大体积混凝土水化热计算

合集下载

大体积混凝土计算

大体积混凝土计算

八、大体积混凝土计算取现场最大承台计算,长10.200m,宽4.8m,厚1.2m。

混凝土为C30,采用28天后期强度配合比,用普通硅酸盐水泥325号,水泥用量mc=147kg/m3,水泥发热量Q=289kj/kg。

混凝土浇筑时的入模温度To=5℃,结构物周围采用砖模板,在模板和混凝土上表面外包两层草袋保温,混凝土比热C=0.96kj/kg·k,混凝土密度ρ=2400kg/ m3。

(1)混凝土最高水化热绝热温度Tmax=mcQ/Cρ=147×289/0.96×2400=18.44℃(2)混凝土1d、3d、7d的水化热绝热温度:T(1)= Tmax×(1-e-mt)=18.44×0.727= 13.42℃T(3)= Tmax×(1-e-mt)=18.44×0.3852=6.61℃T(7)= Tmax×(1-e-mt)=18.44×0.108= 1.99℃(3)混凝土的最终绝热温升:查表得温降系数δ可求得不同龄期的水热温升为:t=3d δ=0.57 Tmaxδ=18.44×0.57=10.51℃t=6d δ=0.54 Tmaxδ=18.44×0.54=9.96℃t=9d δ=0.29 Tmaxδ=18.44×0.29=5.35℃t=12d δ=0.2 Tmaxδ=18.44×0.2=3.69℃t=15d δ=0.14 Tmaxδ=18.44×0.14=2.58℃t=18d δ=0.1 Tmaxδ=18.44×0.1=1.84℃t=3d δ=0.02 Tmaxδ=18.44×0.02=0.37℃混凝土内部的中心温度为:T(3)=To+T(t)δ=5+10.51=15.51℃T(6)=To+T(t)δ=5+9.96=14.96℃T(9)=To+T(t)δ=5+5.35=10.35℃T(12)=To+T(t)δ=5+3.69=8.69℃T(15)=To+T(t)δ=5+2.58=7.58℃T(18)=To+T(t)δ=5+1.84=6.84℃T(21)=To+T(t)δ=5+0.37=5.37℃(4)混凝土的收缩变形值:εy(t)=εy0(1-e-bt)×M1×M2×M3×M4×M5×M6×M7×M8×M9×M10εy(3)=3.24×10-4(1-2.718-0.01×3)×1×0.92×1×0.87×1.45×1.09×0.7×1×1×0.95=0.055×10-4εy(6)=3.24×10-4(1-2.718-0.01×6)×1×0.92×1×0.87×1.45×0.98×0.7×1×1×0.95=0.125×10-4εy(9)=3.24×10-4(1-2.718-0.01×9)×1×0.92×1×0.87×1.45×0.98×0.7×1×1×0.95=0.17×10-4εy(12)=3.24×10-4(1-2.718-0.01×12)×1×0.92×1×0.87×1.45×0.94×0.7×1×1×0.95=0.0.21×10-4εy(15)=3.24×10-4(1-2.718-0.01×15)×1×0.92×1×0.87×1.45×0.93×0.7×1×1×0.95=0.0.26×10-4εy(18)=3.24×10-4(1-2.718-0.01×18)×1×0.92×1×0.87×1.45×0.93×0.7×1×1×0.95=0.3×10-4各龄期的收缩当量温差T(3)=-εy3/a=-0.055×10-4/10×10-6=-0.55℃≈-1℃T(6)=-εy3/a=-0.12×10-4/10×10-6=-1.2℃≈-1℃T(9)=-εy3/a=-0.17×10-4/10×10-6=-1.7℃≈-2℃T(12)=-εy3/a=-0.21×10-4/10×10-6=-2.1℃≈-2℃T(15)=-εy3/a=-0.26×10-4/10×10-6=-2.6℃≈3℃T(18)=-εy3/a=-0.3×10-4/10×10-6=-3℃(5)C30混凝土各龄期的弹性模量E(3)=3.0×10-4(1-e-0.09×3)=0.72×10-4 N/MM2E(6)=3.0×10-4(1-e-0.09×6)=1.26×10-4 N/MM2E(9)=3.0×10-4(1-e-0.09×9)=1.68×10-4 N/MM2E(12)=3.0×10-4(1-e-0.09×12)=1.98×10-4 N/MM2E(15)=3.0×10-4(1-e-0.09×15)=2.22×10-4 N/MM2E(18)=3.0×10-4(1-e-0.09×18)=2.4×10-4 N/MM2(6)各龄期混凝土松弛系数S(63)=0.208 S(9)=0.214 S(12)=0.215 S(15)=0.233S(18)=0.252(6)最大拉应力计算:取a=1.0×10-5 γ=0.15 Ck=1.0 N/MM2 H=1200mm L =10200mm计算个温差引起的应力从3d到6d引起的应力β=√Ck/ H E(t)=1.0×10-5 /1200·1.26×104=0.0026β= L/2=1.3 cosh·β=2.58Б(6)=a/1-γ【1-1/ cosh·β】E(t)×T(t)×S(t)=1.0×10-5 /1-0.15【1-1/2.58】×1.26×104×-1℃×0.208=0.019 N/MM2从6d到9d引起的应力β=√Ck/ H E(t)=1.0×10-5 /1200·1.68×104=0.0002β= L/2=1.14 cosh·β=1.95Б(9)=a/1-γ【1-1/ cosh·β】E(t)×T(t)×S(t)=1.0×10-5 /1-0.15【1-1/1.95】×1.68×104×-2℃×0.214=0.020 N/MM2从9d到12d引起的应力β=√Ck/ H E(t)=1.0×10-5 /1200·1.98×104=0.0002β= L/2=1.14 cosh·β=1.95Б(12)=a/1-γ【1-1/ cosh·β】E(t)×T(t)×S(t)=1.0×10-5 /1-0.15【1-1/1.95】×1.98×104×-2℃×0.215=0.049 N/MM2从12d到15d引起的应力β=√Ck/ H E(t)=1.0×10-5 /1200·2.22×104=0.00019β= L/2=0.99 cosh·β=1.51Б(15)=a/1-γ【1-1/ cosh·β】E(t)×T(t)×S(t)=1.0×10-5 /1-0.15【1-1/1.51】×2.22×104×-3℃×0.223=0.062 N/MM2从15d到18d引起的应力β=√Ck/ H E(t)=1.0×10-5 /1200·2.4×104=0.00019β= L/2=0.99 cosh·β=1.51Б(18)=a/1-γ【1-1/ cosh·β】E(t)×T(t)×S(t) =1.0×10-5 /1-0.15【1-1/1.51】×2.48×104×-3℃×0.252=0.073 N/MM2Б(max)=Б(6)+Б(9)+ Б(12)+Б(15)+ Б(18)=0.019+0.02+0.049+0.062+0.073=0.223 N/MM2混凝土抗拉强度设计值取1.5 N/MM2,则抗裂安全度:K=1.5/0.223=6.7 N/MM2>1.15满足抗裂条件故知不会出现裂缝。

大体积混凝土自动计算书-excel版

大体积混凝土自动计算书-excel版

Th= m c Q/C ρ(1-е-mt)式中:Th—混凝土的绝热温升(℃);m c ——每m 3混凝土的水泥用量,取3;Q——每千克水泥28d 水化热,取C——混凝土比热,取0.97[KJ/(Kg·K)];ρ——混凝土密度,取2400(Kg/m3);е——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变,取2、混凝土内部中心温度计算T 1(t)=T j +Thξ(t)式中:T 1(t)——t 龄期混凝土中心计算温度,是混凝土温度最高值T j ——混凝土浇筑温度,取由上表可知,砼第6d左右内部温度最高,则验算第6d砼温差2、混凝土养护计算混凝土表层(表面下50-100mm 处)温度,底板混凝土表面采用保温材料(阻燃草帘)蓄热保温养护,并在草袋上下各铺一层不透风的塑料薄膜。

地下室外墙1200 厚混凝土表面,双面也采用保温材料(阻燃草帘)蓄热保温养护,并在草袋上下各铺一层不透风的塑料薄膜。

计算结果如下表ξ(t)——t 龄期降温系数,取值如下表大体积混凝土热工计算1、绝热温升计算计算结果如下表:①保温材料厚度δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T 2)式中:δ——保温材料厚度(m);λi ——各保温材料导热系数[W/(m·K)] ,取λ——混凝土的导热系数,取2.33[W/(m·K)]T 2——混凝土表面温度:23.9(℃)(Tmax-25)T q ——施工期大气平均温度:25(℃)T 2-T q —--1.1(℃)T max -T 2—21.0(℃)K b ——传热系数修正值,取δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T2)*100=-0.32cm故可采用一层阻燃草帘并在其上下各铺一层塑料薄膜进行养护。

②混凝土保温层的传热系数计算β=1/[Σδi /λi +1/βq ]δi ——各保温材料厚度λi ——各保温材料导热系数[W/(m·K)]βq ——空气层的传热系数,取23[W/(m 2·K)]代入数值得:β=1/[Σδi /λi +1/βq ]=48.83③混凝土虚厚度计算:hˊ=k·λ/βk——折减系数,取2/3;λ——混凝土的传热系数,取2.33[W/(m·K)]hˊ=k·λ/β=0.0318④混凝土计算厚度:H=h+2hˊ= 1.66m ⑤混凝土表面温度T 2(t)= T q +4·hˊ(H- h)[T 1(t)- T q ]/H 2式中:T 2(t)——混凝土表面温度(℃)T q —施工期大气平均温度(℃)hˊ——混凝土虚厚度(m)H——混凝土计算厚度(m)式中: hˊ——混凝土虚厚度(m)式中:β——混凝土保温层的传热系数[W/(m 2·K)]T 1(t)——t 龄期混凝土中心计算温度(℃)不同龄期混凝土的中心计算温度(T 1(t))和表面温度(T 2(t))如下表。

大体积混凝土温度计算公式

大体积混凝土温度计算公式
浇筑层
厚度
(m)
龄期⑴
3
6
9
12
15
18
21
24
27
30
1.0
0.36
0.29
0பைடு நூலகம்17
0.09
0.05
0.03
0.01
1.25
0.42
0.31
0.19
0.11
0.07
0.04
0.03
1.5
0.49
0.46
0.38
0.29
0.21
0.15
0.12
0.08
0.05
0.04
2.5
0.65
0.62
0.57
0.48
0.38
0.29
0.23
0.19
0.16
0.15
3.00
0.68
0.67
0.63
0.57
0.45
0.36
0.30
0.25
0.21
0.19
4.00
0.74
0.73
0.72
0.65
0.55
0.46
0.37
0.30
0.25
0.24
t——混凝土的龄期(d)
m----系数,随浇筑温度改变,见下表
浇筑温度(C)
5
10
15
20
25
30
m(l/d)
0.295
0.318
0.340
0.362
0.384
0.406
2、混凝土中心温度计算
Ti(t)=Tj+ Th•e⑴
式中Ti(t)----t龄期混凝土中心温度(C)

大体积混凝土温度计算公式

大体积混凝土温度计算公式

大体积混凝土施工的主要技术难点是防止混凝土表面裂缝的产生。

造成大体积混凝土开裂的主要原因是干燥收缩和降温收缩。

处于完全自由状态下的混凝土,出现再大的均匀收缩,也不会在内部产生拉应力。

当混凝土处在地基等约束条件下时,内部就会产生拉应力,当拉应力超过当时混凝土的抗拉强度时,混凝土就会开裂。

混凝土中水泥水化用水大约只占水泥重量的20%,在混凝土浇筑硬化后,拌合水中的多余部分的蒸发将使混凝上体积缩小。

混凝土干缩率大致在(2-10) x 10-4范围内,这种干缩是由表及里的一个相当长的过程,大约需要4个月才能基本稳定下来。

干缩在一定条件下又是个可逆过程,产生干缩后的混凝土再处于水饱和状态,混凝土还可有一定的膨胀回复。

值得注意的是早期潮湿养护对混凝土的后期收缩并无明显影响,大体积混凝土的保湿养护只是为了推迟干缩的发生,有利于表层混凝土强度的增长,以及发挥微膨胀剂的补偿收缩作用。

大体积混凝土浇筑凝结后,温度迅速上升,通常经3 d--5d达到峰值,然后开始缓慢降温。

温度变化产生体积胀缩,线胀缩值符合△L=Lo•a•△T的规律,这里线胀缩值数取1 x 10-5(1/ 0C)。

因为混凝土的特点是抗压强度高而抗拉强度低,而且混凝土弹性模量较低,所以升温时体积膨胀一般不会对混凝土产生有害影响。

但在降温时其降温收缩与干燥收缩叠加在一起时,处于约束条件下的混凝土常常会产生裂缝,起初的细微裂缝会引起应力集中,裂缝可逐渐加宽加长,最终破坏混凝上的结构性、抗渗性和耐久性。

混凝土降温值=温度+水化热温升值-环境温度。

其中温升值的影响因素主要有水泥品种和用量、用水量、大体积混凝土的散热条件(主要包括浇筑方法、混凝土厚度、混凝土各表面的能力和其它降温措施)等。

为尽量发挥混凝土松弛对应力的抵消作用,同时避免在混凝土硬化初期骤然产生过大的应力,应该减慢降温速度。

一般规定,混凝土内外温差不大于25℃,降温速度不大于1.5 0C/ d。

该工程大体积混凝土的特点是:1)基础厚1 .2 m ;2)基础做了SBS防水;3)混凝土一次浇筑3 800 m3;4)混凝土强度等级C40。

大体积混凝土施工技术

大体积混凝土施工技术

按式(3-41 )求得之不同高长比墙体的计算高度 ,大致在0.15L-0.20L 之间。为简化计算,对于一切H / L > 0 . 2 的墙体和厚板,可以一律采用计算高 度H = 0.2L 。
• • • •
(二)其他断面的结构 对于其他断面的结构,通过理论计算可以证明,只要将β值变化后,则上述 各计算公式皆可用来计算其温度应力和最大整浇长度。 1. 箱形断面结构(图3-10 ) 这种结构与长条板相似,只需代入新的β值,上式各公式皆可应用。
• 考虑龄期和配筋的影响后,混凝土的瞬时极限拉伸值可按下式计算:

( 3一39 )
• 式中
ft ― 混凝土的抗拉强度设计值(MPa ) ; μ ― 配筋率(% ) ; d ― 钢筋直径(cm ) ; t ― 混凝土的龄期(d )。
• 四、其他各种情况的温度应力和整浇长度的计算

如果施工的混凝土结构不满足H / L ≤ 0.2 的条件,或施工其他断 面的结构,这时怎样来计算其温度应力和整浇长度?
如果混凝土的浇筑温度Ti不等于当时的气温Tq 。,则存在初始温差,计 算T1时 尚需叠加由于初始温差引起的平均温差:(3-28)
• • •
其中 Ti -混凝土的浇筑温度(℃); Tq -当时的大气温度(℃); 其他符号同前。
• •

2 .图表法 在“非绝热温升”情况下,散热的快慢与结构厚度有关,一般符合 “越薄散热越快、越厚散热越慢”的规律。当结构厚度超过5m 时, 大体积混凝土的实际温升T1已接近绝热温升Th 。 根据水利水电科学研究院的资料,不同结构厚度,非绝热温升状态下 混凝土水化热的温升与绝热温升的比值( T1 / Th )见表。 • T1 / Th的比值 表3-6

大体积混凝土热工计算表 实测可用

大体积混凝土热工计算表 实测可用

Th= m c Q/C ρ(1-е-mt)式中:Th—混凝土的绝热温升(℃);m c ——每m 3 混凝土的水泥用量,取3;Q——每千克水泥28d 水化热,取C——混凝土比热,取0.97[KJ/(Kg·K)];ρ——混凝土密度,取2400(Kg/m3);е——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变,取2、混凝土内部中心温度计算T 1(t)=T j +Thξ(t)式中:T 1(t)——t 龄期混凝土中心计算温度,是混凝土温度最高值T j ——混凝土浇筑温度,取由上表可知,砼第9d左右内部温度最高,则验算第9d砼温差2、混凝土养护计算1、绝热温升计算计算结果如下表ξ(t)——t 龄期降温系数,取值如下表大体积混凝土热工计算计算结果如下表:混凝土表层(表面下50-100mm 处)温度,底板混凝土表面采用保温材料(阻燃草帘)蓄热保温养护,并在草袋上下各铺一层不透风的塑料薄膜。

地下室外墙1200 厚混凝土表面,双面也采用保温材料(阻燃草帘)蓄热保温养护,并在草袋上下各铺一层不透风的塑料薄膜。

①保温材料厚度δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T 2)式中:δ——保温材料厚度(m);λi ——各保温材料导热系数[W/(m·K)] ,取λ——混凝土的导热系数,取2.33[W/(m·K)]T 2——混凝土表面温度:39.6(℃)(Tmax-25)T q ——施工期大气平均温度:30(℃)T 2-T q —-9.6(℃)T max -T 2—21.0(℃)K b ——传热系数修正值,取δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T2)*100=4.46cm故可采用两层阻燃草帘并在其上下各铺一层塑料薄膜进行养护。

②混凝土保温层的传热系数计算β=1/[Σδi /λi +1/βq ]δi ——各保温材料厚度λi ——各保温材料导热系数[W/(m·K)]βq ——空气层的传热系数,取23[W/(m 2·K)]代入数值得:β=1/[Σδi /λi +1/βq ]= 2.76③混凝土虚厚度计算:hˊ=k·λ/βk——折减系数,取2/3;λ——混凝土的传热系数,取2.33[W/(m·K)]hˊ=k·λ/β=0.5628④混凝土计算厚度:H=h+2hˊ= 3.63m⑤混凝土表面温度T 2(t)= T q +4·hˊ(H- h)[T 1(t)- T q ]/H 2式中:T 2(t)——混凝土表面温度(℃)T q —施工期大气平均温度(℃)hˊ——混凝土虚厚度(m)H——混凝土计算厚度(m)式中: hˊ——混凝土虚厚度(m)式中:β——混凝土保温层的传热系数[W/(m 2·K)]T 1(t)——t 龄期混凝土中心计算温度(℃)不同龄期混凝土的中心计算温度(T 1(t))和表面温度(T 2(t))如下表。

大体积混凝土水化热计算

大体积混凝土水化热计算

大体积混凝土水化热计算大体积混凝土水化热计算一、背景介绍大体积混凝土指的是单体体积大于50m³的混凝土结构,其水化热问题具有重要意义。

水化热是指混凝土在凝固过程中由水泌热所导致的温度升高。

在大体积混凝土结构中,由于体积较大且散热不及小体积混凝土,水化热可能引起温度升高,从而影响混凝土的工程性能和耐久性。

二、水化热计算方法1. 水化热计算的基本原理水化热计算是通过考虑混凝土材料特性、环境温度、外部散热条件等参数,以数值模拟的方式计算混凝土结构在水化过程中产生的温度变化。

常用的水化热计算方法包括数学模型法、试验法和数值模拟法。

2. 数学模型法数学模型法是通过建立包括质量守恒、能量守恒和动量守恒等方程的数学模型,来描述混凝土在水化过程中的温度变化。

数学模型法的关键是建立准确的初始和边界条件,以及选择合适的数值方法进行计算。

3. 试验法试验法是通过对冷却试件的实测温度等数据进行统计分析,以得出混凝土水化热的温度变化规律。

试验法需要进行大量的试验工作,对试验条件和试件尺寸等要求较高。

4. 数值模拟法数值模拟法是利用计算机软件模拟混凝土水化热过程的温度变化。

数值模拟法可以通过建立有限元模型,考虑混凝土材料的温度传导和水化反应等因素,进行快速有效的水化热计算。

三、水化热计算的影响因素1. 混凝土材料特性混凝土的水胶比、水泥品种、水化热产热率等材料特性会影响水化热计算结果。

不同材料的特性不同,水化热的温升程度也会有所差异。

2. 环境温度环境温度是指混凝土结构所处的周围温度。

不同环境温度对混凝土的水化热影响不同,较高的环境温度会加速水化反应,导致更高的温度升高。

3. 外部散热条件外部散热条件包括混凝土表面散热、周围物体散热和自由对流散热等。

不同的散热条件会对混凝土的水化热产生影响,例如表面散热条件好的情况下,混凝土温度升高的幅度会相对较小。

四、附件本所涉及的附件如下:1. 水化热计算的数学模型2. 混凝土材料特性表3. 环境温度数据统计表4. 外部散热条件参数表五、法律名词及注释1. 混凝土:一种以水、水泥和骨料为基本原料,经过搅拌、浇筑和硬化而成的建筑材料,具有坚固、耐久等特点。

大体积混凝土计算书

大体积混凝土计算书

1 混凝土泵输出量和搅拌车数量计算1 泵车数量计算N=q nq max·η=120140∗0.6=2式中:q n-混凝土浇筑数量,取q n=120m3/h;q max-混凝土输送泵车最大排量,取q max=140m3/h;η-泵车作业效率,取η=0.6。

2 每台泵车需配备的混凝土搅拌车数量计算N=Q1V(LS+T t)=75.620(7.630+2060)=3式中:Q1-混凝土泵的实际输出量Q1=Q max·α·η=140*0.9*0.6=75.6m3/h;V-每台混凝土搅拌车容量,取V=20m3;S-混凝土搅拌车平均行车速度,取30km/h;L-搅拌桩到施工现场往返距离,取7.6km;T t-每台混凝土搅拌车总计停歇时间,取20min。

2 混凝土温升计算1 水泥水化热计算水泥水化热可按下式计算:Q0=4(3.1)7/Q7−3/Q3-在龄期3d 时的累积水化热(kJ/kg);式中:Q3-在龄期7d 时的累积水化热(kJ/kg);Q7Q-水泥水化热总量(kJ/kg)。

不同龄期水泥水化热见表3.1-1。

表3.1-1 水泥在不同期限内的发热量计算得Q=392.37kJ/kg。

2 胶凝材料水化热计算胶凝材料水化热可按下式计算:Q=(k1+k2−1)Q0(3.2)式中:Q-胶凝材料水化热总量(kJ/kg);k1-粉煤灰掺量对应的水化热调整系数,取值见表3.1-2。

k2-矿渣粉掺量对应的水化热调整系数,取值见表3.1-2。

表3.1-2 不同掺量掺合料水化热调整系数注:表中掺量为掺合料占总胶凝材料用散的百分比。

本项目承台C40混凝土粉煤灰掺量为14.9%,不掺矿渣。

故Q=0.955*Q=374.71kJ/kg。

3 混凝土绝热升温值计算混凝土绝热温升值可按下式计算:T(t)=WQCρ(1−e−mt)(3.3)式中: T(t)-混凝土龄期为t 时的绝热温升(℃);W-每立方米混凝土的胶凝材料用量(kg/m3);C-混凝土的比热容,可取0.92~1.00[kJ/(kg·℃)],取0.96kJ/(kg·℃);ρ-混凝土的质量密度,根据配合比取2417.4kg/m3;t-混凝土龄期(d),取3d、6d、9d、12d、15d、18d、21d;m-与水泥品种、用量和入模温度等有关的单方胶凝材料对应系数。

大体积混凝土热力计算

大体积混凝土热力计算

二、基础底板混凝土热工计算基础底板混凝土入模温度取30℃,环境温度取30℃(9月份浇砼)。

为了避免水泥水化热引起的温度应力导致裂缝,应在底板混凝土表面覆盖一层塑料薄膜(保湿用)和阻燃草帘被(保温用)。

当混凝土表层与外界温差不大于20℃,底板混凝土中心与表层的温差不大于25℃,且平均降温速度小于1.5~2.0℃/d时才可拆除底板混凝土保温层。

分别取3d、6d、9d的龄期对底板大体积混凝土各项温度指标进行计算:〔以下计算公式见《建筑施工手册》(第四版)缩印本第614—615页〕(1)底板混凝土龄期为3d时,最大绝热温升:式中Th——混凝土最大绝热温升(℃);mc——混凝土中水泥用量(含膨胀剂)(kg/m3),根据搅拌站提供的配合比试配单,水泥用量为260 kg/m3,膨胀剂用量为28 kg/m3,取mc =288 kg/m3;Q——水泥28d水化热(kJ/kg),取375(kJ/kg);c——混凝土比热,取0.97〔kJ/ (kg•K)〕;ρ——混凝土密度,取2400(kg/ m3);e——为常数,取2.718;t——混凝土的龄期(d),t=3d;m——系数、随浇筑温度改变,当浇筑温度为30℃时,m=0.406(1/d)。

℃(2)混凝土中心计算温度T1(t)=Tj+Th•式中T1(t)——t龄期混凝土中心计算温度(℃);Tj ——混凝土浇筑温度(℃),取常温30℃;——t龄期降温系数,按板厚2.6m计算,3d龄期时。

T1(3)=30+32.67×0.656=51.43℃(3)混凝土表层(表面下50mm处)温度1)保温材料厚度(保温材料为阻燃草帘被)式中——保温材料厚度;h ——混凝土浇筑块体厚度,本工程大体积基础底板厚度核心筒外为2.0m,核心筒内2.6m;——所选保温材料导热系数〔W/(m•K)〕,草帘被=0.14;T2 ——混凝土表面温度(℃);Tq ——施工期大气平均温度,取30℃;——混凝土导热系数,取2.33 W/(m•K);Tmax ——计算得混凝土最高温度(℃);取T2-Tq=20℃,Tmax-T2=25℃Kb ——传热系数修正值。

大体积混凝土相关计算

大体积混凝土相关计算

大体积混凝土相关计算第一节浇筑体温度应力和收缩应力计算1混凝土绝热温升计算T t=WQCρ(1−e−mt)m=km0,m0=AW+B,W=λW C,k=k1+k2—1式中:T(t)——混凝土龄期为t时的绝热温升(℃);W——每立方米混凝土的胶凝材料用量(kg/m3);C—混凝土的比热容,可取0.92~1.00[kJ/(kg·℃)],取0.97;ρ——混凝土的质量密度,可取2400~2500( kg/m3),取2400;t——混凝土龄期(d);m——与水泥品种、用量和入模温度等有关的单方胶凝材料对应系数。

按20℃入模温度考虑,k取值0.85+0.86-1=0.71,W取值0.65×435=282.75kg,m0取值0.0024×282.75+0.5159=1.195,m取值0.71×1.195=0.848计算过程:龄期3d的绝热温升:T(3d)=282.75×314×(1-e-0.848×3)/(0.97×2400)=35.14℃龄期7d的绝热温升:T(7d)=282.75×354×(1-e-0.848×7)/(0.97×2400)=38.04℃龄期28d的绝热温生:T(28d)=282.75×375×(1-e-0.848×28)/(0.97×2400)=45.55℃T m=282.75×375×1/(0.97×2400)=45.55℃不同品种、强度等级水泥的水化热:2混凝土收缩值的当量温度计算εy(t)=εy0(1−e−0.01t)∙M1∙M2∙M3∙∙∙M11T y(t)=εy(t)/α式中:εy——龄期为t时,混凝土收缩引起的相对变形值;εy0——在标准试验状态下混凝土最终收缩的相对变形值,取4.0×10-4;M1、M2、…M1——混凝土收缩变形不同条件影响修正系数;T y(t)——龄期为t时,混凝土收缩值当量温度;α——混凝土的线膨胀系数,取1.0×10-5。

大体积砼热工计算

大体积砼热工计算

大体积混凝土热工计算1.底板混凝土单次混凝土浇筑厚度最大为2850mm,混凝土强度等级为C35/P12,理论上该处混凝土内部温度最高,容易产生裂缝,所以将此部位混凝土作为范例进行热工计算。

根据C35/P12混凝土配合比为:P.O42.5级水泥227kg,水162kg,中砂761kg,石子1051kg,粉煤灰:102kg,S95级磨细矿渣48kg。

2.预计施工浇筑时间为5月份,查气象历史数据,月最高平均气温为28°。

3.水泥水化热:q=286.6KJ/kg7.1混凝土表面温度裂缝控制计算大体积混凝土结构施工应该使混凝土中心与表面温度、表面温度与大气温度之差在允许范围内,则可控制混凝土裂缝的出现。

7.1.1混凝土的绝热温升水泥水化热引起的混凝土内部实际最高温度与混凝土的绝热温升有关。

混凝土的绝热温升:T i=W×Q×(1-e-mt)/(C×ρ)式中:T h—混凝土的绝热温升(℃)W—每立方混凝土的胶凝材料用量(kg/m3),W=227+102+48=377kg/m3Q—每公斤水泥的水化热,本工程为P.O42.5水泥,查计算手册,Q为335k J/kg C—混凝土比热0.994k J/(kg·K);ρ—混凝土容重2400㎏/m3;t—混凝土龄期(天);m—常数,与水泥品种、浇筑时温度有关,取0.406;e—常数,e=2.718自然对数的底;T(3)=WQ(1-e-mt)/Cρ=377×335×(1-e-0.406×3)/(0.994×2400)=38.198°C;经过计算,得到3天,5天,7天,14天混凝土最高水化热绝热温升:Th3=38.198℃,Th5=47.122℃,Th7=51.076℃,Th14=54.06℃。

7.1.2混凝土的内部最高温度Tmax(t) =Tj+Ti×ζ(t)式中Tmax(t)—混凝土t龄期内部最高温度(℃);分别取3、5、7、14天计算;Tj—混凝土浇筑温度(℃),混凝土浇筑入模温度取35℃;ζ—混凝土t龄期的散热系数,3天,5天,7天,14天分别计算得ζ(3)=0.55,ζ(5)=0.51,ζ(7)=0.351,ζ(14)=0.183;T max =Ti+T(7)ζ=35+38.198×0.55=51°C;按上式计算,3天,5天,7天,14天的结果为T max3=56℃,T max5=59.03℃,T max7=52.93℃,T max14=44.89℃7.1.3砼表层(表面下50~100mm)温度(1)、保温材料厚度(麻袋)δ=0.5h.λx (T2-Tq)Kb/λ(Tmax-T2)=0.5×2.85×0.05×20×1.3/2.33×25=0.0318mδ-保温材料厚度λx-所选保温材料导热系数,材料选麻袋,考虑薄膜保温作用按0.05(T2-Tq)本工程取20℃(Tmax -T2)最高温度与表面温度差,本工程取25℃Kb–传热系数修正值,选1.3。

水化热计算公式

水化热计算公式

水泥遇水后发生一系列物理化学反应时放出的热量称为水化热,以J/g表示。

水泥的水化热和放热速度直接关系到混凝土工程的质量。

在大体积混凝土结构中甚至能产生几十度的温差,巨大的温度应力会导致混凝土开裂,加大了混凝土被腐蚀的速率。

水化热测试对水泥的生产、使用及理论研究都非常重要。

水泥水化热测试分为直接法(代用法)、间接法(基准法)两种。

直接法测定水泥水化热实验原理:热量计在恒定的温度环境中,直接测定热量计内水泥胶砂的温度变化,通过计算热量计内积蓄的和散失的热量总和,求得水泥水化7d内的水化热。

水泥水化热测定装置:热量计;恒温水槽;胶砂搅拌机;天平;捣棒等。

实验步骤:①准备工作试验前应将广口保温瓶(g)、软木塞(g1 )、铜套管(g2)、截锥形圆筒(g3)和盖(g4)、衬筒(g5)及软木塞封蜡(g6)分别称量记录。

热量计各部件除衬筒外,应编号成套使用。

②热量计热容量的计算热量计的热容量,按下式计算,计算结果保留至0.01:式中:C—不装水泥胶砂时热量计的热容量,单位为焦耳每摄氏度(J/℃);g—保温瓶质量,单位为克(g);g1—软木塞质量,单位为克(g);g2——铜套管质量,单位为克(g);g3—塑料截锥筒质量,单位为克(g);g4—塑料截锥筒盖质量,单位为克(g);g5—衬筒质量,单位为克(g);g6—软木塞底面的蜡质量,单位为克(g);v—温度计伸人热量计的体积,单位为立方厘米(cm3)。

式中各系数分别为所用材料的比热容,单位为焦耳每克摄氏度[J/(g .℃)]。

③热量计散热常数的测定测定前24 h开起恒温水槽,使水温恒定在(20士0.1)℃范围内。

试验前热量计各部件和试验用品在试验室(20±2℃)温度下恒温24h,首先在截锥形圆筒内放人塑料衬筒和铜套管,然后盖上中心有孔的盖子,移人保温瓶中。

用漏斗向圆筒内注入温水,准确记录用水质量(W)和加水时间(精确到(min),然后用配套的插有温度计的软木塞盖紧。

大体积混凝土水化热计算及冷凝管布设方案

大体积混凝土水化热计算及冷凝管布设方案

大体积混凝土水化热计算及冷凝管布设方案附件七:大致积混凝土水化热计算及冷凝管布设方案根据对往年同季节气温进行统计,本地区9月16日~10月15日每天高温一般不超过25℃,10月16日~11月15日每天高温一般不超过15℃。

根据本工程施工进度计划,49#和54#两个机位处于9月16日~10月15日期间进行大致积混凝土承台施工,50#~53#机位处于10月16日~11月15日期间进行施工。

因此,考虑混凝土水化热环境因素时,49#和54#两个机位按照25℃大气温度进行计算,50#~53#机位按照15℃大气温度进行计算。

计算时,考虑海水对流,按照海水温度低于大气温度5℃进行计算。

1、单位系统质量单位:kg;力的单位:kgf;能量单位:kcal,1kcal=4.186kcal,考虑使用海水降温,使用kcal作为能量单位更利于计算;长度单位:m;温度单位:℃;时间单位:h。

2、混凝土参数比重:2500kg/m³;导热系数:2.02kcal/(m.h.K);对流系数:19.84kcal/(㎡.h.K);比热容:0.23kcal/(kg.K)。

根据以往施工经验,考虑自拌C45混凝土现场养护条件28天强度等级为50Mpa,达到70%强度(31.5Ma)所需时间为25℃3天,15℃7天。

考虑采用普通硅酸盐水泥,胶凝材料根据发热量全部折合成水泥掺量为450kg/m³。

C45混凝土在25℃和15℃天气环境下的强度发展曲线如下图左图和右图所示。

(备注:图中强度单位为kgf/㎡。

)3、温度要求(1)混凝土表里温差不得超过25℃,表层温度取混凝土面以内5cm位置,内部温度取混凝土内部最高温度;混凝土表层温度和环境温度差不得超过20℃。

降温速度不宜超过2℃/d。

使用midas软件建立模型计算模型。

为更加直观的观察混凝土部的温度应力,建模时采用只建立1/2模型,但进行整体对称计算的方式。

为简化计算,直接将承台模型简化成圆柱结构。

大体积混凝土温度自动计算表

大体积混凝土温度自动计算表

47.78 45.97 44.17 37.13
8.44 8.31 8.19 8.06 7.77 7.47 7.17 6.80 6.42 6.05 4.59
保温层合 理
8.混凝土 各龄期的 弹性模量 计算
E(t) E0 (1 e t )
式中:
E0--混凝土 的弹性模 量,一般取
28d的弹性

φ--系数, 取0.09
K1
由易透风材料组成,但在混凝土面层上再铺一层 不透风材料
2
在易透风保温材料上铺一层不易透风材料
1.6
1.3
K2 2.3 1.9
在易透风保温材料上下各铺一层不易透风材料 1.3
1.5
由不易透风的材料组成
注:K1值为 风速不大于 4m/s的情 况,其余为 K2
保温层材料计划用一层塑料薄膜
加一层棉被
δ1=
(kg/m3) C--混凝土
的ρ比--热混,凝一土
的重力密 m---与水泥
品种、浇筑
温度等有关
的系数,
0.3-0.5取
0.4(d-1)
t---混凝土
龄期(d)
正常取值t=

则Tmax=
72.67
3.混凝土 各龄期内 部实际温 度
T1(t) Tj Tmax (t)
TJ=
25 ℃

T1(3)=
64.10 0.54 T1(13)= 48.13 0.32
2.695
μ(6)=
2.129
μ(9)=
1.838
μ(21)=
1.358
20% 1.03 1.13 1.01 1.00
30% 0.97 1.09
1.15
满足抗裂条件 满足抗裂条件 满足抗裂条件 满足抗裂条件

大体积混凝土热工计算书

大体积混凝土热工计算书

大体积混凝土热工计算书大体积混凝土是指体积较大,一般厚度大于3米,体积大于1000立方米的混凝土结构。

大体积混凝土在工程中应用广泛,如桥梁基础、高层建筑基础等。

大体积混凝土与其他混凝土相比,具有结构厚、体积大、钢筋密集等特点,因此其施工过程中的热工计算尤为重要。

本计算书将根据相关规范和理论,对大体积混凝土施工过程中的热工问题进行计算和分析。

《混凝土结构工程施工规范》(GB-2011)《混凝土外加剂应用技术规范》(GB-2013)《民用建筑热工设计规范》(GB-2016)混凝土材料:采用C30混凝土,密度为2400kg/m³,比热容为92kJ/(kg·℃),导热系数为33W/(m·℃)。

钢筋材料:采用HRB400钢筋,密度为7850kg/m³,比热容为5kJ/(kg·℃),导热系数为80W/(m·℃)。

施工环境:考虑混凝土浇筑时的温度为25℃,环境温度为20℃。

体积表面系数计算:根据混凝土立方体尺寸,计算立方体表面积与体积之比,即体积表面系数。

混凝土内部温度计算:根据混凝土材料比热容和导热系数,结合环境温度和浇筑温度,计算混凝土内部温度。

表面温度计算:根据混凝土表面与环境之间的热交换,计算表面温度。

温度应力计算:根据混凝土内部温度和表面温度之差,计算温度应力。

体积表面系数计算结果:根据计算,该大体积混凝土的体积表面系数为85。

该系数较大,说明混凝土表面积较大,散热较快。

因此,在施工过程中应采取相应的措施,如通水冷却、表面保温等,以控制混凝土内部温度。

混凝土内部温度计算结果:根据计算,该大体积混凝土的内部温度最高可达35℃。

由于大体积混凝土厚度较大,热量传递至表面需要一定时间,因此内部温度较高。

在施工过程中应采取相应的措施,如分层浇筑、控制水泥用量等,以降低内部温度。

表面温度计算结果:根据计算,该大体积混凝土的表面温度为24℃。

由于大体积混凝土表面积较大,与环境之间的热交换较为明显。

大体积混凝土水化热计算

大体积混凝土水化热计算

水化热温度计算1、最大绝热温升(1)Th=(mc+K·F)Q/c·ρ(2) Th=mc·Q/c·ρ(1-eˉ-mt)式中Th----混凝土最大绝热温升(℃)mc---混凝土中水泥用量(kg/m3)F----混凝土活性掺合料用量(kg/m3)K----掺合料折减系数.取0.25~0.30Q----水泥28d水化热(kJ/kg)见下表C---混凝土比热,取0.97(kJ/kg·K)ρ—混凝土密度,取2400(kg/m3)e----为常数,取2.718t-----混凝土的龄期(d)m----系数,随浇筑温度改变,见下表2、混凝土中心温度计算T1(t)=Tj+ Th·ε(t)式中T1(t)----t龄期混凝土中心温度(℃)Tj--------混凝土浇筑温度(℃)ε(t)----t龄期降温系数,见下表3、球磨机基础底板第一步混凝土浇筑厚度为1.6m,温度计算如下。

已知混凝土内部达到最高温度一般发生在浇筑后3-5天。

所以取三天降温系数0.49计算Tmax。

混凝土的最终绝热温升计算:Tn=mc*Q/(c*p) (1)不同龄期混凝土的绝热温升可按下式计算:Tt=Tn(1-e-mt) (2)式中:Tt:t龄期时混凝土的绝热温升(℃);Tn:混凝土最终绝热温升(℃);M:随水泥品种及浇筑温度而异,取m=0.362;T:龄期;mf:掺和料用量;Q:单位水泥水化热,Q=375kj/kg;mc:单位水泥用量;(430kg/m3)c:混凝土的比热,c=0.97kj/(kg*k);p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升:代入(1)得;Tn=mc*Q/(c*p)=430*375/(0.9*2400)=69.3℃代入(2)得:T3=69.3*0.662=45.88℃;T4=69.3*0.765=53.01℃;T5=69.3*0.836=57.93℃;T7=69.3*0.92=63.76℃;4、球磨机底板混凝土内部最高温度计算:Tmax=Tj+Tt*δ=20+63.76*0.44=48.05℃Tmax:混凝土内部最高温度(℃);Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃;Tt:t龄期时的绝热温升;δ:降温系数;混凝土的内部最高温度为48.05℃,根据现场实测表面温度Tb,计算内外温差,当温差超过25℃时,需进行表面覆盖保温材料,以提高混凝土的表面温度,降低内外温差。

水化热仿真模拟计算在大体积混凝土施工中的应用

水化热仿真模拟计算在大体积混凝土施工中的应用

水化热仿真模拟计算在大体积混凝土施工中的应用
水化热是指水泥水化反应过程中产生的热量。

在大体积混凝土施工中,由于混凝土的体积较大,水化反应会释放大量的热量,导致混凝土温度升高。

这种温度升高会引起混凝土内部和外部温度梯度的变化,从而引发一系列的问题,如开裂、温度应力增大等。

为了研究混凝土水化热在大体积混凝土施工中的影响,可以采用水化热仿真模拟计算方法。

水化热仿真模拟计算是利用计算机模拟混凝土水化过程中的热释放情况,预测混凝土温度变化和水化热应力的分布情况。

该方法可以有效地指导大体积混凝土施工中的温度控制和结构设计,减少温度应力引起的开裂和变形问题。

水化热仿真模拟计算可以预测混凝土温度的变化规律。

通过对混凝土材料的热物性参数、水化反应的速率方程等参数进行建模和计算,可以得到混凝土内部温度随时间的变化曲线。

通过分析这些曲线,可以预测混凝土的温度升高速度和峰值温度,从而为温度控制提供依据。

水化热仿真模拟计算可以预测混凝土的应力分布情况。

水化热引起的温度升高会导致混凝土内外部出现温度梯度,从而引起应力的产生和积累。

通过对水化热仿真模拟计算,可以得到混凝土内部和外部的温度梯度分布情况,并据此计算出混凝土的水化热应力。

根据应力的分布情况,可以对混凝土施工过程中的温度控制、结构设计等进行合理的调整和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

球磨机混凝土水化热温度计算
1、最大绝热温升
(1)Th=(mc+K·F)Q/c·ρ
(2) Th=mc·Q/c·ρ(1-e¯-mt)
式中 Th----混凝土最大绝热温升(℃)
mc---混凝土中水泥用量(kg/m3)
F----混凝土活性掺合料用量(kg/m3)
K----掺合料折减系数.取~
Q----水泥28d水化热(kJ/kg)见下表
C---混凝土比热,取(kJ/kg·K)
ρ—混凝土密度,取2400(kg/m3)
e----为常数,取
t-----混凝土的龄期(d)
m----系数,随浇筑温度改变,见下表
2、混凝土中心温度计算
T1(t)=Tj+ Th·ε(t)
式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃)
ε(t)----t龄期降温系数,见下表
3、球磨机基础底板第一步混凝土浇筑厚度为,温度计算如下。

已知混凝土内部达到最高温度一般发生在浇筑后3-5天。

所以取三天降温系数计算Tmax。

混凝土的最终绝热温升计算:
Tn=mc*Q/(c*p) (1)
不同龄期混凝土的绝热温升可按下式计算:
Tt=Tn(1-e-mt) (2)
式中:Tt:t龄期时混凝土的绝热温升(℃);
Tn:混凝土最终绝热温升(℃);
M:随水泥品种及浇筑温度而异,取m=;
T:龄期;
mf:掺和料用量;
Q:单位水泥水化热,Q=375kj/kg;
mc:单位水泥用量;(430kg/m3)
c:混凝土的比热,c=(kg*k);
p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升:
代入(1)得;Tn=mc*Q/(c*p)=430*375/(*2400)=℃
代入(2)得:
T3=*=℃;
T4=*=℃;
T5=*=℃;
T7=*=℃;
4、球磨机底板混凝土内部最高温度计算:
Tmax=Tj+Tt*δ=20+*=℃
Tmax:混凝土内部最高温度(℃);
Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃;
Tt:t龄期时的绝热温升;
δ:降温系数;
混凝土的内部最高温度为℃,根据现场实测表面温度Tb,计算内外温差,当温差超过25℃时,需进行表面覆盖保温材料,以提高混凝土的表面温度,降低内外温差。

5、混凝土表面保温层厚度计算
δi=K*λi(Tb-Tq)/ λ(Tmax-Tb)=****(23-20)/*(48-23)=即10mm
其中:δi:保温材料所需厚度(m);
h:结构厚度(m);
λi:保温材料的导热系数,设用草袋保温,λi为;
λ:混凝土的导热系数,取;
Tq:混凝土3-7天的空气平均温度;
Tb:混凝土表面温度;
K:传热系数的修正值,即透风系数。

对易于透风的保温材料取;对不易透风的保温材料取或;
根据计算结果采用1层塑料薄膜+两层保温麻布覆盖完全满足保温要求。

相关文档
最新文档