光电耦合器及其应用

合集下载

光电耦合器作用和原理

光电耦合器作用和原理

光电耦合器作用和原理光电耦合器(Optocoupler)是一种光学器件,具有隔离性、放大性、线性性、稳定性等特点,广泛应用于电子电路中。

它主要由光发射器、光接收器、隔离层和输出级组成。

光电耦合器的作用是将输入信号转换成光脉冲信号,并通过隔离层隔离与输出№级,同时光脉冲信号被接收器转换为输出信号,从而实现输入输出信号的隔离和传输。

光电耦合器可以起到电气隔离和信号转换的作用,为电子电路提供安全可靠的保护。

同时,光电耦合器还可以提高电路的抗干扰能力和共模抑制比。

光电耦合器的原理是光电效应。

当有光照射到半导体材料上时,根据光电效应,半导体中一部分电子被激发,从而电子从价带跃迁至导带,形成空穴和电子对,从而产生光生载流子。

当半导体中有足够的轻子和空穴,光生载流子迅速扩散和漂移,并在光电接收器结构内的pn结区域结合产生电流。

光电接收器的输出信号与输入光发射器的输入信号一致。

光电耦合器的使用步骤如下:1.根据电路的需求选择合适的光电耦合器,包括光电器件类型、隔离电压等参数。

2.接线时应注意输入端和输出端的电极连接,一般采用直插式或SOP引脚式连接。

3.在电路中正确接入光电耦合器,将输入端连接到输入信号源,输出端连接到需要控制的电路中。

4.在电路通电前,应先检查光电器件的极性和隔离性能是否正确,以免引起损坏。

5.对于高频信号输入,需注意进行匹配和阻抗调节,以保证输入和输出信号传输的准确和稳定。

总之,光电耦合器是一种重要的光学器件,在现代电子电路中广泛应用。

它通过光电效应将输入电信号转换为光信号,隔离并放大信号,提高电路的抗干扰能力和共模抑制比,保证了电路的稳定性和可靠性。

同时,使用光电耦合器还可以避免电路中的接地问题和供电噪音问题。

光电耦合器原理及使用

光电耦合器原理及使用

光电耦合器,又称光耦,万联芯城销售原装现货光耦元件,品牌囊括TOSHIBA,LITEON,EVERLIGHT,VISHAY等。

型号种类繁多,万联芯城为终端生产企业提供电子元器件一站式配套服务,节省了客户的采购成本。

点击进入万联芯城点击进入万联芯城光耦使用技巧光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。

光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。

目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1a所示。

光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。

对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。

但是,使用光耦隔离需要考虑以下几个问题:①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题;②光耦隔离传输数字量时,要考虑光耦的响应速度问题;③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。

1 光电耦合器非线性的克服光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。

由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。

图1 光电耦合器结构及输入、输出特性解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。

如果T 1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。

由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。

光电耦合器的工作原理以及应用

光电耦合器的工作原理以及应用

光电耦合器的工作原理以及应用1. 工作原理光电耦合器(Optocoupler)是一种能够将输入端和输出端电气信号进行隔离的装置。

它由发光二极管(LED)和光敏三极管(Phototransistor)构成。

当输入端加上电压时,LED发出光信号,该光信号被光敏三极管接收后产生电流。

这种光电耦合的原理实质上是一种光控转换和能量传递的过程。

具体工作原理如下: 1. 输入端的电流通过限流电阻(Rx)流过发光二极管,使其发出一定功率的光信号。

2. 光信号经传输介质到达光敏元件,并激发出光敏元件的电子。

3. 光敏元件将光信号转换为电流信号,并通过输出端引出。

2. 主要构成部分光电耦合器的主要构成部分包括以下几个方面: - 发光二极管(LED):将输入电流转换为光信号。

- 光敏三极管(Phototransistor):将接收到的光信号转换为电流信号。

- 传输介质:用于将光信号从发光二极管传递到光敏三极管。

- 封装结构:提供外部环境下的物理保护和隔离。

3. 应用领域光电耦合器具有隔离、调制和数传等特点,广泛应用于以下领域:3.1 工业自动化控制系统光电耦合器在工业自动化控制系统中起到隔离和信号调制的作用。

它能够将电气信号转换为光信号并进行隔离,防止输入端的噪声、干扰等影响输出端的稳定性。

常见的应用包括: - PLC(可编程逻辑控制器)输入/输出模块 - 隔离式继电器输出模块 - 工业通信接口隔离3.2 通信设备光电耦合器在通信设备中用于隔离输入和输出信号,避免信号干扰和电气故障。

通信设备中常用到的应用包括: - 光纤调制解调器(光猫) - 光电耦合器串并转换器 - 光电耦合器隔离阵列模块3.3 医疗设备光电耦合器在医疗设备中起到信号隔离和电气保护的作用。

它能够将信号从控制电路隔离,确保患者和医护人员的安全。

常见的应用有: - 医疗设备输入/输出模块 - 医疗设备控制系统 - 医疗器械接口隔离3.4 电力电子设备光电耦合器在电力电子设备中用于信号隔离、电气保护和触发控制。

光电耦合器的原理及应用

光电耦合器的原理及应用

光电耦合器原理及应用随着半导体技术和光电子学的发展,一种能有效地隔离噪音和抑制干扰的新型半导体器件——光电耦合器于1966年问世了。

光电耦合器的优点是体积小、寿命长、无触点、抗干扰能力强、能隔离噪音、工作温度宽,输入输出之间电绝缘,单向传输信号及逻辑电路易连接等。

光电耦合器按光接收器件可分为有硅光敏器件(光敏二极管、雪崩型光敏二极管、PIN光敏二极管、光敏三极管等)、光敏可控硅和光敏集成电路。

把不同的发光器件和各种光接收器组合起来,就可构成几百个品种系列的光电耦合器,因而,该器件已成为一类独特的半导体器件。

其中光敏二极管加放大器类的光电耦合器随着近年来信息处理的数字化、高速化以及仪器的系统化和网络化的发展,其需求量不断增加。

工作原理在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。

基本工作特性(以光敏三极管为例)A、共模抑制比很高在光电耦合器内部,由于发光管和受光器之间的耦合电容很小(2pF以内)所以共模输入电压通过极间耦合电容对输出电流的影响很小,因而共模抑制比很高。

B、输出特性光电耦合器的输出特性是指在一定的发光电流IF下,光敏管所加偏置电压VCE与输出电流IC之间的关系,当IF=0时,发光二极管不发光,此时的光敏晶体管集电极输出电流称为暗电流,一般很小。

当IF>0时,在一定的IF作用下,所对应的IC基本上与VCE无关。

IC与IF之间的变化成线性关系,用半导体管特性图示仪测出的光电耦合器的输出特性与普通晶体三极管输出特性相似。

C、光电耦合器可作为线性耦合器使用。

在发光二极管上提供一个偏置电流,再把信号电压通过电阻耦合到发光二极管上,这样光电晶体管接收到的是在偏置电流上增、减变化的光信号,其输出电流将随输入的信号电压作线性变化。

光电耦合器也可工作于开关状态,传输脉冲信号。

光电耦合器原理及应用

光电耦合器原理及应用
1原理 .
④ 暗 电流 I uA ,即 I 0时的 I 。 ( ) t = 。 ⑤ 输 出端 耐压 值 V 。 。 ⑥输入与输 出间绝缘 电阻 R , s 1 。R > 0Q。 ⑦ 输入 与输 出间 的耐 压值 B 。 > V ,B
50 V 。 0
光 电耦 合 器 又 称 光 电隔 离 器 ,通 常 用 图 l所 示 的 符 号 表 示 。 它 是 由发 光 器 件 和 光 敏 器 件 组 合 起 来 的 四 端 器 件 。它 的 输 入 端 配 置
⑧ 输入 与输 出间 的 电容 C ,C lF 。 s p。 ⑨ 输 入端 的 正 向压 降 V ,V ≈1 r r V。 ⑩ 输 入 的反 向击 穿 电压 B R V 。 光 电耦 合 器 的输 出特 性 表 示 以 I为 参 量 的 Vc—I特 性 ,类似 于 三 极 管 的输 出特 性 。 而 传 输特 性 则表 示 在 一 定 的 V ( 出 电压 ) 输
图 4
高 ,要 求 调 整 管 的 耐 压 越 高 。 大 功 率 高 反压 管 通 常 都 比较 贵 , 且 在 那 样 的条 件 下 工 作 , 而 可 靠性 就 差 。 图 3所 示 的 电路 .尽 管输 出的
电压达 5 O 0 V, 而 调 整 管 的参 数 要 求 并 不 高 。 这 个 电 路 的 工 作 原 理 大 致 如 图 3 。 当输 出 电压 ( 0 V)因 负 载变 化 而 下 降 50 时 , 则 光 电耦 合 器 内 发 光 二极 管 I下 降 ,使 r
② 输入端和输 出端 的接地 点可 以分别任 意 选择 。 ③ 具有抑制噪声 的作用 ,即使 是输 出端 有 较 强 的干 扰 ,对 其 输 入 端 的 影 响 也 是 非 常

光电耦合器应用

光电耦合器应用

光电耦合器应用光电耦合器是一种传感器和控制器之间的接口,它可以将光信号转换成电信号。

光电耦合器具有高精度、高速度、低功耗、小型化和免磁干扰等特点,因此被广泛应用于自动控制、机器视觉、光电通信、仪器仪表、电力电子等领域。

一、自动控制领域在自动控制领域,光电耦合器可以用来作为开关、传感器、放大器、隔离器、数字转换器和模数转换器等。

例如,当光电耦合器作为隔离器时,可以将输入和输出隔离,避免潜在的电磁干扰。

当光电耦合器作为数字转换器时,可以将输入的数字信号变成相应的电信号,以便进行数字化处理。

二、机器视觉领域机器视觉领域中,光电耦合器通常用来检测和测量光信号,以便实现对物体形状、颜色、纹理等特征的识别与分类。

例如,光电耦合器可以在自动化制造系统中用来检测产品表面的缺陷,例如磨痕、裂纹等。

此外,光电耦合器也可以用来测量激光干涉图中两个激光点之间的距离,以便计算物体表面的形状。

三、光电通信领域光电耦合器在光电通信领域起到了非常重要的作用,它可以将光信号转换成电信号,然后再通过电线进行传输。

例如,在音频设备中,光电耦合器可以将音频信号转换成电信号,以便进行信号放大和处理。

此外,光电耦合器也可以用于光纤通信中,通过将光信号转换成电信号,以便将信号传输到需要处理的设备。

四、仪器仪表领域在仪器仪表领域,光电耦合器通常用于隔离输入和输出信号,以防止干扰,同时也可以用来控制电路。

例如,光电耦合器可以在电功率仪表中用来隔离输入信号和输出信号,同时还可以防止外部电磁干扰。

此外,光电耦合器还可以用来控制温度、湿度、压力和振动等传感器的输出。

五、电力电子领域在电力电子领域,光电耦合器通常用于隔离输入和输出信号,防止高电压的干扰。

例如,在交流电源中,光电耦合器可以用来隔离输入端和输出端,同时还可以将输入的电流和电压转换成相应的电信号,以便进行数字化处理和电力控制。

此外,光电耦合器还可以在高压直流输电中充当隔离器,以防止高电压的干扰,从而保护电路的稳定性。

光电耦合器简介以及作用详解

光电耦合器简介以及作用详解

光电耦合器简介以及作用详解
光电耦合器(简称光耦)全称为光电耦合器接口电路,是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。

 光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。

目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器。

 光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。

对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。

但是,使用光耦隔离需要考虑以下几个问题:①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题; ②光耦隔离传输数字量时,要考虑光耦的响应速度问题; ③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。

 学习笔记:光耦的主要作用就是隔离作用,如信号隔离或光电的隔离。

隔离能起到保护的作用,如一边是微处理器控制电路,另一边是高电压执行端,如市电启动的电机,电灯等等,就可以用光耦隔离开。

当两个不同型号的光耦只有负载电流不同时,可以用大负载电流的光耦代替小负载电流的光耦。

光电耦合器用途

光电耦合器用途

光电耦合器用途光电耦合器(Optocoupler)是一种可以将光信号和电信号进行转换的电子器件。

它由光电二极管和光敏三极管组成,内部用光电转换材料将输入光信号转换为电信号输出。

光电耦合器广泛应用于电气系统中,具有多种重要用途。

1. 隔离信号光电耦合器的主要作用是实现信号的隔离。

在一些特殊的应用场景中,需要将电路系统的输入与输出隔离开来,以确保安全性和稳定性。

光电耦合器通过接收输入信号并将其转换为光信号,然后通过光敏三极管将光信号转换回电信号输出,从而实现了输入与输出之间的电气隔离。

2. 抑制干扰在电气系统中,信号之间常常会发生相互干扰的现象。

光电耦合器具有良好的高频隔离特性,可以有效抑制电气干扰信号的传递。

通过使用光电耦合器,可以提高系统的信号质量,减少对其他电路的干扰,增强系统的稳定性和可靠性。

3. 开关控制光电耦合器也被广泛应用于开关控制领域。

在一些需要控制电路的应用场景中,如遥控开关、自动控制系统等,光电耦合器可以将光信号转换为电信号来实现对电路的开关控制。

通过控制输入端的光信号,可以实现对输出端的电路开关进行控制,从而达到灵活控制电气系统的目的。

4. 传感器信号转换光电耦合器还常常用于传感器信号的转换。

传感器通常会输出微弱的电信号,为了能够更好地利用这些信号,常需要将其放大或转换为其他形式的信号。

光电耦合器可以将传感器的电信号转换为光信号输出,再通过光敏三极管将光信号转换为电信号。

这样可以增强传感器的信号质量,提高其抗干扰能力,以及适应更广泛的应用需求。

5. 隔离通讯在通讯领域,光电耦合器被广泛用于隔离和转换通讯信号。

随着信息技术的发展,通讯系统的频率和速度不断提高,同时也对信号的稳定性和抗干扰性提出了更高的要求。

光电耦合器能够实现高速数据传输和信号隔离,减少干扰和损耗,提高通讯质量和可靠性。

综上所述,光电耦合器具有多种重要用途。

它可以实现信号的隔离和抑制干扰,用于开关控制和传感器信号转换,以及在通讯领域中实现隔离通讯等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电耦合器及其应用[作者:佚名转贴自:未知点击数:933 更新时间:2006-3-31【字体:A 】光电耦合器,是近几年发展起来的一种半导体光电器件,由于它具有体积小、寿命长、抗干扰能力强、工作温度宽及无触点输入与输出在电气上完全隔离等特点,被广泛地应用在电子技术领域及工业自动控制领域中,它可以代替继电器、变压器、斩波器等,而用于隔离电路、开关电路、数模转换、逻辑电路、过流保护、长线传输、高压控制及电平匹配等。

为使读者了解与应用光电耦合器,今介绍几种光电耦合器件及应用电路,供大家参考与开拓。

1.器件选择(1)三极管输出型光电耦合器三极管输出型光电耦合器电路如图46—1中(a)所示,它是由两部分组成的。

其中,1、2端为输入端,通常由发光器件构成;4、5、6端接一只光敏三极管构成输出端,当接收到发射端发出的红外光后,在三极管集电极中便有电流输出。

图46-1三极管输出型光电耦合器的特点,是具有很高的输入输出绝缘性能,频率响应可达300kHz,开关时间数微秒。

(2)可控硅输出型光耦合器可控硅输出型光耦合器的电路如图46?中(b)所示。

该器件为六脚双列式封装。

当1、2端加入输入信号后,发射管发出的红外光被接在4、5、6脚的光敏可控硅接收,使其导通。

它可应用在低电压电子电路控制高压交流回路的开启。

(3)光耦合的可控硅开关驱动器图46—2中(a)为光敏双向开关器件;图46?中(b)为过零控制电路及光敏双向开关器件组合体。

它们的工作原理是:利用输入端红外光控制输出端的光敏双向开关导通,进而触发外接双向可控硅导通,达到控制负载接入交流220V回路的目的。

图中(a)为非过零控制,图中(b)为过零控制。

本驱动器有非常好的输入与输出绝缘性,可构成固态继电器的控制电路,其输出的控制功率由可控允许功率决定。

图46-2(4)达林顿管输出的光检测器达林顿管输出的光检测器如图46?中(a)所示。

它是由两只管子组成复合管,具有很高的电流放大能力,形成下一级或负载的驱动电流,有较强的光检测灵敏度。

(5)数字电路光耦合器数字电路光耦合器电路如图46?中(b)所示。

光耦合器输出为施密特触发电路形式,其特点是响应速度快、数字逻辑可靠,应用于计算机接口、数控电源及电动机控制中。

(6)双向开关触发器输出的光检测器图46—3中的(c)为双向开关触发器输出的光检测器电路。

该图为三端器件,内部是光敏双向开关器件,收到红外光线后,双向开关器件导通,触发外接可控硅导通,使负载接入220V回路中。

图46-32.应用电路(1)开关电路对于开关电路,往往要求控制电路和开关电路之间要有很好的电隔离,这对于一般的电子开关来说是很难做到的,但采用光电耦合器就很容易实现了。

图46?中(a)所示电路就是用光电耦合器组成的简单开关电路。

在图中,当无脉冲信号输入时,三极管BG处于截止状态,发光二极管无电流流过不发光,则a、b两端电阻非常大,相当于开关“断开”。

当输入端加有脉冲信号时,BG导通,发光二极管发光,则a、b两端电阻变得很小,相当于开关“接通”。

故称无信号时开关不通,为常开状态。

图46—4中(b)所示电路则为“带闭”状态,因为无信号输入时,虽BG截止,但发光二极管有电流通过而发光,使a、b图46-4两端处于导通状态,相当于开关“接通”。

当有信号输入时,BG导通,由于BG的集电结压降在0.3V以下,远小于发光二极管的正向导通电压,所以发光二极管无电流流过不发光,则a、b两端电阻极大,相当于开关“断开”,故称“常闭”式。

可见,开关a、b端在电路中不受电位高低的限制,但在使用中应满足a端电位为正,b端为负,并使U&ab>3V为好,同时还应注意Uab应小于光电三极管的BVceo。

依据图46—4的原理,光电耦合器可以组成如图46—5中(a)、(b)等多种形式。

图46-5图中(a)为单刀双掷开关电路,其中外接二极管D的作用,是保证输入正脉冲信号时“od”组接通,“ob”组关断。

图中(b)为双刀双掷开关电路,无输入信号时,BG截止,“ob”与“od”组断开,“oa”与“oc”组接通;BG导通(即有信号输入时),“ob”与“od”组接通,而“oa”与“oc”组断开。

它们适于自动控制和遥控设备中使用。

(2)光耦合的可控硅开关电路图46—6中(a)所示电路为光耦合器构成的可控硅开关电路。

可控硅SCR的触发电压取自电阻R,其大小由通过光电三极管的电流决定,直接由输入电压控制。

该电路简单,控制端与输出端有可靠的电隔离。

图46-6图中(b)所示电路,为控制负载为纯电阻(如白炽灯泡)的开关电路,图中R1的阻值由下式确定:R1=V/1.2A,1.2A为双向开关的额定电流。

当主电网电压为220V时,V=/2·220=308V,则R1=308/1.2=250Ω.所以,可控硅SCR的规格应依R1的大小进行选择。

当开关电路的负载为感性负载(如电动机等),则由于流过感性负载(线圈)的电流与电压的相位不同,需增加相应元件,方能保证开关电路的正常工作,如图46?所示。

图中双向可控硅SCR的触发电流,是由R3与C的不同数值而决定的,见表46—1。

表46—1 IG、R3及三者关系表/IG(Ma)/R3(kΩ)/C(μF)/15/2.4/0.1/30/1.2/0.2/50/0.8/0.3/图46—7的开关电路,特别适于遥控时选用。

图46-7(3)用于双稳态输出的光耦合电路图46—8中(a)所示电路,为光电耦合器控制的双稳态输出开关电路,它的特点是由于光电耦合开关接在两管的发射极回路上,故能有效地解决输出与负载间的隔离问题。

图46-8(a)图46—8中(b)所示电路为光电耦合开关的施密特电路。

当输入电压U1为低电平时,光电三极管C、e间呈高电阻,BG1导通,BG2截止,则输出电压U0为低电平;当输入电压U1大于鉴幅值时,光电三极管c、e间呈低电阻,则BG1截止,BG2导通,输出的电压U0为高电平。

调节电阻R3,即改变鉴幅电平。

图46-8(b)(4)电平转换电路对于不同电平的转换电路或输入、输出电路的电位需要分开时,采用光电耦合器就显得十分方便了。

中图46—9的(a)与(b)图示电路,就是5V电源的TTL集成电路与15V电源的HTL集成电路,相互连接进行电平转换的基本电路。

图46-9图(a)中,TTL门电路导通时,即输出低电平,发光二极管导通,光电三极管输出高电平;TTL门电路截止时,发光二极管截止,光电三极管输出低电平。

图(b)中,则是利用TTL截止输出高电平,发光二极管导通,光电三极管输出低电平;TTL导通输出低电平,发光二极管截止,光电三极管输出高电平。

在进行具体应用时,因CMOS集成电路在低电平时的电流只有1~2mA,难以直接驱动所接的负载,故一般需加一级三极管放大电路来驱动。

(5)高压稳压电路串联型稳压电路,比较放大管需选用耐压高的三极管,若利用光电耦合器的输入与输出间绝缘良好的特点,便可实现高压控制。

图46—10中的(a)与(b)所示的电路,就是利用光电耦合器的高压稳压电路。

图46-10图(a)中,当输出电压因某种原因导致升高时,则BG5的偏压增加,发光二极管的正向电流增大,使光电三极管集电结电压减小,即引起调整管BG1发射结电压下降,其集电结电压上升,从而使原来升高的输出电压减小,保持输出电压的稳定。

BG3管为限流保护电路。

光电耦合器是工作在放大状态的。

图(b)的工作原理与图(a)相同。

光耦合器的技术特性与应用添加到我的生意宝[ 04年03月10日]浏览次数:107781.概述光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。

光耦合器以光为媒介传输电信号。

它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。

目前它已成为种类最多、用途最广的光电器件之一。

光耦合器一般由三部分组成:光的发射、光的接收及信号放大。

输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。

这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。

由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。

又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。

所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。

在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。

光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。

光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。

在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。

十几年来,新型光耦合器不断涌现,满足了各种光控制的要求。

其应用范围已扩展到计测仪器,精密仪器,工业用电子仪器,计算机及其外部设备、通信机、信号机和道路情报系统,电力机械等领域。

这里侧重介绍该器件的工作特性,驱动和输出电路及部分实际应用电路。

近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。

下面分别介绍光耦合器的工作原理及检测方法。

2. 光耦合器的性能及类型用于传递模拟信号的光耦合器的发光器件为二极管、光接收器为光敏三极管。

当有电流通过发光二极管时,便形成一个光源,该光源照射到光敏三极管表面上,使光敏三极管产生集电极电流,该电流的大小与光照的强弱,亦即流过二极管的正向电流的大小成正比。

由于光耦合器的输入端和输出端之间通过光信号来传输,因而两部分之间在电气上完全隔离,没有电信号的反馈和干扰,故性能稳定,抗干扰能力强。

发光管和光敏管之间的耦合电容小(2pf左右)、耐压高(2.5KV左右),故共模抑制比很高。

输入和输出间的电隔离度取决于两部分供电电源间的绝缘电阻。

此外,因其输入电阻小(约10Ω),对高内阻源的噪声相当于被短接。

因此,由光耦合器构成的模拟信号隔离电路具有优良的电气性能。

事实上,光耦合器是一种由光电流控制的电流转移器件,其输出特性与普通双极型晶体管的输出特性相似,因而可以将其作为普通放大器直接构成模拟放大电路,并且输入与输出间可实现电隔离。

然而,这类放大电路的工作稳定性较差,无实用价值。

究其原因主要有两点:一是光耦合器的线性工作范围较窄,且随温度变化而变化;二是光耦合器共发射极电流传输系数β和集电极反向饱和电流ICBO(即暗电流)受温度变化的影响明显。

相关文档
最新文档