2=9;(2)(x-3)2-9=0.中档题10.若关于x的方程x2=m的解是有理数,则实数m不能取下列四个数中的( ) A.1 B.4 C.14 D.1211.(枣庄中考)x1,x2是一元二次方程3(x-1)2=15的两个解,且x1<x2,下列说法正确的是( ) A.x1小于-1,x2大于3 B.x1小于-2,x2大于3C.x1,x2在-1和3之间D.x1,x2都小于312.若分式x2-9x-3的值为零,则x的值为( )A.3 B.-3 C.±3 D.913.刘谦的魔术表演风靡全国,小王也学起了刘谦,利用电脑设计了一个程序:当输入实数对(x,y)时,会得到一个新的实数x2+y-1,例如输入(2,5)时,就会得到实数22+5-1=8.若输入实数对(m,2)时,得到实数3,则m=________.14.已知方程x2+(m-1)x+m-10=0的一个根是3,求m的值及方程的另一个根.15.解下列方程:(1)36-3x2=0;(2)(2x+3)2-25=0;(3)(x-3)2=(2x+1)2.第2课时用配方法解二次项系数为1的一元二次方程基础题知识点1二次三项式的配方1.下列各式是完全平方式的是( )A.x2+x+1 B.x2+2x-1 C.x2+2x+1 D.x2-2x-12.将二次三项式x2+6x+7进行配方,正确的结果是( )A.(x+3)2+2 B.(x-3)2+2 C.(x+3)2-2 D.(x-3)2-23.填空:(1)x2-2x+________=(x-________)2;(2)x2+6x+________=(x+________)2;(3)x2-5x+________=(x-________)2;(4)x2-3mx+________=(x-________)2. 4.完成下列配方过程:(1)x2+2x+4=x2+2x+________-________+4=(x+________)2+________;(2)x2-6x-3=x2-6x+________-________-3=(x-________)2-________;知识点2用配方法解二次项系数为1的一元二次方程5.(呼伦贝尔中考)用配方法解方程x2-2x-5=0时,原方程应变形为( )A.(x+1)2=6 B.(x-1)2=6 C.(x+2)2=9 D.(x-2)2=96.一元二次方程x(x-4)=-4的根是( )A.-2 B.2 C.2或-2 D.-1或27.(吉林中考)若将方程x2+6x=7化为(x+m)2=16,则m=________.8.解下列方程:(1)x2+4x+2=0;(2)x2+6x-7=0;(3)x2-6x-6=0;中档题9.若方程x2+kx+64=0的左边是完全平方式,则k的值是( )A.±8 B.16 C.-16 D.±1610.下列配方有错误的是( )A.x2-2x-70=0化为(x-1)2=71 B.x2+6x+8=0化为(x+3)2=1C.x2-3x-70=0化为(x-32)2=7112D.x2-2x-99=0化为(x-1)2=10011.(宁夏中考)一元二次方程x2-2x-1=0的解是( )A.x1=x2=1 B.x1=1+2,x2=-1- 2C.x1=1+2,x2=1- 2 D.x1=-1+2,x2=-1- 212.已知一元二次方程x2+mx+3=0配方后为(x+n)2=22,那么一元二次方程x2-mx-3=0配方后为( )A.(x+5)2=28 B.(x+5)2=19或(x-5)2=19C.(x-5)2=19 D.(x+5)2=28或(x-5)2=2813.三角形两边的长是3和4,第三边长是方程x2-12x+35=0的根,则该三角形的周长为________.14.用配方法解下列方程:(1)x2-2x-5=0;(2)x2-4x+2=0;(3)x2-22x-3=0;15.用配方法证明:不论x为何值,代数式x2+4x+5的值恒大于零.(3)x2+3x+4=x2+3x+________-________+4 =(x+________)2+________;(4)x2-5x-3=x2-5x+________-________-3 =(x-________)2-________.第3课时 用配方法解二次项系数不为1的一元二次方程知识点 用配方法解二次项系数不为1的一元二次方程1.用配方法解方程2x 2-4x =3时,先把二次项系数化为1,然后方程的两边都应加上( )A .1B .2C .3D .52.将方程3x 2-12x -1=0进行配方,配方正确的是( )A .3(x -2)2=5B .(3x -2)2=13C .(x -2)2=5D .(x -2)2=1333.用配方法解方程2x 2-3=-6x ,正确的解法是( )A .(x +32)2=154,x =-32±152B .(x -32)2=154,x =32±152C .(x +32)2=-154,原方程无解D .(x +32)2=74,x =-32±724.用配方法解下列方程:(1)2x 2-8x +1=0; (2)2x 2-7x +6=0; (3)3x 2+8x -3=0;(4)2x 2+1=3x ; (5)3x 2-2x -4=0; (6)6x +9=2x 2.中档题5.用配方法解下列方程时,配方有错误的是( )A .2m 2+m -1=0化为(m +14)2=916B .2x 2+1=3x 化为(x -34)2=116C .2t 2-3t -2=0化为(t -32)2=2516D .3y 2-4y +1=0化为(y -23)2=196.方程(2x -5)(x +2)=3x -4的根为( )A .3B .-1C .-1或3D .以上均不对7.把方程2x 2+4x -1=0配方后得(x +m)2=k ,则m =________,k =________. 8.已知y 1=5x 2+7x +1,y 2=x 2-9x -15,则当x =________时,y 1=y 2. 9.用配方法解下列方程:(1)2t 2-6t +3=0; (2)23x 2+13x -2=0; (3)2y 2-4y =4;10.若一个三角形的两边长分别为2和3,第三边长是方程2x 2-3x -5=0的一个根,求这个三角形的周长.拔高题11.用配方法说明:不论x 取何值,代数式3x 2+3x 的值,总比代数式x 2+7x -4的值大,并求出当x 为何值时,两代数式的差最小.小专题(三)配方法的应用一、配方法解方程1.解方程:(1)x2-4x-2=0;(2)3x2-6x-1=0.二、利用配方法求未知项2.若代数式9x2+kxy+y2表示一个完全平方式,则k的值为( )A.6 B.±6 C.±12 D.123.若代数式x2-5x+k是完全平方式,则k=________.三、配方法求最值4.求多项式x2+3x-1的最小值.5.求多项式-2x2+4x+3的最大值.四、配方法求代数式的值6.已知x=3+2,y=3-2,求x2-5xy+y2的值.7.已知x+x1=3,求x4+1x4的值.五、配方法比较大小8.求证:不论x为何值,多项式2x2-4x-1的值总比x2-6x-6的值大.六、配方法与非负数9.已知m2+n2+4m-2n+5=0,求3m2+5n2-4的值.10.已知2z-y+|y-4|+4x2+4x+1=0,求x-y+z的值.。

初中数学(新人教版)九年级下册同步测试:投影(同步测试)【含答案及解析】

初中数学(新人教版)九年级下册同步测试:投影(同步测试)【含答案及解析】

第二十九章投影与视图29.1投影第1课时投影知能演练提升能力提升1.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是()2.如图,树是小明昨天画的一幅画的一部分,则小明创作这幅画的时间大约在()A.早上8点B.中午12点C.下午4点D.不能确定3.如图,晚上小明在灯下散步,在小明由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短,再变长D.先变长,再变短4.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,则下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中正确结论的序号是.5.小军晚上到新世纪广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:“广场上的一盏路灯一定位于两人.”6.两棵树及其影子的情形如图所示.(1)哪个图反映了在阳光下的情形?哪个图反映了在路灯下的情形?(2)你是用什么方法判断的?(3)请画出图中表示小丽影长的线段.①②7.如图,小明家楼边立了一根长为4 m的竹竿,小明在测量竹竿的影子时,发现影子不全落在地面上,有一部分落在楼房的墙壁上(如图),小明测出它落在地面上的影子长为2 m,落在墙壁上的影子长为1 m.此时,小明想把竹竿移动位置,使其影子刚好不落在墙上.试问:小明应把竹竿移到什么位置?(要求竹竿移动距离尽可能小)8.与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树.晚上,幕墙反射路灯灯光形成了那盆花的影子(如图),树影是路灯灯光形成的.你能确定此时路灯光源的位置吗?创新应用9.如图,在一面与地面垂直的围墙的同一侧有一根高10 m的旗杆AB和一个高度未知的电线杆CD,它们都与地面垂直.为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光的照射下,旗杆落在围墙上的影子EF=2 m,落在地面上的影子BF=10 m;而电线杆落在围墙上的影子GH=3 m,落在地面上的影子DH=5 m.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.1.A太阳光线是平行的,同一地点同一时刻树与影长的比应是一样的,影子的方向也应相同.2.C3.C路灯的光线可以看成是从一个点发出的,所产生的投影为中心投影.过灯所在的位置点及小明头顶作射线与地面相交,交点到小明脚跟的距离就是影长.如图,根据画出的每个位置的影长容易发现:小明从A到B的影子变化可分为两个阶段:A→M影子越来越短,M→B影子越来越长,因此从A→B影子先变短,再变长,故选C.4.①③④当木杆绕点A按逆时针方向旋转时,如图所示,当AB与光线BC垂直时,m最大,则m>AC,故①成立,②不成立;最小值为AB与底面重合时,即n=AB,故③成立;由上可知,影子的长度先增大后减小,④成立.5.之间6.解(1)题图①反映了在阳光下的情形,题图②反映了在路灯下的情形.(2)题图①中的光线是平行的,题图②中的光线相交于一点.(3)如图,AB,EF分别是表示小丽在阳光下和路灯下影长的线段.①②7.解设影子刚好不落在墙上时的影长为x m,则4-12=4x,x=83,所以小明应把竹竿移到离墙83m的位置.8.解能,如图.9.解(1)平行.(2)过点E作EM⊥AB于点M,过点G作GN⊥CD于点N,则MB=EF=2 m,ND=GH=3 m,ME=BF=10 m,NG=DH=5 m,所以AM=AB-MB=10-2=8(m),由平行投影可知,AMME =CNNG,即810=CD-35,解得CD=7 m,即电线杆的高度为7 m.第2课时正投影知能演练提升能力提升1.有一个热水瓶如图所示,平行光线从正前方照射得到它的正投影是()2.下列投影一定不会改变△ABC的形状和大小的是()A.中心投影B.平行投影C.正投影D.当△ABC平行于投影面时的正投影3.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影试验,矩形木板在地面上形成的投影不可能是()4.在太阳光下,转动一个正方体,观察正方体在地面上投下的影子,那么这个影子最多可能是()A.四边形B.五边形C.六边形D.七边形5.正方形在太阳光的投影下得到的几何图形一定是()A.正方形B.平行四边形或一条线段C.矩形D.菱形6.在太阳光照射下,如图所示的图形中,哪些可以作为正方体的影子,将光源改为灯光将如何?7.一个圆柱的轴截面平行于投影面,圆柱的正投影是边长为4的正方形,求圆柱的体积和表面积.创新应用8.如图,已知一纸板的形状为正方形ABCD,AD,BC与投影面平行,AB,CD与投影面不平行.(1)画出它的正投影A1B1C1D1;(2)若其边长为10 cm,∠ABB1=45°(点B1与点B是对应点),求正投影A1B1C1D1的面积.能力提升1.A2.D3.A4.C最多可能是如图所示的六边形ABCDEF.5.B6.解(1)(2)可作为太阳光照射下的影子;(1)(2)(3)可作为灯光照射下的影子.7.解因为圆柱的轴截面平行于投影面,圆柱的正投影是边长为4的正方形,所以圆柱的底面半径为2,高为4.所以圆柱的体积是π×22×4=16π,圆柱的表面积是2×π×22+4π×4=24π.创新应用8.解(1)正投影A1B1C1D1如图所示.(2)如图,过点A作AH⊥BB1于点H.∵∠ABB1=45°,∴△ABH是等腰直角三角形,∴AH=√2AB=5√2 cm,2∴A1B1=AH=5√2 cm.∵A1D1=AD=10 cm,∴矩形A1B1C1D1的面积=A1B1·A1D1=5√2×10=50√2(cm2).即正投影A1B1C1D1的面积是50√2 cm2.。

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试题一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.82.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm 3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.76.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:27.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.48.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2 9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为_________.(填出一个正确的即可)12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为_________ cm.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=_________.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为_________.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=_________cm时,四边形ABCN的面积最大,最大面积为_________cm2.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_________(写出所有正确结论的序号).17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC面积的.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是_________.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=_________.(用含n的式子表示)20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是_________.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.22.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.23.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.24.(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.25.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.26.(2013•汕头)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.27.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.28.(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)参考答案与解析一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.8考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.解答:解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选D.点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.2.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm考点:相似三角形的判定与性质;平行四边形的性质.分析:由边形ABCD是平行四边形,可得AB∥CD,即可证得△AFE∽△DEC,然后由相似三角形的对应边成比例,求得答案.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AFE∽△DEC,∴AE:DE=AF:CD,∵AE=2ED,CD=3cm,∴AF=2CD=6cm.故选B.点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.考点:相似三角形的判定与性质;等腰三角形的判定与性质.专题:压轴题.分析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解答:解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,=,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.考点:相似三角形的应用;正方形的性质;几何概率.专题:压轴题.分析:求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;解答:解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.点评:本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.6.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB 的值,由AB=CD即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△AB F∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.专题:压轴题.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故选D.点评:本题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.8.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2考点:相似三角形的判定与性质;平行四边形的性质.分析:首先证明△DFE∽△BAE,然后利用对应变成比例,E为OD的中点,求出DF:AB 的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.专题:计算题;压轴题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤考点:切线的性质;切线长定理;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项①正确;又ABCD为直角梯形,利用梯形的面积计算后得到梯形ABCD的面积为AB(AD+BC),将AD+BC化为CD,可得出梯形面积为AB•CD,选项④错误,而OD不一定等于OC,选项③错误,即可得到正确的选项.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;而S梯形ABCD=AB•(AD+BC)=AB•CD,选项④错误;由OD不一定等于OC,选项③错误,则正确的选项有①②⑤.故选A点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,以及梯形面积的求法,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为4s.(填出一个正确的即可)考点:圆周角定理;垂径定理;相似三角形的判定与性质.专题:压轴题;开放型.分析:根据圆周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根据含30度的直角三角形三边的关系得到AB=2BC=8cm,而F是弦BC的中点,所以当EF∥AC时,△BEF 是直角三角形,此时E为AB的中点,易得t=4s;当从A点出发运动到B点名,再运动到O点时,此时t=12s;也可以过F点作AB的垂线,点E点运动到垂足时,△BEF 是直角三角形.解答:解:∵AB是⊙O的直径,∴∠C=90°,而∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵F是弦BC的中点,∴当EF∥AC时,△BEF是直角三角形,此时E为AB的中点,即AE=AO=4cm,∴t==4(s).故答案为4s.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆周角定理的推论以及含30度的直角三角形三边的关系.12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=12.考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.专题:压轴题.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米.考点:相似三角形的应用.分析:根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解.解答:解:∵DE∥BC,∴△ADE∽△ACB,即=,则=,∴h=1.5m.故答案为:1.5米.点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=cm时,四边形ABCN的面积最大,最大面积为cm2.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质.专题:压轴题.分析:设BM=xcm,则MC=1﹣xcm,当AM⊥MN时,利用互余关系可证△ABM∽△MCN,利用相似比求CN,根据梯形的面积公式表示四边形ABCN的面积,用二次函数的性质求面积的最大值.解答:解:设BM=xcm,则MC=1﹣xcm,∵∠AMN=90°,∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=∠MNC,又∵∠B=∠C∴△ABM∽△MCN,则,即,解得CN==x(1﹣x),∴S四边形ABCN=×1×[1+x(1﹣x)]=﹣x2+x+,∵﹣<0,∴当x=﹣=cm时,S四边形ABCN最大,最大值是﹣×()2+×+=cm2.故答案是:,.点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是②③④(写出所有正确结论的序号).考点:切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接BD,由GD为圆O的切线,根据弦切角等于夹弧所对的圆周角得到∠GDP=∠ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE垂直于AB,得到∠AFP为直角,再由一对公共角,得到三角形APF与三角形ABD相似,根据相似三角形的对应角相等可得出∠APF等于∠ABD,根据等量代换及对顶角相等可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB垂直于弦CE,利用垂径定理得到A为的中点,得到两条弧相等,再由C为的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到三角形ACQ 与三角形ABC相似,根据相似得比例得到AC2=CQ•CB,连接CD,同理可得出三角形ACP与三角形ACD相似,根据相似三角形对应边成比例可得出AC2=AP•AD,等量代换可得出AP•AD=CQ•CB,选项④正确.解答:解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④点评:此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,熟练掌握性质及定理是解本题的关键.17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有1条;(2)如图②,∠C=90°,∠B=30°,当=或或时,P(l x)截得的三角形面积为△ABC面积的.考点:相似三角形的判定与性质.专题:压轴题.分析:(1)过点P作l3∥BC交AC于Q,则△APQ∽△ABC,l3是第3条相似线;(2)按照相似线的定义,找出所有符合条件的相似线.总共有4条,注意不要遗漏.解答:解:(1)存在另外 1 条相似线.如图1所示,过点P作l3∥BC交AC于Q,则△APQ∽△ABC;故答案为:1;(2)设P(l x)截得的三角形面积为S,S=S△ABC,则相似比为1:2.如图2所示,共有4条相似线:①第1条l1,此时P为斜边AB中点,l1∥AC,∴=;②第2条l2,此时P为斜边AB中点,l2∥BC,∴=;③第3条l3,此时BP与BC为对应边,且=,∴==;④第4条l4,此时AP与AC为对应边,且=,∴==,∴=.故答案为:或或.点评:本题引入“相似线”的新定义,考查相似三角形的判定与性质和解直角三角形的运算;难点在于找出所有的相似线,不要遗漏.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是①③.考点:相似三角形的判定与性质;勾股定理;等腰直角三角形.专题:压轴题.分析:首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;则可得S△ABC=6S△BDF.解答:解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC=6S△BDF,故④错误.故答案为:①③.点评:此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=.(用含n的式子表示)考点:相似三角形的判定与性质.专题:压轴题;规律型.分析:由n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,即可求得△B1C1M n的面积,又由B n C n∥B1C1,即可得△B n C n M n∽△B1C1M n,然后利用相似三角形的面积比等于相似比的平方,求得答案.解答:解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.点评:此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形面积的公式.此题难度较大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.考点:相似三角形的判定与性质;等腰直角三角形.专题:规律型.分析:求出第一个、第二个、第三个内接正方形的边长,总结规律可得出第n个小正方形A nB n D n E n的边长.解答:解:∵∠A=∠B=45°,∴AE1=A1E=A1B1=B1D1=D1B,∴第一个内接正方形的边长=AB=1;同理可得:第二个内接正方形的边长=A1B1=AB=;第三个内接正方形的边长=A2B2=AB=;故可推出第n个小正方形A n B n D n E n的边长=AB=.故答案为:.点评:本题考查了相似三角形的判定与性质、等腰直角三角形的性质,解答本题的关键是求出前几个内接正方形的边长,得出一般规律.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,。

人教版九年级数学上册《22.2二次函数与一元二次方程》同步测试题及答案

人教版九年级数学上册《22.2二次函数与一元二次方程》同步测试题及答案

人教版九年级数学上册《22.2二次函数与一元二次方程》同步测试题及答案一、单选题1.根据表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,可以判断方程20ax bx c ++=的一个解x 的范围是( )x0 0.5 1 1.5 2 2y ax bx c =++ -1-0.513.57A .00.5x <<B .0.51x <<C .1 1.5x <<D .1.52x <<2.如表是一组二次函数y =x 2﹣x ﹣3的自变量和函数值的关系,那么方程x 2﹣x ﹣3=0的一个近似根是( )x 1 2 3 4 y ﹣3﹣1 39 A .1.2B .2.3C .3.4D .4.53.下表给出了二次函数()20y ax bx c a =++≠中x ,y 的一些对应值,则可以估计一元二次方程()200ax bx c a ++=≠的一个近似解1x 的范围为( )x … 1.2 1.3 1.4 1.5 1.6 … y…1.16-0.71-0.24-0.250.76…A .11.2 1.3x <<B .11.3 1.4x <<C .11.4 1.5x <<D .11.5 1.6x <<4.已知二次函数()20y ax bx c a =++≠的图象如图所示,有下列4个结论:①0abc >;②24b ac >;③a (m 2−1)+b (m −1)<0(m ≠1);④关于x 的方程21ax bx c ++=有四个根,且这四个根的和为4,其中正确的结论有( )A .①②③B .②③④C .①④D .②③5.根据下列表格中二次函数y =ax 2+bx+c 的自变量x 与y 的对应值,判断关于x 的一元二次方程ax 2+bx+c=0的一个解的大致范围是( )x ﹣1 0 1 2 3 4 y﹣7﹣5﹣151323A .1<x <2B .﹣1<x <1C .﹣7<x <﹣1D .﹣1<x <56.已知二次函数224y x x =-+,下列关于其图象的结论中,错误..的是( ) A .开口向上B .关于直线1x =对称C .当1x >时,y 随x 的增大而增大D .与x 轴有交点7.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标(1,)n ,与y 轴的交点在0203(,),(,)之间(包含端点),则下列结论:①30a b +<;②213a -≤≤-;③对于任意实数m2(1)(1)0a m b m -+-≤总成立;④关于x 的方程214ax bx c a ++=-无实数根.其中结论正确的个数为( )A .1个B .2个C .3个D .4个8.将抛物线2(1)y x =+的图象位于直线9y =以上的部分向下翻折,得到如图图象,若直线y x m =+与此图象有四个交点,则m 的取值范围是( )A .574m << B .354m << C .495m << D .374m << 9.已知函数f (x )=x 2+2x ,g (x )=2x 2+6x +n 2+3,当x =1时,f (1)=12+2×1=3,g (1)=2+6+n 2+3=n 2+11.则以下结论正确的有( )①若函数g (x )的顶点在x 轴上,则6n = ②无论x 取何值,总有g (x )>f (x );③若﹣1≤x ≤1时,g (x )+f (x )的最小值为7,则n =±3; ④当n =1时,令()()2()g x h x f x =,则h (1)•h (2)…h (2023)=2024.A .1个B .2个C .3个D .4个10.已知,抛物线y =ax 2+2ax 在其对称轴的左侧y 随x 的增大而减小,关于x 的方程ax 2+2ax =m (m>0)的一个根为﹣4,而关于x 的方程ax 2+2ax =n (0<n <m )有两个整数根,则这两个根的积是( ) A .0B .﹣3C .﹣6D .﹣8二、填空题11.若抛物线2=2++y x mx n -与x 轴交于A ,B 两点,其顶点C 到x 轴距离是8,则线段AB 的长为 . 12.根据下列表格的对应值,判断20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的取值范围是x3.23 3.24 3.25 3.26 2ax bx c ++ 0.06-0.02-0.030.0913.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣4,8),B (2,2),则关于x 的方程ax 2﹣bx ﹣c =0的解为 .14.抛物线 2y ax bx c =++ (a ,b ,c 为常数, 0a > )经过两点 ()()2,0,4,0A B - ,下列四个结论:①20b a += ;②若点 ()()2020,,2021,m n - 在抛物线上,则 m n < ;③0y > 的解集为 2x <- 或 4x > ;④方程 ()21a x bx c x +++=- 的两根为 123,3x x =-= .其中正确的结论是 (填写序号).15.若抛物线25y x bx =+-的对称轴为直线2x =,则关于x 的方程25x bx +-213x =-的解为 .16.若一元二次方程()200ax bx c ac ++=≠有两个不相等实根,则下列结论:①240b ac ->;②方程20cx bx a ++=一定有两个不相等实根;③设2bm a=-,当0a >时,一定有22am bm ax bx +≤+;④s ,()t s t <是关于x 的方程()()10x p x q +--=的两根,且p q <,则q t s p >>>,一定成立的结论序号是 .17.抛物线2y ax bx c =++(a ,b ,c 为常数,0)c <经过(11),,(0)m ,和(0)n ,三点,且3n ≥. 下列四个结论:①0b <;②2414ac b a->;③当3n =时,若点(2)t ,在该抛物线上,则>1t ;④若关于x 的一元二次方程2ax bx c x ++=有两个相等的实数根,则10<3m ≤. 其中正确的是 (填序号即可).18.抛物线()20y ax bx c a =++≠的对称轴为1x =,经过点()3,n -,顶点为D ,下列四个结论:21a b +=①;240b ac ->②;③关于x 的一元二次方程2ax bx c n ++=的解是13x =-和25x =;④设抛物线交y 轴于点C ,不论a 为何值,直线CD 始终过定点()15,n -.其中一定正确的是 (填写序号).三、解答题19.已知抛物线的顶点坐标为()2,0,且经过点()1,3-.(1)求该抛物线的解析式;(2)若点(m,−27)在该抛物线上,求m 的值.20. 排球场的长度为18m ,球网在场地中央且高度为2.24.m 排球出手后的运动路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,排球运动过程中的竖直高度(y 单位:)m 与水平距离(x 单位:)m 近似满足函数关系()²(0)y a x h k a =-+<.(1)某运动员第一次发球时,测得水平距离x 与竖直高度y 的几组数据如下:水平距离/x m 0 2 4 6 11 12 竖直高度/y m2.482.722.82.721.821.52①根据上述数据,求这些数据满足的函数关系()²(0)y a x h k a =-+<; ②判断该运动员第一次发球能否过网 ▲ (填“能”或“不能”).(2)该运动员第二次发球时,排球运动过程中的竖直高度(y 单位:)m 与水平距离(x 单位:)m 近似满足函数关系()20.024 2.88y x =--+,请问该运动员此次发球是否出界,并说明理由.21.如图,抛物线()2y ax bx c a 0=++≠经过点()A 03,,()B 23,和()C 10-,,直线()y mx n m 0=+≠经过点B ,C ,部分图象如图所示,则:(1)该抛物线的对称轴为直线 ;(2)关于x 的一元二次方程2ax bx c 0++=的解为 ; (3)关于x 的一元二次方程2ax bx c mx n ++=+的解为 .22.已知抛物线y=ax 2+x+1(0a ≠)(1)若抛物线的图象与x 轴只有一个交点,求a 的值; (2)若抛物线的顶点始终在x 轴上方,求a 的取值范围.23.如图,二次函数y =2x +bx +c 的图象与x 轴只有一个公共点P ,与y 轴交于点Q ,过点Q 的直线y=2x +m 与x 轴交于点A ,与这个二次函数的图象交于另一点B ,若S △BPQ =3S △APQ ,求这个二次函数的解析式.24.二次函数解析式为223y ax x a =--.(1)判断该函数图象与x 轴交点的个数;(2)如图,在平面直角坐标系中,若二次函数图象顶点是A ,与x 轴交于B ,C 两点,与y 轴交于D ,点C 的坐标是()3,0,求直线CD 的解析式;(3)请你作一条平行于x 轴的直线交二次函数的图象于点M ,N ,与直线CD 于点R ,若点M ,N ,R 的横坐标分别为m ,n ,r ,且r m n <≤,求m n r ++的取值范围.25.抛物线L :212y x bx c =-+与直线L ':22y kx =+交于A 、B 两点,且()2,0A .(1)求k 和c 的值(用含b 的代数式表示c ); (2)当0b =时,抛物线L 与x 轴的另一个交点为C . ①求ABC 的面积;②当15x -≤≤时,则1y 的取值范围是_________.(3)抛物线L :212y x bx c =-+的顶点(),M b n ,求出n 与b 的函数关系式;当b 为何值时,点M 达到最高.(4)在抛物线L 和直线L '所围成的封闭图形的边界上把横、纵坐标都是整数的点称为“美点”,当20b =-时,直接写出“美点”的个数_________.参考答案1.【答案】B 2.【答案】B 3.【答案】C 4.【答案】B 5.【答案】A 6.【答案】D 7.【答案】D 8.【答案】D 9.【答案】B 10.【答案】B 11.【答案】412.【答案】3.24 3.25x << 13.【答案】x 1=﹣4,x 2=2 14.【答案】①③ 15.【答案】1224x x ==, 16.【答案】①②③④ 17.【答案】②③④ 18.【答案】④③19.【答案】(1)y =−3(x −2)2(2)5m =或1-20.【答案】(1)解:①由表中数据可得顶点()42.8,设2(4) 2.8(0)y a x a =-+<把()02.48,代入得16 2.8 2.48a += 解得:0.02a =-∴所求函数关系为20.02(4) 2.8y x =--+;②能.(2)解:判断:没有出界.第二次发球:()20.024 2.88y x =--+ 令0y =,则()20.024 2.880x --+= ,解得18(x =-舍) 216x =21618x =<∴该运动员此次发球没有出界.21.【答案】(1)x 1=(2)1x 1=- 2x 3= (3)1x 2= 2x 1=-22.【答案】(1)解:由题意得方程ax 2+x+1=0有两等实数根.∴△=b 2-4ac =1-4a =0,∴a =14. ∴当a =14时函数图象与x 轴恰有一个交点; (2)解:由题意得4104a a-> 当a >0时,4a -1>0,解得a >14;当a <0时,4a -1<0,解得a <14.∴a <0.∴当a >14或a <0时,抛物线顶点始终在x 轴上方.23.【答案】y =x 2﹣4x+424.【答案】(1)函数图象与x 轴交点的个数是2(2)3y x =- (3)12m n r ≤++<25.【答案】(1)1k =- 44c b =-(2)10;1421y -≤≤ (3)244n b b =-+- 2b = (4)90。

苏科版九年级数学上册全册同步练习题(共56套带答案)

苏科版九年级数学上册全册同步练习题(共56套带答案)

苏科版九年级数学上册全册同步练习题(共56套带答案)第3章数据的集中趋势和离散程度 [测试范围:3.1~3.3 时间:40分钟分值:100分] 一、选择题(每小题4分,共32分) 1.一组数据1,3,4,2,2的众数是( ) A.1 B.2 C.3 D.4 2.一组数据7,8,10,12,13的平均数是( ) A.7 B.9 C.10 D.12 3.一组数据3,3,5,6,7,8的中位数是( ) A.3 B.5 C.5.5 D.6 4.一次数学检测中,有5名学生的成绩(单位:分)分别是86,89,78,93,90.则这5名学生成绩的平均数和中位数分别是( ) A.87.2分,89分 B.89分,89分 C.87.2分,78分 D.90分,93分 5.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100 人数 7 12 10 8 3 则得分的众数和中位数分别是( ) A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分 6.如图4-G-1是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( ) 图4-G-1 A.16小时,10.5小时 B.8小时,9小时 C.16小时,8.5小时 D.8小时,8.5小时 7.某公司欲招聘一名公关人员,对甲、乙、丙、丁四名候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩 (百分制) 面试 86 92 90 83 笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取( ) A.甲 B.乙 C.丙 D.丁 8.数据x1,x2,x3,x4,x5的平均数是x,则数据x1+3,x2+3.5,x3+2.5,x4+2,x5+4的平均数为( ) A.x+2 B.x+2.5 C.x+3 D.x+3.5 二、填空题(每小题4分,共24分) 9.在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是________分. 10.如图4-G-2是根据某地某段时间的每天最低气温绘成的折线图,那么这段时间最低气温的平均数是________.图4-G-2 11.某班学生综合实践作物栽培操作能力评估成绩的统计结果如下表:成绩/分 3 4 5 6 7 8 9 10 人数 1 12 2 8 9 15 12 则这组成绩的众数为________. 12. 某校在进行“阳光体育活动”中,统计了7名原来偏胖的学生的情况,他们的体重分别降低的千克数为5,9,3,10,6,8,5,则这组数据的中位数是________.13.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为________. 14.某校抽样调查了七年级学生每天的体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第________组.组别时间(时) 频数第1组0≤t<0.5 12 第2组0.5≤t<1 24 第3组1≤t<1.5 18 第4组1.5≤t<2 10 第5组2≤t<2.5 6 三、解答题(共44分) 15.(8分)已知一组数据:3,a,4,5,b,c,6.(1)若这组数据是按由小到大的顺序排列的,则中位数是________;(2)若该组数据的平均数是12,求a+b+c的值.16.(10分)一销售某品牌冰箱的公司有营销人员14人,销售部为制定营销人员月销售冰箱定额(单位:台),统计了14人某月的销售量如下表:每人销售量(台) 20 17 13 8 5 4 人数 1 1 2 5 3 2 (1)这14名营销人员该月销售冰箱的平均数、众数和中位数分别是多少? (2)你认为销售部经理给这14名营销人员定出每月销售冰箱的定额为多少台才比较合适?并说明理由.17.(12分)九(3)班A,B,C三名同学的知识测试、实践能力、成长记录三项成绩(单位:分)如下表所示.测试项目测试成绩 A B C 知识测试 90 88 90 实践能力 82 84 87 成长记录 95 95 90 (1)如果根据三项测试的平均成绩评价他们的综合成绩,那么谁的成绩最好? (2)如果把他们的知识测试、实践能力、成长记录三项成绩按5∶3∶2的比例计入综合成绩,那么谁的成绩最好?18.(14分)为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图4-G-3中两幅不完整的统计图,请你根据图中提供的信息解答下列问题: (1)在这次调查中共调查了多少名学生? (2)求户外活动时间为0.5小时的人数,并补全条形统计图; (3)求表示户外活动时间为2小时的扇形圆心角的度数; (4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数各是多少?图4-G-3详解详析 1.B 2.C 3.C [解析] 这组数据已经从小到大排列了,中间的两个数是5和6,故中位数是(5+6)÷2=5.5. 4.A 5.C [解析] 全班有40人,取得70分的人数最多,故众数是70分;把这40人的得分按大小顺序排列后知,第20个与第21个得分都是80分,故中位数是80分. 6.B [解析] 众数是一组数据中出现次数最多的数,所以该班40名同学一周参加体育锻炼时间的众数是8小时;将这组数据按从小到大的顺序排列后,第20个和第21个数都是9,故该班40名同学一周参加体育锻炼时间的中位数是9小时. 7.B [解析] 因为甲的平均成绩为86×0.6+90×0.4=51.6+36=87.6(分);乙的平均成绩为92×0.6+83×0.4=55.2+33.2=88.4(分);丙的平均成绩为90×0.6+83×0.4=54+33.2=87.2(分);丁的平均成绩为83×0.6+92×0.4=49.8+36.8=86.6(分).所以乙的平均成绩最高.故选B. 8. C 9.8.0 [解析] 根据题意,得(8.2+8.3+7.8+7.7+8.0)÷5=8.0(分). 10.4 ℃ 11.9分 12.6 13.2 14. 2 [解析] 中位数应是第35个和第36个数的平均数,第35个数和第36个数都在第2组.15.解:(1)5 (2)由题意可知17(3+a+4+5+b+c+6)=12,所以a+b+c=66. 16.解:(1)平均数为20×1+17×1+13×2+8×5+5×3+4×214=9(台), 8台出现了5次,出现的次数最多,所以众数为8台, 14个数据按从小到大的顺序排列后,第7个,第8个数都是8,所以中位数是(8+8)÷2=8(台). (2)每月销售冰箱的定额为8台才比较合适.因为8台既是众数,又是中位数,是大部分人能够完成的台数.若定为9台,则只有少量人才能完成,打击了大部分职工的积极性. 17.解:(1)xA=13(90+82+95)=89(分); xB =13(88+84+95)=89(分); xC=13(90+87+90)=89(分).可见,三名同学的成绩一样. (2)xA=90×50%+82×30%+95×20%=88.6(分); xB=88×50%+84×30%+95×20%=88.2(分); xC=90×50%+87×30%+90×20%=89.1(分).可见,C同学的成绩最好. 18.解:(1)共调查了32÷40%=80(名)学生. (2)户外活动时间为0.5小时的人数为80×20%=16(名).补全条形统计图如下. (3)表示户外活动时间为2小时的扇形圆心角的度数为1280×360°=54°. (4)本次调查中学生参加户外活动的平均时间为16×0.5+32×1+20×1.5+12×280=1.175(时).∵1.175>1,∴平均活动时间符合要求.户外活动时间的众数和中位数均为1小时.第2章对称图形――圆 [测试范围:2.1~2.3 时间:40分钟分值:100分] 一、选择题(每小题3分,共24分) 1.已知⊙O的半径为8,点P与点O的距离为6 2,则( ) A.点P在⊙O的内部 B.点P在⊙O的外部 C.点P在⊙O上 D.以上选项都不对 2.下列说法中正确的个数为( ) ①直径不是弦;②三点确定一个圆;③圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;④相等的圆心角所对的弧相等,所对的弦也相等. A.1 B.2 C.3 D.4 3.如图2-G-1,在半径为13 cm的圆形铁片上切下一块高为8 cm的弓形铁片,则弦AB的长为( ) A.10 cm B.16 cm C.24 cm D.26 cm 图2-G-1 图2-G-24.如图2-G-2,在Rt△ABC中,∠ACB=90°,∠A=26°,以点C 为圆心,BC长为半径的圆分别交AB,AC于点D,E,则BD�嗟亩仁�为( ) A.26° B.64° C.52° D.128° 图2-G-3 5.如图2-G-3,已知⊙O的半径为10,弦AB=12,M是AB上任意一点,则线段OM的长可能是( ) A.5 B.7 C.9 D.11 6.一个点到一个圆上的点的最短距离是3 cm,最长距离是6 cm,则这个圆的半径是( ) A.4.5 cm B.1.5 cm C.4.5 cm或1.5 cm D.9 cm或3 cm 7.如图2-G-4所示,一圆弧过方格的格点A,B,C,试在方格中建立平面直角坐标系,使点A的坐标为(-2,4),点C的坐标为(0,4),则该圆弧所在圆的圆心坐标是( ) A.(-1,2) B.(1,-1) C.(-1,1) D.(2,1) 图2-G-4 图2-G-5 8.如图2-G-5,在⊙O中,弦AB∥CD,直径MN⊥AB且分别交AB,CD于点E,F,下列4个结论:①AE=BE;②CF=DF;③AC�啵�BD�啵虎�MF =EF.其中正确的有( ) A.1个 B.2个 C.3个 D.4个二、填空题(每小题4分,共24分) 9.圆是轴对称图形,它的对称轴是______________. 10.在平面内,⊙O的半径为3 cm,点P到圆心O的距离为7 cm,则点P与⊙O的位置关系是________. 11.如图2-G-6,⊙O的半径为5,点A,B在⊙O上,∠AOB=60°,则弦AB 的长为________.图2-G-6 图2-G-712.如图2-G-7,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为________. 13.如图2-G-8,矩形ABCD与⊙O交于点A,B,F,E,DE=1 cm,EF=3 cm,则AB=________ cm. 图2-G-8 图2-G-914.已知:如图2-G-9,A是半圆上的一个三等分点,B是AN�嗟闹械悖�P是MN上一动点,⊙O的半径为1,则AP+BP的最小值是________.三、解答题(共52分) 15.(12分)如图2-G-10,AB,CD为⊙O的直径,点E,F在直径CD上,且CE=DF. 求证:AF=BE. 图2-G-1016.(12分)如图2-G-11,AB是⊙O的直径,AC�啵�CD�啵�∠COD=60°. (1)△AOC是等边三角形吗?请说明理由; (2)求证:OC∥BD. 图2-G-1117.(14分)如图2-G-12,已知AB是⊙O的直径,AB=10,弦CD与AB相交于点N,∠ANC=30°,ON∶AN=2∶3,OM⊥CD,垂足为M.(1)求OM的长; (2)求弦CD的长.图2-G-1218.(14分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图2-G-13所示.圆O与纸盒交于E,F,G三点,已知EF=CD=16 cm. (1)利用直尺和圆规作出圆心O; (2)求出球的半径.图2-G-13详解详析 1.B [解析] ∵82=64,6 22=72,且64<72,∴8<6 2,∴点P与点O的距离大于⊙O的半径,∴点P在⊙O的外部.故选B. 2.A [解析] ③正确,这是根据圆的轴对称的性质来判断的.①错误,直径是过圆心的弦;②错误,不在同一条直线上的三点才能确定一个圆;④错误,相等的圆心角所对的弧不一定相等,所对的弦也不一定相等,缺少“在同圆或等圆中”这一条件.正确的只有③.故选A. 3.C 4.C [解析] ∵∠ACB=90°,∠A=26°,∴∠B=64°.∵CB=CD,∴∠CDB=∠B=64°,∴∠BCD=180°-64°-64°=52°,∴BD�嗟亩仁�为52°.故选C. 5.C [解析] 连接OA.过点O作ON⊥AB,垂足为N.∵ON⊥AB,AB=12,∴AN=BN=6.在Rt△OAN 中,ON=OA2-AN2=102-62=8,∴8≤OM≤10.故选C. 6. C [解析] 根据题意,画出图形如图所示.设圆的半径为r cm,分两种情况来考虑: (1)如图①,若点P在圆内,则PA+PB=2r,∴3+6=2r,解得r=4.5,即圆的半径为4.5 cm; (2)如图②,若点P在圆外,则PA-PB=2r,∴6-3=2r,解得r=1.5,即圆的半径为1.5 cm. 故此圆的半径为4.5 cm或1.5 cm.故选C. 7.C [解析] 连接AB,AC,利用网格图的特征,作出AB,AC的垂直平分线,其交点即为圆心,则可得它的坐标为(-1,1).故选C. 8. C 9.过圆心的任意一条直线[解析] 圆是轴对称图形,它的对称轴是过圆心的任意一条直线. 10.点P在⊙O外[解析] ∵⊙O的半径为3 cm,点P到圆心O的距离为7 cm,∴d>r,∴点P与⊙O的位置关系是点P在⊙O外. 11.5 [解析] ∵⊙O的半径为5,∴OA=OB=5. 又∵∠O=60°,∴∠A=∠B=60°,∴△ABO是边长为5的等边三角形,∴AB=5. 12.3 2 [解析] 如图,过点O分别作OM⊥AB于点M,ON⊥CD于点N,连接OB,OD. ∵AB=CD=8,∴BM=DN=4. 又∵OB=OD=5,∴OM=ON=52-42=3. ∵AB⊥CD,∴∠DPB=90°. ∵OM⊥AB,ON⊥CD,∴∠OMP=∠ONP=90°,∴四边形MONP是矩形.又∵OM=ON,∴矩形MONP是正方形,∴PM=OM=3,∴OP=3 2. 13.5 [解析] 由图形的轴对称性易知CF=DE. ∵DE=1 cm,∴CF=1 cm. ∵EF=3 cm,∴DC=5 cm,∴AB=5 cm. 14.2 [解析] 利用对称法,作点A或点B关于MN的对称点是解决问题的关键.如图,作点A关于MN的对称点A′,连接A′B,交MN于点P,则此时PA+PB的值最小,连接OA,OA′. ∵点A与点A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∴PA+PB=PA′+PB=A′B. 连接OB. ∵B是AN�嗟闹械悖�∴∠BON=30°,∴∠A′OB=90°,∴在Rt△A′OB中,A′B=OA′+OB2=2,∴PA+PB的最小值为2. 15.证明:∵AB,CD为⊙O的直径,∴OA=OB,OC=OD. ∵CE=DF,∴OE=OF. 在△AOF和△BOE 中,OA=OB,∠AOF=∠BOE,OF=OE,∴△AOF≌△BOE(SAS),∴AF =BE. 16.解:(1)△AOC是等边三角形.理由:∵AC�啵�CD�啵�∴∠AOC=∠COD=60°. ∵OA=OC,∴△AOC是等边三角形. (2)证明:∵∠AOC=∠COD=60°,∴∠BOD=60°. ∵OB=OD,∴△OBD 是等边三角形,∴∠OBD=60°,∴∠OBD=∠AOC,∴OC∥BD. 17.解:(1)∵AB=10,∴OA=5. ∵ON∶AN=2∶3,∴ON=2. ∵∠ANC=30°,∴∠ONM=30°,∴在Rt△OMN中,OM=12ON=1. (2)如图,连接OC. 在Rt△COM中,由勾股定理,得CM2=CO2-OM2=25-1=24,∴CM=2 6. 又∵OM⊥CD,∴CD=2CM=4 6. 18.解:(1)如图①所示,点O即为所求. (2)如图②,过点O作OM⊥EF于点M,连接OF,延长MO,则MO与BC的交点为G. 设球的半径为r cm,则OF=r cm,OM=(16-r)cm,MF=12EF=8 cm. 在Rt△OFM中,由勾股定理,得OF2=OM2+MF2,即r2=(16-r)2+82,解得r=10. 即球的半径为10 cm.。

北师大版九年级数学上册《6.1反比例函数》同步测试题及答案

北师大版九年级数学上册《6.1反比例函数》同步测试题及答案

北师大版九年级数学上册《6.1反比例函数》同步测试题及答案一、单选题1.下列函数:①y=x−2,②y=3x ,③y=x−1,④y=2x+1,⑤xy=11,⑥y=kx,⑦y=5x2,⑧yx=1.其中y是x的反比例函数的有()A.1个B.2个C.3个D.4个2.下列问题中,两个变量成反比例的是()A.商一定时(不为零),被除数与除数;B.等腰三角形周长一定时,它的腰长与它底边的长;C.一个因数(不为零)不变时,另一个因数与它们的积;D.货物的总价A一定时,货物的单价a与货物的数量x.3.当x=−3时,反比例函数y=−12x的函数值为()A.−14B.4C.−4D.144.下列各点在反比例函数y=−8x的图象上的是()A.(−2,−4)B.(2,4)C.(13,24)D.(−12,16)5.若一个反比例函数的图象经过A(2,−4)、B(m,−2)两点,则m的值为()A.−4B.4C.8D.−86.如果点A(a,−b)在反比例函数y=2x的图象上,则代数式ab−4的值为()A.0B.−2C.2D.−67.已知点A(3,m)和点B(n,2)关于x轴对称,则下列各点不在反比例函数y=mnx的图象上的点是()A.(3,−2)B.(−3,2)C.(−1,−6)D.(−1,6)8.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在双曲线y=6x上的概率为()A.19B.23C.118D.16二、填空题9.已知反比例函数y=−8x的图像经过(−2,m),则m=10.已知反比例函数y=8x的图象经过点A(m,−2),则A关于原点对称点A′坐标为.11.已知y与x-2成反比例,且比例系数为k≠0,若x=3时,y=4,则k=.12.已知y−3与x+2成反比例,且x=2时y=7,则当y=1时,x的值为13.已知点A(x1,y1),B(x2,y2)都在反比例函数y=4x的图象上.若x1⋅x2=−2,则y1⋅y2的值为.14.点A(x1,y1),B(x2,y2)在反比例函数y=kx(k≠0)的图象上,若x1+x2=0,则y1+y2=.15.已知点P(a,b)是反比例函数y=1x 图像上异于点(-1,-1)的一个动点,则21+a+21+b=.16.如图,平面直角坐标系中,若反比例函数y=kx(k≠0)的图象过点A和点B,则a的值为.三、解答题17.已知y=(a−2)x a2−a−1,当a为何值时,y为x的正比例函数?当a为何值时,y为x的反比例函数?18.写出下列问题中的函数关系式,并指出其比例系数.(1)当圆锥的体积是150cm³时,它的高ℎ(cm)与底面积S(cm²)的函数关系式;(2)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系式;(3)某实验中学八(2)班同学为校运动会制作小红花1000朵,完成的天数y与该班同学每天制作的数量x 之间的函数关系式;(4)某商场推出分期付款购买电脑的活动,一台电脑售价1.2万元,首期付款4千元后,分x次付清,每次付款相同. 每次的付款数y(元)与付款次数x的函数关系式.19.已知反比例函数y=−12x.(1)说出这个函数的比例系数和自变量的取值范围.(2)求当x=−3时函数的值.(3)求当y=−√3时自变量x的值.20.已知函数y=y1+y2,其中y1与x成正比例,y2与x−3成反比例,当x=2时y=16;当x=4时,y=20.求:(1)y关于x的函数解析式及定义域;(2)当x=5时的函数值.21.已知y−3与x+1成反比例关系,且当x=2时y=1.(1)求y与x的函数表达式.)是否在该函数图象上,并说明理由.(2)试判断点B(3,−1222.在面积为定值的一组矩形中,当矩形的一边长为7.5cm时,它的另一边长为8cm.(1)设矩形相邻的两边长分别为x(cm),y(cm),求y关于x的函数表达式.这个函数是反比例函数吗?如果是,指出比例系数.(2)若其中一个矩形的一条边长为5cm,求这个矩形与之相邻的另一边长.23.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案:题号 1 2 3 4 5 6 7 8答案 C D B D B D C A(k≠0),xy=k(k≠0),y=kx−1(k≠0).1.解:反比例的三种形式分别为:y=kx①中x的次数是1,是一次函数,不是反比例函数;②,③是反比例函数;④中分母是x+1,故不是反比例函数;⑤是反比例函数;⑥中没有k≠0,故不是反比例函数;⑦分母是x2,故不是反比例函数;⑧中x的次数是1,是一次函数,不是反比例函数.故有三个是反比例函数.故选C.2.解:A、商一定时(不为零),被除数和除数成正比例关系,故A错误;B、等腰三角形周长一定时,它的腰长与它底边的长成一次函数关系;故B错误;C 、一个因数(不为零)不变时,另一个因数与它们的积成正比例关系;故C 错误;D 、货物的总价A 一定时,货物的单价a 与货物的数量x 成反比例关系;故D 正确. 故选D3.解:当x =−3时 故选:B .4.解:A.当x =−2时y =−8−2=4,故该点不在反比例函数y =−8x图象上;B. 当x =2时y =−82=−4,故该点不在反比例函数y =−8x 图象上; C. 当x =13时y =−813=−24,故该点不在反比例函数y =−8x 图象上;D. 当x =−12时y =−8−12=16,故该点在反比例函数y =−8x 图象上;故选:D .5.解:设反比例函数的表达式为y =kx(k ≠0)∵反比例函数的图象经过A(2,−4)、B(m ,−2)两点 ∵k =2×(−4)=−2m 解得:m =4 故选:B .6.解:∵点A(a ,−b)在反比例函数y =2x 的图象上 ∵−b =2a ∵ab =−2∵ab −4=−2−4=−6 故选D .7.解:∵点A (3,m )和点B (n,2)关于x 轴对称 ∵{m =−2n =3∵反比例函数解析式为y =mn x=−6x∵在反比例函数图象上的点一定满足横纵坐标的乘积为−6 ∵四个选项中只有C 选项符合题意 故选C .8.解:表格列示所有投掷情况如下小明小莉12345611,11,21,31,41,51,622,12,22,32,42,52,633,13,23,33,43,53,644,14,24,34,44,54,655,15,25,35,45,55,666,16,26,36,46,56,6点P若落在y=6x上,则xy=6.如上表,两人掷的组合情况共有6×6=36种,其中满足要求的有4种:2,3;3,2;1,6;6,1,故概率为436=19;故选:A9.解:把(−2,m)代入y=−8x即m=−8−2=4故答案为:4.10.解:∵反比例函数y=8x的图象经过点A(m,−2)∵−2m=8解得m=−4∴A(−4,−2)则A关于原点对称点A′(4,2)故答案为:(4,2).11.解:由题意知k=y(x-2)∵x=3时,y=4∵k=4×(3-2)=4.故答案为:412.解:∵y −3与x +2成反比例 ∵可设:y −3=k x+2(k ≠0)又∵x =2,y =7 ∵7−3=k 2+2解之得:k =16 ∵得:y −3=16x+2,即:y =16x+2+3∵当y =1时得:1=16x+2+3 解之得:x =−10 故答案为:−10.13.解:∵点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =4x 的图象上∴x 1y 1=4,x 2y 2=4 ∴x 1y 1x 2y 2=16且x 1⋅x 2=−2 ∴y 1⋅y 2=−8. 故答案为:−8.14.解:∵点A(x 1,y 1),B(x 2,y 2)在反比例函数y =k x (k ≠0)的图象上 ∵y 1=k x 1,y 2=k x 2∵y 1+y 2=kx 1+kx 2=k(x 1+x 2)x 1x 2.∵x 1+x 2=0 ∵k(x 1+x 2)x 1x 2=0,即y 1+y 2=0.故答案为:0.15.解:∵点P(a,b)是反比例函数y =1x 图象上异于点(−1,−1)的一个动点∴ab =1∴ 21+a +21+b =2(1+b)(1+a)(1+b)+2(1+a)(1+a)(1+b)=2(1+b+1+a)1+b+a+ab=2(2+a+b)2+a+b=2.故答案为2.16.解:依题意,将点A (1,−3)代入y =kx ,得出k =−3∵反比例数解析式为y =−3x当x =−2时y =32即a =32 故答案为:32.17.解:当y 为x 的正比例函数时{a −2≠0a 2−a −1=1解得:a =−1.所以:当a =−1时,y 为x 的正比例函数. 当y 为x 的反比例函数时{a −2≠0a 2−a −1=−1解得:a =0或a =1.所以:当a =0或a =1时,y 为x 的反比例函数. 18.解:(1)∵hS=450,∵ℎ=450S,∵比例系数为450.(2)∵Fs=W ,∵F =W s,∵比例系数为W . (3)∵xy=1000,∵y =1000x,∵比例系数为1000.(4)∵xy=12000-4000,∵y =8000x,∵比例系数为8000.19.(1)解:∵y =−12x∵k =−12,x ≠0;(2)解:把x =−3,代入y =−12x 得:y =−12−3=4; ∵当x =−3时函数的值为:4;(3)解:把y =−√3,代入y =−12x 得:−√3=−12x ,解得:x =4√3;∵当y =−√3时x 的值为:4√3.20.(1)解:∵ y 1与x 成正比例,y 2与x −3成反比例 ∴设y 1=ax(a ≠0)∴y =y 1+y 2=ax +bx −3∵当x =2时y =16;当x =4时∴{2a +b2−3=164a +b4−3=20解得:a =6∴y =6x −4x −3∵x −3≠0 ∴x ≠3∴y =6x −4x −3(x ≠3) (2)解:由(1)可知y =6x −4x−3,则当x =5时y =6×5−45−3=28. 21.(1)解:设y −3=k x+1∵当x =2时y =1 ∵1−3=k2+1 ∵k =−6 ∵y =−6x+1+3; (2)不在;理由如下: 当x =3时y =−63+1+3=32∵B (3,−12)不在该函数图象上.22.(1)解:设矩形的面积为Scm 2,则S =7.5×8=60 即xy =60,y =60x即y 关于x 的函数解析式是y =60x,这个函数是反比例函数,系数为60;(2)解:当x =5时y =60x=12故这个矩形与之相邻的另一边长为12cm . 23.解:(1)根据题意,得wt =1600 所以w =1600t(t >4);(2)当w=100时1600t=100,解得t=16.即服装厂需要16天能够完成任务.(3)当t=16−6=10时w=1600t =160010=160(件).160−100=60(件)即服装厂每天要多做60件夏凉小衫才能完成任务.。

初中数学(新人教版)九年级下册同步测试:第27章测评(同步测试)【含答案及解析】

初中数学(新人教版)九年级下册同步测试:第27章测评(同步测试)【含答案及解析】

第二十七章测评(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分.下列各小题给出的四个选项中,只有一项符合题目要求)1.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则DEEF的值为()A.12B.2 C.25D.352.如图,锐角三角形ABC的高CD和高BE相交于点O,则与△DOB相似的三角形个数是()A.1B.2C.3D.43.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上.如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC面积的14,那么点B'的坐标是()A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)4.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E.若AC=8,BC=6,DE=3,则AD的长为()A.3B.4C.5D.65.已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标分别变成原来的2倍,得到点A',B',C'.下列说法正确的是()A.△A'B'C'与△ABC是位似图形,位似中心是点(1,0)B.△A'B'C'与△ABC是位似图形,位似中心是点(0,0)C.△A'B'C'与△ABC是相似图形,但不是位似图形D.△A'B'C'与△ABC不是相似图形6.如图,梯形ABCD的对角线AC,BD相交于点O,G是BD的中点.若AD=3,BC=9,则GO∶BG=()A.1∶2B.1∶3C.2∶3D.11∶207.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是()A.EDEA =DFABB.DEBC=EFFBC.BC DE =BFBED.BFBE=BCAE8.在平面直角坐标系中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=-1x图象上的一个动点,过点P作PQ⊥x轴,垂足为点Q.若以点O,P,Q为顶点的三角形与△OAB相似,则相应的点P共有() A.1个 B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是.10.已知△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,则△DEF的周长为.11.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165 cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为.(精确到1 cm)12.如图,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q.若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为.13.如图,小明在A时测得某树的影长为2 m,在B时又测得该树的影长为8 m.若两次日照的光线互相垂直,则树的高度为m.14.一古老的捣碎器如图所示,已知支撑柱AB的高为0.3 m,踏板DE长为1.6 m,支撑点A到踏脚D的距离为0.6 m,现在踏脚着地,则捣头点E距地面m.三、解答题(共44分)15.(10分)如图,方格纸中有一条美丽可爱的小金鱼.(1)在同一方格纸中,画出将小金鱼图案绕原点O 旋转180°后得到的图案;(2)在同一方格纸中,并在y轴的右侧,将原小金鱼图案以原点O为位似中心放大,使它们的相似比为2∶1,画出放大后小金鱼的图案.16.(10分)某高中为高一新生设计的学生板凳从侧面看到的图形如图所示.其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm,为使板凳两腿底端A,D之间的距离为50 cm,则横梁EF的长应为多少?(材质及其厚度等暂忽略不计)17.(12分)如图,在△ABC中,延长BC到点D,使CD=BC.取AB的中点F,连接FD交AC于点E.的值;(1)求AEAC(2)若AB=a,FB=EC,求AC的长.18.(12分)如图,在四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB·AD;(2)求证:CE∥AD;的值.(3)若AD=4,AB=6,求ACAF第二十七章测评一、选择题1.D2.C3.D4.C5.B6.A 根据△AOD ∽△COB ,可以知道ODOB =ADBC =13.由于G 是BD 的中点,从而可以得到GO ∶BG=1∶2. 7.C8.D 在△OPQ 和△OAB 中,∠PQO=∠AOB=90°,当∠POQ=∠ABO 或∠POQ=∠BAO 时,两个三角形相似,故双曲线的每个分支上都有2个点满足题意,即相应的点P 共有4个. 二、填空题9.(9,0) 要确定△ABC 与△A 1B 1C 1的位似中心,只要连接A 1A ,C 1C 并延长,其交点即为位似中心,然后再根据画图的结果,确定位似中心的坐标即可.10.90 ∵△ABC 的三边长分别为5,12,13,∴△ABC 的周长为5+12+13=30.∵与它相似的△DEF 的最小边长为15,∴△DEF 的周长∶△ABC 的周长=15∶5=3∶1,∴△DEF 的周长为3×30=90. 11.8 cm12.3或43 由于以A ,P ,Q 为顶点的三角形和以A ,B ,C 为顶点的三角形有一个公共角(∠A ),因此依据相似三角形的判定方法,过点P 的直线PQ 应有两种作法:一是过点P 作PQ ∥BC ,这样根据相似三角形的性质可得AQAB =APAC ,即AQ6=24,解得AQ=3; 二是过点P 作∠APQ=∠ABC ,交边AB 于点Q ,这时△APQ ∽△ABC ,于是有AQ AC=AP AB ,即AQ 4=26,解得AQ=43.所以AQ 的长为3或43.13.4 直角三角形被斜边上的高分成的两个小直角三角形都与原三角形相似,如图.这个基本图形可称之为“母子三角形”,树高EH 所在的两个“子三角形”相似,即Rt △ECH ∽Rt △DEH ,得EH 2=HC ·HD=2×8.所以EH=4 m .或者利用勾股定理,得{EC 2-ED 2=22-82,EC 2+ED 2=(2+8)2,消去ED 2,得EC 2=20, 所以EH 2=16,所以EH=4 m .14.0.8 ∵△ABD ∽△ECD ,∴AD ∶ED=AB ∶EC ,∴0.6∶1.6=0.3∶EC ,解得EC=0.8 m .三、解答题 15.解 如图所示.16.解 过点C 作CM ∥AB ,交EF ,AD 于点N ,M ,作CP ⊥AD ,交EF ,AD 于点Q ,P.由题意得,四边形ABCM 是平行四边形,∴EN=AM=BC=20 cm . ∴MD=AD-AM=50-20=30(cm).由题意知CP=40 cm,PQ=8 cm,∴CQ=32 cm .∵EF ∥AD ,∴△CNF ∽△CMD. ∴NFMD =CQCP ,即NF30=3240,解得NF=24 cm . ∴EF=EN+NF=20+24=44(cm),即横梁EF 的长应为44 cm .17.解 (1)过点F 作FM ∥AC ,交BC 于点M.∵F 为AB 的中点,∴M 为BC 的中点,即FM ∥AC ,且FM=12AC.由FM ∥AC ,得△FMD ∽△ECD.∴DC DM =EC FM =23,∴EC=23FM=23×12AC=13AC.∴AE AC=AC -EC AC=AC -13AC AC =23.(2)∵AB=a ,∴FB=12AB=12a. 又FB=EC ,∴EC=12a.∵EC=13AC ,∴AC=3EC=32a.18.(1)证明 ∵AC 平分∠DAB ,∴∠DAC=∠CAB.又∠ADC=∠ACB=90°,∴△ADC ∽△ACB.∴AD AC =ACAB ,∴AC 2=AB ·AD.(2)证明 ∵E 为AB 的中点,∴CE=12AB=AE ,∠EAC=∠ECA.∵AC 平分∠DAB ,∴∠CAD=∠CAB. ∴∠DAC=∠ECA.∴CE ∥AD.(3)解 ∵CE ∥AD ,∴∠DAF=∠ECF ,∠ADF=∠CEF ,∴△AFD ∽△CFE ,∴ADCE =AFCF .∵CE=12AB ,∴CE=12×6=3.又AD=4,由ADCE =AF CF ,得43=AFCF, ∴AFAC =47,∴ACAF =74.。

人教版九年级数学上册《21.3实际问题与一元二次方程》同步测试题及答案

人教版九年级数学上册《21.3实际问题与一元二次方程》同步测试题及答案

人教版九年级数学上册《21.3实际问题与一元二次方程》同步测试题及答案一、选择题1.在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次.若设参加此会的学生为x 名,据题意可列方程为()A.x(x+1)=253B.x(x−1)=253C.12x(x+1)=253D.12x(x−1)=2532.某小区内的一家快递驿站第一天共收到225件快递,第三天共收到324件快递,设该快递驿站收件量的日平均增长率为x,则下列方程正确的是()A.225(1+x2)=324B.225(1+x)2=324C.225(1+2x)=324D.225+225(1+x)=3243.有一个人患流感,经过两轮传染后共有64个人患流感.设每轮传染中平均一个人传染x个人,则第三轮传染后共有()个人患流感。

A.7 B.8 C.448 D.5124.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支.主干,支干和小分支的总数是157,则每个支干长出多少个小分支?设每个支干长出x个小分支,所列方程是()A.x2=157B.(1+x)2=157C.1+x+x2=157D.x+x2=1575.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“健身杯”足球比赛,赛制为单循环形式(每两个队之间赛一场),现计划安排21场比赛,则邀请的参赛队数是()A.5 B.6 C.7 D.86.如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则所列方程正确的为()A.(30−2x)(40−2x)=600B.(30+2x)(40+2x)=600C.30×40−2×30x−2×40x=600D.30×40+2×30x+2×40x=6007.某公司年报显示,该公司2023年的利润为6600万元,受市场波动影响,2023年利润增长率为2022年利润增长率的一半,若该公司2021年的利润为5000万元,则该公司2023年利润增长率为()A.5%B.10%C.15%D.20%8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x−1)x=6210B.3(x−1)=6210C.(3x−1)x=6210D.3x=6210二、填空题9.10月8号到校前,帅童收到学校的一条短信通知发给若干同学,每个收到的同学又给相同数量的同学转发了这条短信,此时收到这条短信的同学共有157人,帅童给个同学发了短信10.鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,设每只病鸡传染健康鸡的只数为x只,则可列方程为.11.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,连续两次降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为.12.如图是一个三角形点阵图,从上向下有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点,容易看出,10是三角形点阵中前4行的点数和,则300个点是前行的点数和.13.如图,某小区要在长为16m,宽为12m的矩形空地上建造一个花坛,使花坛四周小路的宽度相等,且花坛所占面积为空地面积的一半,则小路宽为m.三、解答题14.西瓜经营户以3元/千克的价格购进一批小型西瓜,以4元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克这种小型西瓜的售价降低多少元?15.现今网购已经成为消费的新常态,某快递公司今年8月份的投递快递总件数为10万件,由于改进分拣技术,增加投递业务人员,10月份的投递快递总件数达到12.1万件,假设该公司每个月的投递快递总件数平均增长率相同.(1)求该公司的投递快递总件数月平均增长率;(2)如果继续保持上面的月平均增长率,平均每个业务员每月最多可投递快递0.7万件,那么20名投递业务员能否完成今年11月份的快递投递任务?说明理由.16.每年暑假是游泳旺季,今年我市某商店抓住商机,销售某款游泳服.6月份平均每天售出100件,每件盈利40元.为了扩大销售、增加盈利,7月份该店准备采取降价措施,经过市场调研,发现销售单价每降低1元,平均每天可多售出10件.(1)若降价5元,求平均每天的销售数量;(2)当每件游泳服降价多少元时,该商店每天销售利润为6000元?参考答案1.D2.B3.D4.C5.C6.A7.B8.A9.1210.(1+x)2=16911.20%12.2413.214.解:设应将每千克这种小型西瓜的售价降低x元.)−24=200根据题意,得(4−3−x)(200+40x0.1原式可化为:50x2−25x+3=0,解这个方程,得x1=0.2,x2=0.3.∵为了促销,故x=0.2不符合题意,舍去,∴x=0.3.答:应将每千克这种小型西瓜的售价降低0.3元.15.(1)解:设该公司的投递快递总件数月平均增长率为x依题意得:10(1+x)2=12.1解得:x1=﹣2.1(不符合题意,舍去),x2=0.1=10%答:该公司的投递快递总件数月平均增长率为10%;(2)解:该公司现有的20名投递业务员能完成今年11月份的快递投递任务,理由如下:由题意可知,11月份的快递投递总件数:12.1×(1+10%)=13.31 (万件)∵0.7×20=14(万件),14>13.31∴该公司现有的20名投递业务员能完成今年11月份的快递投递任务.16.(1)解:∵销售单价每降低1元,平均每天可多售出10件,降价5元∴平均每天可多售出5×10=50(件)∴若降价5元,平均每天的销售数量为100+50=150(件).(2)解:设每件商品降价x元,则每件盈利(40−x)元,平均每天可售出(100+10x)件∵商店每天销售利润为6000元∴(40−x)(100+10x)=6000解得:x1=10,x2=20答:每件游泳服降价10元或20元时,该商店每天销售利润为6000元.。

初中数学(新人教版)九年级下册同步测试:三视图(同步测试)【含答案及解析】

初中数学(新人教版)九年级下册同步测试:三视图(同步测试)【含答案及解析】

29.2三视图第1课时简单几何体的三视图知能演练提升能力提升1.在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是()2.已知底面为正方形的长方体如图所示,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.下列几何体的主视图既是中心对称图形又是轴对称图形的是()4.如图,将Rt△ABC绕直角边AC所在直线旋转一周,所得几何体的主视图是()5.如图,该几何体的俯视图是()6.如图,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是()7.由若干个大小、形状完全相同的小立方块所搭成的几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()8.下图中右面的三视图是左面棱锥的三视图,能反映物体的长和高的是()A.俯视图B.主视图C.左视图D.都可以创新应用★9.如图,这是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可恰好堵住圆形空洞,又可恰好堵住方形空洞的是()★10.5个棱长为1的小正方体组成如图所示的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位);(2)画出该几何体的主视图和左视图.能力提升能力提升1.A2.B3.D4.D Rt△ABC绕直角边AC旋转一周所得到的几何体是圆锥,所以它的主视图是等腰三角形.5.B6.A要注意看的方向,本题是从上面看,即俯视,圆柱从上面看应该是圆形,正方体从上面看应该是正方形,并且它们是并列摆放的.7.A8.B由实物图可以知道能反映长的视图是主视图和俯视图,能反映高的视图是主视图和左视图,故选B.创新应用9.B10.解(1)522(2)如图.第2课时复杂几何体的三视图知能演练提升能力提升1.已知一个水平放置的圆柱形物体如图所示,中间有一个细棒,则此几何体的俯视图是()2.手提水果篮抽象的几何体如图所示,以箭头所指的方向为主视图方向,则它的俯视图为()3.如图,该零件的左视图是()4.有一个零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()5.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵、横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图,该几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()6.如图,桌面上的模型由20个棱长为a的小正方体组成,现将该模型露在外面的部分涂上涂料,则涂上涂料部分的总面积为.7.已知某几何体的示意图如图所示,请画出该几何体的三视图.8.已知一个槽形工件如图所示,它是长方体中间切去了一个小的三角块,工人师傅要得到它的平面图形,请你画出它的三视图.★9.如图,下列是一个机器零件毛坯和它的主视图,请画出这个机器零件的左视图与俯视图.创新应用★10.如图,下列是一个机器零件的毛坯,请画出这个机器零件的三视图.★11.已知由若干个完全相同的小正方体组成的一个几何体如图所示.(1)请画出这个几何体的左视图和俯视图;(用阴影表示)(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加几个小正方体?能力提升1.C2.A3.D4.C5.A6.50a27.解如图所示.8.解如图所示.9.解如图所示.创新应用10.解三视图如图所示.11.解(1)左视图和俯视图如下:(2)在第二层第二列的第二行和第三行可各加一个;在第三层第二列的第三行可加一个,在第三列的第三行可加1个,2+1+1=4(个).故最多可再添加4个小正方体.第3课时从视图到实物知能演练提升能力提升1.已知由几个小正方体所搭的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的主视图为()2.已知一个几何体的三视图如图所示,则该几何体是()3.已知一个几何体的三视图如图所示,则该几何体的侧面积是()A.200 cm2B.600 cm2C.100π cm2D.200π cm24.已知一个由小正方体所搭的几何体如图所示,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小正方体的个数),其中不正确的是()5.已知一个几何体的三视图如图所示(其中a,b,c为相应的边长),则这个几何体的体积是.6.用若干个小正方体搭成一个几何体,它的主视图和俯视图如图所示,问:搭成这样的几何体,最少需要多少个小正方体?最多需要多少个小正方体?7.已知某工件的三视图如图所示,求此工件的全面积.创新应用★8.如果一个几何体是由多个小正方体堆成,其三视图如图所示,那么这样的几何体一共有多少种情况?能力提升1.D2.D3.D通过三视图知原几何体是一个底面直径为10 cm,高为20 cm的圆柱体.则S侧面=10π×20=200π(cm)2.故选D.4.B A是从左面看到的,C是从正面看到的,D是从上面看到的.5.abc6.解由主视图得到该几何体有三列,高度分别为2,3,2;由俯视图得第一列和第三列各有2个,但是第二列最少有5个,最多有9个.所以搭成这样的几何体,最少需要9个小正方体,最多需要13个小正方体.7.解由三视图可知,该工件是一个底面半径为10 cm,高为30 cm的圆锥,圆锥的母线长为√302+102=10√10(cm),圆锥的侧面积为1×20π×10√10=100√10π(cm2),圆锥的底面积为2102π=100π(cm2),所以圆锥的全面积为100π+100√10π=100(1+√10)π(cm2).即工件的全面积为100(1+√10)π cm2.创新应用8.解主视图、左视图、俯视图都是由4个正方形组成,所以该物体是由一些完全一样的小正方体构成,所以该物体可以是由8个完全一样的小正方体组成的大正方体如图(1),而且也可以保持图(1)中下面一层有4个小正方体,那么上面一层4块中缺少任意一块,或缺对角的2块,这七种情况的三视图都如题图所示.。

初中数学(新人教版)九年级下册同步测试:期末测评(同步测试)【含答案及解析】

初中数学(新人教版)九年级下册同步测试:期末测评(同步测试)【含答案及解析】

期末测评(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分.下列各小题给出的四个选项中,只有一项符合题目要求)1.由两个正方体组成的几何体如图所示,则该几何体的俯视图为()2.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的.若AB∶FG=2∶3,则下列结论正确的是()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F3.在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan 50°B.10sin 40°C.10sin 50°D.10cos50°的图象相交于A,C两点,过点A作x轴的垂线交x轴于点4.如图,正比例函数y=kx与反比例函数y=4xB,连接BC,则△ABC的面积等于()A.8B.6C.4D.25.(2020·四川凉山州中考)如图所示,△ABC的顶点在正方形网格的格点上,则tan A的值为()A.12B.√22C.2D.2√26.如图,在Rt △ABC 中,AB ⊥AC ,AB=3,AC=4,P 是BC 边上一点,作PE ⊥AB 于点E ,PD ⊥AC 于点D.设BP=x ,则PD+PE 等于( )A.x 5+3B.4-x 5C.72D.12x 5−12x 2257.如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD 为12 m,塔影长DE 为18 m,小明和小华的身高都是1.6 m,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m 和1 m,则塔高AB 为( )A.24 mB.22 mC.20 mD .18 m8.如图,在Rt △ABC 中,∠ACB=90°,BC=4,AC=3,CD ⊥AB 于点D.设∠ACD=α,则cos α的值为( )A.45B.34C.43D.359.如图,在x 轴的上方,∠AOB 为直角,且绕原点O 按顺时针方向旋转.若∠AOB 的两边分别与函数y=-1x ,y=2x的图象交于B ,A 两点,则∠OAB 大小的变化趋势为( )A.逐渐变小B.逐渐变大C.时大时小D.保持不变10.由7个小立方块所搭成的几何体的俯视图如图所示,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()11.如图,A,B是反比例函数y=2x的图象上的两点.AC,BD都垂直于x轴,垂足分别为C,D,AB的延长线交x轴于点E.若C,D的坐标分别为(1,0),(4,0),则△BDE的面积与△ACE的面积的比值是()A.12B.14C.18D.11612.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O.设△OCD的面积为m,△OEB的面积为√5,则下列结论正确的是()A.m=5B.m=4√5C.m=3√5D.m=10二、填空题(每小题3分,共18分)13.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)与体积V(单位:m3)满足函数关系式ρ=kV(k为常数,k≠0),其图象如图所示,则k的值为.14.如图,在Rt △ABC 中,∠ACB=90°,∠A<∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处.若CD 恰好与MB 垂直,则tan A 的值为 .15.在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m,同时测得一根旗杆的影长为25 m,那么这根旗杆的高度为 m .16.已知由几块小正方块搭成的几何体的主视图与左视图如图所示,则这个几何体最多可能有 个小正方块.17.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B',折痕为EF.已知AB=AC=3,BC=4,若以点B',F ,C 为顶点的三角形与△ABC 相似,则BF 的长度是 .18.已知函数y=x 的图象与函数y=4x的图象在第一象限内交于点B ,点C 是函数y=4x在第一象限的图象上的一个动点(不与点B 重合),则当△OBC 的面积为3时,点C 的横坐标是 .三、解答题(共66分)19.(4分)计算:sin 30°+cos 245°-12tan 260°+1cos30°.20.(6分)双曲线y=kx (k 为常数,且k ≠0)与直线y=-2x+b 交于A (-12m ,m -2),B (1,n )两点.(1)求k与b的值;(2)如图,直线AB交x轴于点C,交y轴于点D.若点E为CD的中点,求△BOE的面积.21.(8分)如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且ADAC =DFCG.(1)求证:△ADF∽△ACG;(2)若ADAC =12,求AFFG的值.22.(8分)如图,为了测得某建筑物的高度AB,在C处用高为1 m的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40 m,又测得该建筑物顶端A的仰角为60°,求该建筑物的高度AB.(结果保留根号)23.(8分)如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cos A=3.5(1)求DE,CD的长;(2)求tan∠DBC的值.24.(10分)(2020·江苏南京中考)如图,在港口A处的正东方向有两个相距6 km的观测点B,C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B,C处分别测得∠ABD=45°,∠C=37°.求轮船航行的距离AD.(参考数据:sin 26°≈0.44,cos 26°≈0.90,tan 26°≈0.49,sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)25.(10分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M,M',N',N.小明在探究线段MM'与N'N的数量关系时,从点M',N'向对应边作垂线段M'E,N'F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)当直线l与方形环的对边相交时(如图①),直线l分别交AD,A'D',B'C',BC于M,M',N',N,小明发现MM'与N'N相等,请你帮他说明理由.(2)当直线l与方形环的邻边相交时(如图②),l分别交AD,A'D',D'C',DC于M,M',N',N,l与DC的夹角为α,你认为MM'与N'N还相等吗?若相等,说明理由;若不相等,求出MM'的值.(用含α的三角函数表示)N'N26.(12分)如图,双曲线y=k(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).x(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.期末测评一、选择题1.D2.B3.B4.C5.A6.A 由题意知DP ∥AB ,EP ∥AC.∴△BEP ∽△BAC. ∴PECA =BPBC ,即PE=CA ·BP BC =4x5.∵△CDP ∽△CAB ,∴DPAB =CPBC , ∴DP=3(5-x )5.∴PD+PE=x5+3. 7.A8.A 由条件知,∠B=∠ACD=α,斜边AB=5,cos α=cos B=BC AB=45.9.D 过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E (图略),则S △AOF =1,S △OBE =0.5.易证△AOF ∽△OBE ,则BOAO =√0.51=√22,即tan ∠OAB=√22是个定值,所以∠OAB 大小保持不变. 10.A11.D 解出A ,B 两点的坐标分别为A (1,2),B (4,0.5),∴AC=2,BD=0.5.∵△BDE ∽△ACE ,∴它们面积的比值为116.12.B 二、填空题13.9 由题图知ρ=1.5,V=6,则k=ρ·V=9.14.√33 由CM 是Rt △ABC 斜边的中线,可得CM=AM ,则∠A=∠ACM.由折叠可知∠ACM=∠DCM.又∠A+∠B=∠BCD+∠B=90°,则∠A=∠BCD.所以∠A=∠ACM=∠DCM=∠BCD=30°,因此tan A=tan 30°=√33. 15.15 16.9 17.127或218.1或4 连接OC ,BC ,过点C 作CD ⊥x 轴于点D ,过点B 作BE ⊥x 轴于点E.由于函数y=x 的图象与函数y=4x 的图象在第一象限内交于点B ,故易知B (2,2).设点C 的坐标为(m ,4m ),又点B ,C 都在y=4x 的图象上,所以S △ODC =S △BOE .如图①所示,当点C 在点B 左方的图象上时,S △OBC =S △ODC +S 梯形BCDE -S △BOE =S 梯形BCDE =12(2+4m)(2-m )=3,解得m 1=1,m 2=-4(不合题意,舍去),即点C 的横坐标是1.如图②所示,当点C 在点B 右方的图象上时,同理,有S △OBC = S 梯形BCDE =12(2+4m )(m-2)=3,解得m 1=4,m 2=-1(不合题意,舍去),即点C 的横坐标是4.综上可知,点C 的横坐标为1或4.三、解答题19.解 原式=12+(√22)2−12×(√3)2+√32=12+12−32+2√33=-12+2√33. 20.解 如图.21.(1)证明 ∵∠AED=∠B ,∠DAE=∠CAB ,∴△ADE ∽△ACB ,∴∠ADE=∠C.又AD AC=DFCG,∴△ADF ∽△ACG. (2)解 ∵△ADF ∽△ACG ,∴AD AC =AF AG =12,∴AFFG =1.22.解 由题意知∠PAO=60°,∠B=30°.在Rt △POA 中,tan ∠PAO=PO OA ,tan 60°=30OA ,OA=30÷√3=10√3(m).在Rt △POB 中,tan B=POOB ,tan 30°=30OB ,OB=30÷√33=30√3(m),所以AB=OB-OA=30√3-10√3=20√3(m),即商店与海源阁宾馆之间的距离为20√3 m .23.解 (1)在Rt △ADE 中,由AE=6,cos A=35,得AD=10.由勾股定理得DE=8.利用三角形全等或角平分线的性质,得DC=DE=8.(2)方法1:由(1)AD=10,DC=8,得AC=18. 利用△ADE ∽△ABC ,得DE BC=AE AC ,即8BC=618,BC=24,得tan ∠DBC=13.方法2:由(1)得AC=18,又cos A=ACAB=35,得AB=30.由勾股定理,得BC=24,得tan ∠DBC=13.24.解 如图,过点D 作DH ⊥AC 于点H ,在Rt △DCH 中,∠C=37°,∴CH=DHtan37°.在Rt △DBH 中,∠DBH=45°,∴BH=DHtan45°. ∵BC=CH-BH , ∴DHtan37°−DHtan45°=6,解得DH=18.在Rt △DAH 中,∠ADH=26°,∴AD=DHcos26°≈20.答:轮船航行的距离AD 约为20 km .25.解 (1)在方形环中,∵M'E ⊥AD ,N'F ⊥BC ,AD ∥BC ,∴M'E=N'F ,∠M'EM=∠N'FN=90°,∠EMM'=∠N'NF. ∴△MM'E ≌△NN'F ,∴MM'=N'N.(2)∵∠NFN'=∠MEM'=90°,∠FNN'=∠EM'M=α,∴△NFN'∽△M'EM.∴MM 'N 'N=M 'ENF. ∵M'E=N'F ,∴MM 'N 'N =N 'FNF=tan α. ①当α=45°时,tan α=1,则MM'=NN'. ②当α≠45°时,MM'≠NN',且MM 'N 'N =tan α.26.解 (1)将点A (2,3)代入解析式y=k x ,解得k=6.(2)将D (3,m )代入反比例解析式y=6x ,得m=63=2,所以点D 的坐标为(3,2).设直线AD 的解析式为y=k 1x+b (k 1≠0),将A (2,3)与D (3,2)代入,得{2k 1+b =3,3k 1+b =2,解得k 1=-1,b=5. 所以直线AD 的解析式为y=-x+5.(3)过点C 作CN ⊥y 轴,垂足为N ,延长BA ,交y 轴于点M.因为AB ∥x 轴,所以BM ⊥y 轴.所以MB ∥CN ,△OCN ∽△OBM.因为C 为OB 的中点,即OC OB =12,S △OCNS △OBM =(12)2.因为A ,C 都在双曲线y=6x 上,所以S △OCN =S △AOM =3.由33+S △AOB =14,得S △AOB =9,故△AOB 的面积为9.。

人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案

人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案

人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案1.若正多边形的一个外角为72︒,则这个正多边形的中心角的度数是( )A.18︒B.36︒C.72︒D.108︒2.如图,正六边形ABCDEF内接于圆O,点M在AF上( )A.60︒B.45︒ C.30︒ D.15︒3.若⊙O的内接正n边形的边长与⊙O的半径相等,则n的值为( )A.4B.5C.6D.74.如图,正五边形ABCDE内接于O,点P为DE上一点(点P与点D,点E不重合),连接PC,PD,⊥DG PC垂足为G,则∠PDG等于( )A.72°B.54°C.36°D.64°5.如图,正六边形ABCDEF内接于,正六边形的周长是12,则的半径是( )A.3B.2C.22D.236.如图是半径为4的O的内接正六边形ABCDEF,则圆心O到边AB的距离是( )O OA.23B.3C.2D.37.如图,正六边形ABCDEF 内接于O ,O 的半径为6,则这个正六边形的边心距OM 和弧BC 的长分别为( )A.32 πB.332 πC.332 2π3D.33 π8.如图,正三角形ABC 和正六边形ADBECF 都内接于,O 连接,OC 则∠+∠=ACO ABE ( )A.90︒B.100︒C.110︒D.120︒9.如图,正五边形ABCDE 内接于O ,P 为DE 上的一点(点P 不与点D 重合),则∠=CPD ________°.10.如图,正六边形ABCDEF内接于O,若O的周长等于6π,则正六边形的边长为______.11.早在1800多年前,魏晋时期的数学家刘徽首创“割圆术”,用圆内接正多边形的面积去无限逼近圆面积,如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为_________________.12.如图,圆内接正六边形ABCDEF的半径为2,则该正六边形的面积是_________________.13.有一个亭子,它的地基是半径为8m的正六边形,求地基的面积.(结果保留根号)14.如图,O的周长等于8πcm,正六边形ABCDEF内接于O.(1)求圆心O 到AF 的距离.(2)求正六边形ABCDEF 的面积.参考答案及解析1.答案:C 解析:正多边形的一个外角为72︒∴正多边形的边数为360725︒÷︒=∴这个正多边形的中心角的度数是360572︒÷=︒故选:C.2.答案:C解析:连接OC ,OD多边形ABCDEF 是正六边形60∴∠=︒COD1302∴∠=∠=︒CMD COD故选:C.3.答案:C解析:内接正n 边形的边长与⊙O 的半径相等∴正n 边形的中心角为60︒360606︒÷︒=∴n 的值为6故选:C.4.答案:B解析:正五边形ABCDE 内接于O∠CPD 与所对的弧相同1362∴∠=∠=︒CPD COD故选:B.5.答案:B解析:如图,连结OA ,OBABCDEF 为正六边形1360606∴∠=︒⨯︒=AOB∴AOB △是等边三角形正六边形的周长是1211226∴=⨯=AB2∴===AO BO AB故选B.6.答案:A解析:如图,做⊥OM AB 于点M360725COD ︒∴∠==︒COD ∠180903654PDG ∠=︒-︒-︒=∴︒正六边形ABCDEF 外接半径为4的O4∴==OA OB 360606︒∠==︒AOB 1302∴∠=∠=∠=︒AOM BOM AOB122∴===AM BM OA2223∴=-=OM OA AM ∴圆心O 到边AB 的距离为23故选:A.7.答案:D解析:连接OB 、OC六边形ABCDEF 为正六边形360606︒∴∠==︒BOC 。

初中数学(新人教版)九年级下册同步测试:第29章测评(同步测试)【含答案及解析】

初中数学(新人教版)九年级下册同步测试:第29章测评(同步测试)【含答案及解析】

第二十九章测评(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分.下列各小题给出的四个选项中,只有一项符合题目要求)1.下列投影是正投影的是()A.(1)B.(2)C.(3)D.都不是2.小明在某天下午测量了学校旗杆的影子长度,按时间顺序排列正确的是()A.6 m,5 m,4 mB.4 m,5 m,6 mC.4 m,6 m,5 mD.5 m,6 m,4 m3.已知6个棱长为1的小正方体组成的一个几何体如图所示,则其俯视图的面积是()A.6B.5C.4D.34.一个水平放置的全封闭物体如图所示,则它的俯视图是()5.已知由4个大小相同的长方体搭成的立体图形的左视图如图所示,则这个立体图形的搭法不可能是()6.图①表示一个正五棱柱形状的高大建筑物,图②是它的俯视图.小健站在地面观察该建筑物,当他在图②中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN的度数为()A.30°B.36°C.45°D.72°7.已知一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为()A.66B.48C.48√2+36D.578.已知一个由多个相同的小正方体堆积而成的几何体的俯视图如图所示,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()二、填空题(每小题4分,共24分)9.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6 m,他向墙壁走1 m 到B处时发现影子刚好落在点A,则灯泡与地面的距离CD=.10.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之间,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为. 11.如图,电视台的摄像机1,2,3,4在不同位置拍摄了四幅画面,则图象A是号摄像机所拍,图象B是号摄像机所拍,图象C是号摄像机所拍,图象D是号摄像机所拍.12.已知由四个相同的小正方体组成的立体图形的主视图和左视图如图所示,则原立体图形可能是.(把图中正确的立体图形的序号都填在横线上)13.已知三棱柱的三视图如图所示,在△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为cm.14.观察由棱长为1的小正方体摆成的图形(如图),寻找规律:如图①中:共有1个小正方体,其中1个看得见,0个看不见;如图②中:共有8个小正方体,其中7个看得见,1个看不见;如图③中:共有27个小正方体,其中19个看得见,8个看不见;……则第⑥个图中,看不见的小正方体有个.三、解答题(共44分)15.(10分)按规定尺寸作出如图所示几何体的三视图.16.(10分)如图,两幢楼高AB,CD为30 m,两楼间的距离AC为24 m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)17.(12分)已知一个几何体的三视图如图所示.(1)写出这个几何体的名称;(2)根据图中所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.18.(12分)如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12 m到达点Q时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6 m,两个路灯的高度都是9.6 m.(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?第二十九章测评一、选择题1.C2.B3.B4.C5.A6.B由题图可知∠MPN是由正五边形的两条边的延长线所夹的角,由正五边形的内角度数为108°,知∠MPN=36°.7.A8.D根据俯视图,可知这个几何体从左面看共有两列,其中左边一列最高有两个小正方体,右边一列最高有三个小正方体,因此其左视图应为D.二、填空题m10.上午8时11.234112.①②④9.641513.6如图,过点E作EQ⊥FG于点Q,由题意可得出EQ=AB.在Rt△EGQ中,∵EG=12 cm,∠×12=6(cm).EGF=30°,∴EQ=AB=1214.125通过分析:题图①中,1个小正方体,0个看不见;题图②中,共有8个小正方体,1个看不见;题图③中,共有27个小正方体,8个看不见,所以看不见的小正方体个数正好是上一个图形中小正方体的个数,所以第⑥个图中看不见的小正方体有53=125(个).三、解答题15.解如图.16.解延长MB交CD于点E,连接BD,因为AB=CD,所以NB和BD在同一条直线上.所以∠DBE=∠MBN=30°.因为四边形ABDC是矩形,所以BD=AC=24 m.在Rt△BED中,tan 30°=DEBD,DE=BD tan 30°=24×√33=8√3(m),所以CE=30-8√3≈16.14(m).即甲楼投在乙楼上的影子的高度约为16.14 m.17.解(1)圆锥.(2)S表=S侧+S底=πrl+πr2=12π+4π=16π(cm2).(3)如图将圆锥的侧面展开,线段BD为所求的最短路程.因为AB=6 cm,底面圆半径r=2 cm,设∠BAB'=n°,所以nπ×6180=2π×2,解得n=120,即∠BAB'=120°.由题易知C为弧BB'的中点,所以BD=3√3 cm.18.解(1)由对称性可知AP=BQ.设AP=BQ=x m.因为MP∥BD,所以△APM∽△ABD.所以MPBD =APAB,即1.69.6=x2x+12,解得x=3.所以AB=2x+12=2×3+12=18(m),即两个路灯之间的距离为18 m.(2)设王华走到路灯BD处,头的顶部为E,如图.连接CE,并延长交AB的延长线于点F,则BF即为此时他在路灯AC下的影子长,设BF=y m.因为BE∥AC,所以△FEB∽△FCA.所以BEAC =BFFA,即1.69.6=yy+18,解得y=3.6.故当王华同学走到路灯BD处时,他在路灯AC下的影子长是3.6 m.。

九年级下册数学《锐角三角函数》同步测试及答案

九年级下册数学《锐角三角函数》同步测试及答案

九年级下册数学《锐角三角函数》同步测试及答案一、选择题(每小题3分,共30分)1.河堤的横断面如图所示,堤高BC 是5米,迎水斜坡AB 的长是13米,那么斜坡AB 的坡度i 是( )A .1∶3B .1∶2.6C .1∶2.4D .1∶22.如图,某渔船上的渔民在A 处看见灯塔M 在北偏东600方向,这艘渔船以28海里/小时的速度向正东航行半小时到B 处,在B 处看见灯塔M 在北偏东150方向,此时灯塔M 与渔船的距离是( ) A .27海里 B .214海里 C .7海里 D .14海里3.如图,从山顶A 望地面C .D 两点,测得它们的俯角分别为450和300,已知CD =100米,点C 在BD 上,则山高AB =( ) A .100米 B .350米 C .250米 D .)13(50+米 4.重庆市“旧城改造”中,计划在市内一块如图所示的三角形空地上种植某种草皮,以美化环境.已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A .a 450元 B .a 225元 C .a 150元 D .a 300元5.如图,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB =1.8 m ,要在窗子外面上方安装水平挡光板AC ,使午间光线不能直接射入室内,那么挡光板的宽度AC 为( ) A .1.8tan80°m B .1.8cos80°m C .︒80sin 8.1 mD .︒80tan 8.1 m6.身高相同的三个小朋友甲.乙.丙放风筝,他们放出的线长分别为300 m ,250 m ,200 m ;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝( )A .甲的最高B .乙的最低C .丙的最低D .乙的最高 7.如图,为了测量一河岸相对两电线杆A .B 间的距离,在距A 点15米的C 处 (AC ⊥AB )测得∠ACB =50°,则A .B 间的距离应为( )第1题 第2题 第3题 第4题 第5题 第7题 第8题A .15sin50°米B .15tan50°米C .15tan40°米D .15cos50°米8.如图,在离地面高度5 m 处引拉线固定电线杆,拉线和地面成60°角,则拉线AC 的长是( )A .10 mB .3310 m C .225 m D .53 m二、填空题9.如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子长AB = 米. 10.小明要在坡度为53的山坡上植树,要想保证水平株距为5 m ,则相邻两株树植树地点的高度差应为_____m.11.有一拦水坝的横断面是等腰梯形,它的上底长为6米,下底长为10米,高为23米,那么此拦水坝斜坡的坡度为_____,坡角为_____.12.如图,从楼顶A 点测得电视塔CD 的仰角为α,俯角为β,若楼房与电视塔之间的水平距离为m ,求电视塔的高度.将这个实际问题写成数学形式:已知在△ADC 中,AB _____CD 于B ,∠_____=α,∠_____=β,m =_____,求_____. 13.要把5米长的梯子上端放在距地面3米高的阳台边沿上,猜想一下梯子摆放坡度最小为______. 14.如图,某建筑物BC 直立于水平地面,AC =9米,要建造阶梯AB ,使每阶高不超过20 cm ,则此阶梯最少要建_____阶.(最后一阶的高度不足20 cm 时,按一阶算,3取1.732) 15.如图,小刚在一山坡上依次插了三根木杆,第一根木杆与第二根木杆插在倾斜角为30°,且坡面距离是6米的坡面上,而第二根与第三根又在倾斜角为45°,且坡面距离是8米的坡面上.则第一根与第三根木杆的水平距离是______. (精确到0.01米)16.如图,小明想测量电线杆AB 的高度,发现电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得CD =4 m ,BC =10 m ,CD 与地面成30°角,且此时测得1 m 杆的影子长为2 m ,则电线杆的高度约为_____m.(结果保留两位有效数字,2≈1.41,3≈1.73)第9题 第12题 第14题ABC第15题 第16题 第17题17.如图,在△ABC 中,∠C =90°,cosA =54,CD 是高.若BD =9,则CD = ,S △ABC = .18.四边形ABCD 的对角线AC BD ,的长分别为m n ,,可以证明当AC BD ⊥时(如图1),四边形ABCD 的面积12S mn =,那么当AC BD ,所夹的锐角为θ时(如图2),四边形ABCD 的面积S = .(用含m n θ,,的式子表示)三、解答题(共46分)19.(6分)某校在周一举行升国旗仪式,小明同学站在离旗杆20米处(如图所示), 随着国旗响起,五星红旗冉冉升起,当小明同学目视国旗的仰角为37°(假设该同学的眼睛距地面的高度为1.6米),求此时国旗离地面的距离.20.(6分)如图,甲、乙两船同时从港口O 出发,甲船以16.1海里/时的速度向东偏西32°方向航行,乙船向西偏南58°方向航行,航行了两小时,甲船到达A 处并观测到B 处的乙船恰好在其正西方向,求乙船的速度(精确到0.1海里/时).21.(8分)如图,一勘测人员从B 点出发,沿坡角为15°的坡面以5千米/时的速度行至D处,用了12分钟,然后沿坡角为20°的坡面以3千米/时的速度到达山顶A 点处,用了10 分钟,求山高(即AC 的长度)及A ,B 两点间的水平距离(即BC 的长)(精确到0.01千米).22.(8分)苏州的虎丘塔身倾斜,却经历千年而不例,被誉为“中国第一斜塔”,如图,BC是过塔底中心B 的铅垂线,AC 是塔顶A 偏离BC 的距离,据测量,AC 约为2.34m ,塔身AB 的长为47.9m ,求塔身倾斜的角度∠ABC 的度数.(精确到1′).B图1图2第18题 第19题 B O 东北A 第20题B 20︒D A 15︒CE第21题23.(8分)如图,在平面镜的同侧,有相隔15cm 的A ,B 两点, 它们与平面镜的距离分别为5cm 和7cm ,现要使由A 点射出的光线经平面镜反射后通过点B ,求光线的入射角θ的度数.24.(10分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图所示的直角坐标系. (1)台风中心生成点B 的坐标为 ,台风中心转折点C 的坐标为 ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?θB 7515DAEF第23题BC6045第24题答案一、选择题1.C 2.A 3.D 4.C 5.D 6.D 7.B 8.B 二、填空题9.4 10.3 11.3 600 12.⊥ BAC BAD AB CD 13.4314.26 15.10.85 16.8.7 17.12、150 18.1sin 2mn θ 三、解答题19.约16.7米. 20.10.1海里/时 21.AC≈0.43(千米),BC≈1.44(千米) 22.2°48′23.θ≈51.1° 24.(1)B -,C -;(2)经过11小时.。

九年级上册数学同步练习含答案大全

九年级上册数学同步练习含答案大全

九年级上册数学同步练习含答案大全数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

下面是小编为大家整理的关于九年级上册数学同步练习含答案,希望对您有所帮助!九年级数学第21章同步测试题与答案二次根式(第二课时)随堂检测1、化简| -2|+ 的结果是( )A.4-2B.0C.2D.42、下列各式中,一定能成立的是( )A. B.C. D.3、已知x<y,化简 p="" 为_______.4、若,则 _________;若,则 ________.5、当时,求|2- |的值是多少?典例分析有一道练习题是:对于式子先化简,后求值.其中 .小明的解法如下: = = = = .小明的解法对吗?如果不对,请改正.分析:本题中有一个隐含条件,即,并由此应将化简为 .对这个隐含条件的敏感度是正确解决问题的关键.解:小明的解法对不对.改正如下:由题意得,,∴应有 .∴ = = = = .课下作业拓展提高1、当-1< <1时,化简得( )A.2B.-2C.2D.-22、计算 =_______.3、观察下列各式:请你将发现的规律用含自然数n(n≥1)的等式表示出来 .4、把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3) (4)x(x≥0)5、在实数范围内分解下列因式:(1) (2) (3)6、已知实数满足,求的值是多少?体验中考1、(2009年,长沙)已知实数在数轴上的位置如图所示,则化简的结果为( )A.1B.-1C.D.(注意:由图可知,我们可以直接利用这个结论解题.)2、(2008年,广州)实数在数轴上的位置如图所示,化简 .(提示:由图可知,可以选择利用和解题.)参考答案:随堂检测1、A. ∵ 有意义,∴ ,∴原式= ,故选A.2、A. ∵只有A选项不含代数字母,等式总成立.故选A.3、0. ∵x4、,∵当时,由得 ;当时,由得,即 .5、解:当时, , ,∴|2- |=|2- |=| |= .课下作业拓展提高1、A. ∵当-1< <1时,∴ , ,∴ ,故选A.2、可以直接利用 ( )的结论解题. = .3、 = .4、解:(1)5=( )2 (2)3.4=( )2(3) =( )2 (4)x=( )2(x≥0).5、解:(1)(2)(3)6、解:∵实数满足,∴ ,∴ ,∴ ,∴由可得:,化简得:,∴ ,∴ .体验中考1、A 由题图可知,∴ ,∴原式= ,故选A.2、由图可知,∴原式= .九年级上册数学练习带答案一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)1. 已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点PA. 在⊙O外B. 在⊙O上C. 在⊙O内D. 不能确定2. 已知△ABC中,∠C=90°,AC=6,BC=8,则cosB的值是A.0.6B.0.75C.0.8D.3.如图,△ABC中,点 M、N分别在两边AB、AC上,MN‖BC,则下列比例式中,不正确的是A .B .C. D.4. 下列图形中,既是中心对称图形又是轴对称图形的是A. B. C. D.5. 已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2= cm,则⊙O1和⊙O2的位置关系是A.外离B.外切C.内切D.相交6. 某二次函数y=ax2+bx+c 的图象如图所示,则下列结论正确的是A. a>0, b>0, c>0B. a>0, b>0, c<0C. a>0, b<0, c>0D. a>0, b<0, c<07.下列命题中,正确的是A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.平分弦的直径垂直于这条弦D.与某圆一条半径垂直的直线是该圆的切线8. 把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是A.y=-(x+3)2-2B.y=-(x+1)2-1C.y=-x2+x-5D.前三个答案都不正确二、填空题(本题共16分, 每小题4分)9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ .10.在反比例函数y= 中,当x>0时,y 随x的增大而增大,则k 的取值范围是_________.11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________.12.已知⊙O的直径AB为6cm,弦CD与AB相交,夹角为30°,交点M恰好为AB的一个三等分点,则CD的长为 _________ cm.三、解答题(本题共30分, 每小题5分)13. 计算:cos245°-2tan45°+tan30°- sin60°.14. 已知正方形MNPQ内接于△ABC(如图所示),若△ABC的面积为9cm2,BC=6cm,求该正方形的边长.15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB的长为12米,调整后的楼梯所占地面CD有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)16.已知:△ABC中,∠A是锐角,b、c分别是∠B、∠C的对边.求证:△ABC的面积S△ABC= bcsinA.17. 如图,△ABC内接于⊙O,弦AC交直径BD于点E,AG⊥BD 于点G,延长AG交BC于点F. 求证:AB2=BF•BC.18. 已知二次函数 y=ax2-x+ 的图象经过点(-3, 1).(1)求 a 的'值;(2)判断此函数的图象与x轴是否相交?如果相交,请求出交点坐标;(3)画出这个函数的图象.(不要求列对应数值表,但要求尽可能画准确)四、解答题(本题共20分, 每小题5分)19. 如图,在由小正方形组成的12×10的网格中,点O、M和四边形ABCD的顶点都在格点上.(1)画出与四边形ABCD关于直线CD对称的图形;(2)平移四边形ABCD,使其顶点B与点M重合,画出平移后的图形;(3)把四边形ABCD绕点O逆时针旋转90°,画出旋转后的图形.20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色.(1)从口袋中随机摸出一一枚棋子,摸到黑色棋子的概率是_______ ;(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)21. 已知函数y1=- x2 和反比例函数y2的图象有一个交点是 A( ,-1).(1)求函数y2的解析式;(2)在同一直角坐标系中,画出函数y1和y2的图象草图;(3)借助图象回答:当自变量x在什么范围内取值时,对于x的同一个值,都有y122. 工厂有一批长3dm、宽2dm的矩形铁片,为了利用这批材料,在每一块上裁下一个最大的圆铁片⊙O1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O2.(1)求⊙O1、⊙O2的半径r1、r2的长;(2)能否在剩余的铁片上再裁出一个与⊙O2 同样大小的圆铁片?为什么?五、解答题(本题共22分, 第23、24题各7分,第25题8分)23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点M、N,在AC的延长线上取点P,使∠CBP= ∠A.(1)判断直线BP与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为1,tan∠CBP=0.5,求BC和BP的长.24. 已知:如图,正方形纸片ABCD的边长是4,点M、N分别在两边AB和CD上(其中点N不与点C重合),沿直线MN折叠该纸片,点B恰好落在AD边上点E处.(1)设AE=x,四边形AMND的面积为 S,求 S关于x 的函数解析式,并指明该函数的定义域;(2)当AM为何值时,四边形AMND的面积最大?最大值是多少?(3)点M能是AB边上任意一点吗?请求出AM的取值范围.25. 在直角坐标系xOy 中,已知某二次函数的图象经过A(-4,0)、B(0,-3),与x轴的正半轴相交于点C,若△AOB∽△BOC(相似比不为1).(1)求这个二次函数的解析式;(2)求△ABC的外接圆半径r;(3)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与线段AB交于N点,且以点O、A、N为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.一、 ACCB DABB二、 9. :1 10. k< -1 11. , 12.三、13. 原式= -2+ - ×= -2 + - ……………………………………4分= -3+ ……………………………………………………5分14. 作AE⊥BC于E,交MQ于F.由题意,BC×AE=9cm2 , BC=6cm.∴AE=3cm. ……………………………1分设MQ= xcm,∵MQ‖BC,∴△AMQ∽△ABC. ……………………2分∴ . ……………………3分又∵EF=MN=MQ,∴AF=3-x.∴ . ……………………………………4分解得 x=2.答:正方形的边长是2cm. …………………………5分15. 由题意,在Rt△ABC中,AC= AB=6(米), …………………1分又∵在Rt△ACD中,∠D=25°,=tan∠D, ……………………………3分∴CD= ≈ ≈12.8(米).答:调整后的楼梯所占地面CD长约为12.8米. (5)分16. 证明:作CD⊥AB于D,则S△ABC= AB×CD. ………………2分∵ 不论点D落在射线AB的什么位置,在Rt△ACD中,都有CD=ACsinA. …………………4分又∵AC=b,AB=c,∴ S△ABC= AB×A九年级数学上册练习题及答案一选择题:1、下列命题中的真命题是、A、对角线互相垂直的四边形是菱形B、中心对称图形都是轴对称图形C、两条对角线相等的梯形是等腰梯形D、等腰梯形是中心对称图形第2题图2、如右图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2cmB.3cm C.23cm D.25cm3、如图,BD是⊙O的直径,∠CBD=30?,则∠A的度数.A、30?B、45?C、60?D、75?、已知二次函数y=ax2+bx+c的图像如图所示,则下列条件正确的是 A.ac<0B、b-4ac<0C、 b>0D、 a>0,b<0,c>05、抛物线y= x 向左平移8个单位,再向下平移个单位后,所得抛物线的表达式是A、 y=2-B、 y=2+C、 y=2-D、y=2+96. 如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程x之间的函数关系用图象表示大致是2第3题图第4题图7、某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为 x,则下面所列方程中正确的是A、2892=25B、2562=289C、289=25D、256=2898、如图,在平面直角坐标系中,正方形ABCD的顶点A、C分别在y 轴、x轴上,以AB为弦的⊙M与x轴相切、若点A 的坐标为,则圆心M的坐标为A、B、C、D、9.若点A的坐标为O为坐标原点,将OA绕点O按顺时针方向旋转90得到OA′,则点A′的坐标是A、B、C、D、10、下列各点中,在函数y=-6x 图像上的是12A、B、C、D、11.抛物线y=x?2x?3与坐标轴交点为A.二个交点 B.一个交点C.无交点D.三个交点12.关于x的一元二次方程x2+x+m+1=0有两个相等的实数根,则m的值是A、0B、C、422D、 0或二、填空题:13 、使x的取值范围是、 A DB E D14、将二次函数y=x2-4x+5化为y=2+k的形式,则15 、如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落 CC 在D′,C′的位置.若∠EFB=65,则∠AED′等于16、菱形OABC在平面直角坐标系中的位置如图所示, ?AOC?45,OC?B的坐标为.17、如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠A ED的正切值等于、三、解答题:18、解方程:2 x+6x-11=019、如图,在平面直角坐标系中,△ ABC的三个顶点的坐标分别为A,B,C、、画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标; 、画出△ABC绕原点O顺时针方向旋转90后得到的△A2B2C2,并写出点C2的坐标;,第16B A C第17题图将△A2B2C2平移得到△ A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3,在坐标系中画出△ A3B3C3,并写出点A3的坐标。

人教版九年级数学上册同步测试:点和圆、直线和圆的位置关系(解析版)

人教版九年级数学上册同步测试:点和圆、直线和圆的位置关系(解析版)

人教版九年级数学上册同步测试:点和圆﹨直线和圆的位置关系[解析版]一﹨选择题[共14小题]1.[如图,点P在⊙O外,PA﹨PB分别与⊙O相切于A﹨B两点,∠P=50°,则∠AOB等于[]A.150°B.130°C.155°D.135°2.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为[]A.2.3 B.2.4 C.2.5 D.2.63.如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C 的大小等于[]A.20°B.25°C.40°D.50°4.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=[]A.30°B.35°C.45°D.60°5.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是[]A.2.5 B.3 C.5 D.106.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为[]A.40°B.50°C.60°D.20°7.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为[]A.B.C.D.28.如图,PA和PB是⊙O的切线,点A和点B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是[]A.40°B.60°C.70°D.80°9.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是[]A.4 B.2C.8 D.410.如图,圆形铁片与直角三角尺﹨直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是[]A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm211.在一个圆中,给出下列命题,其中正确的是[]A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径12.如图,△ABC中,AB=6,AC=8,BC=10,D﹨E分别是AC﹨AB的中点,则以DE为直径的圆与BC的位置关系是[]A.相交 B.相切 C.相离 D.无法确定13.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是[] A.r<6 B.r=6 C.r>6 D.r≥614.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是[]A.相离 B.相切 C.相交 D.相切或相交二﹨填空题[共6小题]15.如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为[结果保留π].16.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=.17.如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=,则劣弧AD的长为.18.如图,将一块含30°角的直角三角板和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=2,则图中阴影部分的面积为.[结果保留π]19.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=°.20.如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=[k≠0]的图象经过圆心P,则k=.三﹨解答题[共10小题]21.如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.[1]求证:四边形ABCE是平行四边形;[2]若AE=6,CD=5,求OF的长.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.[1]求证:DF⊥AC;[2]若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.23.如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.[1]求证:∠ADC=∠ABD;[2]求证:AD2=AM•AB;[3]若AM=,sin∠ABD=,求线段BN的长.24.如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F.已知∠AEF=135°.[1]求证:DF∥AB;[2]若OC=CE,BF=,求DE的长.25.已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.[1]求证:∠BCP=∠BAN[2]求证:=.26.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC 相切于点D,分别交AC﹨AB于点E﹨F.[1]若∠B=30°,求证:以A﹨O﹨D﹨E为顶点的四边形是菱形.[2]若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.27.如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD 且与AC的延长线交于点E.[1]求证:DC=DE;[2]若tan∠CAB=,AB=3,求BD的长.28.如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.[1]求证:∠BAD=∠E;[2]若⊙O的半径为5,AC=8,求BE的长.29.五边形ABCDE中,∠EAB=∠ABC=∠BCD=90°,AB=BC,且满足以点B为圆心,AB 长为半径的圆弧AC与边DE相切于点F,连接BE,BD.[1]如图1,求∠EBD的度数;[2]如图2,连接AC,分别与BE,BD相交于点G,H,若AB=1,∠DBC=15°,求AG•HC 的值.30.在同一平面直角坐标系中有5个点:A[1,1],B[﹣3,﹣1],C[﹣3,1],D[﹣2,﹣2],E[0,﹣3].[1]画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;[2]若直线l经过点D[﹣2,﹣2],E[0,﹣3],判断直线l与⊙P的位置关系.参考答案与试题解析一﹨选择题[共14小题]1.如图,点P在⊙O外,PA﹨PB分别与⊙O相切于A﹨B两点,∠P=50°,则∠AOB等于[]A.150°B.130°C.155°D.135°【考点】切线的性质.【分析】由PA与PB为圆的两条切线,利用切线性质得到PA与OA垂直,PB与OB垂直,在四边形APBO中,利用四边形的内角和定理即可求出∠AOB的度数.【解答】解:∵PA﹨PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∵∠P=50°,∴∠AOB=130°.故选B.【点评】此题考查了切线的性质,以及四边形的内角和定理,熟练掌握切线的性质是解本题的关键.2.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为[]A.2.3 B.2.4 C.2.5 D.2.6【考点】切线的性质;勾股定理的逆定理.【分析】首先根据题意作图,由AB是⊙C的切线,即可得CD⊥AB,又由在直角△ABC 中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB的长,然后由S△ABC=AC•BC=AB•CD,即可求得以C为圆心与AB相切的圆的半径的长.【解答】解:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即CD===,∴⊙C的半径为,故选B.【点评】此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用.3.如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C 的大小等于[]A.20°B.25°C.40°D.50°【考点】切线的性质.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=20°,∴∠AOC=40°,∴∠C=50°.故选:D.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,掌握已知切线时常用的辅助线是连接圆心与切点是解题的关键.4.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=[]A.30°B.35°C.45°D.60°【考点】切线的性质;正多边形和圆.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理∠PAB.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°,故选A.【点评】本题主要考查了正多边形和圆,切线的性质,作出适当的辅助线,利用弦切角定理是解答此题的关键.5.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是[]A.2.5 B.3 C.5 D.10【考点】切线的性质.【分析】根据直线与圆的位置关系可直接得到点O到直线l的距离是5.【解答】解:∵直线l与半径为r的⊙O相切,∴点O到直线l的距离等于圆的半径,即点O到直线l的距离为5.故选C.【点评】本题考查了切线的性质以及直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;当直线l和⊙O相离⇔d>r.6.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为[]A.40°B.50°C.60°D.20°【考点】切线的性质.【分析】由AB是⊙O直径,AE是⊙O的切线,推出AD⊥AB,∠DAC=∠B=∠AOC=40°,推出∠AOD=50°.【解答】解:∵AB是⊙O直径,AE是⊙O的切线,∴∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°﹣∠B=50°,故选B.【点评】本题主要考查圆周角定理﹨切线的性质,解题的关键在于连接AC,构建直角三角形,求∠B的度数.7.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为[]A.B.C.D.2【考点】切线的性质;矩形的性质.【专题】压轴题.【分析】连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.【解答】解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴[3+NM]2=[3﹣NM]2+42,∴NM=,∴DM=3=,故选A.【点评】本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.8.如图,PA和PB是⊙O的切线,点A和点B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是[]A.40°B.60°C.70°D.80°【考点】切线的性质.【分析】由PA﹨PB是⊙O的切线,可得∠OAP=∠OBP=90°,根据四边形内角和,求出∠AOB,再根据圆周角定理即可求∠ACB的度数.【解答】解:连接OB,∵AC是直径,∴∠ABC=90°,∵PA﹨PB是⊙O的切线,A﹨B为切点,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=140°,由圆周角定理知,∠ACB=∠AOB=70°,故选C.【点评】本题考查了切线的性质,圆周角定理,解决本题的关键是连接OB,利用直径对的圆周角是直角来解答.9.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是[]A.4 B.2C.8 D.4【考点】切线的性质.【分析】连接OC,利用切线的性质知OC⊥AB,由垂径定理得AB=2AC,因为tan∠OAB=,易得=,代入得结果.【解答】解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8,故选C.【点评】本题主要考查了切线的性质和垂径定理,连接过切点的半径是解答此题的关键.10.如图,圆形铁片与直角三角尺﹨直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是[]A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2【考点】切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.【专题】应用题.【分析】由BC,AC分别是⊙O的切线,B,A为切点,得到OA⊥CA,OB⊥BC,又∠C=90°,OA=OB,推出四边形AOBC是正方形,得到OA=AC=4,故A,B正确;根据扇形的弧长﹨面积的计算公式求出结果即可进行判断.【解答】解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,∴OA⊥CA,OB⊥BC,又∵∠C=90°,OA=OB,∴四边形AOBC是正方形,∴OA=AC=4,故A,B正确;∴的长度为:=2π,故C错误;==4π,故D正确.S扇形OAB故选C.【点评】本题考查了切线的性质,正方形的判定和性质,扇形的弧长﹨面积的计算,熟记计算公式是解题的关键.11.在一个圆中,给出下列命题,其中正确的是[]A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径【考点】直线与圆的位置关系;命题与定理.【分析】根据直线与圆的位置关系进行判断即可.【解答】解:A﹨圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B﹨当圆经过两条直线的交点时,圆与两条直线有三个交点;C﹨两条不平行弦所在直线可能有一个交点,故本选项正确;D﹨两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.【点评】本题考查了直线与圆的位置关系﹨命题与定理,解题的关键是熟悉直线与圆的位置关系.12.如图,△ABC中,AB=6,AC=8,BC=10,D﹨E分别是AC﹨AB的中点,则以DE为直径的圆与BC的位置关系是[]A.相交 B.相切 C.相离 D.无法确定【考点】直线与圆的位置关系.【专题】压轴题.【分析】首先根据三角形面积求出AM的长,进而得出直线BC与DE的距离,进而得出直线与圆的位置关系.【解答】解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM==4.8,∵D﹨E分别是AC﹨AB的中点,∴DE∥BC,DE=BC=5,∴AN=MN=AM,∴MN=2.4,∵以DE为直径的圆半径为2.5,∴r=2.5>2.4,∴以DE为直径的圆与BC的位置关系是:相交.故选:A.【点评】本题考查了直线和圆的位置关系,利用中位线定理比较出BC到圆心的距离与半径的关系是解题的关键.13.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是[] A.r<6 B.r=6 C.r>6 D.r≥6【考点】直线与圆的位置关系.【专题】探究型.【分析】直接根据直线与圆的位置关系进行判断即可.【解答】解:∵直线l与半径为r的⊙O相交,且点O到直线l的距离d=6,∴r>6.故选C.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.直线l和⊙O相交⇔d<r14.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是[]A.相离 B.相切 C.相交 D.相切或相交【考点】直线与圆的位置关系.【专题】压轴题.【分析】作CD⊥AB于点D.根据三角函数求CD的长,与圆的半径比较,作出判断.【解答】解:作CD⊥AB于点D.∵∠B=30°,BC=4cm,∴CD=BC=2cm,即CD等于圆的半径.∵CD⊥AB,∴AB与⊙C相切.故选:B.【点评】此题考查直线与圆的位置关系的判定方法.通常根据圆的半径R与圆心到直线的距离d的大小判断:当R>d时,直线与圆相交;当R=d时,直线与圆相切;当R<d时,直线与圆相离.二﹨填空题[共6小题]15.如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为6π[结果保留π].【考点】切线的性质;勾股定理.【分析】连接OA,根据切线的性质求出∠OAP=90°,根据勾股定理求出OA即可.【解答】解:连接OA,∵PA是⊙O的切线,A是切点,∴∠OAP=90°,在Rt△OAP中,∠OAP=90°,PA=4,OP=5,由勾股定理得:OA=3,则⊙O的周长为2π×3=6π,故答案为:6π.【点评】本题考查了切线的性质,勾股定理的应用,解此题的关键是能正确作出辅助线,并求出∠OAP=90°,注意:圆的切线垂直于过切点的半径.16.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=50°.【考点】切线的性质.【专题】压轴题.【分析】连接DF,连接AF交CE于G,由AB是⊙O的直径,且经过弦CD的中点H,得到,由于EF是⊙O的切线,推出∠GFE=∠GFD+∠DFE=∠ACF=65°根据外角的性质和圆周角定理得到∠EFG=∠EGF=65°,于是得到结果.【解答】解:连接DF,连接AF交CE于G,∵AB是⊙O的直径,且经过弦CD的中点H,∴,∵EF是⊙O的切线,∴∠GFE=∠GFD+∠DFE=∠ACF=65°,∵∠FGD=∠FCD+∠CFA,∵∠DFE=∠DCF,∠GFD=∠AFC,∠EFG=∠EGF=65°,∴∠E=180°﹣∠EFG﹣∠EGF=50°,故答案为:50°.方法二:连接OF,易知OF⊥EF,OH⊥EH,故E,F,O,H四点共圆,又∠AOF=2∠ACF=130°,故∠E=180°﹣130°=50°【点评】本题考查了切线的性质,圆周角定理,垂径定理,正确的作出辅助线是解题的关键.17.如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=,则劣弧AD的长为π.【考点】切线的性质;弧长的计算.【分析】如图,连接DO,首先根据切线的性质可以得到∠ODC=90°,又AC=3BC,O为AB的中点,由此可以得到∠C=30°,接着利用30°的直角所对的直角边是斜边的一半和勾股定理即可求解.【解答】解:如图,连接DO,∵CD是⊙O切线,∴OD⊥CD,∴∠ODC=90°,而AB是⊙O的一条直径,AC=3BC,∴AB=2BC=OC=2OD,∴∠C=30°,∴∠AOD=120°∴OD=CD,∵CD=,∴OD=BC=1,∴的长度==,故答案为:.【点评】本题考查了圆的切线性质及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.18.如图,将一块含30°角的直角三角板和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=2,则图中阴影部分的面积为 + .[结果保留π]【考点】切线的性质;扇形面积的计算.【分析】图中阴影部分的面积=扇形BOD 的面积+△BOC 的面积.【解答】解:∵斜边与半圆相切,点B 是切点,∴∠EBO=90°.又∵∠E=30°,∴∠EBC=60°.∴∠BOD=120°,∵OA=OB=2,∴OC=OB=1,BC=.∴S 阴影=S 扇形BOD +S △BOC =+×1×=+. 故答案是: +.【点评】本题考查了切线的性质,扇形面积的计算.此题利用了“分割法”求得阴影部分的面积.19.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠C=20°,则∠CDA= 125 °.【考点】切线的性质.【分析】连接OD,构造直角三角形,利用OA=OD,可求得∠ODA=36°,从而根据∠CDA=∠CDO+∠ODA计算求解.【解答】解:连接OD,则∠ODC=90°,∠COD=70°;∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=125°,故答案为:125.【点评】本题利用了切线的性质,三角形的外角与内角的关系,等边对等角求解.20.如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P 的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=[k≠0]的图象经过圆心P,则k=﹣5.【考点】切线的性质;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【专题】计算题;压轴题.【分析】作PD⊥OA于D,PE⊥AB于E,作CH⊥AB于H,如图,设⊙P的半径为r,根据切线的性质和切线长定理得到PD=PE=r,AD=AE,再利用勾股定理计算出OB=6,则可判断△OBC为等腰直角三角形,从而得到△PCD为等腰直角三角形,则PD=CD=r,AE=AD=2+r,通过证明△ACH∽△ABO,利用相似比计算出CH=,接着利用勾股定理计算出AH=,所以BH=10﹣=,然后证明△BEP∽△BHC,利用相似比得到即=,解得r=1,从而易得P点坐标,再利用反比例函数图象上点的坐标特征求出k的值.【解答】解:作PD⊥OA于D,PE⊥AB于E,作CH⊥AB于H,如图,设⊙P的半径为r,∵⊙P与边AB,AO都相切,∴PD=PE=r,AD=AE,在Rt△OAB中,∵OA=8,AB=10,∴OB==6,∵AC=2,∴OC=6,∴△OBC为等腰直角三角形,∴△PCD为等腰直角三角形,∴PD=CD=r,∴AE=AD=2+r,∵∠CAH=∠BAO,∴△ACH∽△ABO,∴=,即=,解得CH=,∴AH===,∴BH=10﹣=,∵PE∥CH,∴△BEP∽△BHC,∴=,即=,解得r=1,∴OD=OC﹣CD=6﹣1=5,∴P[5,﹣1],∴k=5×[﹣1]=﹣5.故答案为﹣5.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线不确定切点,则过圆心作切线的垂线,则垂线段等于圆的半径.也考查了勾股定理﹨相似三角形的判定与性质和反比例函数图象上点的坐标特征.三﹨解答题[共10小题]21.如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.[1]求证:四边形ABCE是平行四边形;[2]若AE=6,CD=5,求OF的长.【考点】切线的性质;平行四边形的判定.【专题】压轴题.【分析】[1]根据切线的性质证明∠EAC=∠ABC,根据等腰三角形等边对等角的性质和等量代得到∠EAC=∠ACB,从而根据内错角相等两直线平行的判定得到AE∥BC,结合已知AB ∥CD即可判定四边形ABCD是平行四边形;[2]作辅助线,连接AO,交BC于点H,双向延长OF分别交AB,CD于点N,M,根据切割线定理求得EC=4,证明四边形ABDC是等腰梯形,根据对称性﹨圆周角定理和垂径定理的综合应用证明△OFH∽△DMF∽△BFN,并由勾股定理列式求解即可.【解答】[1]证明:∵AE与⊙O相切于点A,∴∠EAC=∠ABC,∵AB=AC∴∠ABC=∠ACB,∴∠EAC=∠ACB,∴AE∥BC,∵AB∥CD,∴四边形ABCE是平行四边形;[2]解:如图,连接AO,交BC于点H,双向延长OF分别交AB,CD与点N,M,∵AE是⊙O的切线,由切割线定理得,AE2=EC•DE,∵AE=6,CD=5,∴62=CE[CE+5],解得:CE=4,[已舍去负数],由圆的对称性,知四边形ABDC是等腰梯形,且AB=AC=BD=CE=4,又根据对称性和垂径定理,得AO垂直平分BC,MN垂直平分AB,DC,设OF=x,OH=Y,FH=z,∵AB=4,BC=6,CD=5,∴BF=BC﹣FH=3﹣z,DF=CF=BC+FH=3+z,易得△OFH∽△DFM∽△BFN,∴,,即,①②,①+②得:,①÷②得:,解得,∵x2=y2+z2,∴,∴x=,∴OF=.【点评】本题考查了切线的性质,圆周勾股定理,等腰三角形的性质,平行的判定,平行四边形的判定和性质,等腰梯形的判定和性质,垂径定理,相似判定和性质,勾股定理,正确得作出辅助线是解题的关键.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.[1]求证:DF⊥AC;[2]若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【考点】切线的性质;扇形面积的计算.【分析】[1]连接OD,易得∠ABC=∠ODB,由AB=AC,易得∠ABC=∠ACB,等量代换得∠ODB=∠ACB,利用平行线的判定得OD∥AC,由切线的性质得DF⊥OD,得出结论;[2]连接OE,利用[1]的结论得∠ABC=∠ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用扇形的面积公式和三角形的面积公式得出结论.【解答】[1]证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,。

人教版九年级数学上册同步测试:圆的有关性质(解析版)

人教版九年级数学上册同步测试:圆的有关性质(解析版)

人教版九年级数学上册同步测试:圆的有关性质(解析版)一﹨选择题(共9小题)1.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm2.(绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m3.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2 D.(π﹣2)cm24.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为()A.200π米B.100π米C.400π米D.300π米5.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm6.在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10 B.4C.10或4D.10或27.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是()A.∠A=∠D B.CE=DE C.∠ACB=90°D.CE=BD8.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4B.8C.2D.49.如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为()A.2B.C.2D.二﹨填空题(共15小题)10.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m.11.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=米.12.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.13.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于m.14.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为米.15.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m.16.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为.17.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=.18.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.19.如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD 是.20.平面内有四个点A﹨O﹨B﹨C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.21.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA﹨OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可)22.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.23.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.24.如图,已知⊙O的直径AB=6,E﹨F为AB的三等分点,M﹨N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.三﹨解答题(共6小题)25.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN 的长)为2米,求小桥所在圆的半径.26.如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB=3m,弓形的高EF=1m,现计划安装玻璃,请帮工程师求出所在圆O的半径r.27.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.28.如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°.求证:AC=AP;(2)如图②,若sin∠BPC=,求tan∠PAB的值.29.)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.30.如图,AB是⊙O的直径,弦CD交AB于点E,OF⊥AC于点F,(1)请探索OF和BC的关系并说明理由;(2)若∠D=30°,BC=1时,求圆中阴影部分的面积.(结果保留π)参考答案与试题解析一﹨选择题(共9小题)1.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm【考点】垂径定理的应用;勾股定理.【分析】过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.【解答】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.【点评】本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m【考点】垂径定理的应用;勾股定理.【分析】连接OA,根据桥拱半径OC为5m,求出OA=5m,根据CD=8m,求出OD=3m,根据AD=求出AD,最后根据AB=2AD即可得出答案.【解答】解:连接OA,∵桥拱半径OC为5m,∴OA=5m,∵CD=8m,∴OD=8﹣5=3m,∴AD===4m,∴AB=2AD=2×4=8(m);故选;D.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理﹨勾股定理.3.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2 D.(π﹣2)cm2【考点】垂径定理的应用;扇形面积的计算.【分析】作OD⊥AB于C,交小⊙O于D,则CD=2,由垂径定理可知AC=CB,利用正弦函数求得∠OAC=30°,进而求得∠AOC=120°,利用勾股定理即可求出AB的值,从而利用S﹣S△AOB求得杯底有水部分的面积.扇形【解答】解:作OD⊥AB于C,交小⊙O于D,则CD=2,AC=BC,∵OA=OD=4,CD=2,∴OC=2,在RT△AOC中,sin∠OAC==,∴∠OAC=30°,∴∠AOB=120°,AC==2,∴AB=4,﹣S△AOB=﹣××2=(π﹣4)cm2∴杯底有水部分的面积=S扇形故选A.【点评】本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为()A.200π米B.100π米C.400π米D.300π米【考点】垂径定理的应用;勾股定理;弧长的计算.【分析】设这段弯路的半径为R米,OF=米,由垂径定理得CF=CD=×600=300.由勾股定理可得OC2=CF2+OF2,解得R的值,进而得出这段弧所对圆心角,求出弧长即可.【解答】解:设这段弯路的半径为R米OF=米,∵OE⊥CD∴CF=CD=×600=300根据勾股定理,得OC2=CF2+OF2即R2=3002+(300)2解之,得R=600,∴sin∠COF==,∴∠COF=30°,∴这段弯路的长度为:=200π(m).故选:A.【点评】此题主要考查了垂径定理的应用,根据已知得出圆的半径以及圆心角是解题关键.5.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm【考点】垂径定理的应用;勾股定理.【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【解答】解:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故选:A.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6.在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10 B.4C.10或4D.10或2【考点】垂径定理;勾股定理.【专题】分类讨论.【分析】根据题意画出图形,由于AB和CD的位置不能确定,故应分AB与CD在圆心O 的同侧和AB与CD在圆心O的异侧两种情况进行讨论.【解答】解:当AB与CD在圆心O的同侧时,如图1所示:过点O作OF⊥CD于点F,交AB于点E,连接OA,OC,∵AB∥CD,OF⊥CD,∴OE⊥AB,∴AE=AB=×24=12,在Rt△AOE中,OE===5,∴OF=OE+EF=5+7=12,在Rt△OCF中,CF===5,∴CD=2CF=2×5=10;当AB与CD在圆心O的异侧时,如图2所示:过点O作OF⊥CD于点F,反向延长交AB于点E,连接OA,OC,∵AB∥CD,OF⊥CD,∴OE⊥AB,∴AE=AB=×24=12,在Rt△AOE中,OE===5,∴OF=EF﹣OE=7﹣5=2,在Rt△OCF中,CF===,∴CD=2CF=2×=2.故CD的长为10或2.故选D.【点评】本题考查的是垂径定理,在解答此类题目时要注意进行分类讨论,不要漏解.7.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是()A.∠A=∠D B.CE=DE C.∠ACB=90°D.CE=BD【考点】垂径定理.【专题】压轴题.【分析】根据垂径定理,直径所对的角是直角,以及同弧所对的圆周角相等,即可判断.【解答】解:∵AB是⊙O的直径,CD为弦,CD⊥AB于E.∴CE=DE.故B成立;A﹨根据同弧所对的圆周角相等,得到∠A=∠D,故该选项正确;C﹨根据直径所对的圆周角是直角即可得到,故该选项正确;D﹨CE=DE,而△BED是直角三角形,则DE<BD,则该项不成立.故选D.【点评】本题主要考查了垂径定理的基本内容,以及直径所对的圆周角是直角.8.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4B.8C.2D.4【考点】垂径定理;勾股定理.【专题】探究型.【分析】先根据⊙O的直径AB=12求出OB的长,再由BP:AP=1:5求出BP的长,故可得出OP的长,连接OC,在Rt△OPC中利用勾股定理可求出PC的长,再根据垂径定理即可得出结论.【解答】解:∵⊙O的直径AB=12,∴OB=AB=6,∵BP:AP=1:5,∴BP=AB=×12=2,∴OP=OB﹣BP=6﹣2=4,∵CD⊥AB,∴CD=2PC.如图,连接OC,在Rt△OPC中,∵OC=6,OP=4,∴PC===2,∴CD=2PC=2×2=4.故选D.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为()A.2B.C.2D.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】先过O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,即可求出AB的值.【解答】解:过O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=sin30°×4=2,∵OB=3,∴BC===,∴AB=2;故选A.【点评】此题考查了垂经定理,用到的知识点是垂经定理﹨含30度角的直角三角形﹨勾股定理,解题的关键是作出辅助线,构造直角三角形.二﹨填空题(共15小题)10.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.8m.【考点】垂径定理的应用;勾股定理.【分析】过O点作OC⊥AB,C为垂足,交⊙O于D,连OA,根据垂径定理得到AC=BC=0.5m,再在Rt△AOC中,利用勾股定理可求出OC,即可得到CD的值,即水的深度.【解答】解:如图,过O点作OC⊥AB,C为垂足,交⊙O于D﹨E,连OA,OA=0.5m,AB=0.8m,∵OC⊥AB,∴AC=BC=0.4m,在Rt△AOC中,OA2=AC2+OC2,∴OC=0.3m,则CE=0.3+0.5=0.8m,故答案为:0.8.【点评】本题考查了垂径定理的应用,掌握垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧是解题的关键,注意勾股定理的运用.11.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=25米.【考点】垂径定理的应用;勾股定理.【分析】根据垂径定理和勾股定理求解即可.【解答】解:根据垂径定理,得AD=AB=20米.设圆的半径是r,根据勾股定理,得R2=202+(R﹣10)2,解得R=25(米).故答案为25.【点评】此题综合运用了勾股定理以及垂径定理.注意构造由半径﹨半弦﹨弦心距组成的直角三角形进行有关的计算.12.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是50cm.【考点】垂径定理的应用;勾股定理;切线的性质.【分析】根据垂径定理求得AD=30cm,然后根据勾股定理即可求得半径.【解答】解:如图,连接OA,∵CD=10cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50.∴这个车轮的外圆半径长为50cm.故答案为:50cm.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.13.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于 1.6m.【考点】垂径定理的应用;勾股定理.【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【解答】解:如图:∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了0.2m,∴OF=0.8﹣0.2=0.6m,∴CF=m,∴CD=1.6m.故答案为:1.6.【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.14.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为0.5米.【考点】垂径定理的应用;勾股定理.【分析】由题意知,秋千摆至最低点时,点C为弧AB的中点,由垂径定理知AB⊥OC,AD=BD=AB=1.5米.再根据勾股定理求得OD即可.【解答】解:∵点C为弧AB的中点,O为圆心由垂径定理知:AB⊥OC,AD=BD=AB=1.5米,在Rt△OAD中,根据勾股定理,OD==2(米),∴CD=OC﹣OD=2.5﹣2=0.5(米);故答案为0.5.【点评】本题考查了垂径定理的应用,勾股定理的应用,将实际问题抽象为几何问题是解题的关键.15.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.2m.【考点】垂径定理的应用;勾股定理.【分析】过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC 中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.【解答】解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,由直径是1m,可知半径为0.5m,在Rt△AOC中,根据勾股定理得:OC===0.3(m),则排水管内水的深度为:0.5﹣0.3=0.2(m).故答案为:0.2.【点评】此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.16.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为5.【考点】垂径定理的应用;勾股定理;切线的性质.【专题】几何图形问题.【分析】首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD﹨劣弧于点H﹨I,再连接OF,易求得FH的长,然后设求半径为r,则OH=8﹣r,然后在Rt△OFH 中,r2﹣(16﹣r)2=82,解此方程即可求得答案.【解答】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD﹨劣弧于点H﹨I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH=EF=4,设求半径为r,则OH=8﹣r,在Rt△OFH中,r2﹣(8﹣r)2=42,解得r=5,故答案为:5.【点评】此题考查了切线的性质﹨垂径定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.17.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB= 4.【考点】垂径定理;勾股定理.【专题】计算题.【分析】根据AE与BE比值,设出AE为x与BE为3x,由AE+BE表示出AB,进而表示出OA与OB,由OA﹣AE表示出OE,连接OC,根据AB与CD垂直,利用垂径定理得到E为CD中点,求出CE的长,在直角三角形OCE中,利用勾股定理列出方程,求出方程的解得到x的值,即可确定出AB的长.【解答】解:连接OC,根据题意设AE=x,则BE=3x,AB=AE+EB=4x,∴OC=OA=OB=2x,OE=OA﹣AE=x,∵AB⊥CD,∴E为CD中点,即CE=DE=CD=3,在Rt△CEO中,利用勾股定理得:(2x)2=32+x2,解得:x=,则AB=4x=4.故答案为:4【点评】此题考查了垂径定理,以及勾股定理,熟练掌握定理是解本题的关键.18.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为50cm.【考点】垂径定理的应用;勾股定理;切线的性质.【专题】几何图形问题.【分析】设点O为外圆的圆心,连接OA和OC,根据CD=10cm,AB=60cm,设半径为r,则OD=r﹣10,根据垂径定理得:r2=(r﹣10)2+302,求得r的值即可.【解答】解:如图,设点O为外圆的圆心,连接OA和OC,∵CD=10cm,AB=60cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50,故答案为:50.【点评】本题考查了垂径定理的应用,解题的关键是正确构造直角三角形.19.如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD 是8.【考点】垂径定理的应用;勾股定理.【分析】先根据垂径定理求出AC的长,再根据勾股定理求出OC的长,根据CD=OD﹣OC 即可得出结论.【解答】解:∵⊙O的半径OA=13,水面宽AB=24,OD⊥AB,∴OD=OA=13,AC=AB=12,在Rt△AOC中,OC===5,∴CD=OD﹣OC=13﹣5=8.故答案为:8.【点评】本题考查的是垂径定理的应用,解答此类问题时往往是找出直角三角形,利用勾股定理求解.20.平面内有四个点A﹨O﹨B﹨C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是2,3,4.【考点】垂径定理;等边三角形的判定与性质.【专题】压轴题.【分析】分类讨论:如图1,根据圆周角定理可以推出点C在以点O为圆心的圆上;如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A﹨O﹨B﹨C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理﹨等边△MAO的性质来求OC的长度.【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A﹨O﹨B﹨C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM﹨AM﹨AB﹨MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.【点评】本题考查了垂径定理﹨等边三角形的判定与性质.此题需要分类讨论,以防漏解.在解题时,还利用了圆周角定理,圆周角﹨弧﹨弦间的关系.21.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA﹨OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是6cm(写出一个符合条件的数值即可)【考点】垂径定理;勾股定理.【专题】开放型.【分析】根据勾股定理求出AC,根据垂径定理求出AB,即可得出AP的范围是大于等于5cm且小于等于8cm,举出即可.【解答】解:∵OC⊥AB,∴∠ACO=90°,∵OA=5cm,OC=3cm,∴由勾股定理得:AC==4cm,∴由垂径定理得:AB=2AC=8cm,只要举出的数大于等于5且小于等于8cm即可,如6cm,故答案为:6.【点评】本题考查了勾股定理和垂径定理的应用,关键是求出AP的范围.22.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2 cm.【考点】垂径定理;勾股定理.【专题】压轴题.【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD===cm,∵OD⊥AB,∴AB=2AD=cm.故答案为:2.【点评】本题综合考查垂径定理和勾股定理的运用.23.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2).【考点】垂径定理;坐标与图形性质;勾股定理.【专题】压轴题;探究型.【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.24.如图,已知⊙O的直径AB=6,E﹨F为AB的三等分点,M﹨N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.【解答】解:如图,延长ME交⊙O于G,∵E﹨F为AB的三等分点,∠MEB=∠NFB=60°,∴FN=EG,过点O作OH⊥MG于H,连接MO,∵⊙O的直径AB=6,∴OE=OA﹣AE=×6﹣×6=3﹣2=1,OM=×6=3,∵∠MEB=60°,∴OH=OE•sin60°=1×=,在Rt△MOH中,MH===,根据垂径定理,MG=2MH=2×=,即EM+FN=.故答案为:.【点评】本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.三﹨解答题(共6小题)25.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN 的长)为2米,求小桥所在圆的半径.【考点】垂径定理的应用;勾股定理;相似三角形的应用.【分析】根据已知得出旗杆高度,进而得出GM=MH,再利用勾股定理求出半径即可.【解答】解:∵小刚身高1.6米,测得其影长为2.4米,∴8米高旗杆DE的影子为:12m,∵测得EG的长为3米,HF的长为1米,∴GH=12﹣3﹣1=8(m),∴GM=MH=4m.如图,设小桥的圆心为O,连接OM﹨OG.设小桥所在圆的半径为r,∵MN=2m,∴OM=(r﹣2)m.在Rt△OGM中,由勾股定理得:∴OG2=OM2+42,∴r2=(r﹣2)2+16,解得:r=5,。

人教版初中数学九年级上册同步测试 第21章 一元二次方程(共17页)

人教版初中数学九年级上册同步测试 第21章 一元二次方程(共17页)

第二十一章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若x x m -m+-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3)542=-x (4)2122=+x x A .1个B .2个C .3个D .4个 8.在方程:3x 2-5x =0,,5312+=+x x7x 2-6xy +y 2=0,322,052222--=+++xx x x ax =0,3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13..25)1(412=+x14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______. 17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,,01=+xx ,5)3(21,42122=+=-+x x x 其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关C .与a 的值有关D .与a 的符号有关 20.如果21=x 是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ). A .5±B .±1C .±2D .2±21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ).A .k k +B .k k -C .k k -±D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24..063)4(22=--x25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确 28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1.+-x x 82_________=(x -__________)2. 2.x x 232-+_________=(x -_________)2. 3.+-px x 2_________=(x -_________)2.4.x abx -2+_________=(x -_________)2. 5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______. 二、选择题 7.用配方法解方程01322=--x x 应该先变形为( ). A .98)31(2=-xB .98)31(2-=-x C .910)31(2=-xD .0)32(2=-x8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2 B .x 1=-10,x 2=8 C .x 1=10,x 2=-8 D .x 1=-4,x 2=29.用公式法解一元二次方程x x 2412=-,正确的应是( ). A .252±-=xB .252±=x C .251±=x D .231±=x 10.方程mx 2-4x +1=0(m <0)的根是( ).A .41 B .m m-±42 C .mm-±422D .mm m -±42 三、解答题(用配方法解一元二次方程)11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0.14..03232=--x x五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3.16.5x 2+4x =1.综合、运用、诊断一、填空题17.将方程x x x 32332-=++化为标准形式是______________________,其中a =____ __,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或6 20.4x 2+49y 2配成完全平方式应加上( ).A .14xyB .-14xyC .±28xyD .0 21.关于x 的一元二次方程ax a x 32222=+的两根应为( ).A .22a±-B .a 2,a 22C .422a± D .a 2±三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程)24.2x -1=-2x 2.25.x x 32132=+26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为∆=b 2-4ac , (1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7 B .25 C .±5 D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数 B .负数 C .非负数 D .零 7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0 B .9x 2=4(3x -1) C .x 2+7x +15=0D .02322=--x x8.方程03322=++x x 有( ).A .有两个不等实根B .有两个相等的有理根C .无实根D .有两个相等的无理根 三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程02)1(2=++-mx m x 都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .242ac b b -±- B .ac b 42-C .b 2-4acD .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ).A .k <1B .k <-1C .k ≥1D .k >1 14.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .21或32- 15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .23<m B .23<m 且m ≠1 C .23≤m 且m ≠1 D .23>m16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c为边长的三角形是( ). A .锐角三角形 B .钝角三角形 C .直角三角形 D .任意三角形 二、解答题17.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.18.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.19.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值.20.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.拓广、探究、思考21.若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______ 2.(2x -7)(x +2)=0.______ 3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5..03222=-x x ______ 6..)21()21(2x x -=+______7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=b D .x 1=-a ,x 2=-b 10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,.1,3221==∴x x 三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2).12..32x x =*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18.0222=-x x .______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,2 21.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程0)43)(21()43(2=--+-x x x 的较小的根为( ).A .43-B .21C .85D .43 三、用因式分解法解下列关于x 的方程23..2152x x =- 24.4(x +3)2-(x -2)2=0.25..04222=-+-b a ax x26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2 B .x 1=x 2=2 C .x =4 D .x 1=x 2=46.5.27.0512=+x 的根是( ).A .x =3B .x =±3C .x =±9D .3±=x7.072=-x x 的根是( ). A .77=x B .77,021==x x C .x 1=0,72=xD .7=x8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1 D .x =1或x =2 三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0. 12.2a 2x 2-5ax +2=0.(a ≠0)四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式1872+--x x x 的值是0,则x =______.21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________. 二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ).A .都是x =0B .有一个相同,x =0C .都不相同D .以上都不正确 23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ).A .b ax a b x 2,221==B .b ax a b x ==21,C .0,2221=+=x abb a xD .以上都不正确三、解下列方程24.(x +1)2+(x +2)2=(x +3)2. 25.(y -5)(y +3)+(y -2)(y +4)=26.26..02322=+-x x 27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求yx yx +-的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________.32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为,24,221aac b b x x -±-=请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值: ①;1121x x + ②;2221x x + ③|x 1-x 2|; ④;221221x x x x + ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。

4.8 位似 数学北师大版九年级上册同步测试(含答案)

4.8 位似 数学北师大版九年级上册同步测试(含答案)

《位似》同步测试1. 如图,△A ′B ′C ′是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则OB ′:OB 为( )A .2:3B .3:2C .4:5D .4:9 2. 如图,己知△ABC ,任取一点O ,连AO ,BO ,CO ,并取它们的中点D ,E ,F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形; ②△ABC 与△DEF 是相似图形;③△ABC 与△DEF 的周长比为1:2; ④△ABC 与△DEF 的面积比为4:1A .1B .2C .3D .4 3. 如图,△ABC 与△DEF 是位似图形,点A (﹣1,2)和点D (2,﹣4)是对应点,则△ABC 内的点P (m ,n )的对应点P ′的坐标为( )A .(2m ,2n )B .(﹣2m ,﹣2n )C .(2m ,﹣2n )D .(﹣2m ,2n)1. 如图,△ABO 三个顶点的坐标分别为A (2,4),B (6,0),O (0,0),以原点O 为位似中心,把这个三角形缩小为原来的,可以得到△A ′B ′O ,已知点B ′的坐标是(3,0),则点A ′的坐标是 。

 2. 如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,原点O 是位似中心,若AB =2,则DE = 。

3. 如图,在平面直角坐标系中,矩形AOCB 的两边OA 、OC 分别在x 轴和y 轴上,且OA =1,OC =,在第二象限内,以原点O 为位似中心将矩形AOCB 放大为原来的倍,得到矩形A 1OC 1B 1,再以原点O 为位似中心将矩形OC 1B 1A 1放大为原来的倍,得到矩形A 2OC 2B 2…,以此类推,得到的矩形A 100OC 100B 100的对角线交点的纵坐标为 。

1. 如图,在对Rt △ABC 依次进行轴对称(对称轴为y 轴)、一次平移和以O 为位似中心在同侧缩小为原来的一半的变换后得到△OA ′B ′。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
3 2 2 1 1
九年级数学同步测试题2012年4月27日
班级 姓名 学号
一.选择题。

1
.有一实物如下图,那么它的主视图


A B C D
2、将右上图Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图( )
3、一物体及其正视图如右图所示,则它的左视图与俯视图分别是右侧图形中 的 ( )
(A)①② (B)③② (C)①④ (D)③④
4、一个几何体的三视图如图所示,那么这个几何体是 ( )
5、右图是由相同小正方形搭的几何体的俯视图(小正方形中所标的数字表示在该位置上小正方体的个数),则这个几何体的左视图是 ( ) 6.一天中,同一物体同一地点,在阳光
6.下的影子 ( ) A 、变长 B 、变短 C 、先变长,后变短 D 、先变短,后变长
7、下列图中是太阳光下形成的影子是 ( )
题图
A B C D
A 、
B 、
C 、
D 、
8、人离窗子越远,向外眺望时此人的盲区是 ( ) A 、变小 B 、变大 C 、不变 D 、以上都有可能 二.填空题。

9、某天同时同地,甲同学测得1米的木杆在平地上的影长为0.8米,乙同学测得同一平地上的旗杆的影长为9.6米,则旗杆的高为____________米。

10、如图所示,在房子外的屋檐E 处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在__________.
11、某同学的身高为1.8米,他在路灯下的影长是为2米,他距路灯底部为3米,则路灯灯泡距地面的高度为__________米。

12、如图,某圆桌桌面直径AB=2米,在桌子正上方灯泡O 的照射下,在地面形成的影子直径CD=5米,已知桌面与地面的距离为1.2米,则灯泡到桌面的距离为_________米。

13、学校围墙旁边有一颗树AB ,在傍晚时分,树影落在地面和围墙上,现测树旁一根长1米的竹竿的影长为0.9米,而此时地上树影BC 长2.7米,墙上
树影CD 长1.2米,这颗树有多高_________
三.解答题
14、小明在晚上由路灯A 走向路灯B ,当他行至P 处时发现,他在路灯B 下影长为2m ,接着他又走了6.5m 至Q 处(已知小明身高1.8m ,路灯B 高9m ).
A
D
B
C
A D
N
M
B
C
(1)标出小明站在P 处在路灯B 下的影子. (2)计算小明站在Q 处在路灯A 下的影子. (3)计算路灯A 的高度.
15、如图4,王华晚上由路灯A 下的B 处走到C处时,测得影子CD 的长为1米,继续往前走2米到达E处时,测得影子EF 的长为2米,已知王华的身高是1.5米,求路灯A 的高度AB
A
B C D E F
A
B
P
Q
E
G C
D
16、为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?(结果精确到1米.732
.13≈,
414
.12≈)
17、(1)如图所示,如果你的位置在点A ,你能看到后面那座高大的建筑物吗?为什么?
(2)如果两楼之间相距MN=20 m ,两楼的高各为10m 和30m ,则当你至少与M 楼相距多少m 时,
才能看到后面的N 楼?此时,你的视角α是多少度?
水平线 A B C D 30°
新 楼
1米
40米


(26)题3.。

相关文档
最新文档