山东省2019-2020学年八年级下学期期中数学试题B卷
2020-2021学年八年级数学下学期期中考试试题(含答案) (1)
2020-2021学年八年级数学下学期期中考试试题时间:90分钟 满分:120分 考试内容:第十六章至第十八章一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020江苏连云港赣榆期末,4,★☆☆)若3-m 为二次根式,则m 的取值范围是 ( )A.m<3B.m≤3C.m≥3D.m>32.(2020江苏盐城期末,5,★☆☆)若a>0,则下列二次根式中,属于最简二次根式的是 ( )A.1aB.1a2 C. aD.a 23.(2020上海浦东新区建平中学期末,2,★☆☆)下列计算正确的是 ( )A.-(-3)2=-3B.(- 3 )2=9C.(-3)2=±3 D.9116 =3144.(2019山西忻州期中,1,★☆☆)下列各式化简后,与3的被开方数相同的是 ( )A.12B.18C.19D.235.如图,每个小正方形的边长为1,四边形的顶点A,B,C,D 都在格点上,则下面4条线段的长度为10 的是( A. ABB.BCC. CDD. AD6.如图,在四边形ABCD 中,∠ABC=90°,AB=3,BC =4,CD =12,AD =13,则四边形ABCD 的面积为 ( )A.72B.36C.66D.427.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,则下列说法正确的是 ( )A. CE =BCB. DE =12ABC.∠AED=∠CD.∠A=∠C8.(2020湖南邵阳隆回期末,5,★☆☆)如图,已知直线a∥b∥c,直线d 与直线a,b,c 分别垂直且相交于A,B,C 三点,若AB =2,AC =6,则平行线b 、c 之间的距离是 ( )A.2B.4C.6D.89.(2020四川眉山东坡学校模拟,11,★★☆)如图,已知菱形ABCD 的对角线AC 、BD 的长分别为10cm 、24cm,AE ⊥BC 于点E,则AE 的长是 ( )A.5 3 cmB.2 5 cmC.24013cm D.1201310.(2020四川宜宾叙州期末,12,★★☆)如图正方形ABCO 和正方形DEFO 的顶点A,E,0在同一直线l 上,且EF =2 ,AB =3,给出下列结论:①∠COD=45°,②AE=5,③CF=BD =17 ,④△COF 的面积S △CDF =3,其中正确结论 的个数为 ( )A.1B.2C.3D.4二、填空题(本大题共8小题,每小题4分,共32分)11.(2020湖北武汉东湖高新区期末,11,★☆☆)49=________;1-33 的相反数为________; 3 -2 =________12.(2020福建厦门湖里五缘实验学校期末,13,☆☆)在□ABCD 中,∠C:∠D=5:4,则∠B 的度数为________ 13.已知△ABC 的三边长分别为a,b,c,且a,满足b =5-a +a -5 +12,c =13,则S △A BC =________14.如图,∠CAB=30°,点D 在射线AB 上,且AD =4,点P 在射线AC 上运动,当△ADP 是直角三角形时,PD 的长为 ________15.(2020广东清远英德期末,16,★★☆)如图,在平行四边形ABCD 中,∠C=42°,过点D 作BC 的垂线DF,交AB 于点E,交CB 的延长线于点F,则∠BEF 的度数为________16.如图,正方形ABCD 的边长是2,对角线AC 、BD 相交于点O,点E 、F 分别在边AD 、AB 上,且OE⊥OF,则四边形 AFOE 的面积为________17.(2020湖南娄底期末,18,★★☆)1+13=213,2+14=314,3+15=415,……观察各式,则第n(n≥1)个等式为________________________。
2020-2021学年度人教版八年级数学下册期中试卷B
2020-2021学年下学期(人教)八年级数学教学质量检测评估期中调研联考卷B(考试时间120分钟,满分120分)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分在每个小题给出的四个选项中,只有一项符合题目要求,将正确答案的字母代号填入下表相应题号的空格内)题号1 2 34 5 6 7 8 9 1得分1.下面选项中的四边形不一定是轴对称图形的是( )A.平行四边形B.矩形C.菱形D.正方形2.下列各组数中,能构成直角三角形的是( )A.1,1,2B.5,12,13C.17,24,25D.6,18,203.下列命题中,逆命题是真命题的是( )A.平行四边形的两组对角分别相等B.正多边形的每条边都相等C.成中心对称的两个图形一定全等D.矩形的两条对角线相等4.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是( ) A.5 m B.12m C.13m D.18m5.函数y=x+2x2-4中自变量x的取值范围是( )A.x≥-2B.x>-2C.x≥-2且x≠±2D.x>-2且x≠26.如图,点A,B是棱长为1的正方体的两个顶点,将正方体按图中所示展开,则在展开图中A,B两点间的距离为( )A.2B. 5C.2 2D.107.如图,小正方形边长为1,连接小正方形的三个顶点得到△ABC,则AC 边上的高是 ( )A.3105 B.322 C.455 D.3558.如图,菱形ABCD 的边长是5,0是两条对角线的交点,过O 点的三条直线将菱形分成阴影部分和空白部分,若菱形的一条对角线的长为4,则阴影部分的面积为 ( )A.221B.421C.12D.249.已知a 满足2018-a +a -2019 =a,则a -20182=________ ( )A.0B.1C.2018D.201910.如图,在正方形ABCD 中,点E,F,H 分别是AB,BC,CD 的中点,CE,DF 交于点G,连接AG,HG,下列结论:①CE⊥DF;②AG =AD ;③∠CHG =∠DAG;④HG=12 AD.其中正确的有( )A.①②B.①②④C.①③④D.①②③④第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.写出一个可以与 3 合并的式子________ 12.如图,在数轴上点A 表示的实数是________13.如图,在□OABC 中,OA =3,C(1,2),则点B 的坐标为________14.一艘轮船在小岛A 的北偏东60°方向距小岛60海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°方向的C 处,则该船行驶的速度为________海里/时15.如图,正方形ABCD的边长为6,点E,F分别在边AD,BC上将该纸片沿EF折叠,使点A的对应点G落在边DC上,折痕EF与AG交于点Q,点K为GH的中点,则随着折痕EF位置的变化,△GQK周长的最小值为________三、解答题(本大题共8个小题,共75分解答应写出文字说明、证明过程或演算步骤)16.(8分)计算:(1)24 ×13-4×18×(1- 2 )0;(2) 3 ( 2 - 3 )-24 - 6 -3 .17.(8分)已知a,b分别为等腰三角形的两条边长,且a,b满足b=4+3a-6 +32-a ,求此三角形的面积18.(8分)如图,在平行四边形ABCD中,点E,F在AC上,且AE=CF求证:四边形BEDF是平行四边形19.(8分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知AB=AD=15米,∠A=60°,BC=20米,∠ABC=150°小明说根据小东所得的数据可以求出CD的长度.你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由20.(8分)观察下列各式,发现规律:1+13=213;2+14=314;3+15=415;…(1)填空:4+16=________,5+17=________;(2)计算(写出计算过程):2014+12016;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来21.(10分)如图,在四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长22.(12分)先阅读下列一段文字,再回答问题已知平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=(x2-x1)2+(y2-y1)2 .同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为x2-x1或y2-y1 .(1)已知点A(2,4),B(-3,-8),试求A,B两点间的距离;(2)已知点A,B所在的直线平行于y轴,点B的纵坐标为-1,A,B两点间的距离等于6.试求点A的纵坐标;(3)已知一个三角形各顶点的坐标分别为A-3,-2),B(3,6),C(7,-2),你能判断三角形ABC的形状吗?说明理由23.(13分)如图1,在正方形ABCD中,点O是对角线AC的中点,点P为线段AO上一个动点(不包括两个端点),为CD 边上一点,且∠BPQ=90°(1)①∠ACB=________度(直接填空);②求证:∠PBC=∠PQD;③直接写出线段PB与线段PQ的数量关系;(2)若BC+CQ=6,则四边形BCQP的面积为________(直接填空);(3)如图2,连接BQ交AC于点E,直接用等式表示线段AP,PE,EC之间的数量关系【参考答案及解析】1.A [解析]A.不一定是轴对称图形本选项正确;B.是轴对称图形,本选项错误;C.是轴对称图形,本选项错误;D.是轴对称图形,本选项错误.故选A.2.B [解析]52+122=132.故选B.3.A [解析]A.平行四边形的两组对角分别相等的逆命题是两组对角分别相等的四边形是平行四边形,是真命题;B.正多边形的每条边都相等的逆命题是每条边都相等的多边形是正多边形,是假命题;C.成中心对称的两个图形一定全等的逆命题是两个图形全等一定成中心对称,是假命题;D.矩形的两条对角线相等的逆命题是两条对角线相等的四边形是矩形,是假命题.故选A.4.D [解析]由题意得,斜边的长=122+52=13(m),则旗杆折断之前的高度是13+5=18(m).故选D.5.D [解析]根据题意得⎩⎨⎧x+2≥0x 2-4≠0,解得x>-2且x≠2.故选D.6.B [解析]如图,连接AB,在Rt△ABC 中,AC =1,BC =2,可得AB =22+12=5,故选B.7.D [解析]∵三角形ABC 的面积等于正方形的面积减去三个直角三角形的面积, 即S △ABC =2×2-12 ×1×2-12 ×1×2--12 ×1×1=32 ,AC =22+12= 5 ,∴AC 边上的高=32 ÷12 ÷ 5 =3 55 .故选D8.A [解析]连接AC,BD,如图所示∵菱形ABCD 的边长是5,是两条对角线的交点,BD =4 ∴AB =5,OB =OD =12BD =2,OA =OC,AC⊥BD,∴OA =AB 2-OB 2=52-22=21 ,∴AC=2OA =221 , ∴菱形ABCD 的面积=12 AC×BD=12×221 ×4=421 .∵O 是菱形两条对角线的交点,∴阴影部分的面积=12 菱形ABCD 的面积=221 .故选A.9.D [解析]∵等式2018-a +a -2019 =a 成立,∴a≥2019,∴a-2018+a -2019 =a ∴a -2019 =2018.∴a-2019=20182∴a-20182=2019.故选D. 10.D [解析]∵四边形ABCD 是正方形,AB =BC =CD =AD,∠B=∠BCD=90° ∵点E,F,H 分别是AB,BC,CD 的中点,∴△BCE≌△CDF∴∠ECB=∠CDF∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF,故①正确;在Rt△CGD 中,∵H 是边CD 的中点,∴HG=12 CD =12 AD,故④正确;连接AH,交DG 于点K,同理可得:AH⊥DF.∵HG =HD =12 C D,∴DK=GK.∴AH 垂直平分DG 。
2019-2020学年山东省济南市历城区八年级下学期期中数学试卷 (解析版)
2019-2020学年山东省济南市历城区八年级第二学期期中数学试卷一、选择题(共12小题).1.(4分)在以下四个标志图案中,是中心对称图形的是()A.B.C.D.2.(4分)若a<b,则下列结论不正确的是()A.a+4<b+4B.a﹣3<b﹣3C.﹣2a>﹣2b D.3.(4分)如图,直线m∥n,点A在直线m上,点B、C在直线n上,AB=CB,∠1=70°,则∠BAC等于()A.40°B.55°C.70°D.110°4.(4分)下列等式中,从左到右的变形是因式分解的是()A.9﹣a2=(3+a)(3﹣a)B.x2﹣2x=(x2﹣x)﹣xC.D.y(y﹣2)=y2﹣2y5.(4分)在数轴上表示不等式组的解集,正确的是()A.B.C.D.6.(4分)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)7.(4分)若a,b,c是三角形的三边,则代数式(a﹣b)2﹣c2的值是()A.正数B.负数C.等于零D.不能确定8.(4分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°9.(4分)如图,在△ABC中,∠BAC=90°,∠C=30°,AD⊥BC于D,BE是∠ABC 的平分线,且交AD于P,如果AP=2,则AD的长为()A.2B.3C.4D.610.(4分)如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140B.70C.35D.2411.(4分)如图,在△ABC中,AB=,AC=,∠BAC=30°,将△ABC绕点A 逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.3B.2C.2D.412.(4分)如图,在△ABC中,∠C=90°,AC=2,BC=4,将△ABC绕点A逆时针旋转90°,使点C落在点E处,点B落在点D处,则B、E两点间的距离为()A.B.C.3D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4分)因式分解:x2﹣9=.14.(4分)若,则a b(填“<、>或=”号).15.(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=5,AC=4,则D点到AB的距离是.16.(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是.17.(4分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A'B'C',连接A'C,则线段A'C的长为.18.(4分)如图,∠BAC=90度,AB=AC,AE⊥AD,且AE=AD,AF平分∠DAE交BC于F,若BD=6,CF=8,则线段AD的长为.三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(10分)分解因式:(1)x3﹣x;(2)3x2y﹣6xy+3y.20.(6分)解不等式:2x+1≥3x﹣1,并把它的解集在数轴上表示出来.21.(6分)解不等式组,并把不等式组的解集在数轴上表示出来.22.(6分)解不等式组:并写出满足条件的所有整数x的值.23.(8分)已知:如图,在△ABC中,BE⊥AC,垂足为点E,CD⊥AB,垂足为点D,且BD=CE.求证:∠ABC=∠ACB.24.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.25.(10分)今年3月12日植树节期间,学校预购进A、B两种树苗,若购进A种树苗3棵,B种树苗5棵,需2100元,若购进A种树苗4棵,B种树苗10棵,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?26.(12分)如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm.点D从点C 开始沿射线CB方向以每秒2厘米的速度运动,连结AD,设运动时间为t秒.(1)求AB的长.(2)当t为多少时,△ABD为等腰三角形.27.(12分)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=6,D在线段BC上,E是线段AD的一点.现以CE为直角边,C为直角顶点,在CE的下方作等腰直角△ECF,连接BF.(1)如图1,求证:AE=BF;(2)当A、E、F三点共线时,如图2,若BF=2,求AF的长;(3)如图3,若∠BAD=15°,连接DF,当E运动到使得∠ACE=30°时,求△DEF 的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)在以下四个标志图案中,是中心对称图形的是()A.B.C.D.解:A、是轴对称图形,不是中心对称图形.故本选项不合题意;B、是中心对称图形.故本选项符合题意;C、不是中心对称图形.故本选项不合题意;D、不是中心对称图形.故本选项不合题意.故选:B.2.(4分)若a<b,则下列结论不正确的是()A.a+4<b+4B.a﹣3<b﹣3C.﹣2a>﹣2b D.解:A、∵a<b,∴a+4<b+4,故本选项不符合题意;B、∵a<b,∴a﹣3<b﹣3,故本选项不符合题意;C、∵a<b,∴﹣2a>﹣2b,故本选项不符合题意;D、∵a<b,∴a<b,故本选项符合题意;故选:D.3.(4分)如图,直线m∥n,点A在直线m上,点B、C在直线n上,AB=CB,∠1=70°,则∠BAC等于()A.40°B.55°C.70°D.110°解:∵m∥n,∴∠ACB=∠1=70°,∵AB=BC,∴∠BAC=∠ACB=70°,故选:C.4.(4分)下列等式中,从左到右的变形是因式分解的是()A.9﹣a2=(3+a)(3﹣a)B.x2﹣2x=(x2﹣x)﹣xC.D.y(y﹣2)=y2﹣2y解:A、9﹣a2=(3+a)(3﹣a),从左到右的变形是因式分解,符合题意;B、x2﹣2x=(x2﹣x)﹣x,不符合题意因式分解的定义,不合题意;C、x+2无法分解因式,不合题意;D、y(y﹣2)=y2﹣2y,是整式的乘法,不合题意.故选:A.5.(4分)在数轴上表示不等式组的解集,正确的是()A.B.C.D.解:依题意得,数轴可表示为:故选:B.6.(4分)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)解:由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律是:横坐标﹣4,纵坐标+1,∴点B的对应点B1的坐标(﹣1,0).故选:C.7.(4分)若a,b,c是三角形的三边,则代数式(a﹣b)2﹣c2的值是()A.正数B.负数C.等于零D.不能确定解:∵(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c),a,b,c是三角形的三边,∴a+c﹣b>0,a﹣b﹣c<0,∴(a﹣b)2﹣c2的值是负数.故选:B.8.(4分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°解:∵CD=AC,∠A=50°,∴∠ADC=∠A=50°,根据题意得:MN是BC的垂直平分线,∴CD=BD,∴∠BCD=∠B,∴∠B=∠ADC=25°,∴∠ACB=180°﹣∠A﹣∠B=105°.故选:D.9.(4分)如图,在△ABC中,∠BAC=90°,∠C=30°,AD⊥BC于D,BE是∠ABC 的平分线,且交AD于P,如果AP=2,则AD的长为()A.2B.3C.4D.6解:∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵AD⊥BC,∴∠BAD=30°,∵BE是∠ABC的平分线,∴∠ABP=∠DBP=30°,∴PB=PA=2,在Rt△PBD中,PD=PB=1,∴AD=AP+PD=2+1=3故选:B.10.(4分)如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140B.70C.35D.24解:根据题意得:a+b==7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70;故选:B.11.(4分)如图,在△ABC中,AB=,AC=,∠BAC=30°,将△ABC绕点A 逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.3B.2C.2D.4解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,AB=,AC=,∴∠CAC1=60°,AC=AC1=,∵∠BAC=30°,∴∠BAC1=30°+60°=90°,在Rt△BAC1中,由勾股定理得:BC1===3,故选:A.12.(4分)如图,在△ABC中,∠C=90°,AC=2,BC=4,将△ABC绕点A逆时针旋转90°,使点C落在点E处,点B落在点D处,则B、E两点间的距离为()A.B.C.3D.解:如图,延长DE交BC于F,∵将△ABC绕点A逆时针旋转90°,∴AE=AC=2,∠EAC=90°=∠DEA=∠ACB,∴AE∥CB,AC∥EF,∴CF=EF=2=AC,∠EFC=90°,∴BF=2,∴BE===2,故选:B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4分)因式分解:x2﹣9=(x+3)(x﹣3).解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).14.(4分)若,则a<b(填“<、>或=”号).解:∵<,∴两边乘以3得:a<b,故答案为:<.15.(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=5,AC=4,则D点到AB的距离是3.解:如图,过点D作DE⊥AB于E,∵AD=5,AC=4,∠C=90°,∴CD===3,∵AD平分∠CAB,∴DE=CD=3.故答案为:3.16.(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是x<3.解:当x<3时,kx+6>x+b,即不等式kx+6>x+b的解集为x<3.故答案为:x<3.17.(4分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A'B'C',连接A'C,则线段A'C的长为4.解:由题意,得BB′=2,∴B′C=BC﹣BB′=4.由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,∴A′B′=B′C,且∠A′B′C=60°,∴△A′B′C为等边三角形,∴A'C=A'B'=4,故答案为:4.18.(4分)如图,∠BAC=90度,AB=AC,AE⊥AD,且AE=AD,AF平分∠DAE交BC于F,若BD=6,CF=8,则线段AD的长为6.解:如图,连接EF,过点A作AG⊥BC于点G,∵AE⊥AD,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE,∠4=∠B∵∠BAC=90°,AB=AC,∴∠B=∠3=45°∴∠4=∠B=45°,∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF(SAS).∴DF=EF.∴BD2+FC2=DF2.∴DF2=BD2+FC2=62+82=100,∴DF=10∴BC=BD+DF+FC=6+10+8=24,∵AB=AC,AG⊥BC,∴BG=AG=BC=12,∴DG=BG﹣BD=12﹣6=6,∴AD==6故答案为:6三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(10分)分解因式:(1)x3﹣x;(2)3x2y﹣6xy+3y.解:(1)原式=x(x2﹣1)=x(x+1)(x﹣1);(2)原式=3y(x2﹣2x+1)=3y(x﹣1)2.20.(6分)解不等式:2x+1≥3x﹣1,并把它的解集在数轴上表示出来.解:移项,得:2x﹣3x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,解集在数轴上表示如下:21.(6分)解不等式组,并把不等式组的解集在数轴上表示出来.解:,解不等式①,得:x≥﹣1,解不等式②,得:x<3,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:22.(6分)解不等式组:并写出满足条件的所有整数x的值.解:由不等式①得:x≥2,由不等式②得:x<4,此不等式组的解集为2≤x<4,所以此不等式组的整数解为2,3.23.(8分)已知:如图,在△ABC中,BE⊥AC,垂足为点E,CD⊥AB,垂足为点D,且BD=CE.求证:∠ABC=∠ACB.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠BDC=∠CEB=90°,在Rt△BCD和Rt△CBE中,,∴Rt△BCD≌Rt△CBE(HL),∴∠DBC=∠ECB,即∠ABC=∠ACB.24.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).25.(10分)今年3月12日植树节期间,学校预购进A、B两种树苗,若购进A种树苗3棵,B种树苗5棵,需2100元,若购进A种树苗4棵,B种树苗10棵,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?解:(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据题意得:,解得:.答:购进A种树苗的单价为200元/棵,购进B种树苗的单价为300元/棵.(2)设需购进A种树苗a棵,则购进B种树苗(30﹣a)棵,根据题意得:200a+300(30﹣a)≤8000,解得:a≥10.∴A种树苗至少需购进10棵.26.(12分)如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm.点D从点C 开始沿射线CB方向以每秒2厘米的速度运动,连结AD,设运动时间为t秒.(1)求AB的长.(2)当t为多少时,△ABD为等腰三角形.解:(1)∵在△ABC中,AB=AC,∠BAC=90°,∴AC2+AB2=BC2,∴AB===4cm;(2)分三种情况:①当D在B点右侧,如图1,且BD=AB,∴BD=AB=4cm,∴CD=BC﹣BD=8﹣4cm,∵CD=2t,即8﹣4=2t,∴t=4﹣2;②当D在B点右侧,如图2,且AD=BD,∵AB=AC,∠BAC=90°,∴CD=BC=BC=4cm,即2t=4,∴t=2;③当D在B点左侧,如图3,且BD=AB,∴CD=BC+BD=8+4cm,即2t=8+4,∴t=4+2;故当t为4±2或2s时,△ABD为等腰三角形.27.(12分)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=6,D在线段BC上,E是线段AD的一点.现以CE为直角边,C为直角顶点,在CE的下方作等腰直角△ECF,连接BF.(1)如图1,求证:AE=BF;(2)当A、E、F三点共线时,如图2,若BF=2,求AF的长;(3)如图3,若∠BAD=15°,连接DF,当E运动到使得∠ACE=30°时,求△DEF 的面积.【解答】(1)证明:如图1中,∵△ACB,△ECF都是等腰三角形,∴CA=CB,CE=CF,∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∴△ACE≌△BCF(SAS),∴AE=BF.(2)解:如图2中,∵CA=CB=6,∠ACB=90°,∴AB=6,∵△ACE≌△BCF,∴∠CAD=∠DBF,∵∠ADC=∠BDF,∴∠ACD=∠DFB=90°,∴AF===2.(3)如图2中,作FH⊥BC于H.∵∠ACE=∠CAE=30°,∴AE=EC,∵△ACE≌△BCF,∴BF=AE,CF=CE,∴CF=BF,∠FCB=∠CBF=30°,∵FC=FB,FH⊥BC,∴CH=BH=3,FH=,CF=BF =2,∵∠CED =∠CAE+∠ACE=60°,∠ECD =90°﹣30°=60°,∴△ECD是等边三角形,∴EC=CF=CD=2,∴S△EDF=S△ECD+S△CDF﹣S△ECF=×(2)2+×2×﹣×2×2=3﹣3.。
2019-2020学年山东大学附中八年级(下)期中数学试卷
2019-2020学年山东大学附中八年级(下)期中数学试卷一、选择题(本大题共12个小题,每小题4题,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)(2020春•历下区校级期中)道路千万条,安全第一条,下列交通标志是中心对称图形的为()A.B.C.D.2.(4分)(2020秋•沂南县期末)把代数式2x2﹣8分解因式,结果正确的是()A.2(x2﹣4)B.2(x﹣2)2C.2(x+4)(x﹣4)D.2(x+2)(x﹣2)3.(4分)(2020春•历下区校级期中)解分式方程﹣2=,去分母得()A.1﹣2(x﹣5)=﹣3B.1﹣2(x﹣5)=3C.1﹣2x﹣10=﹣3D.1﹣2x﹣10=34.(4分)(2020春•三水区期末)化简的结果为()A.﹣B.﹣y C.D.5.(4分)(2020春•历下区校级期中)关于x的分式方程=2﹣有增根,则a的值为()A.﹣3B.﹣5C.5D.26.(4分)(2019春•历下区期末)如图,把线段AB经过平移得到线段CD,其中A,B的对应点分别为C,D.已知A(﹣1,0),B(﹣2,3),C(2,1),则点D的坐标为()A.(1,4)B.(1,3)C.(2,4)D.(2,3)7.(4分)(2019春•历下区期末)如图,A、B两地被池塘隔开,小康通过下列方法测出了A 、B 间的距离:先在AB 外选一他点C ,然后测出AC ,BC 的中点M 、N ,并测量出MN 的长为18m ,由此他就知道了A 、B 间的距离.下列有关他这次探究活动的结论中,错误的是()A .AB =36m B .MN ∥ABC .MN =CBD .CM =AC8.(4分)(2019秋•两江新区期末)某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是()A .B .C .D .9.(4分)(2019春•历下区期末)如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,则∠EAC 的度数是()A .30°B .45°C .60°D .75°10.(4分)(2020春•市中区校级期中)如图,▱ABCD 的对角线AC ,BD 交于点O ,AC ⊥AB ,AB =,BO =3,那么AC 的长为()A .2B .C .3D .411.(4分)(2009•威海)如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于F 点,AB =BF .添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE 12.(4分)(2020春•历下区校级期中)如图,△ABC为等边三角形,AB=8,AD⊥BC,点E为线段AD上的动点,连接CE,以CE为边作等边△CEF,连接DF,则线段DF的最小值为()A.B.4C.2D.无法确定二、填空题(本大题共6个小题,每小题4分,共24分.)13.(4分)(2015•温州)分解因式:a2﹣2a+1=.14.(4分)(2004•郴州)若分式的值为零,则x的值是.15.(4分)(2015秋•临颍县期中)一个多边形的每一个内角都等于150°,则这个多边形的内角和是.16.(4分)(2020春•历下区校级期中)已知==,则=.17.(4分)(2020春•历下区校级期中)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A′B′C′的位置,A′B′恰好经过点B,则旋转角α的度数为.18.(4分)(2016春•槐荫区期中)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°②S▱ABCD=AB•AC③OB=AB④OE=BC成立的有(把所有正确结论的序号都填在横线上)三、解答题(本大题共7个小题,共78分,请写出文字说明、证明过程成演算步骤)19.(6分)(2020春•历下区校级期中)(1)分解因式:x3y﹣2x2y+xy;(2)先因式分解再求值:a2b+ab2﹣a﹣b,其中a+b=﹣5,ab=7.20.(6分)(2020春•历下区校级期中)计算:(1);(2)﹣x+1.21.(6分)(2020春•历下区校级期中)解方程:(1)=;(2)=1.22.(10分)(2016•青海)如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.23.(8分)(2020春•历下区校级期中)阅读下列材料:若一个正整数x能表示成a2﹣b2(a,b是正整数,且a>b)的形式,则称这个数为“明礼崇德数”,a与b是x的一个平方差分解.例如:因为5=32﹣22,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:M=x2+2xy=x2+2xy+y2﹣y2=(x+y)2﹣y2(x,y 是正整数),所以M也是“明礼崇德数”,(x+y)与y是M的一个平方差分解.(1)判断:9“明礼崇德数”(填“是”或“不是”);(2)已知N=x2﹣y2+4x﹣6y+k(x,y是正整数,k是常数,且x>y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由.24.(8分)(2014•湘潭)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.25.(10分)(2020春•历下区校级期中)济南市地铁1号线于2019年1月1日起正式通车,在修建过程中,技术人员不断改进技术,提高工作效率,如在打通一条长600米的隧道时,计划用若干小时完成,在实际工作过程中,每小时打通隧道长度是原计划的1.2倍,结果提前2小时完成任务.(1)求原计划每小时打通隧道多少米?(2)如果按照这个速度下去,后面的360米需要多少小时打通?26.(12分)(2020春•历下区校级期中)如图,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连接CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连接QB并延长交直线AD于E.(1)如图1,猜想∠QEP=;(2)如图2,若当∠DAC是锐角时,其他条件不变,猜想∠QEP的度数,并证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=6,求BQ的长.27.(12分)(2019春•南山区期末)如图1,在平面直角坐标系中,直线y=﹣x+3与x 轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.2019-2020学年山东大学附中八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4题,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【解答】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.2.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2),故选:D.3.【解答】解:方程变形得:﹣2=﹣,去括号得:1﹣2(x﹣5)=﹣3,故选:A.4.【解答】解:==,故选:D.5.【解答】解:分式方程去分母得:x﹣2=2(x+3)﹣a,由分式方程有增根,得到x+3=0,即x=﹣3,把x=﹣3代入整式方程得:a=5.故选:C.6.【解答】解:∵A(﹣1,0)的对应点C的坐标为(2,1),∴平移规律为横坐标加3,纵坐标加1,∵点B(﹣2,3)的对应点为D,∴D的坐标为(1,4).故选:A.7.【解答】解:∵CM=MA,CN=NB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.8.【解答】解:设原计划每天挖x米,则原计划用时为:,实际用时为:.所列方程为:﹣=4,故选:C.9.【解答】解:由题意:A,D,E共线,又∵CA=CE,∠ACE=90°,∴∠EAC=∠E=45°,故选:B.10.【解答】解:∵AC⊥AB,AB=,BO=3,∴AO===2,∵四边形ABCD是平行四边形,∴AC=2AO=4,故选:D.11.【解答】解:添加:∠F=∠CDE,理由:∵∠F=∠CDE,∴CD∥AB,在△DEC与△FEB中,,∴△DEC≌△FEB(AAS),∴DC=BF,∵AB=BF,∴DC=AB,∴四边形ABCD为平行四边形,故选:D.12.【解答】解:如图,连接BF,∵△ABC为等边三角形,AD⊥BC,AB=8,∴BC=AC=AB=8,BD=DC=4,∠BAC=∠ACB=60°,∠CAE=30°,∵△CEF为等边三角形,∴CF=CE,∠FCE=60°,∴∠FCE=∠ACB,∴∠BCF=∠ACE,∴在△BCF和△ACE中,,∴△BCF≌△ACE(SAS),∴∠CBF=∠CAE=30°,AE=BF,∴当DF⊥BF时,DF值最小,此时∠BFD=90°,∠CBF=30°,BD=4,∴DF=2,故选:C.二、填空题(本大题共6个小题,每小题4分,共24分.)13.【解答】解:a2﹣2a+1=a2﹣2×1×a+12=(a﹣1)2.故答案为:(a﹣1)2.14.【解答】解:,解得x=﹣4.故答案为﹣4.15.【解答】解:∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于30°,∴多边形的边数为360°÷30°=12,∴这个多边形的内角和=(12﹣2)•180°=1800°.故答案为:1800°.16.【解答】解:设x=2k,y=3k,z=4k,则===,故答案为.17.【解答】解:∵在Rt△ACB中,∠ACB=90°,∠A=35°,∴∠ABC=55°,∵将△ABC绕点C逆时针旋转α角到△A′B′C的位置,∴∠B′=∠ABC=55°,∠B′CA′=∠ACB=90°,CB=CB′,∴∠CBB′=∠B′=55°,∴∠α=70°,故答案为:70°.18.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵∠CAD=30°,∠AEB=60°,AD∥BC,∴∠EAC=∠ACE=30°,∴AE=CE,∴BE=CE,∵OA=OC,∴OE=AB,∵AB=BC,∴OE=BC.故④正确.故答案为:①②④.三、解答题(本大题共7个小题,共78分,请写出文字说明、证明过程成演算步骤)19.【解答】解:(1)x3y﹣2x2y+xy=xy(x2﹣2x+1)=xy(x﹣1)2;(2)a2b+ab2﹣a﹣b=ab(a+b)﹣(a+b)=(a+b)(ab﹣1),当a+b=﹣5,ab=7时,原式=(﹣5)×(7﹣1)=(﹣5)×6=﹣30.20.【解答】解:(1)﹣====x﹣2;(2)﹣x+1=﹣===.21.【解答】解:(1)去分母得:2x+2=4,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:x2﹣x﹣2+x=x2﹣2x,解得:x=1,经检验x=1是分式方程的解.22.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.23.【解答】解:(1)∵9=52﹣42,∴9是“明礼崇德数”,故答案为:是;(2)∵N=x2﹣y2+4x﹣6y+k=(x2+4x+4)﹣(y2+6y+9)+k+5=(x+2)2﹣(y+3)2+k+5,∴当k+5=0时,N=(x+2)2﹣(y+3)2为“明礼崇德数”,此时k=﹣5,故当k=﹣5时,N为“明礼崇德数”.24.【解答】解:(1)B点关于y轴的对称点坐标为(﹣3,2);(2)△A1O1B1如图所示;(3)A1的坐标为(﹣2,3).故答案为:(1)(﹣3,2);(3)(﹣2,3).25.【解答】解:(1)设原计划每小时打通隧道x米,则实际每小时打通隧道1.2x米,依题意,得:﹣=2,解得:x=50,经检验,x=50是原分式方程的解,且符合题意.答:原计划每小时打通隧道50米.(2)由(1)可知:实际每小时打通隧道50×1.2=60(米),360÷60=6(小时).答:如果按照这个速度下去,后面的360米需要6小时打通.26.【解答】解:(1)∠QEP=60°;证明:如图1,QE与CP的交点记为M,∵PC=CQ,且∠PCQ=60°,则△CQB和△CPA中,,∴△CQB≌△CP A(SAS),∴∠CQB=∠CP A,在△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案为:60°;(2)∠QEP=60°.理由如下:如图2,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵线段CP绕点C顺时针旋转60°得到线段CQ,∴CP=CQ,∠PCQ=6O°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠BOP=∠COQ,∴∠QEP=∠PCQ=60°;(3)作CH⊥AD于H,如图3,与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠PCB=45°,∴∠HAC=45°,∴△ACH为等腰直角三角形,∴AH=CH=AC=3,在Rt△PHC中,PH=CH=3,∴PA=PH﹣AH=3﹣3,∴BQ=3﹣3.27.【解答】(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠OBC=90°,∠OCB+∠ECD=90°,∴∠OBC=∠ECD.∵将线段CB绕着点C顺时针旋转90°得到CD,∴BC=CD.在△BOC和△CED中,,∴△BOC≌△CED(AAS).(2)解:∵直线y=﹣x+3与x轴、y轴相交于A、B两点,∴点B的坐标为(0,3),点A的坐标为(6,0).设OC=m,∵△BOC≌△CED,∴OC=ED=m,BO=CE=3,∴点D的坐标为(m+3,m).∵点D在直线y=﹣x+3上,∴m=﹣(m+3)+3,解得:m=1,∴点D的坐标为(4,1),点C的坐标为(1,0).∵点B的坐标为(0,3),点C的坐标为(1,0),∴直线BC的解析式为y=﹣3x+3.设直线B′C′的解析式为y=﹣3x+b,将D(4,1)代入y=﹣3x+b,得:1=﹣3×4+b,解得:b=13,∴直线B′C′的解析式为y=﹣3x+13,∴点C′的坐标为(,0),∴CC′=﹣1=,∴△BCD平移的距离为.(3)解:设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3).分两种情况考虑,如图3所示:①若CD为边,当四边形CDQP为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P1的坐标为(0,);当四边形CDPQ为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P2的坐标为(0,);②若CD为对角线,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P的坐标为(0,).综上所述:存在,点P的坐标为(0,)或(0,).。
山东省济宁任城区2022-2023学年八年级下学期期中质量检测数学试卷(含解析)
2022-2023学年度第二学期期中质量检测初三数学试题一、单选题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将.A. 10cm6.下列各式计算成立的是(A.33-23=1二、填空题(每小题3分,共15分)三、解答题(共55分16.(本题满分5分)计算:(23.(本题9分)问题解决:如图1,在矩形中,点分别在边上,于点.(1)求证:四边形是正方形;(2)延长到点,使得,判断的形状,并说明理由.类比迁移:如图2,在菱形中,点分别在边上,与相交于点,,求的长.ABCD ,E F ,AB BC ,DE AF DE AF =⊥G ABCD CB H BH AE =AHF △ABCD ,E F ,AB BC DE AF G ,60,6,2DE AF AED AE BF =∠=︒==DE∵•AC •BD =AD •EG ,∴×6×6=3•EG ∴EG =2,1212236【点睛】此题考查解一元二次方程配方法,熟练掌握这种方法是解题的关键.18.(1),(2)见解析【来源】福建省泉州市泉港区2022-2023学年九年级上学期期末教学质量检测数学试题【分析】(1)当时,原方程为用因式分解法解方程即可;(2)利用根的判别式进行证明即可.【详解】(1)当时,原方程化为∴∴,(2)证明:∵中,,,,∴∵,即∴原方程总有两个实数根【点睛】本题考查了解一元二次方程及一元二次方程的根的判别式的应用,熟练掌握知识点是解题的关键.19.(1)详见解析;(2)详见解析【来源】北京市顺义区2017-2018学年八年级下学期期末数学试卷【分析】(1)已知四边形 ABCD 是平行四边形,根据平行四边形的性质可得AB ∥CD ,AB=CD ,又因AE=AB ,可得AE=CD ,根据一组对边平行且相等的四边形是平行四边形即可判定四边形 ACDE 是平行四边形;(2)由(1)得的结论先证得四边形ACDE 是平行四边形,通过角的关系得出AF=EF ,推出AD =EC ,根据对角线相等的平行四边形是矩形,得证.【详解】证明:(1)∵▱ABCD 中,AB =CD 且AB ∥CD ,又∵AE =AB ,∴AE =CD ,AE ∥CD ,∴四边形ACDE 是平行四边形;(2)∵▱ABCD 中,AD ∥BC ,∴∠EAF =∠B ,又∵∠AFC =∠EAF+∠AEF ,∠AFC =2∠B∴∠EAF =∠AEF ,∴AF =EF ,又∵平行四边形ACDE 中AD =2AF ,EC =2EF 11x =-23x =-1m =-2430x x ++=1m =-2430x x ++=()()130x x ++=11x =-23x =-22430x mx m -+=1a =4b m =-23c m =()22244413b ac m m ∆=-=--⨯⨯24m =240m ≥0∆≥∴AD =EC ,∴平行四边形ACDE 是矩形.【点睛】此题考查的知识点是平行四边形的判定与性质及矩形的判定,根据边的转换,推出平行四边形,再通过对角线的关系证矩形.20.行【来源】辽宁省沈阳市第四十三中学2021-2022学年九年级上学期第二次质量监测数学试题【分析】设增加了行,根据体操队伍人数不变列出方程即可.【详解】解:设增加了行,根据题意得:,整理为:,解得:,(舍),答:增加了行.【点睛】本题考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.21.(1)见解析;(2)3【来源】湖北省襄阳市樊城区诸葛亮中学2019-2020学年八年级下学期5月月考数学试题【分析】(1)先判断出∠OAB =∠DCA ,进而判断出∠DAC =∠DCA ,得出CD =AD =AB ,即可得出结论;(2)先判断出OE =OA =OC ,再求出OB =1,利用勾股定理求出OA =3,即可得出结论.【详解】(1)证明:∵AB//CD ,∴∠OAB =∠DCA ,∵AC 平分∠BAD ,∴∠OAB =∠DAC ,∴∠DCA =∠DAC ,∴CD =AD =AB ,∵AB//CD ,∴四边形ABCD 是平行四边形,∵AD =AB ,∴四边形ABCD 是菱形;(2)解:∵四边形ABCD 是菱形,∴OA =OC ,BD ⊥AC ,∵CE ⊥AB ,2x x (8)(10)81040x x ++=⨯+218400x x +-=12x =220x =-2又∴矩形是正方形.(2)是等腰三角形.理由如下:,AF DE ABF DAE =∴ V V ≌ABCD AHF △.又,即是等腰三角形.类比迁移:如图2,延长到点,使得,连接.∵四边形是菱形,...又.是等边三角形,,.【点睛】本题考查正方形的证明、菱形的性质、三角形全等的判断与性质等问题,属于中档难度的几何综合题.理解题意并灵活运用,做出辅助线构造三角形全等是解题的关键.,ABH DAE AH DE ∴∴=V V ≌,DE AF AH AF =∴= AHF △CB H 6BH AE ==AH ABCD ,,AD BC AB AD ABH BAD ∴=∴∠=∠∥,BH AE ABH DAE =∴∆ V ≌,60AH DE AHB DEA ∴=∠=∠=︒,DE AF AH AF =∴= 60,AHB AHF ∠=︒∴ V AH HF ∴=628DE AH HF HB BF ∴===+=+=。
2019-2020学年山东省济宁市曲阜市八年级(下)期中数学试卷
2019-2020学年山东省济宁市曲阜市八年级(下)期中数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2018秋•浦东新区期末)化简的结果是()A.B.C.D.2.(3分)(2017秋•辉县市期末)式子中x的取值范围是()A.x≥1且x≠2B.x>1且x≠2C.x≠2D.x>13.(3分)(2019秋•开江县期末)下列各组数中,不是勾股数的是()A.6,8,10B.9,41,40C.8,12,15D.5k,12k,13k(k为正整数)4.(3分)(2019秋•兰州期末)能判定一个平行四边形是矩形的条件是()A.两条对角线互相平分B.一组邻边相等C.两条对角线相等D.两条对角线互相垂直5.(3分)(2020春•贵港期末)如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.B.0.8C.3﹣D.6.(3分)(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.7.(3分)(2020春•曲阜市期中)小学我们就知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)8.(3分)(2019秋•北碚区校级期末)已知y=+﹣1,则x y的值为()A.6B.C.﹣6D.﹣9.(3分)(2020春•曲阜市期中)若直角三角形两直角边的边长分别是5和12,则斜边上的高为()A.6B.C.D.10.(3分)(2019秋•宁德期末)意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是()A.S1=a2+b2+2ab B.S1=a2+b2+abC.S2=c2D.S2=c2+ab二、填空题(每题3分,满分18分,将答案填在答题纸上)11.(3分)(2020春•曲阜市期中)计算:3=.12.(3分)(2020春•曲阜市期中)已知一个直角三角形的两条直角边的长分别是(+7)cm和(7﹣)cm,则这个直角三角形的周长为.13.(3分)(2020春•曲阜市期中)如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使四边形ABCD是菱形.(只需添加一个即可)14.(3分)(2016•包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A 作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.15.(3分)(2018•十堰模拟)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=.16.(3分)(2019•祥云县二模)如图,△ABC是以AB为斜边的直角三角形,AC=4,BC =3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.三、解答题(本大题共8小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.(2020春•曲阜市期中)如图,在平行四边形ABCD中,已知AD=5,周长等于28,求其余三边的长.18.(2020春•曲阜市期中)计算:(1)(4﹣6)÷﹣(+)(﹣);(2)÷(﹣3)×(﹣3).19.(2019春•赫山区期末)如图,在平行四边形ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:四边形AECF是平行四边形.20.(2020春•交城县期末)我市某中学有一块四边形的空地ABCD(如图所示),为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,CD=13m,BC=12m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?21.(2020春•广州期中)如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE ∥BD.(1)求证:四边形OCED为菱形;(2)AF垂直平分线线段BO于点F,AC=12,求BC的长.22.(2019秋•常德期末)先阅读下列解答过程,然后再解答:形如的化简,只要我们找到两个正数a,b,使a+b=m,ab=n,使得=m,,那么便有:(a>b)例如:化简:解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即:=7,,所以.问题:①填空:=,=;②化简:(请写出计算过程).23.(2019秋•吉州区期末)在由6个大小相同的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;(2)如图(2),连接三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明).24.(2019•灞桥区校级四模)如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.2019-2020学年山东省济宁市曲阜市八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:∵>1,∴﹣1>0,∴==﹣1.故选:B.2.【解答】解:由题意得:x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故选:A.3.【解答】解:A、62+82=102,能构成直角三角形,是正整数,故是勾股数;B、92+402=412,能构成直角三角形,是正整数,故是勾股数;C、82+122≠152,不能构成直角三角形,故不是勾股数;D、(5k)2+(12k)2=(13k)2,能构成直角三角形,是正整数,故是勾股数;故选:C.4.【解答】解:A、两条对角线互相平分的四边形是平行四边形,故本选项错误;B、一组邻边相等的平行四边形是菱形,菱形不一定是矩形,故本选项错误;C、根据矩形的判定定理:对角线相等的平行四边形是矩形,故本选项正确;D、两条对角线互相垂直的平行四边形是菱形,故本选项错误.故选:C.5.【解答】解:如图,连接AD,则AD=AB=3,由勾股定理可得,Rt△ADE中,DE==,又∵CE=3,∴CD=3﹣,故选:C.6.【解答】解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.7.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选:D.8.【解答】解:∵,都有意义,∴x﹣6≥0,且12﹣2x≥0,解得:x=6,∴y=﹣1,∴x y=6﹣1=.故选:B.9.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故选:B.10.【解答】解:观察图象可知:S1=S2=a2+b2+ab=c2+ab,故选:B.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.【解答】解:原式=3﹣6=6﹣2=4.故答案为4.12.【解答】解:由勾股定理得,直角三角形的斜边长为=6,故这个直角三角形的周长为(+7)+(7﹣)+6=(14+6)(cm).故答案为:(14+6)cm.13.【解答】解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.14.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.15.【解答】解:∵四边形ABCD是菱形,∴OA=OC=4,OB=OD=3,AC⊥BD,在Rt△AOB中,AB==5,=•AC•BD,∵S菱形ABCDS菱形ABCD=DH•AB,∴DH•5=•6•8,∴DH=.故答案为.16.【解答】解:连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴AC•BC=AB•PC,∴PC=.∴线段EF长的最小值为;故答案是:.三、解答题(本大题共8小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:∵▱ABCD的周长等于28,∴AB=CD,AD=BC=5,AB+AD=14,∵AD=5,∴CD=AB=9.即其余三边的长BC=5,AB=CD=9.18.【解答】解:(1)原式=4﹣6﹣(2﹣3)=4﹣2+1=3;(2)原式=﹣×(﹣3)×=2ab.19.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△AEB和△CFD中,,∴△AEB≌△CFD(AAS),∴AE=CF,∴四边形AECF是平行四边形.20.【解答】解:(1)连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,所以∠DBC=90°,=S△ABD+S△DBC=3×4÷2+5×12÷2=36m2;则S四边形ABCD(2)所需费用为36×200=7200(元).21.【解答】证明:(1)∵DE∥AC,CE∥BD,∴四边形DOCE是平行四边形,∵矩形ABCD的对角线AC,BD相交于点O,∴AO=CO=DO=BO,∴四边形OCED为菱形.(2)过O作OE⊥BC,∵矩形ABCD的对角线AC、BD相交于点O,∴OA=OB,∵AF垂直平分线线段BO于点F,∴AB=AO,∴△ABO是等边三角形,∴∠AOB=60°,∴∠BOC=120°,∴∠BOE=60°,∴∠OBE=30°,∠OEB=90°,∴BE=,∴BC=6.22.【解答】解:①===+1,===+2,故答案为:+1;+2;②===﹣2.23.【解答】解:(1)如图,连接AC,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,AB=BC,∴△ABC是直角三角形,∠ABC=90°,∴AB⊥BC,综上所述,AB与BC的关系为:AB⊥BC且AB=BC;(2)∠α+∠β=45°.证明如下:如图,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∵AB=BC,∴△ABC是等腰直角三角形,∴∠α+∠β=45°.24.【解答】证明:(1)∵四边形ABCD是正方形,∴∠DAB=90°,AC平分∠DAB,(1分)∵PM⊥AD,PN⊥AB,∴∠PMA=∠PNA=90°,∴四边形MANP是矩形,(2分)∵AC平分∠DAB,PM⊥AD,PN⊥AB,∴PM=PN,(3分)∴四边形MANP是正方形;(4分)(2)∵四边形ABCD是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,(5分)在△EPM和△BPN中,∵,∴△EPM≌△BPN(ASA),(6分)∴EM=BN.(7分)。
2018-2019学年第二学期期中质量检测八年级数学试题(带答案)
姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。
北师大版初中数学八年级下册期中试卷(2018-2019学年山东省青岛市市南区东片联考
2018-2019学年山东省青岛市市南区东片联考八年级(下)期中数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若m>n,则下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.﹣>﹣D.m2>n22.(3分)下列银行标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点B′的坐标为()A.(2,1)B.(1,2)C.(2,﹣1)D.(2,0)4.(3分)不等式组的解集在数轴上可表示为()A.B.C.D.5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7.(3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于()A.10cm B.8cm C.6cm D.5cm8.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x>0的解集为()A.x<﹣1B.x>﹣1C.x>0D.﹣1<x<0二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3分)如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转次,每次旋转度形成的.10.(3分)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.(3分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是.12.(3分)已知关于x的不等式组无解,则a的取值范围是.13.(3分)如图,在△ABC中,AB=6,BC=9,∠B=60°,将△ABC沿射线BC的方向平移3个单位后,得到△A'B'C',连接A'C.则△A'B'C的周长为.14.(3分)不等式组有5个整数解,则a的取范围是15.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为.16.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是.三、作图题(本题满分0分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.已知线段a,求作△ABC,使AB=BC=AC=a.四、解答题(共7小题)18.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.19.如图所示∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE.(2)若PO⊥EF,求证:OP平分∠EOF.20.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E.DF⊥AC 于点F.求证:AD是BC的垂直平分线.21.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.(1)请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上;(2)在方格纸中将△A1B1C1经过怎样的变换后可以与△A2B2C2成中心对称图形,画出变换后的三角形并标出对称中心.22.某餐厅计划购买12张餐桌和一批椅子(不少于12把),现从甲、乙两商场了解到同一型号的餐桌报价都为每张200元,餐椅报价都为每把50元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售,那么,什么情况下到甲商场购买更优惠.23.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?24.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.2018-2019学年山东省青岛市市南区东片联考八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若m>n,则下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.﹣>﹣D.m2>n2【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加2,不等号的方向不变,故A成立,B、两边都乘2,不等号的方向不变,故B成立;C、两边都除以﹣2,不等号的方向改变,故C不成立;D、当m>n>1时,m2>n2成立,当0<m<1,n<﹣1时,m2<n2,故D不一定成立,故选:D.【点评】本题考查了不等式的性质,利用不等式的性质是解题关键.2.(3分)下列银行标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点B′的坐标为()A.(2,1)B.(1,2)C.(2,﹣1)D.(2,0)【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B′的坐标即可.【解答】解:△A′B′O如图所示,点B′(2,1).故选A.【点评】本题考查了坐标与图形变化,是基础题,熟练掌握网格结构,作出图形是解题的关键.4.(3分)不等式组的解集在数轴上可表示为()A.B.C.D.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式可化为:在数轴上可表示为:故选:C.【点评】本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.【点评】本题考查了列一元一次不等式解实际问题的运用,解答本题时找到建立不等式的不等关系是解答本题的关键.6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处【分析】根据角平分线上的点到角的两边的距离相等解答即可.【解答】解:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选:C.【点评】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.7.(3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于()A.10cm B.8cm C.6cm D.5cm【分析】根据线段垂直平分线的性质得到AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=4cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=4cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=8cm,故选:B.【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.8.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x>0的解集为()A.x<﹣1B.x>﹣1C.x>0D.﹣1<x<0【分析】利用函数图象,写出在x轴上方,直线l1在直线l2上方所对应的自变量的范围即可.【解答】解:结合图象,当﹣1<x<0时,k1x+b>k2x>0,所以k1x+b>k2x>0的解集为﹣1<x<0.故选:D.【点评】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y =kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3分)如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的.【分析】利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案,进而判断出基本图形和旋转次数与角度.【解答】解:如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.【点评】本题主要考查利用旋转设计图案,关键是掌握把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.10.(3分)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是(5,4).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:∵两眼间的距离为2,且平行于x轴,∴右图案中右眼的横坐标为(3+2).则右图案中右眼的坐标是(5,4).故答案为:(5,4).【点评】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.(3分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是x≤0.【分析】由一次函数y=kx+b的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b≥2的解集.【解答】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0【点评】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.12.(3分)已知关于x的不等式组无解,则a的取值范围是a≥10.【分析】根据不等式组无解,可得出a≥10.【解答】解:∵关于x的不等式组无解,∴根据大大小小找不到(无解)的法则,可得出a≥10.故答案为a≥10.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(3分)如图,在△ABC中,AB=6,BC=9,∠B=60°,将△ABC沿射线BC的方向平移3个单位后,得到△A'B'C',连接A'C.则△A'B'C的周长为18.【分析】根据平移性质,判定△A′B′C为等边三角形,然后求解.【解答】解:由题意,得BB′=3,∴B′C=BC﹣BB′=6.由平移性质,可知A′B′=AB=6,∠A′B′C=∠B=60°,∴A′B′=B′C且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=18.故答案为:18.【点评】本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.14.(3分)不等式组有5个整数解,则a的取范围是﹣4<a≤﹣3【分析】首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到a的范围.【解答】解:由不等式x﹣a≥0,得:x≥a,∵不等式组有5个整数解,∴这5个整数解为1、0、﹣1、﹣2、﹣3,则﹣4<a≤﹣3,故答案为:﹣4<a≤﹣3.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为 5.5.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故答案为:5.5.【点评】本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.16.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×4﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故答案为:(4n+1,).【点评】此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.三、作图题(本题满分0分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.已知线段a,求作△ABC,使AB=BC=AC=a.【分析】首先作射线AO,并在AO上取线段AB=a,再分别以A、B为圆心,a为半径画弧,两弧交于点C,然后连接AC、BC,即可得到△ABC.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了复杂作图,关键是掌握做一条线段等于已知线段的方法.四、解答题(共7小题)18.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.【分析】(1)不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.(2)先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:(1)去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:;(2)由①得x≥﹣1,由②得x<3,所以不等式组的解集是﹣1≤x<3,则整数解是﹣1,0,1,2.【点评】考查不等式(组)的解法;求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.如图所示∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE.(2)若PO⊥EF,求证:OP平分∠EOF.【分析】(1)由于△ABF与△DCE是直角三角形,根据直角三角形全等的判定和性质即可证明;(2)先根据三角形全等的性质得出∠AFB=∠DEC,再根据等腰三角形的性质得出结论.【解答】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL),∴AF=DE;(2)∵Rt△ABF≌Rt△DCE(已证),∴∠AFB=∠DEC,∴OE=OF,∵OP⊥EF,∴OP平分∠EOF.【点评】本题主要考查了直角三角形全等的判定和性质及等腰三角形的性质,解题关键是由BE=CF通过等量代换得到BF=CE.20.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E.DF⊥AC 于点F.求证:AD是BC的垂直平分线.【分析】证明Rt△AED≌Rt△AFD(HL),得出∠ADE=∠ADF,证明Rt△BED≌△Rt △CFD(HL),得出∠BDE=∠CDF,则可得出结论.【解答】证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△AED和△RtAFD中,,∴Rt△AED≌Rt△AFD(HL),∴∠ADE=∠ADF,∵点D是BC的中点,∴BD=CD,在Rt△BED和Rt△CFD中,,∴Rt△BED≌△Rt△CFD(HL),∴∠BDE=∠CDF,∴∠ADB=∠ADC,即AD⊥BC,∴AD是BC的垂直平分线.【点评】本题考查全等三角形的判定与性质、角平分线的性质、垂直平分线的判定,解答本题的关键是熟练掌握全等三角形的判定与性质.21.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.(1)请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上;(2)在方格纸中将△A1B1C1经过怎样的变换后可以与△A2B2C2成中心对称图形,画出变换后的三角形并标出对称中心.【分析】(1)将△A1B1C1先向上平移4个单位,再向右平移3个单位后绕点C1顺时针旋转90°即可得到△A2B2C2;(2)对称中心就是对称点连线的交点,据此即可作出.【解答】解:(1)将△A1B1C1先向上平移4个单位,再向右平移3个单位后绕点C1顺时针旋转90度即可得到△A2B2C2.(2)把△A1B1C1绕点C1逆时针旋转90度即可得到△A2B2C2成中心对称的位置,对称中心为P.【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.某餐厅计划购买12张餐桌和一批椅子(不少于12把),现从甲、乙两商场了解到同一型号的餐桌报价都为每张200元,餐椅报价都为每把50元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售,那么,什么情况下到甲商场购买更优惠.【分析】本题中去甲商场购买所花的费用=餐桌的单价×购买的餐桌的数量+餐椅的单价×实际购买的餐椅的数量(注意要减去赠送的椅子的数量).去乙商场购买所花的费用=(购买的餐桌花的钱+购买餐椅花的钱)×8.5折.如果设餐椅的数量为x,那么可用x 表示出到甲、乙两商场购买所需要费用.然后根据“甲商场购买更优惠”,让甲的费用小于乙的费用,得出不等式求出x的取值范围,然后得出符合条件的值.【解答】解:设学校计划购买x把餐椅,到甲、乙两商场购买所需要费用分别为y甲、y,乙y甲=200×12+50(x﹣12),即:y甲=1800+50x;y乙=(200×12+50x)×85%,即y乙=2040+x;当y甲<y乙时,1800+50x<2040+x,∴x<32,又根据题意可得:x≥12,∴12≤x<32,综上所述,当购买的餐椅大于等于12少于32把时,到甲商场购买更优惠.【点评】本题考查了一元一次方程的应用和一元一次不等式的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出不等式,求出所要求的值.23.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?【分析】(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.【解答】解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台.依题意,得7x+5×(6﹣x)≤34.解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台.(2)根据题意,100x+60(6﹣x)≥380,解之,可得:x≥,由上题解得:x≤2,即≤x≤2,∴x可取1,2两个值,即有以下两种购买方案:方案一购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;方案二购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择方案一.故应选择方案一.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案是解决本题的关键.24.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置∠APB=∠APC=120°.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.【分析】(1)问题的转化:根据旋转的性质证明△APP'是等边三角形,则PP'=P A,可得结论;(2)问题的解决:运用类比的思想,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,确定当:∠APB=∠APC=120°时,满足三点共线;(3)问题的延伸:如图3,作辅助线,构建直角△ABC',利用勾股定理求AC'的长,即是点P到这个三角形各顶点的距离之和的最小值.【解答】解:问题的转化:如图1,由旋转得:∠P AP'=60°,P A=P'A,∴△APP'是等边三角形,∴PP'=P A,∵PC=P'C,∴P A+PB+PC=BP+PP′+P′C′.问题的解决:满足:∠APB=∠APC=120°时,P A+PB+PC的值为最小;理由是:如图2,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,∵∠APB=120°,∠APP'=60°,∴∠APB+∠APP'=180°,∴B、P、P'在同一直线上,由旋转得:∠AP'C'=∠APC=120°,∵∠AP'P=60°,∴∠AP'C'+∠AP'P=180°,∴P、P'、C'在同一直线上,∴B、P、P'、C'在同一直线上,∴此时P A+PB+PC的值为最小,故答案为:∠APB=∠APC=120°;问题的延伸:如图3,Rt△ACB中,∵AB=2,∠ABC=30°,∴AC=1,BC=,把△BPC绕点B逆时针旋转60度得到△BP′C′,连接PP′,当A、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,由旋转得:BP=BP',∠PBP'=60°,PC=P'C',BC=BC',∴△BPP′是等边三角形,∴PP'=PB,∵∠ABC=∠APB+∠CBP=∠APB+∠C'BP'=30°,∴∠ABC'=90°,由勾股定理得:AC'===,∴P A+PB+PC=P A+PP'+P'C'=AC'=,则点P到这个三角形各顶点的距离之和的最小值为.【点评】本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键.。
2019-2020学年山东省菏泽市八年级第二学期期末综合测试数学试题含解析
2019-2020学年山东省菏泽市八年级第二学期期末综合测试数学试题一、选择题(每题只有一个答案正确)1.抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系的图象可能是( )A .B .C .D .2.如图,平行四边形ABCD 中,DB=DC ,∠C=70°,AE ⊥BD 于E ,则∠DAE 等于( ).A .20°B .25°C .30°D .35°3.如图,在ABC ∆中,//DE BC ,:1:2AD AB =,下列选项正确的是( )A .:1:2DE BC =B .:1:3AE AC = C .:1:3BD AB = D .:1:3AE EC =4.如图,已知AB ∥CD,OA:OD =1:4,点M 、N 分别是OC 、OD 的中点,则ΔABO 与四边形CDNM 的面积比为( ).A .1:4B .1:8C .1:12D .1:165.下列各式不是最简二次根式的是( )A .B .C .D .6.直线 y =kx+b 与 y =mx 在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式 kx+b >mx 的解集为( )A .x >﹣2B .x <﹣2C .x >﹣1D .x <﹣17.在△ABC 中,∠C =90°,AB =c ,∠A =30°,则AC =( )A .12cB .32 cC .2cD .3c8.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S 甲2=8.5,S 乙2=21.7,S 丙2=15,S 丁2=17.2,则四个班体考成绩最稳定的是( )A .甲班B .乙班C .丙班D .丁班9.点(1,2)-关于原点的对称点坐标是( )A .(1,2)B .(1,2)-C .(1,2)D .(2,1)-10.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )A .平均数B .中位数C .众数D .方差 二、填空题11.已知双曲线k 1y x+=经过点(-1,2),那么k 的值等于_______. 12.等腰梯形的上底是10cm ,下底是16cm ,高是4cm ,则等腰梯形的周长为______cm .13.如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,…,如此反复下去,那么第n 个正方形的对角线长为_____.14.某商品经过两次连续的降价,由原来的每件250元降为每件160元,则该商品平均每次降价的百分率为____________.15.关于x 的函数(1)(2)(3)1(4)3k k k y kx k x ---+=+-+(其中(1)(2)(3)10k k k ---+≠)是一次函数,那么k =_______。
人教版2020-2021学年八年级数学下学期期中检测卷 (含答案)
2020-2021学年八年级(下)期中数学试卷一、选择题(本题有10个小题,每小题3分,共30分)每小题只有一个正确答案.1.(3分)要使式子有意义,则x的取值范围是()A.x≥4B.x≠4C.x<4D.x>42.(3分)下面四个图标中,中心对称图形个数是()A.0B.1个C.2个D.3个3.(3分)一组数据按从小到大排列为2,4,6,x,14,15,若这组数据的中位数为9,则x是()A.7B.9C.12D.134.(3分)若n边形的内角和等于外角和的3倍,则边数n为()A.n=6B.n=7C.n=8D.n=95.(3分)烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是()A.90分B.87分C.89分D.86分6.(3分)如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF 7.(3分)若关于x的方程kx2﹣x+3=0有实数根,则k的取值范围是()A.k≤12B.k≤C.k≤12且k≠0D.k≤且k≠0 8.(3分)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为()A.2017B.2020C.2019D.20189.(3分)一次函数y=﹣kx+k与反比例函数y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.10.(3分)如图,在▱ABCD中,点E、F分别在AD和AB上,依次连接EB、EC、FC、FD,阴影部分面积分别为S1,S2,S3,S4,已知S1=3,S2=15,S3=4,则S4的值是()A.8B.14C.16D.22二、认真填一填(本题有6个小题,每小题4分,共24分)要认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)化简:=.12.(4分)若n边形的每一个外角都等于30°,则n=.13.(4分)一组数据x1,x2,x3,…,x n的平均数为5,则数据x1+5,x2+5,x3+5,…,x n+5的平均数是.14.(4分)在▱ABCD中,∠A的平分线分BC成4cm和3cm的两条线段,则▱ABCD的周长为.15.(4分)直线y=ax(a>0)与双曲线y=相交于A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为.16.(4分)如图,反比例函数y=(x<0),△OAB和△BCD均为等腰直角三角形,点D 在反比例函数图象上,若S△OAB﹣S△BCD=10,则k=.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自已能写出的答案写出一部分也可以.17.(6分)计算下列各式:(1)﹣3+×;(2)(﹣)2+.18.(8分)解方程:(1)x2﹣8x﹣9=0;(2)2x(x﹣3)+x=3.19.(8分)如图,▱ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.20.(10分)某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100;乙组:50,60,60,60,70,70,70,70,80,90.(1)以上成绩统计分析表如表:组别平均分中位数方差合格率优秀率甲组68a37630%乙组b c90%则表中a=,b=,c=.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.21.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.22.(12分)如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y1=的图象上.一次函数y2=x+b的图象过点A,且与反比例函数图象的另一交点为B.(1)求反比例函数和一次函数的解析式;(2)连结OA和OB,求△OAB的面积;(3)根据图象直接写出y1>y2时,x的取值范围.23.(12分)如图,平行四边形ABCD中,AB=4cm,AD=2cm,∠C=30°.点P以2cm/s 的速度从顶点A出发沿折线A﹣B﹣C向点C运动,同时点Q以1cm/s的速度从顶点A 出发沿折线A﹣D﹣C向点C运动,当其中一个动点到达末端停止运动时,另一点也停止运动.设运动时间为ts.(1)求平行四边形ABCD的面积;(2)求当t=0.5s时,△APQ的面积;(3)当△APQ的面积是平行四边形ABCD面积的时,求t的值.参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)每小题只有一个正确答案.1.(3分)要使式子有意义,则x的取值范围是()A.x≥4B.x≠4C.x<4D.x>4【分析】根据二次根式有意义的条件求解.【解答】解:∵式子有意义,∴x﹣4≥0,∴x≥4.故选:A.2.(3分)下面四个图标中,中心对称图形个数是()A.0B.1个C.2个D.3个【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【解答】解:根据中心对称图形的定义可知从左到右第1个图形和第三个图形是中心对称图形,第二和第四个图形不是中心对称图形.故选:C.3.(3分)一组数据按从小到大排列为2,4,6,x,14,15,若这组数据的中位数为9,则x是()A.7B.9C.12D.13【分析】根据中位数为9和数据的个数,可求出x的值.【解答】解:由题意得,(6+x)÷2=9,解得:x=12,故选:C.4.(3分)若n边形的内角和等于外角和的3倍,则边数n为()A.n=6B.n=7C.n=8D.n=9【分析】根据n边形的内角和等于外角和的3倍,可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.5.(3分)烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是()A.90分B.87分C.89分D.86分【分析】利用加权平均数的计算公式直接计算即可求得答案.【解答】解:这位厨师的最后得分为:=90(分).故选:A.6.(3分)如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF 【分析】根据平行四边形的判定和题中选项,逐个进行判断即可.【解答】解:A、∵四边形ABCD是平行四边形,∴OD=OB,又∵OE=OF∴四边形DEBF是平行四边形.能判定是平行四边形.B、DE=BF,OD=OB,缺少夹角相等.不能利用全等判断出OE=OF∴四边形DEBF不一定是平行四边形.C、在△ADE和△CBF中,∵∠ADE=∠CBF,AD=BC,∠DAE=∠BCF,∴△ADE≌△CBF,∴AE=CF,∴OE=OF,故C能判定是平行四边形;D、同理△ABE≌△CDF,∴AE=CF,∴OE=OF,故D能判定是平行四边形故选:B.7.(3分)若关于x的方程kx2﹣x+3=0有实数根,则k的取值范围是()A.k≤12B.k≤C.k≤12且k≠0D.k≤且k≠0【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【解答】解:当k=0时,﹣x+3=0,解得x=3,当k≠0时,方程kx2﹣x+3=0是一元二次方程,根据题意可得:△=1﹣4k×3≥0,解得k≤,k≠0,综上k≤,故选:B.8.(3分)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为()A.2017B.2020C.2019D.2018【分析】对于一元二次方程a(x﹣1)2+b(x﹣1)+21=0,设t=x﹣1得到at2+bt+2=0,利用at2+bt+2=0有一个根为t=2019得到x﹣1=2019,从而可判断一元二次方程a(x ﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.【解答】解:对于一元二次方程a(x﹣1)2+b(x﹣1)+2=0,设t=x﹣1,所以at2+bt+2=0,而关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,所以at2+bt+2=0有一个根为t=2019,则x﹣1=2019,解得x=2020,所以一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.故选:B.9.(3分)一次函数y=﹣kx+k与反比例函数y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:A、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k 的图象经过一、二、四象限,故本选项错误;B、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k的图象经过一、二、四象限,故本选项正确;C、∵由反比例函数的图象在二、四象限可知,k<0,∴一次函数y=﹣kx+k的图象经过一、三、四象限,故本选项错误;D、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k的图象经过一、二、四象限,故本选项错误.故选:B.10.(3分)如图,在▱ABCD中,点E、F分别在AD和AB上,依次连接EB、EC、FC、FD,阴影部分面积分别为S1,S2,S3,S4,已知S1=3,S2=15,S3=4,则S4的值是()A.8B.14C.16D.22【分析】阴影部分S2是三角形CDF与三角形CBE的公共部分,而S1,S4,S3这三块是平行四边形中没有被三角形CDF与三角形CBE盖住的部分,故△CDF面积+△CBE面积+(S1+S4+S3)﹣S2=平行四边形ABCD的面积,而△CDF与△CBE的面积都是平行四边形ABCD面积的一半,据此求得S4的值.【解答】解:设平行四边形的面积为S,则S△CBE=S△CDF=S,由图形可知,△CDF面积+△CBE面积+(S1+S4+S3)﹣S2=平行四边形ABCD的面积,∴S=S△CBE+S△CDF+3+S4+4﹣15,即S=S+S+3+S4+4﹣15,解得S4=8,故选:A.二、认真填一填(本题有6个小题,每小题4分,共24分)要认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)化简:=+.【分析】把分子分母都乘以+,然后利用平方差公式计算.【解答】解:原式==.故答案为+.12.(4分)若n边形的每一个外角都等于30°,则n=12.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数n.【解答】解:多边形的边数n:360°÷30°=12,则n=12.故答案为:12.13.(4分)一组数据x1,x2,x3,…,x n的平均数为5,则数据x1+5,x2+5,x3+5,…,x n+5的平均数是10.【分析】根据平均数的性质知,要求x1+5,x2+5,x3+5,…,x n+5的平均数,只要把数x1,x2,x3,…,x n的和表示出即可.【解答】解:∵x1,x2,x3,…,x n的平均数为5∴x1+x2+x3+…+x n=5n,∴x1+5,x2+5,x3+5,…,x n+5的平均数为:=(x1+5+x2+5+x3+5+…+x n+5)÷n=(5n+5n)÷n=10,故答案为:10.14.(4分)在▱ABCD中,∠A的平分线分BC成4cm和3cm的两条线段,则▱ABCD的周长为22cm或20cm.【分析】∠A的平分线分BC成4cm和3cm的两条线段,设∠A的平分线交BC于E点,有两种可能,BE=4或3,证明△ABE是等腰三角形,分别求周长.【解答】解:设∠A的平分线交BC于E点,∵AD∥BC,∴∠BEA=∠DAE,又∠BAE=∠DAE,∴∠BEA=∠BAE∴AB=BE.而BC=3+4=7.①当BE=4时,AB=BE=4,▱ABCD的周长=2×(AB+BC)=2×(4+7)=22;②当BE=3时,AB=BE=3,▱ABCD的周长=2×(AB+BC)=2×(3+7)=20.所以▱ABCD的周长为22cm或20cm.故答案为22cm或20cm.15.(4分)直线y=ax(a>0)与双曲线y=相交于A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为﹣6.【分析】先根据点A(x1,y1),B(x2,y2)是双曲线y=上的点可得出x1•y1=x2•y2=3,再根据直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点可得出x1=﹣x2,y1=﹣y2,再把此关系代入所求代数式进行计算即可.【解答】解:∵点A(x1,y1),B(x2,y2)是双曲线y=上的点,∴x1•y1=x2•y2=3,∵直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,∴x1=﹣x2,y1=﹣y2,∴原式=﹣x1y1﹣x2y2=﹣3﹣3=﹣6.故答案为:﹣6.16.(4分)如图,反比例函数y=(x<0),△OAB和△BCD均为等腰直角三角形,点D 在反比例函数图象上,若S△OAB﹣S△BCD=10,则k=﹣20.【分析】根据题意列式表示出D点的坐标,然后在根据k的几何意义即可求出答案.【解答】解:设AO=a,CD=b,∵△OAB和△BCD均为等腰直角三角形,∴AO=AB=a,BO=a,CD=BC=b,DB=b,∴D(﹣a﹣b,a﹣b),∵点D在反比例函数图象上,∴(﹣a﹣b)(a﹣b)=k,即b2﹣a2=k,又∵S△OAB﹣S△BCD=10,即,∴﹣k=20,∴k=﹣20.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自已能写出的答案写出一部分也可以.17.(6分)计算下列各式:(1)﹣3+×;(2)(﹣)2+.【分析】(1)先利用二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可;(2)利用完全平方公式计算.【解答】解:(1)原式=6﹣6+=;(2)原式=2﹣2+3+2=5.18.(8分)解方程:(1)x2﹣8x﹣9=0;(2)2x(x﹣3)+x=3.【分析】(1)方程利用因式分解法求出解即可;(2)方程整理后,利用因式分解法求出解即可.【解答】解:(1)分解因式得:(x﹣9)(x+1)=0,可得x﹣9=0或x+1=0,解得:x1=9,x2=﹣1;(2)移项得:2x(x﹣3)+(x﹣3)=0,因式分解得:(x﹣3)(2x+1)=0,可得x﹣3=0或2x+1=0,解得:x1=3,x2=﹣.19.(8分)如图,▱ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.【分析】(1)先证明∠B=∠EAD,然后利用SAS可进行全等的证明;(2)证明△ABE为等边三角形,可得∠BAE=60°,求出∠BAC的度数,即可得∠AED 的度数.【解答】(1)证明:∵在平行四边形ABCD中,AD∥BC,BC=AD,∴∠EAD=∠AEB,又∵AB=AE,∴∠B=∠AEB,∴∠B=∠EAD,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS).(2)解:∵AE平分∠DAB,∴∠BAE=∠DAE,∴∠BAE=∠AEB=∠B,∴△ABE为等边三角形,∴∠BAE=60°,∴∠BAC=∠BAE+∠EAC=60°+25°=85°,∵△ABC≌△EAD,∴∠AED=∠BAC=85°.20.(10分)某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100;乙组:50,60,60,60,70,70,70,70,80,90.(1)以上成绩统计分析表如表:组别平均分中位数方差合格率优秀率甲组68a37630%乙组b c90%则表中a=60,b=68,c=70.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.【分析】(1)利用中位数的定义确定a、c的值,根据平均数的定义计算出b的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【解答】解:(1)甲组学生成绩的中位数为=60,即a=60;乙组学生成绩的平均数为(50+3×60+4×70+80+90)=68;乙组学生成绩的中位数为=70,即b=68,c=70;(2)选择乙组.理由如下:乙组学生成绩的方差为[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116,因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.21.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.【分析】(1)根据方程的系数结合根的判别式,可得出△=1>0,进而可证出方程有两个不相等的实数根;(2)利用因式分解法可求出AB,AC的长,分BC为直角边及BC为斜边两种情况,利用勾股定理可得出关于k的一元一次方程或一元二次方程,解之即可得出k值,取其正值(利用三角形的三边关系判定其是否构成三角形)即可得出结论.【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4×(k2+k)=1>0,∴方程有两个不相等的实数根.(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,解得:x1=k,x2=k+1.当BC为直角边时,k2+52=(k+1)2,解得:k=12;当BC为斜边时,k2+(k+1)2=52,解得:k1=3,k2=﹣4(不合题意,舍去).答:k的值为12或3.22.(12分)如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y1=的图象上.一次函数y2=x+b的图象过点A,且与反比例函数图象的另一交点为B.(1)求反比例函数和一次函数的解析式;(2)连结OA和OB,求△OAB的面积;(3)根据图象直接写出y1>y2时,x的取值范围.【分析】(1)只需把点A的坐标代入一次函数和反比例函数的解析式,就可解决问题;(2)只需求出直线AB与y轴的交点,然后运用割补法就可解决问题;(3)观察函数图象即可求解.【解答】解:(1)∵点A(2,5)是直线y=x+b与反比例函数y=的图象的一个交点,∴5=2+b,k=2×5=10,∴b=3,即k和b的值分别为10、3,故反比例函数和一次函数的解析式分别为y1=和y2=x+3;(2)解方程组,得,∴点B(﹣5,﹣2).∵点C是直线y=x+3与y轴的交点,∴点C(0,3),∴S△OAB=S△OAC+S△OBC=×3×2+×3×5=,即△OAB的面积为;(3)观察函数图象可知,y1>y2时,x的取值范围为:x<﹣5或0<x<2.23.(12分)如图,平行四边形ABCD中,AB=4cm,AD=2cm,∠C=30°.点P以2cm/s 的速度从顶点A出发沿折线A﹣B﹣C向点C运动,同时点Q以1cm/s的速度从顶点A 出发沿折线A﹣D﹣C向点C运动,当其中一个动点到达末端停止运动时,另一点也停止运动.设运动时间为ts.(1)求平行四边形ABCD的面积;(2)求当t=0.5s时,△APQ的面积;(3)当△APQ的面积是平行四边形ABCD面积的时,求t的值.【分析】(1)过点B作BE⊥CD于点E,由30°角所对的直角边等于斜边的一半,得出平行四边形的高,再按底乘以高,即可得解;(2)过点Q作QM⊥AP,分别计算出t=0.5s时,AP,AQ和QM的长,则按三角形面积公式计算即可;(3)分点P在线段AB上,点Q在线段AD上和点P在线段BC上,点Q在线段CD上,两种情况计算即可.【解答】解:(1)平行四边形ABCD中,AB=4cm,AD=2cm∴CD=AB=4cm,BC=AD=2cm如图,过点B作BE⊥CD于点E,∵∠C=30°∴BE=BC=1cm∴平行四边形ABCD的面积为:CD×BE=4×1=4(cm2)答:平行四边形ABCD的面积为4cm2.(2)当t=0.5s时,AP=2×0.5=1cm,AQ=1×0.5=0.5cm如图,过点Q作QM⊥AP∵四边形ABCD为平行四边形,∴∠A=∠C∵∠C=30°∴∠A=30°∴QM=AQ=×0.5=(cm)∴△APQ的面积为:×AP×QM=×1×=(cm2)答:当t=0.5s时,△APQ的面积为(cm2).(3)∵由(1)知平行四边形ABCD的面积为4cm2.∴当△APQ的面积是平行四边形ABCD面积的时,△APQ的面积为:4×=(cm2)当点P在线段AB上运动t秒时,点Q在AD上运动t秒,AP=2tcm,AQ=tcm,高为=cm∴×2t×=∴t=﹣(舍)或t=∴t=时符合题意;当点P运动到线段BC上时,且运动时间为t秒时,点Q也运动到线段CD上,如图,过点P作MN垂直CD于点M,垂直于AB延长线于点N∵四边形ABCD为平行四边形,∠C=30°,∴AB∥CD∴∠PBN=∠C=30°PN=PB=(2t﹣4)=(t﹣2)(cm),PM=1﹣(t﹣2)=(3﹣t)(cm)S△APQ=4﹣×4×(t﹣2)﹣×[4﹣(t﹣2)]×[1﹣(t﹣2)]﹣(t﹣2)×1=∴4﹣2t+4﹣(6﹣t)(3﹣t)﹣+1=化简得:t2﹣4t+3=0∴(t﹣1)(t﹣3)=0∴t=1(不符合题意,舍)或t=3当t=3时,点P位于点C处,点Q位于线段CD上,符合题意.综上,t的值为或3.1、三人行,必有我师。
山东省济南市明湖中学2019-2020学年度八年级下学期期中检测数学试题
山东省济南市明湖中学2019-2020学年度八年级下学期期中检测数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 若a<b,则下列各式中一定成立的是()A.a+2>b+2 B.a-2>b-2 C.-2a>-2bD.>2. 如图所示图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3. 在中,分式的个数是()A.2 B.3 C.4 D.54. 不等式的解集在数轴上表示正确的是()A.B.C.D.5. 在直角坐标系中,点P(﹣2,3)向右平移3个单位长度后的坐标为()A.(﹣2,6)B.(1,3)C.(1,6)D.(﹣5,3)6. 下列从左到右的变形是因式分解的是()A.4a2﹣4a+1=4a(a﹣1)+1B.(x+2)(x﹣2)=x2﹣4C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2﹣4=(x+2)(x﹣2)7. 在下面的计算中,正确的是( )A.B.C.D.8. 如图,直线y=kx+b交坐标轴于A(﹣5,0),B(0,7)两点,则不等式kx+b>0的解集是()A.x<﹣5 B.x>﹣5 C.x>7 D.x<﹣79. 如图,在中,,在同一平面内,将绕点旋转到的位置,使得,则()A.B.C.D.10. 若关于x的方程产生增根,则m是( )A.1 B.2 C.3 D.411. 某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.12. 在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,则以下四个结论中:①△BDE是等边三角形;②AE∥BC;③△ADE的周长是9;④∠ADE=∠BDC.其中正确的序号是()A.②③④B.①②④C.①②③D.①③④二、填空题13. 分解因式________.14. 若分式的值为0,则x的值为_____________.15. 当a满足条件时,由ax>8可得x<.16. 若a2﹣5ab﹣b2=0,则的值为_____.17. 如果9x2+kx+25是一个完全平方式,那么k的值是______.18. 如图,直线经过点和点,直线经过点,则不等式组的解集是______.三、解答题19. 完成下列各题:(1)(2)20. 解不等式或不等式组,并将其解集在数轴上表示出来.(1)解不等式,并把它的解集在数轴上表示出来.(2)解不等式组.21. 因式分解:(1)(2).22. 先化简:,并从-1,0,1,2中选一个合适的数作为的值代入求值.23. 解分式方程:(1)(2).24. 如图,在平面直角坐标系中,点为坐标原点,的顶点均在格点上,点的坐标为.(1)把向上平移5个单位后得到对应的,画出,并写出的坐标;(2)以原点为对称中心,再画出与关于原点对称的,并写出点的坐标.25. 甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)该顾客在甲,乙哪个超市购买所支付的费用较少?26. 某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?27. (1)如图1,在Rt△ABC 中,,D、E是斜边BC上两动点,且∠DAE=45°,将△绕点逆时针旋转90后,得到△,连接. (1)试说明:△≌△;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.。
山东省2019-2020学年八年级语文下学期期中测试卷二(含答案)
山东省2019-2020学年下学期期中测试卷(二)八年级语文注意事项:1.本试卷共8页,共150分。
考试时间为120分钟。
考生答题全部答在答题卡上,答在本试卷上无效。
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上。
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案。
答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡的指定位置,在其他位置答题一律无效。
一、(20分)1.下列加点字注音全部正确的一项是()(4分)A.脑畔(..pàn)眼眶.(kuànɡ)海棠.(táng)戛.然而止(jiá)B.羁.绊(jī)登.时(dēnɡ)陨.石(yuán)天衣无缝.(fènɡ)C.凫.水(fú)怅惘.(wánɡ)山麓.(lù)豁.然开朗(huò)D.凋.零(diāo)家眷.(juàn)沼.泽(zhǎo)窈窕.淑女(zhào)2.下列词语中字书写完全正确的一项是()(4分)A.凫水棹船涌跃海枯石烂B.蹿掇皎洁疲乏草长莺飞C.争讼退色幽悄大彻大悟D.严峻震撼燎原目空一切3.下面句子中加点词语使用正确的一项是()(4分)A.在老师和同学们的帮助下,小玲对学习的重要性终于大彻大悟....。
B.随着互联网在中国的兴起与普及,网络诈骗手段花样百出,令人叹为观止....。
C.那时我不懂人情世故....,心还像素丝那样纯洁。
D.这场轰轰烈烈的活动进行到中途戛然而止....,实在让人费解。
4.下列句子没有语病的一项是()(4分)A.传统文化源远流长,其中不少优秀的文化著作,可作为青少年人格教育的读本。
B.“一带一路”国际合作高峰论坛,是一次共商合作大计、共建合作平台、共享合作成果。
2019-2020学年山东省潍坊市八年级第二学期期末达标检测数学试题含解析
4.下列各式中,运算正确的是()
A. B. C. D.
5.一个正多边形的每一个外角都等于.已知一次函数y=(m+1)x+n-2的图象经过一.三.四象限,则m,n的取值范围是()
A.m>-1,n>2B.m<-1,n>2C.m>-1,n<2D.m<-1,n<2
(3)在图2中补画y乙与t之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.
15.在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对______题
16.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.
17.小数0.00002l用科学记数法表示为_____.
三、解答题
18.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民户一表生活用水阶梯式计费价格表的部分信息:
自来水销售价格
污水处理价格
每户每月用水量
单价:元/吨
单价:元/吨
吨及以下
超过17吨但不超过30吨的部分
超过30吨的部分
2019-2020学年山东省潍坊市八年级第二学期期末达标检测数学试题
一、选择题(每题只有一个答案正确)
1.已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为( )
A.x=0B.x=1C.x=﹣2D.x=3
2.甲,乙,丙,丁四位跨栏运动员在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲,乙,丙,丁成绩的方差分别是0.11,0.03,0.05,0.02,则当天这四位运动员“110米跨栏”训练成绩最稳定的是()
山东省2019-2020学年八年级语文下学期期中测试卷一(含答案)
山东省2019-2020学年下学期期中测试卷八年级语文注意事项:1.本试卷共8页,共150分。
考试时间为120分钟。
考生答题全部答在答题卡上,答在本试卷上无效。
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上。
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案。
答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡的指定位置,在其他位置答题一律无效。
一、(20分)1.下列加点字注音全部正确的一项是()(4分)A.撺掇(cuān)农谚(yàn)亢奋(kānɡ)戛然而止(jiá)B.油馍(mó)连翘(qiào)雾霭(ǎi)佁然不动(yǐ)C.蓦然(mò)纬度(wěi)悄怆(qiǎo)铿锵有力(qiāng)D.幽悄(qiāo)闭塞(sè)争讼(sòng)蓦然回首(mò)2.下列词语中没有错别字的一项是()(4分)A.登时寂寥领域销声匿迹B.偏僻宂杂弥漫天衣无缝C.皎洁喧嚷损石大彻大悟D.维幕羁绊窈窕叹为观止3.下面句子中加点词语使用不恰当的一项是()(4分)A.就算海枯石烂....,我也会朝着自己梦想的方向努力。
B.目前,住房价格一涨再涨,令购房者叹为观止....。
C.你也许有困惑,而今天困惑中的探索正是明天豁然开朗....的准备。
D.因为这个项目技术含量高,攻关难度大,所以涉及的研究领域至今无人问津....。
4.下列句子没有语病的一项是()(4分)A.在“一带一路”的推进过程中,中国将同哈萨克斯坦一道圆梦、筑梦、追梦。
B.通过哈桑的誓言“为你,千千万万遍”,使我懂得了朋友间友谊的珍贵。
C.航天员举着国旗,通过摄像机镜头送出了节日的问候。
D.共享单车具有快捷、方便、灵活,已成为广大市民出行的重要交通工具之一。
【精选】2019-2020学年枣庄市薛城区八年级下期中考试数学试卷(有答案).doc
2019-2020学年山东省枣庄市薛城区八年级(下)期中数学试卷一、选择题(下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来,每小题3分,共36分)1.不等式3x+6≥9的解集在数轴上表示正确的是()A.B.C.D.2.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°3.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°4.如图,在△ABC中,∠C=90°,∠B=22.5°,AB的垂直平分线交AB于D,交BC于E,若CE=3,则BE的长是()A.3 B.6 C.2 D.35.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°6.不等式组的非负整数解的个数是()A.4 B.5 C.6 D.77.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a﹣3>b﹣3 B.﹣3c<﹣3d C.1﹣a>1﹣c D.b﹣d>08.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④9.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD10.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<511.如图,在△ABC中,AB=AC,DE=DF,DE⊥AB,DF⊥AC,垂足分别是E、F.现有下列结论:①AD 平分∠BAC;②AD⊥BC;③AD上任意一点到AB、AC的距离相等;④AD上任意一点到BC两端点的距离相等.其中正确结论的个数有()A.1 B.2 C.3 D.412.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定二、填空题(共6小题,每小题4分,满分24分)13.若等腰三角形的一个外角是110°,则其底角为.14.已知五个正数的和等于1.用反证法证明:这五个数中至少有一个大于或等于应先假设.15.关于x的一元一次不等式的解集为x≥4,则m的值为.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x≤ax+3的解集是.17.如图在Rt△ABC中,∠ACB=90°,∠ABC=58°,将Rt△ABC绕点C旋转到Rt△A'B'C,使点B 恰好落在A'B'上,A'C交AB于点D,则∠ADC的度数为°.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买个.三、解答题(共7道大题,满分60分)19.(8分)如图所示,已知△ABC的角平分线BM,CN相交于点P.(1)判断AP能否平分∠BAC?请说明理由.(2)由此题你得到的结论是.20.(8分)已知关于x的方程3x﹣(2a﹣3)=5x+3(a+2)的解是非正数,求字母a的取值范围.21.(8分)同学们知道:“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.”(1)请写出它的逆命题;该逆命题是一个命题(填“真”或“假”)(2)若你的判断是真命题请写出证明过程(要求画图,并写出已知,求证).若是假命题,请说明理由.22.(8分)解不等式组请结合题意,完成本题解答过程.(1)解不等式①,得,依据是.(2)解不等式②,得.(3)解不等式③,得.(4)把不等式①,②和③的解集在数轴上表示出来.(5)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.(6)根据不等式组的解集确立出该不等式组的最大整数解为.23.(8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2).请解答下列问题:(1)画出△ABC向左平移6个单位得到的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.24.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.25.(10分)感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.判断DB与DC的大小关系并证明.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,DB与DC的大小关系变吗?请说明理由.应用:如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=.(用含a的代数式表示)2019-2020学年山东省枣庄市薛城区八年级(下)期中数学试卷参考答案与试题解析一、选择题(下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来,每小题3分,共36分)1.不等式3x+6≥9的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:3x≥9﹣6,合并同类项,得:3x≥3,系数化为1,得:x≥1,故选:C.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°【分析】由AB=BD,∠B=40°得到∠ADB=70°,再根据三角形的外角的性质即可得到结论.【解答】解:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选:C.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键,注意三角形外角性质的应用.3.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°【分析】根据题意,由直线AB与直线A′B′的夹角是90°即可确定旋转角的大小.【解答】解:如图:延长AB、A′B′,直线AB与直线A′B′的夹角是90°,故旋转角α为90°.故选:C.【点评】考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.4.如图,在△ABC中,∠C=90°,∠B=22.5°,AB的垂直平分线交AB于D,交BC于E,若CE=3,则BE的长是()A.3 B.6 C.2 D.3【分析】利用线段的垂直平分线的性质计算.【解答】解:已知∠C=90°,∠B=22.5°,DE垂直平分AB.故∠B=∠EAB=22.5°,所以∠AEC=45°.又∵∠C=90°,∴△ACE为等腰三角形所以CE=AC=3,故可得AE=3.故选:D.【点评】本题考查的是线段的垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等),难度一般.5.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°【分析】观察图象可知,先把△ABC绕点C顺时针方向旋转90°,再向下平移5格即可得到.【解答】解:根据图象,△ABC绕点C顺时针方向旋转90°,再向下平移5格即可与△DEF重合.故选:B.【点评】本题考查了几何变换的类型,几何变换只改变图形的位置,不改变图形的形状与大小,本题用到了旋转变换与平移变换,对识图能力要求比较高.6.不等式组的非负整数解的个数是()A.4 B.5 C.6 D.7【分析】先求出不等式组的解集,再求出不等式组的非负整数解,即可得出答案.【解答】解:∵解不等式①得:x≥﹣,解不等式②得:x<5,∴不等式组的解集为﹣≤x<5,∴不等式组的非负整数解为0,1,2,3,4,共5个,故选:B.【点评】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能求出不等式组的解集是解此题的关键.7.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a﹣3>b﹣3 B.﹣3c<﹣3d C.1﹣a>1﹣c D.b﹣d>0【分析】依据实数a,b,c,d在数轴上的对应点的位置,即可得到a,b,c,d的大小关系,进而利用不等式的基本性质得出结论.【解答】解:∵a<b,∴a﹣3<b﹣3,故A选项错误;∵c<d,∴﹣3c>﹣3d,故B选项错误;∵a<c,∴1﹣a>1﹣c,故C选项正确;∵b<d,∴b﹣d<0,故D选项错误;故选:C.【点评】本题考查了实数与数轴,观察数轴,逐一分析四个选项的正误是解题的关键.8.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而得出答案.【解答】解:当正方形放在③的位置,即是中心对称图形.故选:C.【点评】此题主要考查了中心对称图形的定义,正确把握定义是解题关键.9.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S=BC•AH D.AB=AD△ABC【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S=•BC•AH.△ABCD、错误.根据条件AB不一定等于AD.故选:A.【点评】本题考查作图﹣基本作图、线段的垂直平分线的性质等知识,解题的关键是掌握证明线段垂直平分线的证明方法,属于基础题,中考常考题型.10.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<5【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了即可确定m的范围.【解答】解:解不等式2x﹣1>3(x﹣2),得:x<5,∵不等式组的解集为x<5,∴m≥5,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.如图,在△ABC中,AB=AC,DE=DF,DE⊥AB,DF⊥AC,垂足分别是E、F.现有下列结论:①AD 平分∠BAC;②AD⊥BC;③AD上任意一点到AB、AC的距离相等;④AD上任意一点到BC两端点的距离相等.其中正确结论的个数有()A.1 B.2 C.3 D.4【分析】根据角平分线的逆定理可知①正确,利用等腰三角形底边上的中线、高线与顶角的角平分线三线合一,可得②④正确;利用角平分线上的点到角两边的距离相等,可得③.【解答】解:①∵DE=DF,DE⊥AB,DF⊥AC,∴AD平分∠BAC,故①正确;②∵AB=AC,AD平分∠BAC,∴AD⊥BC.故②正确;③∵AD是△ABC的角平分线,角平分线上的点到角两边的距离相等,∴AD上任意一点到边AB、AC的距离相等.故③正确;④∵AB=AC,AD平分∠BAC,∴BD=CD,即AD是BC的垂直平分线,∴AD上任意一点到BC两端点的距离相等;故④正确.所以①、②、③、④均正确,故选:D.【点评】本题考查了等腰三角形的性质、角平分线的性质等知识.根据相关知识对各选项进行逐个验证是正确解答本题的关键.12.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定【分析】作出图形,根据等边三角形的性质求出高AH的长,再根据三角形的面积公式求出点P到三边的距离之和等于高线的长度,从而得解.【解答】解:如图,∵等边三角形的边长为3,∴高线AH=3×=,S△ABC=BC•AH=AB•PD+BC•PE+AC•PF,∴×3•AH=×3•PD+×3•PE+×3•PF,∴PD+PE+PF=AH=,即点P到三角形三边距离之和为.故选:B.【点评】本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.二、填空题(共6小题,每小题4分,满分24分)13.若等腰三角形的一个外角是110°,则其底角为70°或55°.【分析】分这个外角为底角的外角和顶角的外角,分别求解即可.【解答】解:当110°外角为底角的外角时,则其底角为:180°﹣110°=70°;当110°外角为顶角的外角时,则其顶角为:70°,则其底角为:=55°,故答案为:70°或55°.【点评】本题主要考查等腰三角形的性质和三角形内角和定理的应用,掌握等腰三角形的两底角相等和三角形三个内角的和为180°是解题的关键.14.已知五个正数的和等于1.用反证法证明:这五个数中至少有一个大于或等于应先假设这五个数都小于.【分析】熟记反证法的步骤,直接从结论的反面出发得出即可.【解答】解:知五个正数的和等于1.用反证法证明:这五个数中至少有一个大于或等于应先假设这五个数都小于,故答案为:这五个数都小于【点评】此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.15.关于x的一元一次不等式的解集为x≥4,则m的值为 2 .【分析】先用含有m的式子把原不等式的解集表示出来,然后和已知解集进行比对得出关于m的方程,解之可得m的值.【解答】解:解不等式得:x≥,∵不等式的解集为x≥4,∴=4,解得:m=2,故答案为:2.【点评】本题主要考查解一元一次不等式,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x≤ax+3的解集是x≥﹣1 .【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x≤ax+3的解集即可.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x<ax+3的解集为x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.17.如图在Rt△ABC中,∠ACB=90°,∠ABC=58°,将Rt△ABC绕点C旋转到Rt△A'B'C,使点B 恰好落在A'B'上,A'C交AB于点D,则∠ADC的度数为84 °.【分析】首先由旋转的性质可知:△BB′C是等腰三角形,由三角形内角和定理可求得∠BCB′的度数,进而可求得∠BCD的度数,即可根据三角形的外角性质求得∠ADC的度数.【解答】解:由旋转的性质知:∠ABC=∠B′=58°,BC=B′C;在等腰△BCB′中,由三角形内角和定理知:∠BCB′=180°﹣2∠B′=64°,∴∠BCD=90°﹣∠BCB′=26°;∴∠ADC=∠ABC+∠BCD=58°+26°=84°;故∠ADC的度数为84°.【点评】此题主要考查了旋转的性质,还涉及到三角形内角和定理及三角形的外角性质,难度不大.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买16 个.【分析】设购买篮球x个,则购买足球(50﹣x)个,根据总价=单价×购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.【解答】解:设购买篮球x个,则购买足球(50﹣x)个,根据题意得:80x+50(50﹣x)≤3000,解得:x≤.∵x为整数,∴x最大值为16.故答案为:16.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三、解答题(共7道大题,满分60分)19.(8分)如图所示,已知△ABC的角平分线BM,CN相交于点P.(1)判断AP能否平分∠BAC?请说明理由.(2)由此题你得到的结论是三角形的三条内角平分线相交于一点.【分析】如图,作辅助线;证明PK=PL即可解决问题.【解答】解:(1)AP能平分∠BAC;理由如下:如图,过点P作PQ⊥BC、PK⊥AB、PL⊥AC;∵△ABC的角平分线BM、CN相交于点P,∴PK=PQ,PL=PQ,∴PK=PL,∴AP平分∠BAC;(2)结论:三角形的三条内角平分线相交于一点.故答案为:三角形的三条内角平分线相交于一点.【点评】该题主要考查了三角形的内角平分线的性质及其应用问题;作辅助线是解决该题的关键.20.(8分)已知关于x的方程3x﹣(2a﹣3)=5x+3(a+2)的解是非正数,求字母a的取值范围.【分析】依次移项,合并同类项,系数化为1,得到x关于a的解,根据方程的解为非正数,得到关于a的一元一次不等式,解之即可.【解答】解:3x﹣(2a﹣3)=5x+3(a+2),移项得:3x﹣5x=3a+6+2a﹣3,合并同类项得:﹣2x=5a+3,系数化为1得:x=﹣,∵方程的解是非正数,∴﹣≤0,解得:a,即字母a的取值范围为:a.【点评】本题考查解一元一次不等式和一元一次方程的解,正确掌握解一元一次不等式和解一元一次方程的方法是解题的关键.21.(8分)同学们知道:“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.”(1)请写出它的逆命题在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半;该逆命题是一个真命题(填“真”或“假”)(2)若你的判断是真命题请写出证明过程(要求画图,并写出已知,求证).若是假命题,请说明理由.【分析】(1)写出逆命题,并判断是真命题;(2)首先写出已知、求证,画出图形,借助等边三角形的判定和性质证明或借助三角形的外接圆证明.【解答】解:(1)原命题的逆命题为:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半,该逆命题是一个真命题;故答案为:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半,真;(2)已知,在Rt△ABC中,∠A=30°,∠ACB=90°.求证:BC=AB.证明:证法一:如图1所示,延长BC到D,使CD=BC,连接AD,易证AD=AB,∠BAD=60°.∴△ABD为等边三角形,∴AB=BD,∴BC=CD=AB,即BC=AB.证法二:如图2所示,取AB的中点D,连接DC,有CD=AB=AD=DB,∴∠DCA=∠A=30°,∠BDC=∠DCA+∠A=60°.∴△DBC为等边三角形,∴BC=DB=AB,即BC=AB.证法三:如图3所示,在AB上取一点D,使BD=BC,∵∠B=60°,∴△BDC为等边三角形,∴∠DCB=60°,∠ACD=90°﹣∠DCB=90°﹣60°=30°=∠A.∴DC=DA,即有BC=BD=DA=AB,∴BC=AB.证法四:如图3所示,作△ABC的外接圆⊙D,∠C=90°,AB为⊙O的直径,连DC,有DB=DC,∠BDC=2∠A=2×30°=60°,∴△DBC为等边三角形,∴BC=DB=DA=AB,即BC=AB.【点评】本题考查的是直角三角形30度角的性质和等边三角形的判定、互逆命题的定义,熟练掌握直角三角形30度角的性质的证明是关键.22.(8分)解不等式组请结合题意,完成本题解答过程.(1)解不等式①,得x≥﹣3 ,依据是不等式两边都乘以(或除以)同一个负数,不等号的方向改变.(2)解不等式②,得x>﹣2 .(3)解不等式③,得x<2 .(4)把不等式①,②和③的解集在数轴上表示出来.(5)从图中可以找出三个不等式解集的公共部分,得不等式组的解集﹣2<x<2 .(6)根据不等式组的解集确立出该不等式组的最大整数解为x=1 .【分析】分别求出每一个不等式的解集,根据各不等式解集在数轴上的表示,确定不等式组的解集.【解答】解:(1)解不等式①,得x≥﹣3,依据是:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.(2)解不等式②,得x>﹣2.(3)解不等式③,得x<2.(4)把不等式①,②和③的解集在数轴上表示出来如下:(5)从图中可以找出三个不等式解集的公共部分,得不等式组的解集:﹣2<x<2.(6)根据不等式组的解集确立出该不等式组的最大整数解为:x=1;故答案为:(1)x≥﹣3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变;(2)x>﹣2;(3)x<2;(5)﹣2<x<2;(6)x=1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2).请解答下列问题:(1)画出△ABC向左平移6个单位得到的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.【分析】(1)分别画出A、B、C的对应点A1、B1、C1即可;(2)分别画出A、B、C的对应点A2、B2、C2即可;(3)分别画出A2、B2、C2的对应点A3、B3、C3即可.【解答】解:(1)△A1B1C1,如图所示;A1(﹣4,2);(2)△A2B2C2如图所示;并写出A2(4,0),(3)△A3B3C3如图所示,A3(﹣4,0)、【点评】本题考查作图﹣旋转变换、平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A 种魔方和买4个B 种魔方钱数相同解答)(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据“购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进A 种魔方m 个(0<m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据两种活动方案即可得出w 活动一、w 活动二关于m 的函数关系式,再分别令w 活动一<w 活动二、w 活动一=w 活动二和w 活动一>w 活动二,解出m 的取值范围,此题得解.(按购买3个A 种魔方和4个B 种魔方需要130元解答)(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据“购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进A 种魔方m 个(0<m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据两种活动方案即可得出w 活动一、w 活动二关于m 的函数关系式,再分别令w 活动一<w 活动二、w 活动一=w 活动二和w 活动一>w 活动二,解出m 的取值范围,此题得解.【解答】(按买3个A 种魔方和买4个B 种魔方钱数相同解答)解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:,解得:. 答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0<m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个, 根据题意得:w 活动一=20m ×0.8+15(100﹣m )×0.4=10m +600;w 活动二=20m +15(100﹣m ﹣m )=﹣10m +1500.当w 活动一<w 活动二时,有10m +600<﹣10m +1500,解得:m <45;21 当w 活动一=w 活动二时,有10m +600=﹣10m +1500,解得:m =45;当w 活动一>w 活动二时,有10m +600>﹣10m +1500,解得:45<m ≤50.综上所述:当m <45时,选择活动一购买魔方更实惠;当m =45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.(按购买3个A 种魔方和4个B 种魔方需要130元解答)解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:,解得:. 答:A 种魔方的单价为26元/个,B 种魔方的单价为13元/个.(2)设购进A 种魔方m 个(0<m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个, 根据题意得:w 活动一=26m ×0.8+13(100﹣m )×0.4=15.6m +520;w 活动二=26m +13(100﹣m ﹣m )=1300.当w 活动一<w 活动二时,有15.6m +520<1300,解得:m <50;当w 活动一=w 活动二时,有15.6m +520=1300,解得:m =50;当w 活动一>w 活动二时,有15.6m +520>1300,不等式无解.综上所述:当0<m <50时,选择活动一购买魔方更实惠;当m =50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x 、y 的二元一次方程组;(2)根据两种活动方案找出w 活动一、w 活动二关于m 的函数关系式.25.(10分)感知:如图①,AD 平分∠BAC ,∠B +∠C =180°,∠B =90°.判断DB 与DC 的大小关系并证明. 探究:如图②,AD 平分∠BAC ,∠ABD +∠ACD =180°,∠ABD <90°,DB 与DC 的大小关系变吗?请说明理由. 应用:如图③,四边形ABDC 中,∠B =45°,∠C =135°,DB =DC =a ,则AB ﹣AC =a .(用含a 的代数式表示)22【分析】感知:判断出△ADC ≌△ADB ,即可得出结论;探究:欲证明DB =DC ,只要证明△DFC ≌△DEB 即可.应用:先证明△DFC ≌△DEB ,再证明△ADF ≌△ADE ,结合BD=EB 即可解决问题.【解答】感知:解:BD =DC ,理由:∵AD 平分∠BAC ,∴∠DAC =∠DAB ,∵∠B +∠C =180°,∠B =90°,∴∠C =90°=∠B ,在△ADC 和△ADB中,,∴△ADC ≌△ADB (AAS ),∴BD =DC ;探究:证明:如图②中,DE ⊥AB 于E ,DF ⊥AC 于F ,∵DA 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵∠B +∠ACD =180°,∠ACD +∠FCD =180°,∴∠B =∠FCD ,在△DFC 和△DEB中,∴△DFC ≌△DEB ,∴DC =DB ;应用:解;如图③连接AD 、DE ⊥AB 于E ,DF ⊥AC 于F ,∵∠B +∠ACD =180°,∠ACD +∠FCD =180°,∴∠B =∠FCD ,在△DFC和△DEB中,∴△DFC≌△DEB,∴DF=DE,CF=BE,在Rt△ADF和Rt△ADE中,∴Rt△ADF≌Rt△ADE,∴AF=AE,∴AB﹣AC=(AE+BE)﹣(AF﹣CF)=2BE,在Rt△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,∴BE=BD=a,∴AB﹣AC=2BE =a.故答案为a.【点评】此题是四边形综合题,主要考查全等三角形的判定和性质、角平分线的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形.23。
济宁市嘉祥县2019-2020学年八年级下期中数学试卷(含答案解析).doc
济宁市嘉祥县2019-2020 学年八年级下期中数学试卷(含答案解析)一、选择题:(本大题共10 个小题,每小题 3 分,共 30 分 .在每小题给出的四个选项中,只有一项是符合题目要求的)1.( 3 分)若在实数范围内有意义,则x 的取值范围是()A.x>5 B.x≥5 C.x≤5 D.x≠52.( 3 分)下列二次根式中,最简二次根式是()A.B.C.D.3.( 3 分)以下列三个正数为三边长度,能构成直角三角形的是()A.1,2,3 B.2,2,5 C.2,3,D.4,5,64.( 3 分)下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形5.( 3 分)已知( 4 )?a=b,若 b 是整数,则 a 的值可能是()+A.B.4 + C.8﹣2D.2﹣6.( 3 分)如图,在 Rt△ABC 中,∠ B=90°,以 AC 为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24 B.100π﹣48 C.25π﹣24D.25π﹣487.( 3 分)如图,矩形 OABC的边 OA 长为 2,边 AB 长为 1, OA 在数轴上,以原点 O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的数是()A.2.5 B.2C.D.8.( 3 分)如,在矩形COED 中,点 D 的坐是( 1,3),CE 的是()A.3 B.C.D.49.( 3 分)如, ?ABCD的角 AC 与 BD 相交于点 O,AE⊥ BC,垂足 E,AB= ,AC=2,BD=4, AE 的()A.B.C.D.10.( 3 分)如,在 1 的菱形 ABCD中,∠ DAB=60°,接角 AC,以 AC 作第二个菱形 ACC ,使∠ D °,接,再以 AC 作第1D1 1AC=60 AC1 1三个菱形 AC1 2 2,使∠ D2 1 °;⋯,按此律所作的第六个菱形的C D AC =60()A.9 B.9C.27 D.27二、填空题(本大题共 5 个小题;每小题 3 分,共 15 分.把答案写在题中横线上)11.( 3 分)当 x=时,代数式有最小值.12.( 3 分)已知三角形三边长分别为,,,则此三角形的最大边上的高等于.13 .( 3 分)在△ ABC 中, AB=15, AC=13,高AD=12,则△ ABC 的周长为.14.( 3 分)如图,在矩形ABCD 中,对角线 AC、 BD 相交于点 O,点 E、F 分别是 AO、AD 的中点,若 AB=6cm, BC=8cm,则 EF=cm.15.( 3 分)如图,点E、F 是正方形 ABCD内两点,且 BE=AB,BF=DF,∠ EBF= ∠ CBF,则∠ BEF的度数.三、解答题(本大题共7 个小题,共 55 分 .解答应写出证明过程或演算步骤)16.( 8 分)计算:( 1)﹣()﹣1+(﹣1)﹣0﹣|﹣2|.(2)如图,在长方形 ABCD中无重叠放入面积分别为 16cm2和 12cm2的两张正方形纸片,求图中空白部分的面积.17.( 6 分)如图,在 ?ABCD中,以点 A 为圆心, AB 长为半径画弧交AD 于点F,再分别以点B、F 为圆心,大于BF 的相同长为半径画弧,两弧交于点P;连接 AP 并延长交 BC于点 E,连接 EF.( 1)根据以上尺规作图的过程,证明四边形ABEF是菱形;( 2)若菱形 ABEF的边长为 4,AE=4,求菱形ABEF的面积.18.( 6 分)如图,延长矩形ABCD的边 BC 至点 E,使 CE=BD,连结 AE,如果∠ ADB=30°,求∠ E 的度数.19.( 6 分)为了丰富少年儿童的业余生活,某社区要在如图中的AB 所在的直线上建一图书室,本社区有两所学校所在的位置在点 C 和点 D 处, CA⊥AB 于A,DB⊥AB 于 B.已知 AB=2.5km,CA=1.5km,DB=1.0km,试问:图书室 E 应该建在距点 A 多少 km 处,才能使它到两所学校的距离相等?20.( 8 分)阅读理解:对于任意正整数 a , b ,∵(﹣)2≥0,∴ a﹣2+b ≥ 0,∴ a+b ≥2,只有当a=b 时,等号成立;结论:在a+b≥2(a、b均为正实数)中,只有当 a=b 时, a+b 有最小值 2.根据上述内容,回答下列问题:( 1)若 a+b=9,≤;( 2)若 m> 0,当 m 为何值时, m+有最小值,最小值是多少?21.( 9 分)我国古籍《周髀算经》中早有记载“勾三股四弦五”,下面我们来探究两类特殊的勾股数.通过观察完成下面两个表格中的空格(以下a、 b、c 为Rt△ABC的三边,且 a< b<c):表一a b c3 4 55 12 137 24 259 41表二a b c6 8 108 15 1710 24 2612 41( 1)仔细观察,表一中 a 为大于 1 的奇数,此时 b、c 的数量关系是,a、b、c 之的数量关系是;( 2)仔察,表二中 a 大于 4 的偶数,此 b、c 的数量关系是,a、b、c 之的数量关系是;(3)我,表一中的三“3, 4, 5”与表二中的“6,8,10”成倍数关系,表一中的“5,12, 13”与表二中的“10, 24, 26”恰好也成倍数关系⋯⋯ 直接利用一律算:在Rt△ ABC中,当,,斜c的.22.( 12 分)如,正方形 ABCD 的角相交于点 O,∠ CAB 的平分分交 BD、BC 于E、F,作 BH⊥ AF 于点 H,分交 AC、 CD 于点 G、P, GE、GF.(1)求:△ OAE≌△ OBG.(2):四形 BFGE是否菱形?若是,明;若不是,明理由.-学年八年级(下)期中数学试卷参考答案与试题解析一、选择题:(本大题共10 个小题,每小题 3 分,共 30 分 .在每小题给出的四个选项中,只有一项是符合题目要求的)1.( 3 分)若在实数范围内有意义,则x 的取值范围是()A.x>5B.x≥5C.x≤5D.x≠5【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知: x﹣5≥0,∴x≥5故选: B.【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.( 3 分)下列二次根式中,最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义求解即可.【解答】解: A、被开方数含能开得尽方的因数或因式,故 A 不符合题意;B、被开方数含能开得尽方的因数或因式,故 B 不符合题意;C、被开方数含分母,故 C 不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故 D 符合题意;故选: D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.( 3 分)以下列三个正数为三边长度,能构成直角三角形的是()A.1,2,3 B.2,2,5 C.2,3,D.4,5,6【分析】根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2 时,则三角形为直角三角形.【解答】解: A、 12+22≠ 32,不符合勾股定理的逆定理,不能组成直角三角形,故选项错误;B、22+22≠ 52,不符合勾股定理的逆定理,不能组成直角三角形,故选项错误;C、 22+32=()2,符合勾股定理的逆定理,能组成直角三角形,故选项正确;D、 42+52≠ 62,不符合勾股定理的逆定理,不能组成直角三角形,故选项错误.故选: C.【点评】此题考查的知识点是勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC 的三边满足: a2+b2=c2时,则三角形ABC 是直角三角形.解答时,只需看两较小数的平方和是否等于最大数的平方.4.( 3 分)下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.【解答】解:根据平行四边形的判定定理,A、 B、 D 均符合是平行四边形的条件, C 则不能判定是平行四边形.故选: C.【点评】此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.5.( 3 分)已知( 4+)?a=b,若b是整数,则a的值可能是()A.B.4+C.8﹣2D.2﹣【分析】根据分母有理化的法则进行计算即可.【解答】解:因为( 4+)?a=b,b是整数,可得: a=8﹣2,故选: C.【点评】此题考查分母有理化问题,关键是根据分母有理化的法则进行解答.6.( 3 分)如图,在Rt△ABC 中,∠ B=90°,以 AC 为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24 B.100π﹣48 C.25π﹣24D.25π﹣48【分析】先根据勾股定理求出 AC 的长,进而可得出以 AC 为直径的圆的面积,再根据 S阴影 =S圆﹣S△ABC即可得出结论.【解答】解:∵ Rt△ABC中∠ B=90°, AB=8, BC=6,∴ AC===10,∴AC为直径的圆的半径为 5,∴S阴影 =S圆﹣S△ABC=25π﹣×6× 8=25π﹣24.故选: C.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.7.( 3 分)如图,矩形 OABC的边 OA 长为 2,边 AB 长为 1, OA 在数轴上,以原点 O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.2C.D.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【解答】解:由勾股定理可知,∵ OB=,∴这个点表示的实数是.故选: D.【点评】本题考查了勾股定理的运用和如何在数轴上表示一个无理数的方法,解决本题的关键是根据勾股定理求出 OB的长.8.( 3 分)如图,在矩形COED 中,点 D 的坐标是( 1,3),则CE 的长是()A.3 B.C.D.4【分析】根据勾股定理求得OD=,然后根据矩形的性质得出CE=OD=.【解答】解:∵四边形 COED是矩形,∴CE=OD,∵点 D 的坐标是( 1,3),∴ OD==,∴CE= ,故选: C.【点评】本题考查了矩形的性质以及勾股定理的应用,熟练掌握矩形的性质是解题的关键.9.( 3 分)如图, ?ABCD的对角线 AC 与 BD 相交于点 O,AE⊥ BC,垂足为 E,AB= ,AC=2,BD=4,则 AE 的长为()A.B.C.D.【分析】由勾股定理的逆定理可判定△BAO 是直角三角形,所以平行四边形ABCD的面积即可求出.【解答】解:∵ AC=2, BD=4,四边形 ABCD是平行四边形,∴AO= AC=1,BO= BD=2,∵AB= ,∴AB2+AO2=BO2,∴∠ BAC=90°,∵在 Rt△ BAC中, BC===S△BAC=×AB× AC=×BC×AE,∴× 2=AE,∴ AE=,故选: D.【点评】本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC 是直角三角形是解此的关.10.( 3 分)如,在 1 的菱形 ABCD中,∠ DAB=60°,接角 AC,以AC 作第二个菱形 ACC1D1,使∠ D1AC=60°,接 AC1,再以 AC1作第三个菱形 AC1C2D2,使∠ D2AC1=60°;⋯,按此律所作的第六个菱形的()A.9 B.9C.27 D.27【分析】先求出第一个菱形和第二个菱形的,得出律,根据律即可得出.【解答】解:接 BD 交 AC于 O,接 CD1交 AC1于 E,如所示:∵四形 ABCD是菱形,∠ DAB=60°,∴ACD⊥BD,∠ BAO= ∠ DAB=30°,OA= AC,∴OA=AB?cos30°=1× = ,∴AC=2OA= ,同理 AE=AC?cos30°= ? = , AC1 ()2,⋯,=3=第 n 个菱形的()n﹣1,∴第六个菱形的()5=9 ;故: B.【点评】本题考查了菱形的性质、含 30°角的直角三角形以及锐角三角函数的运用;根据第一个和第二个菱形的边长得出规律是解决问题的关键.二、填空题(本大题共 5 个小题;每小题 3 分,共 15 分.把答案写在题中横线上)11.( 3 分)当 x=时,代数式有最小值.【分析】根据二次根式的有意义的条件即可求出答案.【解答】解:∵ 4x﹣5≥0,∴ x≥当 x= 时,的最小值为 0,故答案为:【点评】本题考查二次根式,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.12.( 3 分)已知三角形三边长分别为,,,则此三角形的最大边上的高等于.【分析】根据勾股定理的逆定理,△ABC 是直角三角形,利用它的面积:斜边×高÷ 2=短边×短边÷ 2,就可以求出最长边的高.【解答】解:∵2+ 2 = 2,∴根据勾股定理的逆定理,△ABC是直角三角形,最长边是2,设斜边上的高为h,则S△ABC=××=×h,解得: h=,故答案为.【点评】本题考查了二次根式的应用,关键是根据勾股定理的逆定理和利用三角形的面积公式求高进行解答.13.( 3 分)在△ ABC 中, AB=15,AC=13,高 AD=12,则△ ABC 的周长为32 或42 .【分析】在 Rt△ ABD 中,利用勾股定理可求出BD 的长度,在Rt△ACD 中,利用勾股定理可求出CD 的长度,由 BC=BD+CD 或 BC=BD﹣ CD可求出 BC的长度,再将三角形三边长度相加即可得出△ABC的周长.【解答】解:在 Rt△ABD 中, BD==9;在 Rt△ACD中, CD==5,∴BC=BD+CD=14或 BC=BD﹣CD=4,∴C△ABC=AB+BC+AC=15+14+13=42 或 C△ABC=AB+BC+AC=15+4+13=32.故答案为: 32 或 42.【点评】本题考查了勾股定理以及三角形的周长,利用勾股定理结合图形求出BC边的长度是解题的关键.14.( 3 分)如图,在矩形ABCD 中,对角线 AC、 BD 相交于点 O,点 E、F 分别是 AO、AD 的中点,若 AB=6cm, BC=8cm,则 EF= 2.5 cm.【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°, BD=AC,BO=OD,求出 BD、OD,根据三角形中位线求出即可.【解答】解:∵四边形 ABCD是矩形,∴∠ ABC=90°,BD=AC, BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得: BD=AC==10(cm),∴DO=5cm,∵点 E、F 分别是 AO、AD 的中点,∴EF= OD=2.5cm,故答案为: 2.5.【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,关键是求出OD 长.15.(3 分)如图,点E、F 是正方形 ABCD内两点,且 BE=AB,BF=DF,∠EBF=CBF BEF 45°.∠ ,则∠的度数【分析】连接CF,根据正方形的性质可得出AB=BC=CD、∠ BCD=90,结合BF=DF、CF=CF即可利用全等三角形的判定定理SSS可证出△ BCF≌△ DCF,进而可得出∠ BCF=45°,由 BE=AB 利用替换法可得出 BE=BC,结合∠ EBF=∠ CBF、BF=BF∠ BCF=45°,此题得解.【解答】解:连接 CF,如图所示.∵四边形 ABCD为正方形,∴AB=BC=CD,∠ BCD=90.在△ BCF和△ DCF中,,∴△ BCF≌△ DCF(SSS),∴∠ BCF=∠DCF= ∠BCD=45°.∵BE=AB,∴ BE=BC.在△ BEF和△ BCF中,,∴△ BEF≌△ BCF(SAS),∴∠ BEF=∠ BCF=45°.故答案为: 45°.【点评】本题考查了正方形的性质以及全等三角形的判定与性质,利用全等三角形的判定定理证出△ BCF≌△ DCF、△ BEF≌△ BCF是解题的关键.三、解答题(本大题共7 个小题,共 55 分 .解答应写出证明过程或演算步骤)16.( 8 分)计算:( 1)﹣()﹣1+(﹣1)﹣0﹣ 2|.| ﹣( 2)如图,在长方形ABCD中无重叠放入面积分别为16cm2和 12cm2的两张正方形纸片,求图中空白部分的面积.【分析】(1)根据实数的混合计算解答即可;(2)根据正方形的面积求出两个正方形的边长,从而求出 AB、 BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【解答】解:( 1)原式 =(2)∵两张正方形纸片的面积分别为 16cm2和 12cm2,∴它们的边长分别为,,∴ AB=4cm,BC=,∴空白部分的面积 =.【点评】本题考查了二次根式的应用,算术平方根的定义,解题的关键在于根据正方形的面积求出两个正方形的边长.17.( 6 分)如图,在 ?ABCD中,以点 A 为圆心, AB 长为半径画弧交AD 于点F,再分别以点B、F 为圆心,大于BF 的相同长为半径画弧,两弧交于点P;连接 AP 并延长交 BC于点 E,连接 EF.( 1)根据以上尺规作图的过程,证明四边形ABEF是菱形;( 2)若菱形 ABEF的边长为 4,AE=4,求菱形ABEF的面积.【分析】(1)先证明△ AEB≌△ AEF,推出∠ EAB=∠ EAF,由 AD∥BC,推出∠ EAF=∠AEB=∠EAB,得到 BE=AB=AF,由此即可证明;( 2)连结 BF,交 AE 于 G.根据菱形的性质得出AB=4, AG= AE=2,再根据17 / 24勾股定理求出 FG,可得 BF 的长,根据根据菱形面积公式计算即可;【解答】解:( 1)在△ AEB和△ AEF中,,∴△ AEB≌△ AEF,∴∠ EAB=∠EAF,∵AD∥BC,∴∠ EAF=∠AEB=∠EAB,∴BE=AB=AF.∵ AF∥BE,∴四边形 ABEF是平行四边形,∵ AB=BE,∴四边形 ABEF是菱形;(2)如图,连结 BF,交 AE于 G.∵菱形 ABEF的边长为 4,AE=4 ,∴ AB=BE=EF=AF=4,AG= AE=2 , AE⊥BF,∴∠ AGF=90°,GF==2,∴BF=2GF=4,∴菱形 ABEF的面积 = ?AE?BF= ××4=8.【点评】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是全等三角形的证明,解直角三角形,属于中考常考题型.18.( 6 分)如图,延长矩形ABCD的边 BC 至点 E,使 CE=BD,连结 AE,如果∠ ADB=30°,求∠ E 的度数.【分析】连接 AC,根据题意可得 AC=BD=CE,则∠ CAE=∠E,由 AD∥BC 可得∠ E=∠DAE则∠ DAC=2∠E,且∠ DAC=∠ ADB,即可求解【解答】解:连接 AC,∵四边形 ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠ E=∠DAE,又∵ BD=CE,∴CE=CA,∴∠ E=∠CAE,∵∠ CAD=∠CAE+∠ DAE=2∠E=30°,∴∠ E=15°.【点评】本题考查了矩形的性质,等腰三角形的性质,关键是灵活运用矩形的性质解决问题.19.( 6 分)为了丰富少年儿童的业余生活,某社区要在如图中的AB 所在的直线上建一图书室,本社区有两所学校所在的位置在点 C 和点 D 处, CA⊥AB 于A,DB⊥AB 于 B.已知 AB=2.5km,CA=1.5km,DB=1.0km,试问:图书室 E 应该建在距点 A 多少 km 处,才能使它到两所学校的距离相等?【分析】根据题意表示出 AE, EB的长,进而利用勾股定理求出即可.【解答】解:由题意可得:设AE=xkm,则 EB=(2.5﹣x)km,22222 2∵ AC +AE =EC, BE +DB =ED ,EC=DE,∴AC2+AE2=BE2+DB2,∴1.52 +x2=(2.5﹣x)2+12,解得: x=1.答:图书室 E 应该建在距点 A1km 处,才能使它到两所学校的距离相等.【点评】此题主要考查了勾股定理的应用,得出AC2+AE2=BE2+DB2是解题关键.20.( 8 分)阅读理解:对于任意正整数 a , b ,∵(﹣)2≥0,∴ a﹣2+b ≥ 0,∴ a+b ≥2,只有当a=b 时,等号成立;结论:在a+b≥2(a、b均为正实数)中,只有当 a=b 时, a+b 有最小值 2.根据上述内容,回答下列问题:( 1)若 a+b=9,≤;( 2)若 m> 0,当 m 为何值时, m+有最小值,最小值是多少?【分析】(1)根据 a+b≥2(a、b均为正实数),进而得出即可;( 2)根据 a+b≥ 2(a、b均为正实数),进而得出即可.【解答】解:( 1)∵ a+b≥2(a、b均为正实数),∴ a+b=9,则 a+b≥2,即≤;故答案为:;( 2)由( 1)得: m+≥2,即 m+≥2,当m=时,m=1(负数舍去),故 m+有最小值,最小值是2.【点评】此题主要考查了二次根式的应用,根据题意结合a+b≥2(a、b均为正实数)求出是解题关键.21.( 9 分)我国古籍《周髀算经》中早有记载“勾三股四弦五”,下面我们来探究两类特殊的勾股数.通过观察完成下面两个表格中的空格(以下a、 b、c 为Rt△ABC的三边,且 a< b<c):表一a b c3 4 55 12 137 24 259 41表二a b c6 8 108 15 1710 24 2612 41(1 )仔细观察,表一中 a 为大于 1 的奇数,此时 b 、 c 的数量关系是b 1=c,a、b、c 之间的数量关系是a2=b c ;+ +(2 )仔细观察,表二中 a 为大于 4 的偶数,此时 b 、 c 的数量关系是b 2=c,a、b、c 之间的数量关系是a2=2( b c);+ +( 3)我们还发现,表一中的三边长“3,4,5”与表二中的“6,8,10”成倍数关系,表一中的“5, 12, 13”与表二中的“10, 24, 26”恰好也成倍数关系⋯⋯直接利用一律算:在Rt△ ABC中,当,,斜c的.【分析】(1)根据表中的数得出律即可;(2)根据表中的数得出律即可;(3)根据 32 +42=52得出答案即可.【解答】解:( 1)当 a 大于 1 的奇数, b、c 的数量关系 b+1=c,a、b、c 之的数量关系是 a2=b+c,故答案: b+1=c,a2=b+c;( 2)当 a 大于 4 的偶数,此 b、c 的数量关系是 b+2=c, a、b、c 之的数量关系是a2=2( b+c),故答案: b+2=c,a2=2(b+c);(3)∵ 32+42=52,∴,∴c=1.【点】本考了勾股数的用,能根据表中的数据得出律是解此的关.22.( 12 分)如,正方形 ABCD 的角相交于点 O,∠ CAB 的平分分交 BD、BC 于E、F,作 BH⊥ AF 于点 H,分交 AC、 CD 于点 G、P, GE、GF.(1)求:△ OAE≌△ OBG.(2):四形 BFGE是否菱形?若是,明;若不是,明理由.【分析】(1)由正方形的性质得出OA=OB,∠ AOE=∠ BOG=90°,再由角的互余关系证出∠ OAE=∠OBG,由 ASA即可证明△ OAE≌△ OBG;( 2)先证明△AHG≌△ AHB,得出GH=BH,由线段垂直平分线的性质得出EG=EB,FG=FB;再证出∠ BEF=∠BFE,得出 EB=FB,因此 EG=EB=FB=FG,即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠ AOE=∠BOG=90°.∵BH⊥AF,∴∠ AHG=∠AHB=90°,∴∠ GAH+∠AGH=90°=∠OBG+∠AGH,∴∠ GAH=∠OBG,即∠ OAE=∠OBG.∴在△ OAE与△ OBG中,,∴△ OAE≌△ OBG( ASA);( 2)解:四边形 BFGE为菱形;理由如下:在△ AHG与△ AHB 中,,∴△ AHG≌△ AHB( ASA),∴GH=BH,∴AF是线段 BG的垂直平分线,∴EG=EB,FG=FB.∵∠ BEF=∠ BAE+∠ABE=67.5°,∠ BFE=90°﹣∠ BAF=67.5°,∴∠ BEF=∠ BFE,∴EB=FB,∴EG=EB=FB=FG,∴四边形 BFGE是菱形;【点评】本题考查了正方形的性质、全等三角形的判定与性质、线段垂直平分线的性质、菱形的判定;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键.。
2019-2020学年山东省潍坊市高一下学期期中考试数学试题Word版含答案
2019-2020学年山东省潍坊市高一下学期期中考试数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.试卷共4页,满分150分,考试时间120分钟. 注意事项:1.答题前,考生在答题卡上务必将自己的姓名、准考证号涂写清楚.2.第Ⅰ卷,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,将正确选项的代码填入答题卡上.) 1. 化简sin600°的值是A.12B.12-3 D. 32. 角α的终边过点P (-1,2),则sin α=A.55 B.255 C .525 3. α是第二象限角,则2α是 A.第一象限角 B.第二象限角C.第一象限角或第三象限角D.第一象限角或第二象限角 4.已知扇形的弧长是4cm ,面积是22cm ,则扇形的圆心角的弧度数是A.1B.2C.4D.1或45.甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字.若甲、乙两人的平均成绩分别是x 甲、x 乙,则下列说法正确的是A . x x <甲乙,甲比乙成绩稳定B . x x <甲乙,乙比甲成绩稳定C . x x >甲乙,甲比乙成绩稳定D . x x >甲乙,乙比甲成绩稳定 6.如图,给出的是计算11111246822+++++L 的一个程序 框图,其中判断框内应填入的条件是A. 11i <B. 11i >C. 22i <D. 22i >7. 已知圆221:23460C x y x y +--+=和圆222:60C x y y +-=,则两圆的位置关系为A. 相离B. 外切C. 相交D. 内切8. 某数据由大到小为10, 5, x ,2, 2, 1,其中x 不是5,该组数据的众数是中位数的23,该组数据的标准差为A. 3B.4C. 5D. 69.若某公司从5位大学毕业生甲、乙、丙、丁、戌中录用3人,这5人被录用的机会均等,则甲、乙同时被录用的概率为 A .23 B .25 C .35 D .31010.若a 是从区间0,3[]中任取的一个实数,则12a <<的概率是A .23 B .56 C .13 D .1611.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算机给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该射击运动员射击4次至少击中3次的概率为A .0.852 B. 0.8192 C. 0.8 D. 0.7512.已知圆C :22240x y x y +-+=关于直线3110x ay --=对称,则圆C 中以44a a(,-)为中点的弦长为( )A .4B .3C .2D .1第Ⅱ卷 (非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上.)13. 某单位有500位职工,其中35岁以下的有125人,35~49岁的有280人,50岁以上的有95人,为了了解职工的健康状态,采用分层抽样的方法抽取一个容量为100的样本,需抽取50岁以上职工人数为 . 14.若32)sin(-=-απ, 且)0,2(πα-∈, 则αtan 的值是___________.15. 在[]4,3-上随机取一个实数m ,能使函数在R 上有零点的概率为 .16.已知直线l : (0)y kx k =>,圆221:(1)1C x y -+=与222:(3)1C x y -+=,若直线l 被圆C 1,C 2所截得两弦的长度之比是3,则实数k = .三、解答题:本大题共6小题,共70分. 17题10分,其余均为12分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)(Ⅰ)求值:()tan150cos 210sin 60sin(30)cos120︒-︒-︒o o; (Ⅱ)化简:sin()cos()tan(2)cos(2)sin()tan()απαπαπαπαα-+++--.18. (本小题满分12分)某公司为了解下属某部门对企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,得到的频率分布表如下:(Ⅰ)求出频率分布表中m 、n 位置的相应数据,并画出频率分布直方图; (Ⅱ)同一组中的数据用区间的中点值作代表,求这50名职工对该部门的评分的平均分. 19. (本小题满分12分) 设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛. (I )求应从这三个协会中分别抽取的运动员人数;(II )将抽取的6名运动员进行编号,编号分别为123456,,,,,A A A A A A ,从这6名运动员中随机抽取2名参加双打比赛.(i )用所给编号列出所有可能的结果;(ii )设A 为事件“编号为56,A A 的两名运动员至少有一人被抽到”,求事件A 发生的概率.20.(本小题满分12分)为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)和利润z 的影响,对近五年该农产品的年产量和价格统计如下表:(Ⅰ)求y 关于x 的线性回归方程;(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z 取到最大值?(结果保留两位小数)参考公式:1221ˆ=ni i i nii x ynx y bxnx ==-⋅-∑∑, ˆˆa y bx=-. 参考数据:5162.7i i i x y ==∑,52155i i x ==∑.21.(本小题满分12分)已知02x π-<<,1sin cos 5x x +=. (Ⅰ)求sin cos x x -的值; (Ⅱ)求24sin cos cos x x x -的值. 22.(本小题满分12分)已知圆C 过点M (0,-2),N (3,1),且圆心C 在直线x +2y +1=0上. (Ⅰ)求圆C 的方程;(Ⅱ)过点(6,3)作圆C 的切线,求切线方程;(Ⅲ)设直线:l y x m =+,且直线l 被圆C 所截得的弦为AB ,以AB 为直径的圆C 1过原点,求直线l 的方程.2019-2020学年山东省潍坊市下学期期中考试高一数学试题参考答案一、选择题:DBCCB BDADC DA二、填空题13. 19 14.255- 15.3716.13三、解答题17.解:(Ⅰ)原式=00000tan30cos30) sin30(cos60)---(-)(-sin60tan60 3.=-=-…………………………………………5分(Ⅱ)原式sin(cos)tan sin cos tan=1cos sin(tan)cos sin tanαααααααααααα--==---.………………………………10分18.解:(Ⅰ)频率分布表如下:50(515128)10m=-+++=,…………………………………………3分150.350n==,………………………………………6分频率分布直方图如图所示:…………………………………………9分(Ⅱ)x =550.1650.2750.3850.24950.16⨯+⨯+⨯+⨯+⨯76.6=. …………………………………………12分19.解:(I )应从甲、乙、丙这三个协会中分别抽取的运动员人数分别为3,1,2.……4分 (II )(i )从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为{}12,A A ,{}13,A A ,{}14,A A ,{}15,A A ,{}16,A A ,{}23,A A ,{}24,A A ,{}25,A A ,{}26,A A ,{}34,A A ,{}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A ,共15种. ………………………8分(ii )编号为56,A A 的两名运动员至少有一人被抽到的结果为{}15,A A ,{}16,A A , {}25,A A ,{}26,A A ,{}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A ,共9种,所以事件A 发生的概率()93.155P A == …………………………………………12分 20.解:(Ⅰ) 11+2+3+4+5=35x =(), 17+6.5+5.5 3.8 2.2)55y =++=(,………………2分5162.7i ii x y==∑,52155i i x ==∑.所以51522162.7535ˆ 1.235559i ii ii x y nx ybxnx ==-⋅-⨯⨯===--⨯-∑∑,ˆˆ=5( 1.23)38.69ay bx =---⨯=,………………4分 所以所求的回归直线方程为ˆ 1.238.69yx =-+.…………………………………………6分 (Ⅱ)年利润……………………9分所以 2.72x ≈时,年利润z 最大. …………………………………………12分 21.解:(Ⅰ)因为1sin cos 5x x +=,所以112sin cos 25x x +=, 242sin cos 25x x =-,…………………………………………3分 因为02x π-<<,所以sin 0, cos 0x x <>,所以sin cos 0x x -<,249(sin cos )12sin cos 25x x x x -=-=, 所以7sin cos 5x x -=-.…………………………………………6分 (Ⅱ)由(Ⅰ)知,1sin cos 57sin cos 5x x x x ⎧+=⎪⎪⎨⎪-=-⎪⎩,解得3sin 5x =-,4cos 5x =, 3tan 4x =-. …………………………………………9分24sin cos cos x x x -2224sin cos cos sin cos x x xx x-=+ 24tan 1tan 1x x -=+6425=-.…………………………………………12分22.解:(Ⅰ)设圆C 的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧-D2-E +1=0,4-2E +F =0,10+3D +E +F =0,解得D =-6,E =4,F =4,所以圆C 的方程为x 2+y 2-6x +4y +4=0. ……………………………………4分 (Ⅱ)圆C 的方程为22(3)(2)9x y -++=, 当斜率存在时,设切线方程为3(6)y k x -=-,则3=,解得815k =, 所以切线方程为83(6)15y x -=-,即81530x y --=. ………………7分 当斜率不存在时,6x =.所以所求的切线方程为81530x y --=或6x =. ……………………8分 (Ⅲ)直线l 的方程为y =x +m .设A (x 1,y 1),B (x 2,y 2),则联立⎩⎪⎨⎪⎧x 2+y 2-6x +4y +4=0,y =x +m ,消去y 得2x 2+2(m -1)x +m 2+4m +4=0,(*)………………………………………9分∴⎩⎪⎨⎪⎧x 1+x 2=1-m ,x 1·x 2=m 2+4m +42,∴y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2.∵AB 为直径,∴∠AOB =90°,∴|OA |2+|OB |2=|AB |2, ∴x 21+y 21+x 22+y 22=(x 1-x 2)2+(y 1-y 2)2,得x 1x 2+y 1y 2=0,∴2x 1x 2+m (x 1+x 2)+m 2=0,……………………………11分 即m 2+4m +4+m (1-m )+m 2=0,解得m =-1或m =-4. 容易验证m =-1或m =-4时方程(*)有实根.所以直线l 的方程是y =x -1或y =x -4.………………12分。
2019-2020学年青岛版数学八年级下学期期中试题
2015-2016 学年八年级数学下学期期中试题一、选择题(每题 3 分,15 个小题,共 45 分)1.下面性质中,平行四边形不一定具备的是( )A.对角相等 B.邻角互补 C.对角互补 D.对角线互相平分2.下列数中是无理数的是( )(A) 355 113(B) 16(C)0.37373737(D) 23.如图,矩形 ABCD 中,AC=10,BC=8,则图中五个小矩形的周长之和为( )A.14 B.16 C.20 D.28 4.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则 AE=( )A.1B.C.D.25.小明借到一本有 72 页的图书,要在 10 天之内读完,开始 2 天每天只读 5 页,那么以后几天里每天至少要读多少页?设以后几天里每天要读 x 页,所列不等式为( )A.10+8x≥72 B.2+10x≥72 C.10+8x≤72 D.2+10x≤726.如图,正方形组成的网格中标出 AB、CD、DE、AE 四条线段,其中能构成一个直角三角形 三边的线段是( )A.AB、CD、AE C.AE、ED、ABB.AE、ED、CD D.AB、CD、EDx7.若不等式组 x8 m4x 1,的解集为x3 ,则m的取值范围是()A. m≥3 B. m 3C. m 3D. m≤38.在下列各式中正确的是( )A. (2)2 =﹣2B. 9 =3C. 16 =89.不等式组 1 2x≤1的解集在数轴上表示为()2 x 3D. 22 =210.不等式 3x-6<3+x 的正整数解有( )个A.1 B.2 C.3 n D.411.如图,Rt△ABC 中,∠ACB=90°,AC=3,BC=4,D 是 AB 上一动点,过点 D 作 DE⊥AC 于点 E,DF⊥BC 于点 F,连接 EF,则线段 EF 的最小值是().A.2.5B.2.4C.2.2D.212.如图,在一张矩形纸片 ABCD 中,AB=4,BC=8,点 E、F 分别在 AD,BC 上,将纸片 ABCD沿直线 EF 折叠,点 C 落在 AD 上的一点 H 处,点 D 落在点 G 处,有以下四个结论: ①四边形 CFHE 是菱形;②EC 平分∠DCH;③线段 BF 的取值范围为 3≤BF≤4;④当点 H 与点 A 重合时,EF= 2 5以上结论中,你认为正确的有( )个。
2019-2020学年山东省济宁市曲阜市八年级下学期期末数学试卷 (解析版)
2019-2020学年山东济宁市曲阜市八年级第二学期期末数学试卷一、选择题(共10小题).1.要使二次根式有意义,x的值可以是()A.﹣2B.﹣3C.﹣4D.﹣52.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)3.在▱ABCD中、如果∠A=65°、那么∠C的度数是()A.115°B.65°C.25°D.35°4.某青年排球队l2名队员的年龄情况如下表所示:年龄1819202122人数14322则这12名队员的平均年龄是()A.18岁B.19岁C.20岁D.21岁5.以下列各组数为边长,能构成直角三角形的是()A.5,12,13B.1,2,C.,,2D.4,5,66.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±4 7.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,159.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 10.已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A.B.C.D.二、填空题(共6小题).11.正比例函数图象经过(3,﹣6),则这个正比例函数的解析式是.12.已知:x=,y=﹣2,代数式x2﹣2xy+y2的值为.13.已知,如图,一小船以20海里/时的速度从港口A出发向东北方向航行,另一小船以15海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距.14.将直线y=2x﹣5向上平移2个单位,所得直线解析式为.15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于.16.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为.三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:×+6﹣.18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.19.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为分,方差为分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.20.如图,在平行四边形ABCD中,E、F为对角线BD上的两点,且∠BAF=∠DCE.求证:BE=DF.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x 轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式kx+b﹣3x>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线交y=3x于点N,当MN=OD时,求M点的坐标.22.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是;(2)化简:=;(3)化简:……+.23.如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D 重合).设点P运动的时间为t秒,请用t表示PD的长;并求出t为何值时,四边形PBQD是菱形?参考答案一、选择题(共10小题).1.要使二次根式有意义,x的值可以是()A.﹣2B.﹣3C.﹣4D.﹣5解:由题意得,x+2≥0,解得,x≥﹣2,故选:A.2.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)解:令y=0,则2﹣x=0,解得x=2,所以一次函数y=2﹣x与x轴的交点坐标是(2,0),故选:C.3.在▱ABCD中、如果∠A=65°、那么∠C的度数是()A.115°B.65°C.25°D.35°解:∵四边形ABCD是平行四边形,∴∠C=∠A=65°,故选:B.4.某青年排球队l2名队员的年龄情况如下表所示:年龄1819202122人数14322则这12名队员的平均年龄是()A.18岁B.19岁C.20岁D.21岁解:(18+4×19+3×20+2×21+2×22)÷12=(18+76+60+42+44)÷12=240÷12=20(岁).故这l2名队员的平均年龄是20岁.故选:C.5.以下列各组数为边长,能构成直角三角形的是()A.5,12,13B.1,2,C.,,2D.4,5,6解:A、52+122=132,能构成直角三角形,故选项符合题意;B、12+22≠()2,不能构成直角三角形,故选项不合题意;C、()2+22≠()2,不能构成直角三角形,故选项不合题意;D、42+52≠62,不能构成直角三角形,故选项不合题意.故选:A.6.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±4解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.7.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形解:A、∵四边形ABCD是平行四边形,AB=BC,∴四边形ABCD是菱形,故正确;B、∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,故正确;C、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,故正确;D、∵四边形ABCD是平行四边形,AC=BD,四边形ABCD是矩形,故错误.故选:D.8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,15解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.9.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.故选:C.10.已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A.B.C.D.解:连接PO,∵矩形ABCD的两边AB=5,BC=12,∴S矩形ABCD=AB•BC=60,OA=OC,OB=OD,AC=BD,AC===13,∴S△AOD=S矩形ABCD=15,OA=OD=AC=,∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=OA(PE+PF)=××(PE+PF)=15,∴PE+PF=,故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.正比例函数图象经过(3,﹣6),则这个正比例函数的解析式是y=﹣2x.解:设这个正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(3,﹣6),∴﹣6=3k,解得k=﹣2,∴y=﹣2x.故答案是:y=﹣2x.12.已知:x=,y=﹣2,代数式x2﹣2xy+y2的值为4.解:∵x=,y=﹣2,∴x﹣y=2,∴原式=(x﹣y)2=4,故答案为:413.已知,如图,一小船以20海里/时的速度从港口A出发向东北方向航行,另一小船以15海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距25海里.解:由题意得:两船的行驶方向为直角,向东北方向航行的小船行驶路程为:20×1=20(海里),向东南方向航行的小船行驶路程为:15×1=15(海里),两船的距离:=25(海里),故答案为:25海里.14.将直线y=2x﹣5向上平移2个单位,所得直线解析式为y=2x﹣3.解:由“上加下减”的原则可知,将函数y=2x﹣5向上平移,2个单位所得函数的解析式为y=2x﹣5+2,即y=2x﹣3.故答案为:y=2x﹣3.15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于3.解:∵菱形ABCD的周长等于24,∴AB==6,∵四边形ABCD是菱形,∴AC⊥BD,∵H为AB边中点,∴在Rt△AOB中,OH为斜边上的中线,∴OH=AB=3.故答案为:3.16.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为1.解:∵四边形ABD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;故答案为:1.三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:×+6﹣.解:原式=+2﹣=2+2﹣=3.18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.解:(1)由勾股定理得:DC==,BC==2,AD==,AB==,所以四边形ABCD的周长为AB+BC+cd+ad=+2++=+3+;(2)连接BD,由勾股定理得:BD==5,∵DC=,BC=2,∴DC2+BC2=BD2,∴∠BCD=90°.19.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为130分,方差为10分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.解:(1)乙的平均分=(130+125+130+135+130)=130,方差=[(130﹣130)2+(125﹣130)2+(130﹣130)2+(135﹣130)2+(130﹣130)2]=10.故答案为130,10.(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在130分以上(含130分)的次数更多.20.如图,在平行四边形ABCD中,E、F为对角线BD上的两点,且∠BAF=∠DCE.求证:BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF=∠CDE,在△ABF和△CDE中,∴△ABF≌△CDE(ASA),∴ED=BF,∴BD﹣CF=BD﹣DE,∴BE=DF.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x 轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式kx+b﹣3x>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线交y=3x于点N,当MN=OD时,求M点的坐标.解:(1)当x=1时,y=3x=3,∴C点坐标为(1,3).直线y=kx+b经过(﹣2,6)和(1,3),则,解得:k=﹣1,b=4;(2)x<1;(3)当x=0时,y=﹣x+4=4,∴D点坐标为(0,4),∴OD=4.设点M的横坐标为m,则M(m,﹣m+4),N(m,3m),∴MN=3m﹣(﹣m+4)=4m﹣4∵MN=OD,∴4m﹣4=4,解得m=2.即M点坐标为(2,2).22.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是﹣1;(2)化简:=﹣;(3)化简:……+.解:(1)==,(+1)(﹣1)=()2﹣12=2﹣1=1,即+1的有理化因式是﹣1,故答案为:,﹣1;(2)===﹣,故答案为:﹣.(3)原式=﹣1+﹣+﹣+…+﹣=﹣1=10﹣1=9.23.如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D 重合).设点P运动的时间为t秒,请用t表示PD的长;并求出t为何值时,四边形PBQD是菱形?解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,∵O为BD的中点,∴DO=BO,在△PDO和△QBO中,,∴△PDO≌△QBO(ASA),∴OP=OQ;(2)由题意知:AD=8cm,AP=tcm,∴PD=8﹣t,∵PB=PD,∴PB2=PD2,即AB2+AP2=PD2,∴62+t2=(8﹣t)2,解得t=,∴当t=时,PB=PD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省2019-2020学年八年级下学期期中数学试题B卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 如图,在□ABCD中AE⊥BC,垂足为E,AF⊥CD,垂足为F,若AE:AF=2:3,□ABCD的周长为40,则AB的长为()
A.8B.9C.12D.15
2 . 下列图形中,不一定是轴对称图形的是()
A.等腰三角形B.直角三角形C.钝角D.线段
3 . 如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D.CD=3,则BC的长为()
A.6B.9C.6D.3
4 . 用配方法解方程x2+1=4x,下列变形正确的是()
A.(x+2)2=3B.(x﹣2)2=3C.(x+2)2=5D.(x﹣2)2=5
5 . 下列计算正确的是()
A.B.C.D.=2
6 . 如图,在中,,斜边的垂直平分线交于点,连接.若,,则的周长为()
A.B.C.D.
7 . 当有意义时,a的取值范围是()
A.a≥2B.a>2C.a≠2D.a≠-2
8 . 甲、乙两名同学在参加2019年体育中考前各做了5次立定跳远测试,两人的平均成绩相同,其中甲的成绩的方差是0.005,乙的成绩如下:2.20m,2.30m,2.30m,2.40m,2.30m.下列结论中正确的是()
A.甲的成绩更稳定B.乙的成绩更稳定
C.甲、乙的成绩一样稳定D.不能确定谁的成绩更稳定
9 . 下列方程中,是关于x的一元二次方程为()
D.(x﹣1)2+y2=3
A.x2﹣4x+5=0B.x2+x+1=y
C. +8x﹣5=0
10 . 某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()
A.4﹣6小时B.6﹣8小时C.8﹣10小时D.不能确定
二、填空题
11 . 如图,在等腰直角中,,点是的中点,且AC=3,将一块直角三角板的直角顶点放在点处,始终保持该直角三角板的两直角边分别与、相交,交点分别为、,则
___________.
12 . 某服装原价a元,如果连续两次以同样的百分率x降价,那么两次降价后的价格是_________元.(用含有a和x的代数式表示)
13 . 数据组:26,28,25,24,28,26,28的众数是.
14 . 计算的结果等于________.
15 . 已知,那么的值为________.
16 . 甲、乙、丙、丁参加体育训练,近期10次跳绳的平均成绩每分钟175个,其方差如下表所示:
选手甲乙丙丁
方差0.0230.0170.0210.019
则这10次跳绳中,这四个人中发挥最稳定的是_________.
三、解答题
17 . 解方程:x2+2=3x
18 . 已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:
OE=OF.
19 . 先化简再求值:(x+y)2﹣x(x+y),其中x=2,y=﹣1.
20 . 如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接C
A.
(1)求证:矩形DEFG是正方形.
(2)当点E从A点运动到C点时;
①求证:∠DCG的大小始终不变;
②若正方形ABCD的边长为2,则点G运动的路径长为.
21 . 某商店进了一批服装,进货单价为50元,如果按每件60元出售,可销售800件,如果每件提价1元出售,其销售量就减少20件.现在要获利12000元,且销售成本不超过24000元,问这种服装销售单价应定多少为宜?这时应进多少件服装?
22 . 如图,在12×8的方格纸中,ABCD的四个顶点都在格点上.
(1)在图中,画出线段AE,使AE平分∠BAD,其中E是格点;
(2)在图中,画出线段CF,使CF⊥AB,其中F是格点.
我市教育部门为了了解初三学生身体素质状况,抽取了某校学生进行体育测试.下列图表是该校初三学生的男生1000米跑、女生800米跑的考试成绩中分别抽取的10个数据.
考生
12345678910
编号
男生3′05〞3′11〞3′53〞3′10〞3′55〞3′30〞3′25〞3′19〞3′27〞3′55〞
成绩
23 . 这10名男生成绩极差为
24 . 按《镇江市中学生体育成绩考查》规定,女生800米跑成绩不超过3′35 〞就可以得满分.该校学生有490人,男生比女生少70人.请你根据上面抽样的结果,估算该校考生中有多少名女生该项考试得满分?。