高中数学知识结构框架

合集下载

高中数学(必修1)知识结构框图

高中数学(必修1)知识结构框图

高中数学(必修1)知识结构框图第一章集合与函数概念集合含义与表示基本关系基本运算列举法{a,b,c,…}描述法{x|p(x)}图象法包含关系相等关系交集:A∩B={x|x∈A且x∈B}并集:A∪B={x|x∈A或x∈B}补集:{|}UC A x x U x A=∈∉且韦恩图; 数轴子集; 真子集函数概念定义域对应关系值域表示解析法图象法列表法性质单调性定义图象特征最值奇偶性定义图象特征:对称性映射映射的概念上升或下降第二章基本初等函数(Ⅰ)基本初等函数(Ⅰ) 指数与指数函数指数根式n a分数指数幂(0,,*,1)mn mna a a m n N n=>∈>无理数指数幂运算性质指数函数定义(0,1)xy a a a=>≠图象: “一撇或一捺”,过点(0,1).见教材P92性质: 位于x轴上方,以x轴为渐近线对数与对数函数对数定义:x a N x a N=若则叫以为底的对数运算性质对数函数定义:log(0,1)ay x a a=>≠图象:位于y轴右侧,以y轴为渐近线.见教材P103性质:过点(1,0)log()log loglog log loglog loga a aa a ana aM N M NMM NNM n M⋅=+=-=()()r s r sr s rsr r ra a aa aab a b+===幂函数定义:y xα=具体的五个幂函数23121y xy xy xy xy x-=====特征:过点(1,1),当0α>时在(0,)+∞上递增;当0α<时,在(0,)+∞上递减。

换底公式:loglog(0,1,0,1,0)logcacbb a ac c ba=>≠>≠>图象见P109第三章函数的应用函数的应用函数与方程函数模型及其应用方程的根与函数零点的关用二分法求方程的近似解几种不同增长的函数模型用已知函数模型解决问题建立实际问题的函数模型函数零点的存在性直线上升指数爆炸对数增长指数函数,对数函数,幂函数增长速度的比较。

高中数学知识结构框图(人教版)

高中数学知识结构框图(人教版)

高中数学知识结构框图(必修1)第一章集合与函数概念tencarefullyandwe’llhaveadiscussioningroups.Pleasecomeontimeanddon’tbelate.结束语部分:Pleasecomeandjoininit.Everybodyiswelcometoattendit.Ihopeyou’llhaveanicetimehere.That’sall. Thankyou.议论文模板1.正反观点式议论文模板:题列出2~3点由))第3段段3.对Inconclusion,Ibelievethat...(照应第1段,构成"总—分—总"结构)4."Howto"类议论文模板:导入:第1段:提出一种现象或某种困难作为议论的话题正文:第2段:Manywayscanhelptosolvethisseriousproblem,butthefollowingmaybemosteffective.Firstofall...Anot herwaytosolvetheproblemis...Finally...(列出2~3个解决此类问题的办法)结论:第3段:Thesearenotthebestbuttheonlytwo/threemeasureswecantake.Butitshouldbenotedthatweshouldtakeact ionto...(强调解决此类问题的根本方法)图表作文写作模板Thechartgivesusanoverallpictureofthe图表主题.Thefirstthingwenoticeisthat图表最大特点.Thismeansthatas进一步说明.Wecanseefromthestatisticsgiventhat图表细节图表细节一.After动词-ing:细节一中的第一个变化,the动词-ed+幅度+时间(紧跟着的变化).Thefiguresalsotellusthat图表细节二.Inthecolumn,wecanseethataccountsfor(进一步描述).).1.2.3.描绘类?答题模式:不行。

高中数学知识体系框架

高中数学知识体系框架

高中数学知识体系框架第一章集合、映射、函数、导数及微积分集合学习要点:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义。

映射学习要点:((1)了解映射的概念,理解函数的概念;(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法;(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数;(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质;(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质;(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。

函数学习要点:数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数。

导数学习要点:(1)了解导数概念的某些实际背景;(2)理解导数的几何意义;(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数;(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值;(5)会利用导数求某些简单实际问题的最大值和最小值.微积分学习要点:(1)微积分基本定理揭示了导数与定积分之间的联系,同时它也提供了计算定积分的一种有效方法;(2)根据定积分的定义求定积分往往比较困难,而利用微积分基本定理求定积分比较方便。

知识体系框架结构图:第二章三角函数与平面向量三角函数学习要点:(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算;(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义;(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明;(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义;(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx表示;(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形;(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα•cosα=1”。

高中数学必修及选修教材学习知识体系结构与框架

高中数学必修及选修教材学习知识体系结构与框架

第一章集合集合与函数概函数及其定义念概念表示方法:列举法、描述法根本关系:交集、并集、补集、全集、属于根本运算交、并、补元素的概念、个数概念定义域、值域对应关系区间:闭开,半开半闭展示发放:图像法、列表函数的单调性增函数基本性质最大、最小值定义义奇偶性;判断方法减函数a r a s a r s指数与指数幂的运算( a r) s a rs( ab) r a r b r第二章整数指数幂基本初等函数指数函数互为反函数对数函数幂函数指数幂指数函数性质对数与对数运算对数函数及性质定义:有理数指数幂无理数指数幂定义定义域 R性质值域〔 0,+ ∞〕图像过定点〔 0,1〕单调性对数底数真数定义log a ( M N ) log a M log a N运算log a M log a M log a NNlog a M n nlog a M定义定义域图象值域过点〔 1, 0〕性质单调性过〔 1,1 〕性质奇偶性单调性第三章]函数与程函数的应用函数模型及应用定义关系方程的根与函数的零点零点定理二分法定义用二分法求方程的近视根求根步骤几类不同增长的函数模型函数模型的应用实例建立实际问题的函数模型必修二第一章空间几何体锥、柱、台、球的结构特征空间几何体的结构简单组合体的结构特征正视图三视图侧视图俯视图空间几何体的三视图与直观图斜二侧画法直观图平行投影与中心投影锥、柱、台的外表积与体积空间几何体的表面积与体积球的外表积与体积第二章平面:公理1、公理 2、公理3共面相交直线平行直线:点、直线、平面间的位置关系空间点、直线、平面间的位置关系直线、平面平行的判定及性质直线、平面垂直的判定及性质空间中直线与直线的位置公理 4关系异面直线平行平面与平面间的位置关系相交直线在平面空间中直线与内平面的位置关相交系平行直线与平面平行的判定定理平面与平面平行的判定定理直线与平面平行的性质定理平面与平面平行的性质定理直线与平面垂直的判定定理平面与平面垂直的判定定理直线与平面垂直的性质定理平面与平面垂直的性质定理第三章直线与方程倾斜角 0°≤α< 180°直线的倾斜角与斜率斜率 k tanl1 //l2k1k2,b1b2两条直线平行与垂直的判定l 1l2k 1k 21点斜式y y1k(x x1 )截距式 y kx b直线的方程两点式yy1x x1y2y1x2x1一般式 Ax By C0两条直线的交点坐标A1 x B1 y C10A2 x B2 y C20两点间的距离公式|AB|(x x)2(y y)22121直线的交点坐标与距离公式点到直线的距离Ax0 By0CdB 2A 2平行线间的距离第四章圆的标准方程x a 2y b 2r 2圆的一般方程圆的方程y2x 2Dx Ey F0d r l 与 C 相交直线与圆的位置关系d r l 与 C相切圆与方程直线、圆的位置关系直线与圆的方程的应用圆与圆的位置关系概念空间直角坐标系空间两点间的距离公式d r l与 C相离相交 R r d R r内切d Rr外切 d Rr内含 d Rr相离 d Rr辗转相除法与更相减损术必修三算法的概念第一章算法秦久韶算法算法与程序框图顺序结构程序框图条件结构循环结构输入语句、输出语赋值语句初根本算法语句步条件语句、循环语句算法案例第二章随机抽样统用样本估计总体计变量间的相关关系抽签法简单随机抽样随机法系统抽样求极差分层抽样决定组距组数将数据分组用样本频率分布估计总体分布列频率分布表画频率分布直方图用数本的数字特征估众数,中位数,平均数计总体的数字特征标准差变量间的相关关系正相关两个变量的线性相关负相关回归直线第三章概率随机事件的概率随机事件的概率频率意义概率性质必然事件不可能事件任何两个不同事件互斥根本领件特征古典概型任何事件都可表示为根本领件的和概率定义几何概型概率必修四第一章任意角和弧度制任意角弧度制正角负角零角任意角的三角函数三角函数三角函数的图像与性质三角函数:正弦函数,余弦函数,正切函数公式一:终边相同的角同一三角函数值相等周期性同角三角函数关系单调性正弦余弦函数的性质奇偶性正弦余弦函数的图像最大最小值正弦为奇余弦为偶正切函数的性质与图像周期奇偶性单调性三角函数的诱导公式函数y sin x的图像公式二值域公式三公式四公式五公式六振幅周期2初相相位x频率f12三角函数模型的简单应用第二章平面向量的实际背景及根本概念平面向量的线性运算平面向量平面向量的根本定理及坐标表示平面向量的数量积平面向量应用实例向量的物理背景与概念有向线段零向量,单位向量的几何表示向量平行向量相等向量与共线向向量加法三角形法那么量向量加法运算及几何意义向量加法平行四边形法那么向量减法运算及几何r ra a意义r r r向量数乘运算及几a a a何意义rrr ra b a b平面向量根本定理平面向量的正交分解极坐标表示平面向量坐标运算数量积rrrrr r r r o o 共线的坐标表示a b a b cos a0,b0,0180物理背景与定义投影rx , ya坐标表示,模,夹r角x2y2ar rx1x2y1 y2平面几何中的向量cosa br r2222方法 a b x1y1x2y2向量在物理中的应用举例cos cos cos sin sin两角差的余弦公式cos cos cos sin sin 第三章sin sin cos cos sin两角和与差的正弦sin sin cos cos sin 两角和与差的正余弦正切公式弦,余弦和正切公tantan tan 1 tan tan式tantan tan 1tan tan三sin22sin cos角二倍角的正弦余弦恒正切公式2222等cos2 cos sin2cos 1 1 2sin 变换tan 22 tan 1tan2简单的三角恒等变换必修五正弦定理a b c 第一章sin sin 2 Rsin C解三角形222正弦定理和余弦定ab c 2bccos理余弦定理b2a2c22accosc2a2b22ab cosC应用举例第二章数列项数列的概念与简单表示法有穷数列无穷数列定义等差数列数列等差数列的前n 项和等比数列等比数列前n 项和S n等差中项ba c2通项 a a n 1 dn1公差 da n a mn mn a1 a nS n2数列的应用S n na1n n1d2定义公比q n m a na m等比中项 a n2a p a q通项a n a1q n 1na1q1a11q n anqq 11qa11q必修五a b 0a b第三章不等式与不等关系a b0a ba b 0a b一元二次不等式及不其解法等式根本不等式二元一次不等式〔组〕与简单线性规划问题ax2bx c0ax2bx c0ax2bx c0a b 2 ab最大最小值问题一元一次不等式〔组〕与平面区域目标函数线性目标函数线性规划简单的线性规划问题可行解可行域最优解选修 1-1第一章命题及其关系常充分条件和必要条件用逻辑用语简单的逻辑连接词全称量词与存在量词真命题:判断为真的语句命题假命题:判断为假的语句四种命题及其关系原命题逆命题四种命题否命题逆否命题充分条件和必要条件充要条件且或非全称量词x M , p( x)存在量词x M , p( x)含有一个量词的命题的否认x M , p(x)nx i y i nx yb i1n2x i2nxi 1a y bx 选修 1-2回归分析的根本思想及初步应用样本中心第一章统计案例独立性检验的根本思想与初步应用第二章合情推理合情推理与演绎推理推理演绎推理与证明总偏差平方和回归方程y bx a分类变量随机变量 K 2越大,说明两个分类变量,关系越强,反之,越弱。

新高考高中数学框架结构

新高考高中数学框架结构

新高考高中数学框架结构数学是一门重要的学科,对于培养学生的逻辑思维能力、创造能力和解决问题的能力起着关键作用。

为了适应现代社会的需求和培养学生的综合素质,新高考对高中数学教学进行了调整。

新高考高中数学框架结构主要包括两个层面:知识结构和能力结构。

一、知识结构(一)必修部分1.数与式数与式是数学的基础,对于学生的数学素养起着重要作用。

新高考高中数学框架结构中,数与式包括整数、有理数、实数、数轴、绝对值等内容。

通过学习这些内容,学生可以掌握数的性质和运算规则,并能够进行简单的数的运算和推理。

2.函数函数是数学中的重要概念,也是学习高级数学和其他科学学科的基础。

新高考高中数学框架结构中,函数包括二次函数、指数函数、对数函数、三角函数等内容。

通过学习这些函数,学生可以掌握函数的性质和图像,并能够用函数解决实际问题。

3.导数与微分导数是微积分的基本概念,是数学中的重要工具。

新高考高中数学框架结构中,导数与微分包括导数的概念、导数的运算法则、函数的极值与最值等内容。

通过学习这些内容,学生可以掌握导数的基本原理和方法,并能够用导数解决实际问题。

4.积分积分是微积分的另一个重要概念,也是学习高级数学和物理学的基础。

新高考高中数学框架结构中,积分包括定积分、不定积分、定积分的应用等内容。

通过学习这些内容,学生可以掌握积分的基本原理和方法,并能够用积分解决实际问题。

5.几何与变换几何与变换是数学中的重要部分,也是学习高级数学和物理学的基础。

新高考高中数学框架结构中,几何与变换包括图形的性质、三角形的性质、平面向量等内容。

通过学习这些内容,学生可以掌握几何的基本原理和方法,并能够用几何解决实际问题。

6.概率与统计概率与统计是数学中的重要部分,也是学习高级数学和统计学的基础。

新高考高中数学框架结构中,概率与统计包括事件的概率、随机变量与分布、样本调查与统计推断等内容。

通过学习这些内容,学生可以掌握概率的基本原理和方法,并能够用统计解决实际问题。

高中数学知识架构(完整版)

高中数学知识架构(完整版)

高中数学知识架构(完整本)班级_____________姓名______________目录预备部分初中知识复习----------6第一部分集合及其运算----------7第二部分方程与不等式----------8(绝对值方程与不等式;一次,二次方程与不等式)第三部分函数------------------11(常数函数,一次函数,二次函数,指数函数,对数函数,三角函数,简谐振动)第四部分函数性质--------------18(单调性,奇偶性,反函数,周期性,图像的平移与伸缩,可导性,定积分)第五部分数列------------------23(等差数列,等比数列)第六部分命题与简易逻辑--------25(原命题,否命题,逆命题,逆否命题,或,且,非,全称量词,存在量词)第七部分几何和向量------------26(点,线,面,垂直,平行,二维向量,三维向量)第八部分直线和圆的方程--------32(点斜式,斜截式,两点式,截距式,一般式,点到线距离公式, 定比分点公式)第九部分圆锥曲线--------------34(椭圆,双曲线,抛物线,弦长公式)第十部分统计-----------------37(随机抽样,线性回归,独立性检验)第十一部分概率-----------------41(排列与组合,古典概型,几何概型,两点分布,超几何分布,二项分布,正态分布,期望,方差)第十二部分复数及其运算----------44(实部,虚部,虚数单位i,加法,减法,乘法,除法)第十三部分推理与证明-----------46数学(必修1)人教A版第一章集合与函数的概念1.1 集合1.2函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用(必修2)人教A版第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点,直线,平面之间的位置关系2.1空间点,直线,平面之间的位置关系2.2 直线,平面平行的判定及其性质2.3 直线,平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2直线,圆的位置关系4.3空间直角坐标系(必修3)人教A版第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系第三章概率 3.1 随机事件的概率 3.2 古典概型 3.3 几何概型(必修4)人教A 版第一章 三角函数1.1任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图像与性质1.5 函数()sin y A x ωφ=+的图像1.6 三角函数模型的简单应用 第二章 平面向量2.1 平面向量的实际背景及基本概念 2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示 2.4 平面向量的数量积 2.5 平面向量应用举例 第三章 三角恒等变形3.1 两角和与差的正弦、余弦和正切公式 3.2 简单的三角恒等变形(必修5)人教A 版第一章 解三角形1.1 正弦定理和余弦定理 1.2 应用举例 第二章 数列2.1 数列的概念与简单表示法 2.2 等差数列2.3 等差数列的前n 项和n S 2.4 等比数列2.5 等比数列的前n 项和n S第三章 不等式3.1不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性3.4 基本不等式:2ba ab +≤理(选修2-3)人教版第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项式及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用理(选修4-5)人教版第一章不等式和绝对值不等式1.1不等式1.2绝对值不等式第二章证明不等式的基本方法2.1比较法2.2综合法与分析法2.3反证法与放缩法第三章柯西不等式与排序不等式3.1二维形式的柯西不等式3.2一般形式的柯西不等式3.3排序不等式第四章数学归纳法证明不等式4.1数序归纳法4.2用数学归纳法证明不等式初中知识复习1.实数轴:2.完全平方公式:()2222a b a b ab +=++()2222a b a b ab-=+-3.平方差公式:4.运算:42,1222323,5052==⨯⨯==5.中点坐标公式:6.勾股数组: 3,4,5; 6,8,10; 5,12,13-∞ +∞1•()11,A x y ••()22,B x y 1212(,)22x x y y ++中点222a b c+=cba⇒,B ,,B ,B "⊆";"⊆A 拥有的元素都有时记作A A 拥有的元素不都有时记作A ,B ,B ⎧⎪⎨";⎪⎩A 拥有的元素不仅都有而且还多时记作" ".第一部分 集合及其运算(必修1)1.集合定义:若干个指定的对象集在一起.2.表示法:a.如:{0,1,-2}是列举法.b.如:{x|x>2}是描述法.c. 如: 是文氏图法d.特殊符号如:∅是空集;N 是自然数集; N *或N +是正整数集.(自然数集合中去掉零)Z 是整数集; Q 是有理数集. R 是实数集; C 是复数集.3.集合中元素具有的性质:①1{1,0,2,3}2{1,0,2,3}∉-⎫⎬∈-⎭体现确定性;②{1,0,1,2,5}--是错误书写体现互异性;③{025}{502}=,,,,体现无序性. 4.关系a.集合和元素的关系.(是否是属于关系)(以A,B 代表集合,以m 代表元素)m 和A 的关系:b.集合和集合的关系(是否是包含关系)A 和B 的关系:定理1:空集是任意一个集合的子集,是任意一个非空集合的真子集.定理2:当集合A 中的元素个数为n 个时,那么A 有..nn⎧⎪⎨⎪⎩子集个数为2个真子集个数为2-1个 m m ⎧∈⎨∉⎩当在A 中时,记作"m A",读作"m 属于A".当不在A 中时,记作"m A".读作"m 不属于A".5.运算第二部分 方程与不等式1. 方程定义:含有未知量的等式.(初中)2. ①绝对值方程(初中)“|x-a|”表示数轴上点x 到点a 的距离. 例1.求解 5x =分析:如图所示解:055,5x x x x =-=⇒=-=例2.求解 |2|3x -=分析:如图所示 解:231,5x x x -=⇒=-=②绝对值不等式(必修5) 形态1.图(1)形态2.图(2)文氏图数学表达式何种运算说明{}|x x A x B ∈∈且 A B取A 和B 的公有元素{}|x x A x B ∈∈或 AB取A 和B 的所有元素{}|x x I x A ∈∉且I C A相对于全集I 求A 的补集,(0)x a b b b x a b a b x a b-<>⇒-<-<⇒-<<+,(0)x a b b x a b x a b x a b x a b->>⇒-<-->⇒<->+ or or3.①一元一次方程(初中)形如:0,(0)ax b a +=≠叫一元一次方程. 例1.②一元一次不等式(必修5)定理:不等式的两侧同时加上或者减去一个数,不等式不改变符号.但若同时乘以或者除以一个负数要改变不等式符号. (如是正数不变号)4.①一元二次方程(初中)形如:20,(0)ax bx c a ++=≠叫一元二次方程.解法一.(公式法)(第一步:首先计算)判别式24b ac ∆=-(第二步:确定∆属于下面哪一类型): 解法二.(十字交叉法) 例.2230x x --= 分析:(错) (对)解:注:此法的关键是将系数a 与c 拆分成两个数的乘积并且拆分所得数交叉相乘的和必须等于系数b.并不是所有的一元二次方程都可拆分.2302332x x x -=⇒=⇒=b b 0,. 22b 0,.2<0,. x x a ax a ⎧--∆-+∆∆>==⎪⎪-⎪∆==⎨⎪⎪∆⎪⎩方程有两个不相等的实解,方程有两个相等的实解方程无实解223(1)(23)031,2x x x x x x --=+-=⇒=-=定理:(韦达定理)(又名根与系数关系)在一元二次方程20,(0)ax bx c a ++=≠有解12,x x 的情况下:②一元二次不等式(必修5)形态1.求解 260x x --> 解:令()(),23,.∴-∞-+∞不等式解集为形态2.求解 2230x x -++>解:31,.2⎛⎫∴- ⎪⎝⎭不等式解集为步骤总结:1.要解不等式先解等式.2.画草图看大小号.形态3.求解 304x x -≤+解:所以解集为}{|43x x -<≤5.基本不等式(必修5)1)来源①②1212;b cx x x x aa-+==,260(2)(3)02,3x x x x x x --=⇒+-=⇒=-=2230(1)(-23)031,2x x x x x x ++=⇒++=⇒=-=令-(3)(4)030404434340x x x x x x x x -+≤⎧-≤⇒⎨+≠+⎩-≤≤⎧⇒⇒-<≤⎨+≠⎩222222()02.a ab b a b a b ab -+=-≥⇔+≥2222()2()()02,(0,0)a ab b a a b b a b a b ab a b -+=-+=-≥⇔+≥>>2)基本不等式使用注意事项 口诀:1正2定3相等①1正,是指参加运算的量必须是正数.②2定,是指参加运算的量,要么和是定值,要么积是定值. ③3相等,是指参加运算的量相等时,均值不等式才能取等号.第三部分 函数1. 定义:在集合A 中的每一个元素x 经过对应法则f 在集合B 中都有唯一的元素y 与之对应,那么我们就称这个整体叫函数. (必修1) 记作::f A B→2. 函数的三要素(必修1)①定义域和值域定义域一般情况下会给出,当题目没有给出时,定义域默认使函数表达式有意义的自变量取值范围. 常见陷阱有以下几处①.分母不能为零. ②.偶次根号下的量要大于或等于零. ③.底数位置上的量要大于零且不等于1. ④.真数位置上的量要大于零.⑤.不能有双零结构,即“ ”.例. 求031()3log (1)2f x x x x x =++++++的定义域.解:由3020100x x x x +≥⎧⎪+≠⎪⇒⎨+>⎪⎪≠⎩ ()f x 的定义域为}{|>10x x x -≠且3y =②对应法则所谓对应法则就是指运算的混合物,要掌握的运算有四对共八个: 加←->减 乘←→除 乘方←→开方 指数←->对数 常见函数主要有a.常数函数,如b.一次函数,如 21y x =-c.二次函数,如 223y x x =+-d.指数函数,如 12,()3xx y y ==e.对数函数,如 213log ,log y x y x ==f.三角函数,如 sin ,cos ,tan y x y x y x ===具体如下:(注意:学函数核心点就是学系数) a.常数函数:图像是平行于x 轴的一条直线. (必修2) b.一次函数(必修2) 通式: 例如:图像:直线(两点确定一条直线)①系数a图像上坡,增函数.图像下坡,减函数.②系数b 决定图像在y 轴上的截距.12,(0):3;:1y ax b a l y x l y x =+≠=+=-+00a a >⎧⎨<⎩时,时,222,(0)21;23y ax bx c a y x x y x x =++≠=-+=-++c.二次函数通式: 例如: 图像:抛物线 ①系数a图像开口向上.图像开口向下.②系数b 和a 共同决定对称轴: 2bx a-=,顶点坐标24(,)24b ac b p a a --. ③系数c 决定图像在y 轴的截距.④表达式的另外形式:(一般式)(顶点式)(双根式)d.和e.指数函数和对数函数(必修1)①运算法则 指数运算 对数运算②指数运算与对数运算的关系当>01a a ≠且时,log x a a N x N =⇐⇒=如:32283log 8=⇐⇒=222124()24()()y ax bx c b ac b a x a aa x x x x =++-=++=--log log log ()log log log ()log ()log log log ,(01)log a a a a a a N a a c a c M N MN M M N N M N M b b c c a +=-===>≠且()r s r s r s r s s r rsr s a a a a a a a a a +-⋅=÷===00a a >⎧⎨<⎩时,时,③指数函数和对数函数的区别与联系指数函数 对数函数表达式x y a =log a y x =图像函数存在条件 底数都要满足:≠a>0且a 1单调性①当0<a<1时,其为减函数↘;②当a>1时,其为增函数↗f.三角函数 (必修4)1.角:共端点的两条射线组成的图形。

高一数学所有知识点框架图

高一数学所有知识点框架图

高一数学所有知识点框架图一、代数1. 整式与多项式2. 因式分解与公式的运用3. 分式与整式的运算4. 二次根式与分式方程5. 一次函数与一元一次方程6. 二次函数与一元二次方程7. 不等式与不等式方程8. 线性规划与函数综合问题二、函数1. 基本初等函数与函数的表示2. 一次函数与二次函数3. 反函数与函数的复合4. 函数的图像与性质5. 指数函数与对数函数6. 三角函数与三角恒等变换7. 函数与导数8. 函数与极限三、数列与数列的极限1. 等差数列与等差数列的求和2. 等比数列与等比数列的求和3. 递推数列与数列的通项公式4. 数列的极限与初等函数的极限5. 等比数列与指数函数的关系四、平面几何1. 点、线、面与空间几何关系2. 线段、角与三角比3. 三角形的面积与三角恒等变换4. 圆的性质与圆周角5. 锐角三角函数与解三角形6. 平面向量与向量的运算7. 空间向量与向量的运算8. 平面与立体几何的综合问题五、解析几何1. 直线与圆的方程2. 双曲线与椭圆的方程3. 抛物线与反比例函数的方程4. 综合实际问题与几何解析方法六、概率与统计1. 随机事件与概率2. 事件的复合与几何概型3. 随机变量与离散型分布列4. 连续型随机变量与分布函数5. 样本与抽样调查的统计分析6. 总体与样本的统计推断以上是高一数学所有知识点的框架图,涵盖了代数、函数、数列与数列的极限、平面几何、解析几何以及概率与统计等主要内容。

通过这些知识点的学习,学生将逐步掌握高一数学的基本理论与方法,为以后的学习打下坚实的基础。

在代数部分,学生将学习整式与多项式的运算,因式分解与公式的运用,以及分式与整式的运算等。

这些知识点对于理解与应用其他数学知识非常重要。

在函数部分,学生将学习各种函数的性质与图像,包括一次函数、二次函数、指数函数、对数函数以及三角函数等。

同时,函数与导数、函数与极限等内容也将逐步展开,为高一数学后续学习奠定基础。

高中数学知识框架

高中数学知识框架

高中数学知识框架一、代数基础加减法:实数、有理数、整式的加减法,结合律、交换律、分配律的应用。

乘法:实数、有理数、整式的乘法,乘法交换律、结合律、分配律的应用。

除法:实数、有理数、整式的除法,除法交换律、结合律、分配律的应用。

二、平面几何点:坐标、对称、轨迹。

线:平行、垂直、相交、角平分线、中垂线、等角对等边等概念。

面:三角形、四边形、圆形等基本几何形体的性质与判定定理。

距离:两点间距离、点到直线距离、直线间距离等概念的计算和应用。

角:锐角、直角、钝角、平角、周角等概念,以及相关的性质与判定定理。

三、立体几何体:立方体、长方体、圆柱体等基本几何体的性质与判定定理。

线:直线、平面、直角坐标系等概念,以及相关的性质与判定定理。

面:三角形、四边形、圆形等基本几何形体的性质与判定定理。

体积:立方体、长方体等基本几何体的体积计算方法。

表面积:立方体、长方体等基本几何体的表面积计算方法。

四、解析几何坐标系:二维坐标系和三维坐标系的建立与表示方法。

直线:斜率、截距、两点式方程等概念,以及直线的性质与判定定理。

圆:圆心、半径、标准方程等概念,以及圆的相关性质与判定定理。

椭圆:焦点、长轴、短轴等概念,以及椭圆的相关性质与判定定理。

抛物线:焦点、准线等概念,以及抛物线的相关性质与判定定理。

双曲线:焦点、实轴、虚轴等概念,以及双曲线的相关性质与判定定理。

五、概率与统计概率:事件概率、独立事件概率、互斥事件概率等概念的计算和应用。

样本空间:样本空间的概念和表示方法。

概率分布:离散型概率分布和连续型概率分布的概念和计算方法。

超几何分布:超几何分布的概念和计算方法。

二项分布:二项分布的概念和计算方法。

正态分布:正态分布的概念和计算方法,以及正态分布曲线族的特点和应用。

六、函数与方程函数:函数的概念和表示方法,函数的单调性、奇偶性等性质。

方程:方程的概念和表示方法,以及方程的解法。

根:根的概念和表示方法,以及根与系数的关系。

高中数学知识框架

高中数学知识框架

高中数学知识框架摘要:一、引言二、高中数学知识框架概述1.数学分析2.代数3.几何与拓扑4.概率与统计三、数学分析1.函数与极限2.导数与微分3.积分4.级数四、代数1.数与代数的基本概念2.多项式与代数式3.方程与不等式4.行列式与矩阵五、几何与拓扑1.平面几何2.空间几何3.向量与平面解析几何4.拓扑学六、概率与统计1.概率论基础2.随机变量与分布3.大数定律与中心极限定理4.统计学基本概念与方法七、高中数学学习方法与策略1.培养数学思维能力2.巩固基础知识3.提高解题技巧4.注重实践应用八、结论正文:【引言】数学是科学的基础,高中数学作为基础学科之一,对学生的综合素质培养具有重要意义。

本文将概括高中数学知识框架,帮助读者了解高中数学的主要内容和学习方法。

【高中数学知识框架概述】高中数学知识框架包括数学分析、代数、几何与拓扑、概率与统计四个部分。

【数学分析】数学分析主要包括函数与极限、导数与微分、积分和级数等内容。

这些内容帮助学生理解变化率、积累和收敛等概念,为后续学习打下基础。

【代数】代数部分涉及数与代数的基本概念、多项式与代数式、方程与不等式以及行列式与矩阵等内容。

这些内容旨在培养学生的抽象思维和逻辑推理能力。

【几何与拓扑】几何与拓扑部分包括平面几何、空间几何、向量与平面解析几何以及拓扑学等内容。

这些内容帮助学生掌握空间想象能力和几何直观,培养他们的空间思维。

【概率与统计】概率与统计部分涵盖概率论基础、随机变量与分布、大数定律与中心极限定理以及统计学基本概念与方法等内容。

这些内容培养学生运用数学解决实际问题的能力。

【高中数学学习方法与策略】为更好地学习高中数学,学生应培养数学思维能力、巩固基础知识、提高解题技巧以及注重实践应用。

【结论】总之,高中数学知识框架涵盖广泛,既有理论性知识,也有实践性内容。

数学框架高中知识点结构与体系

数学框架高中知识点结构与体系

数学框架高中知识点结构与体系数学是一门重要的学科,在高中阶段尤为重要。

为了更好地学习和掌握数学知识,在高中数学课程中,教师们往往会设置一个完整的框架,将各个知识点有机地联系起来,形成一个相对完整的体系。

下面将介绍高中数学知识点的结构与体系安排。

1. 数学基础知识在高中数学学习的开始阶段,教师会重点讲解数学的基础知识。

包括数学的基本运算规则,如四则运算、整数运算、分数运算等。

此外,还包括数学中常见的符号和概念,如数集、集合的运算、绝对值等。

2. 代数与函数代数与函数是高中数学中非常重要的知识点之一。

其中,代数主要包括方程、不等式、函数以及它们之间的关系。

学习代数可以帮助学生培养抽象思维能力和逻辑思维能力。

函数则是代数的重要分支,它是描述自然现象与数学模型之间的关系的工具,包括线性函数、二次函数、指数函数、对数函数等。

3. 几何几何是研究空间形状、大小、位置和相互关系的学科。

高中阶段的几何主要包括平面几何和立体几何两大部分。

平面几何包括各种图形的性质、相似与全等、三角形与四边形、圆等内容。

立体几何则涉及空间图形的性质、体积与表面积计算、空间几何关系等。

4. 概率与统计概率与统计是高中数学中的应用领域。

概率是研究随机现象的可能性大小的学科,包括事件概率、条件概率、独立事件等。

统计则是收集、整理和分析数据的学科,包括数据的收集方法和数据的表示与分析等。

5. 数学思想、方法与证明数学思想、方法与证明是高中数学中的一门重要课程。

它包括数学思想的培养、数学方法的学习以及数学证明的方法与技巧。

通过学习这门课程,学生可以培养逻辑思维、分析问题和解决问题的能力。

总之,高中数学知识点的结构与体系是一个相对完整且有机的整体。

它由数学基础知识、代数与函数、几何、概率与统计以及数学思想、方法与证明五个主要部分组成。

学生在学习数学的过程中,需要按照这个结构有序地进行学习,逐渐深入理解数学的本质和思维方式,提高数学应用与解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档