高二下第一次月考试卷
贵州省高二下学期第一次月考数学试题(解析版)
一、单选题1.设集合,集合N 为函数的定义域,则( ){}|12M x x =-≤≤()lg 1y x =-M N ⋂=A . B . C . D . ()12,[]12,[)12,(]12,【答案】D【分析】根据对数的真数为正数化简集合,进而由集合的交运算即可求解. (1,)N =+∞【详解】由,所以, 101x x ->⇒>(1,)N =+∞又,所以, {}|12M x x =-≤≤(]1,2M N = 故选:D2.若,则( ) 43z i =-zz =A .1 B .-1C .D .4355i +4355i -【答案】C【分析】根据共轭复数与模长的求解计算即可.【详解】因为,故. 43z i =-4355z i z==+故选:C.3.已知椭圆中,长轴长为10 )22221(0)x y a b a b +=>>A .B .10C .D .【答案】A【分析】根据椭圆长轴和离心率的概念即可求解.【详解】,所以;又因为 210a = 5a =c e a ==得c =2c =故选:A.4.设是直线,,是两个不同的平面,下列命题中正确的是( ) l αβA .若,,则 //l α//l β//αβB .若,,则 αβ⊥l α⊥l β⊥C .若,,则 αβ⊥//l αl β⊥D .若,,则 //l αl β⊥αβ⊥【答案】D【解析】由线面平行的性质和面面平行的判定可判断选项A ;由面面垂直的性质定理和线面平行的性质可判断选项B ;由面面垂直的性质定理和线面位置关系可判断选项C ;由线面平行的性质和面面垂直的判定定理可判断选项D ;【详解】对于选项A :若,,则或与相交,故选项A 不正确; //l α//l β//αβαβ对于选项B :若,,则或,故选项B 不正确;αβ⊥l α⊥//l βl β⊂对于选项C :若,,则或或与相交,故选项C 不正确;αβ⊥//l α//l βl β⊂l β对于选项D :若,由线面平行的性质定理可得过的平面,设,则,所以//l αl γm γα= //m l ,再由面面垂直的判定定理可得,故选项D 正确;m β⊥αβ⊥故选:D5.已知{}是等差数列,且,则=( ) n a 466,4a a ==10a A .2 B .0C .D .2-4-【答案】B【分析】根据等差数列基本量的计算即可求解.【详解】设等差数列的首项为,公差为,由,即,解得. {}n a 1a d 4664a a =⎧⎨=⎩113654a d a d +=⎧⎨+=⎩191a d =⎧⎨=-⎩所以,所以. 1(1)9(1)10n a a n d n n =+-=--=-+1010100a =-+=故选:B6.已知点P (x ,y )是曲线上的一动点,则点P (x ,y )到直线的距离的最小值为2y x =240x y --=( ) ABCD .35【答案】C【分析】当曲线在点P 处的切线与已知直线平行时点P 到该直线的距离最小,结合导数的几何意义和点到直线的距离公式计算即可求解.【详解】当曲线在点P 处的切线与直线平行时,点P 到该直线的距离最小,240x y --=,2y x '=由直线的斜率,则, 240x y --=2k =22x =得,有,所以, 1x =21y x ==(1,1)P ∴到直线距离. (1,1)P 240x y --=d ==故选:C.7.如图是下列四个函数中的某个函数在区间[-3,3]的大致图像,则该函数是( )A .B .C .D .22sin 1xy x =+321x xy x -=+22cos 1x xy x =+3231x xy x -+=+【答案】D【分析】利用赋值法,结合图形和排除法即可判断ABC ;利用导数和零点的存在性定理研究函数的单调性,结合图形即可判断D. 【详解】A :设,由得, ()22sin 1x f x x =+π3π2<<sin 30>则,结合图形,不符合题意,故A 错误; ()2sin 33010f =>B :设,则,结合图形,不符合题意,故B 错误;()321x xg x x -=+()10g =C :设,当时,,,22cos ()1x x h x x =+π0,2x ⎡⎤∈⎢⎥⎣⎦cos [0,1]x ∈212x x +≥所以,即, 222cos 20111x x xx x ≤≤≤++0()1h x ≤≤当且仅当时等号成立,结合图形,不符合题意,故C 错误;1x =D :设,则, 323()1x xu x x -+=+(0)x >422263()(1)x x u x x --+'=+(0)x >设,则,42()63v x x x =--+(0)x >3()4120v x x x '=--<所以函数在上单调递减,且, ()v x (0,)+∞(0)30,(1)40v v =>=-<故存在,使得,0(0,1)x ∈0()0v x =所以当时,即,当时,即,0(0,)x x ∈()0v x >()0u x '>0(,)x x ∈+∞()0v x <()0u x '<所以函数在上单调递增,在上单调递减,结合图形,符合题意,故D 正确. ()u x 0(0,)x 0(,)x +∞故选:D.8.已知△ABC 的三个内角分别为A ,B ,C ,且满足,则的最大值为222sin 2sin 3sin C A B =-tan B ( ) ABCD .54【答案】B【分析】利用正弦定理及余弦定理表示,结合基本不等式求得的取值范围,从而求得cos B cos B 的取值范围,即得.tan B 【详解】依题意,222sin 2sin 3sin C A B =-由余弦定理得,, 22223c a b =-2222133b ac =-所以 222222222222114143333cos 2226a c a c a ca cb ac B ac ac ac ac+-+++-+====⋅,当且仅当时等号成立, 1263≥=2a c =即为锐角,,, B 2cos 13B ≤<22419cos 1,19cos 4B B ≤<<≤,222222sin 1cos 15tan 10,cos cos cos 4B B B B B B -⎛⎤===-∈ ⎥⎝⎦所以. tan B 故选:B.二、多选题9.下列说法正确的是( ) A .直线在y 轴上的截距为2 24y x +=B .直线必过定点(2,0) ()20R ax y a a --=∈C .直线的倾斜角为10x +=2π3D .过点且垂直于直线的直线方程为 ()2,3-230x y -+=210x y ++=【答案】BD【分析】根据直线的截距式方程即可判断A ,根据直线恒过定点的求法即可判断B ,根据直线斜率的定义即可判断C ,根据垂直直线斜率之积为-1,结合直线的点斜式方程即可判断D. 【详解】A :直线在轴上的截距为,所以A 不正确; 24y x +=y 2-B :由,得,20ax y a --=(2)0x a y --=令,解得:,所以该直线恒过定点,故B 正确;200x y -=⎧⎨=⎩20x y =⎧⎨=⎩(2,0)C :设直线的倾斜角为,,斜率为 10x +=α(]0,απ∈由,故C 错误;tan α=56πα=D :由直线,得该直线的斜率为,230x y -+=12所以过点且垂直于直线的直线斜率为, (2,3)-230x y -+=2故其方程为,即,故D 正确. 32(2)y x -=-+210x y ++=故选:BD.10.斜率为1的直线l 经过抛物线的焦点F ,且与抛物线相交于两点则下24y x =()()1122,,,A x y B x y 列结论正确的有( ) A .B .抛物线的准线方程为 (1,0)F 1y =-C .D .3OA OB ⋅=-10AB =【答案】AC【分析】由抛物线的性质判断AB ;联立直线l 和抛物线方程,利用韦达定理,以及数量积公式、抛物线的定义判断CD.【详解】由抛物线知,焦点,准线方程为,所以A 正确,B 不正确.24y x =(1,0)F =1x -由,消去得:,所以, 214y x y x=-⎧⎨=⎩y 2610x x -+=126x x +=121=x x 所以,所以C 正确; 121212121212(1)(1)2()13OA OB x x y y x x x x x x x x ⋅=+=+--=-++=- 所以,所以D 不正确. 12||28AB x x =++=故选:AC11.已知函数,其图像相邻两条对称轴之间的距离为,且函数()()cos (0,2f x x πωϕωϕ=+><π2是奇函数,则下列判断正确的是( )π3f x ⎛⎫- ⎪⎝⎭A .函数f (x )的最小正周期为B .函数f (x )的图像关于点(,0)对称 ππ6C .函数f (x )在上单调递增D .函数f (x )的图像关于直线对称 3ππ4⎡⎤⎢⎥⎣⎦,7π12=-x 【答案】ABD【分析】利用函数图像相邻两条对称轴之间的距离为和函数是偶函数,求出π2π()3f x -,从而可判断选项A 正确;再利用余弦函数的图像与性质,可以判断出选项()cos(2π)6=+f x x BCD 的正误.【详解】因为函数图像相邻两条对称轴之间的距离为,则,π2π22T =πT ∴=又,2π,0T ωω=>2ω∴=又函数是偶函数,因为, π()3f x -ππ2π()cos(2())cos(2)333f x x x ϕϕ-=-+=-+所以,即, 2πππ(Z)32k k ϕ-+=+∈7ππ(Z)6k k ϕ=+∈又,,则.π2ϕ<π6ϕ∴=()cos(2π)6=+f x x 函数最小正周期,故选项A 正确; πT =函数图像对称点的横坐标为:,即, ππ2π(Z)62x k k +=+∈ππ(Z)62k x k =+∈令时,,故选项B 正确; 0k =π6x =又由:,得到 ππ2π22π(Z)6k x k k -+≤+≤∈7ππππ(Z)1212k x k k -+≤≤-+∈所以函数的单调增区间为:, ()cos(2π)6=+f x x 7πππ,π(Z)1212k k k ⎡⎤-+-+∈⎢⎥⎣⎦令时,得到一个增区间为: 1k =-5π11π,1212⎡⎤⎢⎥⎣⎦故选项C 错误;函数图像的对称所在直线方程为;, πππ2π,(Z)6122k x k x k +==-+∈令时,,故选项D 正确. 1k =-7π12=-x 故选:ABD12.将全体正整数按照以下排列的规律排成一个三角形数阵,下列结论正确的是( )A .第8行最右边的数为38B .第10行从右向左第个5数为51C .第10行所有数的和为505D .第64行从左向右第7个数为2023 【答案】BCD【分析】根据三角数阵可知第行共有个数,且第行的最后一个数字是:,即为n n n 123n ++++ .结合等差数列前n 项求和公式计算,依次判断选项即可. (1)2n n +【详解】由三角形数阵可知, ①第行共有个数;n n ②第行的最后一个数字是:,即为. n 123n ++++ (1)2n n +A :因为,故A 错误; 1234567836+++++++=B :因为,1234567891055+++++++++=所以第行中的个数字依次为.故B 正确; 101046,47,48,49,50,51,52,53,54,55C :由,故C 正确;()5545104655464748495051525354555052S S ⨯+-=+++++++++==D :由,知第行最后的一个数为;()6316312346320162⨯++++++== 632016所以第行中的数字从左到右依次为642017,2018,2019,2020,2021,2022,2023,2024,,第7个数为2023,故D 正确. L 故选:BCD.三、填空题13.已知函数的最小正周期为,则___________. ()()sin 0f x x ωω=>πω=【答案】2【分析】利用正弦型函数的周期公式可求得的值.ω【详解】因为函数的最小正周期为,则. ()()sin 0f x x ωω=>π2π2πω==故答案为:.214.已知直线和圆相交于、两点,则弦长:210l x y --=22:210C x y y +--=A B AB =__________.【详解】由圆方可知其圆心坐标为,半径∴C (0,1)r =d. AB ===点睛:本题主要考查了直线与圆相交求截得弦长问题,属于基础题;求直线被圆所截得的弦长时,根据圆的性质通常考虑由弦心距,弦长的一般作为直角边,圆的半径作为斜边,利用勾股定理来解决问题,通常还会用到点到直线的距离公式.15.已知双曲线,若过右焦点F 且倾斜角为的直线与双曲线的右支有两个22221(0,0)x y a b a b-=>>30 交点,则此双曲线离心率的取值范围是___________.【答案】【分析】根据题意可知双曲线的渐近线方程的斜率需小于直线的斜率,得,结合b y x a =b <.b =【详解】由题意知,双曲线的渐近线方程为, by x a=±要使直线与双曲线的右支有两个交点, 需使双曲线的渐近线方程的斜率小于直线的斜率, by x a=即,即,由tan 30b a ︒<=b <b =,整理得,所以 <2234c a <c e a =<因为双曲线中,所以双曲线的离心率的范围是, 1e >故答案为:. 16.已知三棱锥的所有顶点都在球O 的球面上,SC 是球O 的直径若平面平面S ABC -.SCA ⊥SCB ,,,三棱锥的体积为9,则球O 的表面积为______. SA AC =SB BC =S ABC -【答案】36π【详解】三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S−ABC 的体积为9, 可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r , 可得 ,解得r=3. 112932r r r ⨯⨯⨯⨯=球O 的表面积为: .2436r ππ=点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.四、解答题17.已知数列{a n }的前n 项和为S n ,且满足,. 13a =123n n S a ++=(1)求数列{a n }的通项公式;(2)若等差数列{b n }的前n 项和为T n ,且,,求数列的前n 项和Q n .11T a =33T a =11{}n n b b +【答案】(1)(2)3nn a =9(21)nn +【分析】(1)根据数列的通项与的关系,化简求得,得到数列是首项为n a n S 13()n n a a n N ++=∈{}n a 3、公比为3的等比数列,即求解通项公式; (2)由(1)可得,得到,利用裂项法,3(21)n b n =-()()11111192n 12n 1182n 12n 1n n b b +⎛⎫==- ⎪-+-+⎝⎭即可求解.【详解】(1)当时,得, 1n =29a =由,得,123n n S a ++=123(2)n n S a n -+=≥两式相减得,又,∴,112()n n n n S S a a -+-=-1n n n S S a --=13(2)n n a a n +=≥又,∴,显然, 213a a =13()n n a a n N ++=∈10,3n n na a a +≠=即数列是首项为3、公比为3的等比数列,∴;{}n a 1333n nn a -=⨯=(2)设数列的公差为,则有,{}n b d 13b =由得,解得,∴,33T a =13327b d +=6d =3(1)63(21)n b n n =+-⨯=-又, ()()11111192n 12n 1182n 12n 1n n b b +⎛⎫==- ⎪-+-+⎝⎭∴==. n 111111Q 1183352n 12n 1⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111182n 1⎛⎫- ⎪+⎝⎭()n 92n 1+【点睛】本题主要考查等比数列的定义及通项公式、以及“裂项法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“裂项法”之后求和时,弄错项数导致错解,能较好的考查逻辑思维能力及基本计算能力等.18.若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足.222sin sin sin sin sin A B C B C --=(1)求角A ;(2)若,求△ABC 周长的取值范围. 6a =【答案】(1) 2π3A =(2)(12,6+【分析】(1)根据正弦定理边角互化,可得,由余弦定理即可求解,222a b c bc --=(2)根据正弦定理得,由内角和关系以及和差角公式可得b B=1sin 2c B B ⎫=-⎪⎪⎭,进而由三角函数的性质即可求解.【详解】(1)由正弦定理可得:,222a b c bc --=,, 2221cos 22c b a A bc +-∴==-()0,πA ∈ 2π3A ∴=(2)因为,,所以,故πA B C ++=2π3A =π3B C +=ππ(0)33C BB =-<<由正弦定理得: 62πsin sin sin sin3a bc A B C====所以,b B=π1sin 32c C B B B ⎫⎛⎫==-=-⎪ ⎪⎪⎝⎭⎭所以周长 ABCA 1π6sin 623a b cB B B B ⎫⎛⎫=++=++-=++⎪ ⎪⎪⎝⎭⎭因为,则π03B <<ππ2π<333B <+πsin 13B ⎛⎫<+≤ ⎪⎝⎭故π12663B ⎛⎫<++≤+ ⎪⎝⎭求周长的取值范围为.ABC A (12,6+19.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备9.810.3 10.0 10.29.99.810.0 10.1 10.29.7新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.x y 21s 22s(1)求,,,;x y 21s 22s(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高). 【答案】(1);(2)新设备生产产品的该项指标的均值较旧设221210,10.3,0.036,0.04x y s s ====备有显著提高.【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.(2)根据题目所给判断依据,结合(1)的结论进行判断. 【详解】(1), 9.810.31010.29.99.81010.110.29.71010x +++++++++==, 10.110.410.11010.110.310.610.510.410.510.310y +++++++++==, 22222222210.20.300.20.10.200.10.20.30.03610s +++++++++==. 222222222220.20.10.20.30.200.30.20.10.20.0410s +++++++++==(2)依题意,, 0.320.15y x -==⨯===,所以新设备生产产品的该项指标的均值较旧设备有显著提高. y x -≥20.设函数,其中.22()3ln 1f x a x ax x =+-+0a >(1)讨论的单调性;()f x (2)若的图象与轴没有公共点,求a 的取值范围.()y f x =x 【答案】(1)的减区间为,增区间为;(2). ()f x 10,a ⎛⎫ ⎪⎝⎭1,+a ⎛⎫∞ ⎪⎝⎭1a e >【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据及(1)的单调性性可得,从而可求a 的取值范围.()10f >()min 0f x >【详解】(1)函数的定义域为,()0,∞+又, ()23(1)()ax ax f x x+-'=因为,故,0,0a x >>230ax +>当时,;当时,; 10x a<<()0f x '<1x a >()0f x '>所以的减区间为,增区间为. ()f x 10,a ⎛⎫ ⎪⎝⎭1,+a ⎛⎫∞ ⎪⎝⎭(2)因为且的图与轴没有公共点,()2110f a a =++>()y f x =x 所以的图象在轴的上方,()y f x =x 由(1)中函数的单调性可得, ()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭故即. 33ln 0a +>1a e>【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化. 21.如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥体积最大时,求面MAB 与面MCD 所成二面角的正切值.M ABC -【答案】(1)证明见解析;(2)2.【分析】(1)证得平面,结合面面垂直的判定定理即可证出结论;DM ⊥BMC (2)当在的中点位置时体积最大,建立空间直角坐标系,利用空间向量的夹角坐标公式即M A AB 可求出结果.【详解】(1)由题设知,平面平面,交线为.CMD ⊥ABCD CD 因为,平面,BC CD ⊥BC ⊂ABCD 所以平面,平面,BC ⊥CMD DM ⊂CMD 故,因为是上异于,的点,且为直径, BC DM ⊥M A CDC D DC 所以,又,平面,DM CM ⊥BC CM C =I ,BC CM ⊂BMC 所以平面,而平面,DM ⊥BMC DM ⊂AMD故平面平面;AMD ⊥BMC (2)以D 为坐标原点,的方向为轴正方向,的方向为轴正方向,建立如图所示的空间DA x DC y 直角坐标系.D xyz -当三棱锥M −ABC 体积最大时,M 为的中点.CD 由题设得,()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,1,1D A B C M()()()2,1,1,0,2,0,2,0,0AM AB DA =-==设是平面MAB 的法向量,则(),,n x y z = 即,可取, 00n AM n AB ⎧⋅=⎪⎨⋅=⎪⎩ 2020x y z y -++=⎧⎨=⎩()1,0,2n = 又是平面的一个法向量,因此 DAMCD, cos ,n DA n DA n DA ⋅=== []0π,,n DA ∈ 得, sin ,n DA = tan ,2n DA = 所以面与面所成二面角的正切值是.MAB MCD 222.已知椭圆的左,右焦点分别为、,离心率为,直线l 经过点2222:1(0)x y C a b a b+=>>1F 2F 122F 且与椭圆C 交于不同两点A ,B ,当A 是椭圆C 上顶点时,l 与圆相切.223x y +=(1)求椭圆C 的标准方程;(2)求的取值范围.11F A F B ⋅ 【答案】(1) 2211612x y +=(2)[]12.7-【分析】(1)根据题意列出方程组,解之即可;22212bc c e a c a b⎧=⎪⎪==⎨⎪⎪=-⎩(2)当直线的斜率不存在时,易得;当直线的斜率存在时,设直线方程为l 117F A F B ⋅= l ,,,联立椭圆方程,利用韦达定理和平面向量数量积的坐标表示可得(2)y k x =-11(,)A x y 22(,)B x y ,令得,结合不等式的性质计算即可求解. 11F A F B ⋅= 22283634k k -+2343t k =+≥11577F A F B t ⋅=- 【详解】(1)当A 为椭圆的上顶点时,直线l 与圆相切, 则圆心到直线l ,a =有,得,1122bc a =bc =则,解得22212bc c e a c a b⎧=⎪⎪==⎨⎪⎪=-⎩4,a b ==所以椭圆的标准方程是; C 2211612x y +=(2)由(1)知,则椭圆的左焦点,当直线的斜率不存在时,2c =1(2,0)F -l 易求得,,则;(2,3)A (2,3)B -11443(3)7F A F B ⋅=⨯+⨯-= 当直线的斜率存在时,设直线方程为,,. l (2)y k x =-11(,)A x y 22(,)B x y 由,消得,, ()22211612y k x x y ⎧=-⎪⎨+=⎪⎩y 2222(34)1616480k x k x k +-+-=, 21221634k x x k ∴+=+2122164834k x x k-=+ 21112121212(2)(2)(2)(2)(2)(2)F A F B x x y y x x k x x ⋅=+++=+++--2221212(1)2(1)()4(1)k x x k x x k =++-+++, 2222222221648162836(1)2(1)4(1)343434k k k k k k k k k --=+⨯+-⨯++=+++令,则, 2343t k =+≥2112283675757734k t F A F B k t t--⋅===-+ ,,, 3t ≥ 1103t <≤571277t -≤-<综上可知,的取值范围是. 11F A F B ⋅ []12,7-。
三明市第一中学2022-2023学年高二下学期第一次月考英语试题含答案
三明一中2022—2023学年下学期第1次月考高二英语试题(考试时间:120分钟;满分:150分)本试卷由四个部分组成,其中第一、二部分和第三部分的第一节为选择题,第三部分的第二节和第四部分为非选择题。
考生注意:1.考生前,考生务必将个人信息填写在答题卡上。
考生要认真核对答题卡上的信息。
2.选择题部分每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
非选择题答案请黑色墨水签字笔在答题卡上各题的答题区域内规范作答,凡是答题不规范一律无效。
3. 考生应遵守考试规定,做到“诚信考试,杜绝舞弊”。
第一部分听力理解(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5 段对话。
每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What did Grace borrow from Edward last week?A. A bike.B. A book.C. Some money.2.What color dress does the woman like best?A. Red.B. Black.C. White.3.When did the man last go to the library?A. Yesterday.B. The day before yesterday.C. One week ago.4.What does the man suggest the woman do?A. Have a good rest.B. Exercise daily.C. Work hard.5.What does the boy think about swimming outside in cold days?A. Dangerous.B. Boring.C. Exciting.第二节(共15小题;每小题1.5分, 满分22.5分)听下面5 段对话或独白。
淮北师范大学附属实验中学2022-2023学年高二下学期第一次月考化学试卷(含解析)
安徽省淮北市实验中学2022-2023学年度第二学期高二年级第一次月考化学试卷姓名:__________ 班级:__________ 考号:__________一、单选题(共16小题)1. (3分)下列叙述正确的是()A. 钠的焰色试验呈现黄色,是电子由激发态转化成基态时吸收能量产生的B. 能级能量:1s<2s<3s<4sC. 在基态多电子原子中,p能级电子能量一定高于s能级电子能量D. 同一原子中,2p、3p、4p能级的能量相同2. (3分)下列描述原子结构的化学用语正确的是()A. 硫原子的结构示意图:B. 基态锰原子(25Mn)的价层电子排布图:C. 氧原子核外能量最高的电子云的形状:D. 基态铬原子(24Cr)的电子排布式:1s22s22p63s23p64s13d53. (3分)以下对核外电子运动状况的描述正确的是()A. 碳原子的核外电子排布由转变为过程中释放能量B. 基态钠原子的电子在核外空间运动状态有11种C. 同一原子中,2p、3p、4p能级的轨道数目依次增多D. 在同一能级上运动的电子,其运动状态可能相同4. (3分)下列关于元素第一电离能的说法不正确的是()A. 钾元素的第一电离能小于钠元素的第一电离能,故钾的活泼性强于钠B. 因同周期元素的原子半径从左到右逐渐减小,故第一电离能必依次增大C. 最外层电子排布为n s2n p6(当只有K层时为1s2)的原子,第一电离能较大D. 对于同一元素而言,原子的电离能I1<I2<I3<……5. (3分)前四周期元素X、Y、Z、W、T的原子序数依次增大,Y、Z、W位于同一周期,X 的最简单氢化物分子的空间结构为正四面体形,Y在同周期中电负性最小,二元化合物E 中元素Y和W的质量比为23∶16;同周期元素简单离子中,元素Z形成的离子半径最小;T元素的价电子排布式为3d104s1。
下列说法正确的是()A. 简单离子的半径:Y>Z>WB. 最高价氧化物对应水化物的酸性:W>Z>XC. W和T的单质混合加热可得化合物T2WD. W的单质在足量的氧气中燃烧,所得产物溶于水可得强酸6. (3分)下列曲线表示卤族元素某种性质随核电荷数的变化趋势,正确的是()A. B. C. D.7. (3分)下列有关粒子性质的排列顺序中,错误的是()A. 元素的电负性:P<O<FB. 元素的第一电离能:C<N<OC. 离子半径:O2->Na+>Mg2+D. 原子的未成对电子数:Mn>Si>Cl8. (3分)下列各组元素各项性质比较正确的是()A. 第一电离能:B<C<O<NB. 最高正价:F>O>N>CC. 电负性:C>O>Si>NaD. 还原性:Cl->I-9. (3分)下列结论错误的是()。
高二下期第一次月考英语科试题
2022-2023学年高二下期第一次月考英语试题时间:120分钟满分:150分注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答选择题时,选出每小题的正确答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,且书写整洁。
3. 考试结束后,将答题卡交回。
第Ⅰ卷(选择题共100分)第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话读一遍。
1.Why does the woman go out so early?A.To go to school.B.To watch a match.C.To see a doctor.2.How far is the man’s workplace?A.It’s one mile away.B.It’s 20 miles away.C.It’s 30 miles away.3.Who’s having a party?A.Henry.B.The man.C.The woman.4.Where is the woman going this afternoon?A.To the railway station.B.To the library.C.To the airport.5.What does the man think of Adam?A.He’s selfish.B.He’s hard-working.C.He’s outgoing.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白,每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
福建省龙岩第一中学2022-2023学年高二下学期第一次月考英语试卷(不含音频)
龙岩一中2024届高二下学期第一次月考英语(满分150分考试用时120分钟)第一部分:听力(共两节,满分30分)第一节(共 5 小题;每小题 1.5 分,满分7.5 分)听下面5 段对话。
每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项。
听完每段对话后,你都有10 秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What does the man dislike about the room?A. The wall.B. The painting.C. The carpet.2. What is the man going to do?A. Go shopping.B. Make cakes.C. Cook lunch.3. Why does the woman refuse to go dancing tonight?A. She doesn’t like dancing.B. She plans to get up early tomorrow.C. She wants to visit her grandma then.4. What was the woman’s problem?A. She got lost.B. She ran out of oil.C. She spent much on her car repairs.5. What are the speakers mainly talking about?A. A city.B. The weather.C. A forecaster.第二节(共15 小题;每小题 1.5 分,满分22.5 分)听下面 5 段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C 三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5 秒钟;听完后,各小题将给出 5 秒钟的作答时间。
高二下期第一次月考生物科(试卷)
2022-2023学年高二下学期第一次月考生物试题一、选择题(共50分,每题1分)1.绿藻被认为是21世纪人类最理想的健康食品,螺旋藻(属蓝细菌)特有的藻蓝蛋白能提高淋巴细胞活性,增强人体免疫力。
下列关于绿藻和螺旋藻的叙述错误的是()A.二者的遗传物质都是DNAB.绿藻有核膜、核仁,而螺旋藻没有C.绿藻和螺旋藻合成蛋白质的场所都是核糖体D.绿藻和螺旋藻都能进行光合作用,这与它们含有叶绿体有关2.一段朽木,上面长满了苔藓、地衣,朽木凹处聚积的雨水中还生活着水蚤等多种生物,树洞中还有老鼠、蜘蛛等。
下列各项中,与这段朽木的“生命结构层次”水平相当的是()A.一块稻田里的全部害虫B.一个池塘中的全部鲤鱼C.一片松林里的全部生物D.一间充满生机的温室大棚3.下图是用显微镜观察时的几个操作步骤,要把显微镜视野下的标本从下图中的A转为B,其正确的操作步骤是()①向左下方移动玻片②调节光圈使视野明亮③转动转换器④调节粗准焦螺旋⑤调节细准焦螺旋⑥向右上方移动玻片A.①③②⑤B.①③④⑥C.⑥③②④D.⑥③⑤④4.下列关于原核细胞与真核细胞的叙述,正确的是()A.原核细胞具有染色质,真核细胞具有染色体B.原核细胞没有以核膜为界限的细胞核,真核细胞有以核膜为界限的细胞核C.原核细胞中没有核糖体,真核细胞中含有核糖体D.原核细胞的DNA只分布于拟核,真核细胞的DNA只分布于细胞核5.关于下图所示过程的叙述,错误的是()A.甲是磷酸,在不同的核苷酸中种类相同B.乙是五碳糖,在DNA中是脱氧核糖,在RNA中是核糖C.丙是含氮碱基,在人体细胞遗传物质中有4种D.丁是核苷酸,在一个病毒中有8种6.结合下列曲线,分析有关无机物在生物体内含量的说法,错误的是()A.曲线①可表示人一生中体内自由水与结合水的比值随年龄变化的曲线B.曲线②可表示细胞新陈代谢速率随自由水与结合水比值的变化C.曲线③可以表示一粒新鲜的种子在烘箱中被烘干的过程中,其内无机盐的相对含量变化D.曲线①可以表示人从幼年到成年体内含水量的变化7.对下表的有关分析错误的是()A.甲可能是麦芽糖溶液B.①是斐林试剂,使用时需水浴加热C.乙液可能是一种酶溶液D.②是紫色,③是核苷酸8.在下列四种化合物的化学组成中,“○”中所对应的含义最接近的是()A.①和②B.②和③C.③和④D.⑤和⑥9.下列有关化学元素和化合物的说法正确的是A.某口服液中含有丰富的N,P,Zn等微量元素,可提高人体的免疫力B.自由水能参与许多化学反应中,如光合作用、呼吸作用、DNA和RNA的水解反应C.用32P作标记可以检测出人细胞膜中的胆固醇成分D.染色体、噬菌体和核糖体的成分都是由DNA和蛋白质组成10.下列对组成细胞的元素和化合物的叙述,正确的是()A.蛋白质在高温条件下因肽键解开而变性失活B.组成细胞的元素在无机环境中都能找到C.碳是最基本元素,细胞中的化合物都含碳D.利用甲基绿可以鉴定细胞中的遗传物质是DNA11.用35S标记一定量的氨基酸,并用来培养哺乳动物的乳腺细胞,测得核糖体,内质网、高尔基体上放射性强度的变化曲线《甲图)以及在此过程中高尔基体、内质网、细胞膜膜面积的变化曲线(乙图),下列分析不正确的是()A.甲图中的a、b、c三条曲线所指代的细胞器分别是核糖体、内质网、高尔基体B.与乳腺分泌蛋白的合成与分泌密切相关的具膜细胞器是内质网、高尔基体和线粒体C.乙图中d、e、f三条曲线所指代的膜结构分别是细胞膜、内质网膜、高尔基体膜D.35S在细胞各个结构间移动的先后顺序是核糖体→内质网→高尔基体→细胞膜12.英国医生塞达尼•任格在对离体蛙心进行实验的过程中发现,用不含钙的生理盐水灌注蛙心,收缩不能维持,用含有少量钙和钾的钠盐溶液灌流时,蛙心可持续跳动数小时。
河北省石家庄二十四中2023-2024学年高二下学期第一次月考数学试题
河北省石家庄二十四中2023-2024学年高二下学期第一次月考数学试题一、单选题1.从集合{}1,2,3,4,5中选取两个不同的元素,组成平面直角坐标系中点的坐标,则可确定的点的个数为( ) A .10B .15C .20D .252.五一小长假前夕,甲、乙、丙三人从,,,A B C D 四个旅游景点中任选一个前去游玩,其中甲到过A 景点,所以甲不选A 景点,则不同的选法有( ) A .60B .48C .54D .643.6x ⎛⎝的展开式中含2x 的项的系数为( ).A .20B .20-C .15-D .154.已知随机变量ξ的分布列如下表所示,且满足()0E ξ=,则2a b -=( )A .29B .12C .39D .05.如图,湖北省分别与湖南、安徽、陕西、江西四省交界,且湘、皖、陕互不交界,在地图上分别给各省地域涂色,要求相邻省涂不同色,现有5种不同颜色可供选用,则不同的涂色方案数为( )A .480B .600C .720D .8406.设随机变量X 服从两点分布,若()()100.4P X P X =-==,则()E X =( ) A .0.3B .0.4C .0.6D .0.77.设甲乘汽车、动车前往某目的地的概率分别为0.40.6、,汽车和动车正点到达目的地的概率分别为0.70.9、,则甲正点到达目的地的概率为( ) A .0.78B .0.8C .0.82D .0.848.有一支医疗小队由3名医生和6名护士组成,平均分配到三家医院,每家医院分到医生1名和护士2名.其中护士甲和护士乙必须分到同一家医院,则不同的分配方法有( )种. A .36B .72C .108D .1449.一袋中装有编号分别为1,2,3,4的4个球,现从中随机取出2个球,用X 表示取出球的最大编号,则()E X =( ) A .2B .3C .103D .11310.长时间玩手机可能影响视力.据调查,某校学生大约20%的人近视,而该校大约有10%的学生每天玩手机超过1小时,这些人的近视率约为60%,现从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率为( )A .521B .940C .745D .720二、多选题11.A ,B ,C ,D ,E 五个人并排站在一起,下列说法正确的是( )A .若A ,B 不相邻,有72种排法 B .若A ,B 不相邻,有48种排法C .若A ,B 相邻,有48种排法D .若A ,B 相邻,有24种排法12.对任意实数x ,有()()()()()823801238231111x a a x a x a x a x -=+-+-+-++-L ,下列结论成立的是( )A .01a =-B .01a =C .01281a a a a +++⋯+=D .8012833a a a a a ++--+=L13.已知事件A ,B ,且()13P A =,()15P B A =,()35P B A =,则( ) A .()115P AB =B .()25P B A = C .()25P B A =D .()415P AB =14.将杨辉三角中的每一个数C r n 都换成()11C r n n +,得到如图所示的分数三角形,称为莱布尼茨三角形.莱布尼茨三角形具有很多优美的性质,如从第0行开始每一个数均等于其“脚下”两个数之和,如果()*2N n n ≥∈,那么下面关于莱布尼茨三角形的结论正确的是( )A .当n 是偶数时,中间的一项取得最大值;当n 是奇数时,中间的两项相等,且同时取得最大值B .第8行第2个数是172C .()()111C 1C r n r n n n n -=++(N r ∈,0r n ≤≤)D .()()111111C 1C C r r r n n n n n n --+=++(N r ∈,1r n ≤≤)三、填空题15.4275C A -=. 16.将7个相同的小球放入4个不同的盒子中,则每一个盒子至少有1个小球的放法有种. 17.口袋中装有大小形状相同的红球3个,白球2个,黄球1个,甲从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次仍取得红球的概率为.18.组合数0243434343434C C C C +⋅⋅⋅+++被9除的余数是.四、解答题19.若()522100121012x x a a x a x a x --=++++L .(1)求01238910a a a a a a a +++++++L 的值; (2)求02410a a a a +++L 的值;20.某地要从2名男运动员、4名女运动员中随机选派3人外出比赛.(1)若选派的3人中恰有1名男运动员和2名女运动员,则共有多少种选派方法?(2)设选派的3人中男运动员人数为X,求X的分布列.21.有完全相同的甲、乙两个袋子,袋子有大小、形状完全相同的小球,其中甲袋中有9个红球和1个白球;乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球.假设试验选到甲袋或乙袋的概率都是12.(1)求从袋子中摸出红球的概率;(2)求在摸出白球的条件下,该球来自甲袋的概率.22.已知2n x⎛⎝的展开式二项式系数和为64.(1)求展开式中的常数项;(2)求展开式中二项式系数最大的项.23.新高考数学试卷增加了多项选择题,每小题有A、B、C、D四个选项,原则上至少有2个正确选项,至多有3个正确选项.题目要求:“在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.”其中“部分选对的得部分分”是指:若正确答案有2个选项,则只选1个选项且正确得3分;若正确答案有3个选项,则只选1个选项且正确得2分,只选2个选项且都正确得4分.(1)若某道多选题的正确答案是AB,一考生在解答该题时,完全没有思路,随机选择至少一个选项,至多三个选项,请写出该生所有选择结果所构成的样本空间,并求该考生得分的概率;(2)若某道多选题的正确答案是2个选项或是3个选项的概率均等,一考生只能判断出A选项是正确的,其他选项均不能判断正误,给出以下方案,请你以得分的数学期望作为判断依据,帮该考生选出恰当方案:方案一:只选择A选项:方案二:选择A选项的同时,再随机选择一个选项;。
辽宁省鞍山市普通高中2022-2023学年高二下学期第一次月考高二语文(A卷)答案
高二月考语文试卷(A)答案时间:150分钟,满分:150分一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,17分)1.(3分)【答案】D【解析】A项,“自20世纪60年代起,小说成为拉美文学最有力的代表”扩大范围。
由材料一第一段“那么从20世纪60年代开始,长篇小说就成为拉美文学最有力的代表”可知,选项将原文的“长篇小说”扩大范围为“小说”。
B项,“拉美文学便终结了之前那种划时代作品集中诞生的热闹场面”曲解文意。
由材料一第四段“从20世纪70年代起,拉美文学就难以复制那种划时代作品集中诞生的热闹场面了,但其余波仍久久未平”可知,此时期拉美文学仍有划时代作品。
C项,“学界一致认为……”张冠李戴。
据材料二第二段,这是美国学者哈罗德·布鲁姆在《影响的焦虑》中的观点。
故选D项。
2.(3分)【答案】A【解析】A项,“成为当时拉美小说的全部特征”错误,“魔幻现实主义”不等于当时拉美小说的全部。
见材料一第三段:“这些拉美故事不断突破小说自身的界限,或与其他艺术形式有所联系,或邀请读者一起向传统的小说阅读方式发起挑战,它们意味着新的结构新的语言。
”故选A项。
3.(3分)【答案】C【解析】由材料一第三段“这些拉美故事不断突破小说自身的界限,或与其他艺术形式有所联系,或邀请读者一起向传统的小说阅读方式发起挑战,它们意味着新的结构、新的语言”可知,“不断突破小说自身的界限”指与其他艺术形式有所联系,或向传统的小说阅读方式发起挑战,或运用新的结构、新的语言。
A、B、D三项属于“突破小说自身的界限”。
C项是传统的小说结构。
故选C项。
4.(4分)【答案】①首先,提出问题,总的指出新时期魔幻写作存在“影响的焦虑”和“同质化”的隐忧两方面问题,这促使作家追求魔幻写作的独创性与个人化特征。
②其次,从“影响的焦虑”和“同质化”两个方面展开论述,先分析问题,然后论述如何解决“影响的焦虑”以及“同质化”的问题。
(每点2分,意思对即可。
天津高二下学期第一次月考数学试题(解析版)
一、单选题1.下列各式正确的是( ) A .B . ()cos sin x x '=()ln x x a a a '=C . D .ππsin cos 1212'⎛⎫= ⎪⎝⎭()5615xx --'=-【答案】B【分析】根据基本初等函数的求导公式判断.【详解】;;,,只有B 正确.(cos )sin x x '=-πsin 012'⎛⎫= ⎪⎝⎭56()5x x --'=-()ln x xa a a '=故选:B .2.函数的单调递减区间是( ) (e 3)()x f x x =-A . B . C . D .(),2-∞()0,3()1,4()2,+∞【答案】A【分析】求出导函数,由得减区间. ()f x '()0f x '<【详解】由已知, ()(3)(2)x x x f x e x e x e '=+-=-时,,时,,2x <()0f x '<2x >()0f x '>所以的减区间是,增区间是; ()f x (,2)-∞(2,)+∞故选:A .3.曲线在处的切线l 与坐标轴围成的三角形的面积为( )()2ln f x x x =x e =A .B .C .D .24e 2e 22e 22e 【答案】D【解析】先利用导数的几何意义求出切线方程,再分别求出直线与两坐标轴的交点坐标,即可得l 到切线l 与坐标轴围成的三角形的面积.【详解】由,得,则,,所以曲线在()2ln f x x x =()22ln f x x '=+()2f e e =()224f e '=+=()f x 处的切线的方程为,即.令得;令得.所以直x e =l ()24y e x e -=-42y x e =-0x =2y e =-0y =2ex =线与两坐标轴的交点坐标分别为,,所以切线与坐标轴围成的三角形的面积为l ()0,2e -,02e ⎛⎫⎪⎝⎭l . 212222e e e ⨯⨯=故选D.4.若对任意的实数恒成立,则实数的取值范围是( ) 0,ln 0x x x x a >--≥a A . B .C .D .(,1]-∞-(,1]-∞[1,)-+∞[1,)+∞【答案】A【解析】构造函数,利用导数研究函数在单调性,并计算()ln f x x x x a =--()f x ()0,∞+,可得结果.()min 0f x ≥【详解】令,()ln f x x x x a =--()0,x ∈+∞则,令()'ln f x x =()'01f x x =⇒=若时,01x <<()'0f x <若时,1x >()'0f x >所以可知函数在递减,在递增 ()f x ()0,1()1,+∞所以()()min 11f x f a ==--由对任意的实数恒成立 0,ln 0x x x x a >--≥所以 ()min 101f x a a =--≥⇒≤-故选:A【点睛】本题考查利用导数解决恒成立问题,关键在于构建函数,通过导数研究函数性质,属基础题.5.已知R 上的可导函数的图象如图所示,则不等式的解集为( )()f x ()()20x f x '->A .B . ()(),21,-∞-+∞ ()()212-∞-,,UC .D .()(),12,-∞+∞ ()()1,12,-+∞ 【答案】D【分析】由函数图象得出和的解,然后用分类讨论思想求得结论. ()0f x '>()0f x '<【详解】由图象知的解集为,的解集为,()0f x '>(,1)-∞-(1,)⋃+∞()0f x '<(1,1)-或,(2)()0x f x '->20()0x f x -⇔'>⎧⎨>⎩20()0x f x -<<'⎧⎨⎩所以或,解集即为. 2x >11x -<<()()1,12,-+∞ 故选:D .6.若函数在区间内存在单调递增区间,则实数的取值范围是( )2()ln 2f x x ax =+-1,22⎛⎫⎪⎝⎭a A . B . C . D .(,2]-∞-1,8⎛⎫-+∞ ⎪⎝⎭12,8⎛⎫-- ⎪⎝⎭(2,)-+∞【答案】D【分析】求出函数的导数,问题转化为在有解,进而求函数的最值,即212a x >-1(,2)221()2g x x =可求出的范围.a 【详解】∵, 2()ln 2f x x ax =+-∴,1()2f x ax x'=+若在区间内存在单调递增区间,则有解,()f x 1(,2)21()0,(,2)2f x x '>∈故, 212a x >-令,则在单调递增, 21()2g x x =-21()2g x x =-1(,2)2,1()()22∴>=-g x g 故. 2 a >-故选:D.7.已知函数在处有极值10,则的值为( ) 322()f x x ax bx a =--+1x =a b 、A ., B .,或, 4a =-11b =3a =3b =-4a =-11b =C ., D .以上都不正确1a =-5b =【答案】A【解析】根据条件函数在处有极值10,则有且,解出的值,然后()f x 1x =1(1)0f =()01f '=a b 、再代入检验是否满足条件,得出答案【详解】解:函数的导数为, 2()32f x x ax b '=--因为函数在处有极值10, 322()f x x ax bx a =--+1x =所以且.1(1)0f =()01f '=即,解得或. 2320110a b a b a --=⎧⎨--+=⎩33a b =⎧⎨=-⎩411a b =-⎧⎨=⎩当,,,3a =3b =-22()3633(1)0f x x x x '=-+=-…此时函数单调递增,所以此时函数没有极值,所以不满足条件. 所以经检验值当,时,满足条件. 4a =-11b =故选:A .【点睛】本题考查函数取极值的情况,求参数的值,注意要检验,属于中档题. 8.定义在R 上的偶函数,其导函数,当x ≥0时,恒有,若()f x ()f x '()()02xf x f x '+-<,则不等式的解集为( ) 2()()g x x f x =()(12)g x g x <-A .(,1)B .(∞,)∪(1,+∞)13-13C .(,+∞)D .(∞,)13-13【答案】A【分析】由已知可得,即在上单调递减,再利用函数的奇偶()[2()()]0g x x f x xf x ''=+<()g x [0,)+∞性、单调性,求解题设不等式即可.【详解】当时,,又, 0x ≥2()2()()[2()()]g x xf x x f x x f x xf x '=+''=+()()()()022x xf x f x f x f x ''+-=+<∴,即在上单调递减. ()0g x '<()g x [0,)+∞∵是定义在R 上的偶函数, ()f x ∴是定义在R 上的偶函数,()g x 由不等式,则有, ()(12)g x g x <-(||)(|12|)g x g x <-∴,解得:. |||12|x x >-113x <<∴不等式的解集为. ()(12)g x g x <-1(,1)3故选:A9.设函数与是定义在同一区间上的两个函敉,若对任意的,都有()f x ()g x [],a b [],x a b ∈,则称与在上是“k 度和谐函数”,称为“k 度密切区()()()0f x g x k k -≤>()f x ()g x [],a b [],a b 间”.设函数与在上是“e 度和谐函数”,则m 的取值范围是( ) ()ln f x x =()1mx g x x -=1,e e ⎡⎤⎢⎥⎣⎦A .B .[]e 1,1--[]1,e 1-+C .D .1e,1e e ⎡⎤-+⎢⎥⎣⎦11e,1e e ⎡⎤+-+⎢⎥⎣⎦【答案】B【分析】由新定义转化为不等式恒成立,再转化为求函数的最值,从而得出结论. 【详解】由题意在时恒成立,即在时恒成1ln e mx x x --≤1[e]e x ∈,1e ln e m x m x-≤+≤+1[e]e x ∈,立, 设,则,1()ln h x x x=+22111()x h x x x x -'=-=时,,单调递减,时,,单调递增, 11ex ≤<()0h x '<()h x 1e x <≤()0h x '>()h x 所以,又,,所以,min ()(1)1h x h ==1(e 1e h =-1(e)1e 1e h =+<-max ()e 1h x =-因此由在时恒成立得:1e ln e m x m x-≤+≤+1[e]e x ∈,且,所以.e 1m -≤e e 1m +≥-1e 1m -≤≤+故选:B .【点睛】方法点睛:不等式恒成立问题的处理方法,解决函数不等式恒成立的常用方法是分离参数法,即不等式变形把参数与自变量分离,然后构造新函数,利用导数求得函数的最值,然后解相x 应不等式得参数范围.二、填空题10.已知函数的导函数为,且满足,则________. ()f x ()f x '()()121f x xf x'=+()1f '=【答案】1【分析】根据题意,求导可得,然后令,即可得到结果. ()f x '1x =【详解】因为,则, ()()121f x xf x '=+()()2121f x f x''=-令,可得,解得. 1x =()()1211f f ''=-()11f '=故答案为: 111.函数的单调减区间为_______ . ()219ln 2f x x x =-【答案】.()0,3【解析】利用导数研究函数单调性即可得到结论. 【详解】解:∵,, ()219ln 2f x x x =-0x >则,299()x f x x x x'-=-=由,即,解得 ,()0f x '<290x -<33x -<<,即函数的单调减区间为, 0,03x x >∴<< ()0,3故答案为:.()0,3【点睛】本题主要考查函数单调区间的求解,根据函数的导数和单调性之间的关系是解决本题的关键.12.函数的图象在点处的切线的倾斜角为__________ ()cos x f x e x =(0,(0))f 【答案】4π【详解】因为, ()cos sin x x f x e x e x -'=00(0)cos 0sin 01f e e -'==所以函数的图象在点处的切线的倾斜角为()cos x f x e x =(0,(0))f 4π13.已知函数对区间上任意的都有,则实数m 的最小3()3f x x x =-[3,2]-1,x 2x ()()12f x f x m -≤值是________. 【答案】20【分析】求出在上的最大值和最小值后由两者差可得的范围,即得的最小值、 ()f x [3,2]-m m 【详解】,则=0,,当或时,,3()3f x x x =-2()33f x x '=-1x =±31x -≤<-12x <≤()0f x '>递增,当时,,递减.()f x 11x -<<()0f x '<()f x 所以,,又,, ()(1)2f x f =-=极大值()2f x =-极小值(3)18f -=-(2)2f =所以在上,,[3,2]-()2,()18f x f x ==-最大值最小值所以的最大值为,即,所以的最小值为20. 12()()f x f x -2(18)20--=20m ≥m 故答案为:20.【点睛】本题考查用导数研究函数的最值,解题关键是命题对区间上任意的都有[3,2]-1,x 2x ,转化继.()()12f x f x m -≤12()()()()f x f x f x f x -≤-最大值最小值14.当时,函数有两个极值点,则实数m 的取值范围___________.0x >()22x f x e mx =-+【答案】 2e m >【分析】函数有两个极值点转化为方程有两个不同的实数根,等价于与有两个2xe m x =y m =2x e y x=不同的交点,构造函数,即可求出结果.()(0)2xe h x x x =>【详解】有两个极值点, 2()2xf x e mx =-+所以有两个不同的实数根,'()20x f x e mx =-+=即有两个不同的实数根,2xe m x=等价于与有两个不同的交点,y m =2xe y x =设, ()(0)2x e h x x x =>2(1)'()(0)2x e x h x x x -=>当单调递减, (0,1),'()0,()x h x h x ∈<当单调递增, (1+),'()0,()x h x h x ∈∞>,所以 min ()(1)2eh x h ==当;0()x h x →→+∞,+()x h x →∞→+∞,所以与要有两个不同的交点,只需y m =2xe y x=2e m >故答案为:2em >【点睛】方法点睛:含参方程有根的问题转化为函数图像的交点问题,数形结合,是常用的方法.本题考查了运算求解能力和数形结合思想,属于一般题目.三、双空题15.(1)设函数,其中,若存在唯一的整数,使得,则()()e 21xf x x ax a =--+1a <0x ()00f x <a 的取值范围是________.(2)已知,,若,,使得成立,则实数a 的()e xf x x =()()21g x x a =-++1x ∃2x ∈R ()()21f x g x ≤取值范围________. 【答案】3,12e ⎡⎫⎪⎢⎣⎭1,e ⎡-+∞⎫⎪⎢⎣⎭【分析】(1)根据题意转化为存在唯一的整数,使得在直线的下方,求导得0x ()0g x y ax a =-,然后结合图像即可得到结果;()g x '(2)根据题意,将问题转化为,然后求导得极值,即可得到结果.()()min max f x g x ≤【详解】(1)函数,其中,()()e 21xf x x ax a =--+1a <设,()()e 21,xg x x y ax a =-=-因为存在唯一的整数,使得,0x ()00f x <所以存在唯一的整数,使得在直线的下方, 0x ()0g x y ax a =-因为,所以当时,,()()e 21xg x x '=+12x <-()0g x '<当时,,12x =-()12min 12e 2g x g -⎛⎫=-=- ⎪⎝⎭当时,, 0x =()()01,1e>0g g =-=直线恒过点,斜率为,y ax a =-()1,0a 故,且,解得 ()01a g ->=-()113e g a a --=-≥--32ea >所以的取值范围是a 3,12e ⎡⎫⎪⎢⎣⎭(2),,使得成立,等价于,1x ∃2x ∈R ()()21f x g x ≤()()min max f x g x ≤因为,所以,()e x f x x =()()1e xf x x '=+当时,,则函数递减; 1x <-()0f x '<()f x 当时,,则函数递增; 1x >-()0f x ¢>()f x 所以时,,=1x -()min 1ef x =-因为,所以,()()21g x x a =-++()max g x a =所以,则实数的取值范围是.1e a -≤m 1,e ⎡-+∞⎫⎪⎢⎣⎭故答案为: (1);(2)3,12e ⎡⎫⎪⎢⎣⎭1,e ⎡-+∞⎫⎪⎢⎣⎭四、解答题16.已知函数(a ,),其图象在点处的切线方程为()()322113f x x ax a x b =-+-+b ∈R ()()1,1f .30x y +-=(1)求a ,b 的值;(2)求函数的单调区间和极值; ()f x (3)求函数在区间上的最大值. ()f x []2,5-【答案】(1),;1a =83b =(2)的增区间是和,减区间是,极大值是,极小值是;()f x (,0)-∞(2,)+∞(0,2)8(0)3f =()423f =(3)最大值是,最小值是. 5834-【分析】(1)由出导函数,计算和,由切线方程列方程组解得; ()f x '(1)f '(1)f ,a b (2)由得增区间,由得减区间,从而可得极值;()0f x '>()0f x '<(3)结合(2)可得函数在上的单调性,再计算出区间端点处的函数值,,与[2,5]-(2)f -(5)f (2)中极值比较可得最值.【详解】(1),,22()21f x x ax a '=-+-22(1)1212f a a a a '=-+-=-,2212(1)133f a a b a a b =-+-+=-+-又图象在点处的切线方程为,()()1,1f 30x y +-=所以,解得; 222121(303a a a a b ⎧-=-⎪⎨+-+--=⎪⎩183a b =⎧⎪⎨=⎪⎩(2)由(1)得,,3218()33f x x x =-+2()2(2f x x x x x '=-=-)或时,,时,,0x <2x >()0f x '>02x <<()0f x '<所以的增区间是和,减区间是, ()f x (,0)-∞(2,)+∞(0,2)极大值是,极小值是;8(0)3f =()423f =(3)由(2)知在和上递增,在上单调递减, ()f x [2,0]-[2,5](0,2)又,, (2)4f -=-58(5)3f =所以在上的最大值是,最小值是. ()f x [2,5]-5834-17.已知函数,其中是自然对数的底数,.()()21e xf x ax x =+-e a R ∈(1)若,求的单调区间;a<0()f x (2)若,函数的图象与函数的图象有个不同的交点,求实数的1a =-()f x ()321132g x x x m =++3m 取值范围.【答案】(1)答案见解析(2) 31,1e 6⎛⎫--- ⎪⎝⎭【分析】(1)求得,对实数的取值进行分类讨论,分析导数的符号变()()221e xf x ax a x '⎡⎤=++⎣⎦a 化,由此可得出函数的增区间和减区间;()f x (2)由可得出,构造函数()()f x g x =()232111e 32xm x x x x -=-+++,可知直线与函数的图象有三个交点,利用导数分析函()()232111e 32x h x x x x x =-+++y m =-()h x 数的单调性与极值,数形结合可得出实数的取值范围.()h x m 【详解】(1)解:当时,因为,该函数的定义域为, 0a <()()21e xf x ax x =+-R ,()()()()2221e 1e 21e x x xf x ax ax x ax a x '⎡⎤=+++-=++⎣⎦由可得或. ()0f x '=0x =21a x a+=-①当时,即当时,210a a+-<12a <-由可得或,由可得, ()0f x '<21a x a +<-0x >()0f x ¢>210a x a+-<<此时函数的单调递减区间为、,单调递增区间为; ()f x 21,a a +⎛⎫-∞- ⎪⎝⎭()0,∞+21,0a a +⎛⎫-⎪⎝⎭②当时,即当时,对任意的,且不恒为零, 210a a+-=12a =-x R ∈()0f x '≤()f x '此时函数的减区间为,无增区间; ()f x (),-∞+∞③当时,即当时,210a a+->102a -<<由可得或,由可得, ()0f x '<0x <21a x a +>-()0f x ¢>210a x a+<<-此时函数的单调递减区间为、,单调递增区间为.()f x (),0∞-21,a a ∞+⎛⎫-+ ⎪⎝⎭210,a a +⎛⎫- ⎪⎝⎭综上所述,当时,函数的单调递减区间为、,单调递增区间为12a <-()f x 21,a a +⎛⎫-∞- ⎪⎝⎭()0,∞+; 21,0a a +⎛⎫- ⎪⎝⎭当时,函数的减区间为,无增区间; 12a =-()f x (),-∞+∞当时,函数的单调递减区间为、,单调递增区间为102a -<<()f x (),0∞-21,a a ∞+⎛⎫-+ ⎪⎝⎭. 210,a a +⎛⎫- ⎪⎝⎭(2)解:当时,,1a =-()()21e x f x x x =-+-由可得,可得, ()()f x g x =()232111e 32x x x x x m -+-=++()232111e 32x m x x x x -=-+++令,则, ()()232111e 32x h x x x x x =-+++()()()2e 1x h x x x '=++由可得或,由可得.()0h x '>1x <-0x >()0h x '<10x -<<所以,函数的增区间为、,减区间为,()h x (),1-∞-()0,∞+()1,0-函数的极大值为,极小值为, ()h x ()311e 6h -=+()01h =因为函数、的图象有三个交点,()f x ()g x 所以,直线与函数的图象有三个交点,如下图所示:y m =-()h x由图可知,当时,即当时, 311e 6m <-<+311e 6m --<<-直线与函数的图象有三个交点,y m =-()h x 因此,实数的取值范围是. m 31,1e 6⎛⎫--- ⎪⎝⎭【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与轴的交点问题,突出导数的工具作用,体现了转化与化x 归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由分离变量得出,将问题等价转化为直线与函数()0f x =()a g x =y a =的图象的交点问题.()y g x =18.已知函数()ln 1x f x me x =--(1)设是的极值点,求m ,并求的单调区间;2x =()f x ()f x (2)当时,求证:1m >()1f x >(3)当时,求证: 1m e>()0f x >【答案】(1),在上单调递减,在上单调递增; 21=2m e ()y f x =()0,2()2,∞+(2)证明见解析;(3)证明见解析.【分析】(1)先由是的极值点求出m ,再直接求单调区间;2x =()f x (2)用分析法,只需证明即可,构造函数,利用导数证明ln 20x e x -->()()ln 20x g x e x x =-->,即证;()min 0g x >(3)先判断时,,构造函数,利用导数证明当1m e >()ln 1xe f x x e >--()()ln 10x e p x x x e=-->时,,即证.0x >()()10p x p =≥【详解】解:定义域为 ()ln 1x f x me x =--()01()x f x me x=∞'+-,,(1)∵是的极值点,2x =()f x ∴,解得:. 21(2)=02f me '=-21=2m e 此时, 22111()ln 1()22x x f x e x f x e e e x'=--=-,当时;当时;02x <<()0f x '<2x >()0f x '>所以在上单调递减,在上单调递增.()y f x =()0,2()2,∞+(2)当时,,只需证即可.1m >()1ln 2ln 2x x f x me x e x -=-->--ln 20x e x -->令,则 ()()ln 20x g x e x x =-->()()111x x g x e =xe x x=--'令,则,()()10x h x xe x =->()0x x h x e xe '=>+∵∴存在,使得即,也可化为()121110,110,22h e h e ⎛⎫=-<=-> ⎪⎝⎭01,12x ⎛⎫∈ ⎪⎝⎭()00h x =0010x x e =-00ln 0x x +=∴在上,,则单调递减;在上,,则单调递增.()00x ,()0g x '<()g x ()0x +∞,()0g x '>()g x 所以 ()()000000000min 1ln 221221012x x g x g x =e x =e x x x x x ⎛⎫=--+->++-=-><< ⎪⎝⎭∵即证.(3)当时,, 1m e >()ln 1xe f x x e>--令,则 ()()ln 10x e p x x x e=-->()1x e p x e x '=-令,解得x =1, ()10x e p x =e x'=-∴在上,,则单调递减;在上,,则单调递增. ()01,()0p x '<()p x ()1+∞,()0p x '>()p x ∴,故当时,.()()min 10p x =p =0x >()()10p x p =≥∴时,都有. 1m e>()0f x >【点睛】导数的应用主要有:(1)利用导数研究原函数的单调性,求极值(最值);(2)利用导数求参数的取值范围.(3)构造新函数,利用导数判断单调性,证明不等式成立19.已知函数,.()ln f x x x =()()1g x a x a =+-(1)求函数的极值;()()()h x f x g x =-(2)若存在时,使成立,求的取值范围.[]1,e x ∈()223f x x ax ≥-+-a (3)若不等式对任意恒成立,求实数的取值范围.()()()12e x h x x a a -≤--+[)1,x ∈+∞a 【答案】(1)函数有极小值,无极大值;()h x ()ee a a h a =-(2); 32e e a ≤++(3).(],0-∞【分析】(1)由题可得,然后根据导数与函数极值的关系即得;()()ln 1x x x h x a a =-++(2)由题可得存在,成立,构造函数,利用导[]1,e x ∈32ln a x x x ≤++()[]32ln ,1,e F x x x x x=++∈数求函数的最值即得;(3)设,由题可得对任意恒成立,利用导数可得()()1e xg x x a =--()()ln 1g x g x ≤-[)1,x ∈+∞,进而可得只需在上单调递增,即在0ln 1x x ≤≤-()()1e x g x x a =--[)0,+∞()()e 0x g x x a '=-≥上恒成立,即得.[)0,+∞【详解】(1)因为,()()()()ln 1h x x x x a x a f x g =-=++-∴,()()ln 1n 1l h x x a x a -+='+-=由,可得,由,可得,()0h x '<0e a x <<()0h x '>e a x >∴在上单调递减,在上单调递增, ()h x ()0,e a ()e ,a+∞所以,当时,函数有极小值,无极大值;e a x =()h x ()e e a a h a =-(2)由,可得, ()222ln 3f x x x x ax =≥-+-32ln a x x x≤++即存在,成立, []1,e x ∈32ln a x x x≤++设,则, ()[]32ln ,1,e F x x x x x =++∈()()()22132310x x F x x x x -+'=+-=≥所以函数在上单调递增,, ()F x []1,e ()()max 3e 2e eF x F ==++所以; 32e ea ≤++(3)由题可知对任意恒成立, ()()()1ln 12ex x x a x x a --+≤--[)1,x ∈+∞即对任意恒成立, ()()()1ln ln 1e 11ex x x a x a ---≤---⎡⎤⎣⎦[)1,x ∈+∞设,则对任意恒成立,()()1e x g x x a =--()()ln 1g x g x ≤-[)1,x ∈+∞下面证明对任意恒成立,0ln 1x x ≤≤-[)1,x ∈+∞设,,()ln 1t x x x =-+[)1,x ∈+∞则在上恒成立,且仅在时取等号, ()1110x t x x x-'=-=≤[)1,+∞=1x 所以在上单调递减,()ln 1t x x x =-+[)1,+∞∴,即,()()10t x t ≤=0ln 1x x ≤≤-所以对任意恒成立,只需在上单调递增, ()()ln 1g x g x ≤-[)1,x ∈+∞()()1e xg x x a =--[)0,+∞即在上恒成立,()()e 0x g x x a '=-≥[)0,+∞所以在上恒成立,a x ≤[)0,+∞所以,即实数的取值范围为.0a ≤a (],0-∞【点睛】方法点睛:恒(能)成立问题的解法:若在区间上有最值,则()f x D (1)恒成立:;; ()()min ,00x D f x f x ∀∈>⇔>()()max ,00x D f x f x ∀∈<⇔<(2)能成立:;. ()()max ,00x D f x f x ∃∈>⇔>()()min ,00x D f x f x ∃∈<⇔<若能分离常数,即将问题转化为:(或),则 ()a f x >()a f x <(1)恒成立:;; ()()max a f x a f x >⇔>()()min a f x a f x <⇔<(2)能成立:;. ()()min a f x a f x >⇔>()()max a f x a f x <⇔<。
山东省临沂市兰山第三中学2024_2025学年高二地理下学期第一次月考试卷含解析
兰山三中2024-2025学年高二下学期月考考试地理试卷满分:100 分考试时间:90 分钟本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 8 页。
满分 100 分,考试时间 90 分钟。
答卷前,考生务必将自己的姓名、班级、座位号、填涂在答题纸规定的地方。
第Ⅰ卷选择题留意事项:第Ⅰ卷为单项选择题,共 30 小题,每小题 2 分,共 60 分。
在每小题给出的四个选项中,只有一个最符合题目要求。
每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
下图为我国某地区耕地自然状态下作物需水量和亏水量的平衡状态图。
据此回答下列各题。
1. 图中亏水量 7~8 月较小的主要缘由是A. 积雪的溶化B. 降水量的增大C. 冰川融水增多D. 湖水补给河水2. 该地区可能是我国的A. 东北平原B. 河西走廊C. 华北平原D. 长江中下游平原【答案】1. B 2. C【解析】考查我国降水的时空分布特点。
【1题详解】读我国某地区耕地自然状态下作物需水量和亏水量的平衡状态图可知,该地5、6月份需水量大,亏水量大,说明此时降水少,作物需水量大,6月份雨带位于长江流域,则该地区雨带未到,可能是华北、东北地区。
由于7-8月雨带位于华北、东北地区,降水量增多,亏水量较小。
故选B。
【2题详解】由上题推理可知,该地区可能是我国的华北平原。
故选C。
3.从节约燃料,降低放射成本角度考虑,下列我国四个卫星放射基地中,最有利于卫星放射的是()A. 文昌(约19.5ºN)B. 西昌(约28ºN)C. 太原(约38ºN)D. 酒泉(约40ºN)【答案】A【解析】【详解】从节约燃料,降低放射成本角度考虑,纬度越低,卫星放射时获得的初速度越大,越节约燃料。
我国四个卫星放射基地中,文昌的纬度最低,线速度最大,最有利于卫星放射,选A。
【点睛】放射卫星多选在低纬度自西向东放射,这是因为低纬度地球自转线速度大,同时地球又是自西向东自转,在低纬度向东放射可获得较大的初速度节约燃料简单放射胜利。
安徽省蚌埠市第二中学20222023学年高二下学期第一次月考数学试卷(学生用卷)
安徽省蚌埠市第二中学2022-2023学年高二下学期第一次月考数学试卷一、单选题(共8小题,每题5分,共40分)1. 已知数列{a n}的通项公式为a n=,则该数列的前4项依次为( )A. 1,0,1,0B. 0,1,0,1C. ,0,,0D. 2,0,2,02.设a n=++++…+(n∈N*),则a2等于( )A. B. + C. ++ D. +++3. 已知数列{a n}的通项公式a n=log(n+1)(n+2),则它的前30项之积是( )A. B. 5 C. 6 D.4. 若数列的通项公式为a n=,则这个数列中的最大项是( )A. 第12项B. 第13项C. 第14项D. 第15项5. 已知数列{a n}的通项公式是a n=,那么这个数列是( )A. 递增数列B. 递减数列C. 摆动数列D. 常数列6. 已知各项均为正数的等比数列{a n}的前4项的和为15,且a5=3a3+4a1,则a3等于( )A. 16B. 8C. 4D. 27. 如果数列a1,a2-a1,a3-a2,…,a n-a n-1,…是首项为1,公比为的等比数列,那么a n=( )A. B. C. D.8. 已知数列{a n}满足a n=(n∈N*),且数列{a n}是递增数列,则实数a的取值范围是( )A. (2,3)B. [2,3)C.D. [2,3]二、多选题(共4小题,共20分)9. 在数列{a n}中,如果对任意n∈N*都有=k(k为常数),则称{a n}为等差比数列,k称为公差比,现给出下列命题,其中正确的是( )A. 等差比数列的公差比一定不为0B. 等差数列一定是等差比数列C. 若a n=-3n+2,则数列{a n}是等差比数列D. 若等比数列是等差比数列,则其公比等于公差比10. 设等差数列的前n项和为S n,且S4=S5,S6=21,若++…+<λ恒成立,则λ的值不可以是( )A. 1B. 0C. -1D. 211. 已知数列是各项均为正数且公比不等于1的等比数列,对于函数f,若数列{ln f(a n)}为等差数列,则称函数f为“保比差数列函数”,则定义在(0,+∞)上的如下函数中是“保比差数列函数”的有( )A. f(x)=为“保比差数列函数”B. f=x2为“保比差数列函数”C. f=e x为“保比差数列函数”D. f=为“保比差数列函数”12. 已知各项均为正数的等差数列中,a1+a2+a3=15,且a1+2,a2+5,a3+13构成等比数列的前三项,则( )A. a2=5B. b n=5·2n-1C. a n=2n-1D. 设c n=a n b n,则数列的前n项和T n=(2n-1)2n+1三、填空题(共4小题,共20分)13. 已知数列{a n}满足a1=,a n+1=,若b n=-1,则数列{b n}的通项公式为b n=________.14. 已知f(x)=,利用课本中推导等差数列前n项和的公式的方法,可求得f+f+…+f=________.15. 如果数列{a n}满足-=k(k为常数),那么数列{a n}叫做等比差数列,k叫做公比差.给出下列四个结论:①若数列{a n}满足=2n,则该数列是等比差数列;②数列{n·2n}是等比差数列;③所有的等比数列都是等比差数列;④存在等差数列是等比差数列.其中所有正确结论的序号是________.16. 若数列{a n}满足a n+2a n+1+a n+1a n=q(q为常数),则称数列{a n}为等比和数列,q称为公比和,已知数列{a n}是以3为公比和的等比和数列,其中a1=1,a2=2,则a2 019=.四、解答题(共6小题)17. (10分)设数列{a n}满足a1=0且-=1.(1)求{a n}的通项公式;(2)设b n=,记S n=b1+b2+…+b n,求证:S n<1.18. (10分)已知等差数列{a n}的各项均为正数,a1=3,前n项和为S n,{b n}为等比数列,b1=1,且b2S2=64,b3S3=960.(1)求a n与b n;(2)求++…+.19. (12分)已知数列{a n}的前n项和为S n,且S n=2n2+n,n∈N*,数列{b n}满足a n=4log2b n+3,n∈N*.(1)求a n,b n;(2)求数列{a n·b n}的前n项和T n.20. (12分)已知{a n}(n∈N*)是各项均为正数的等比数列,a1=16,2a3+3a2=32.(1)求{a n}的通项公式;(2)设b n=3log2a n,求数列{b n}的前n项和S n,并求S n的最大值.21. (12分)已知等比数列{a n}的前n项和为S n,且当n∈N*时,S n是2n+1与2m的等差中项(m为实数).(1)求m的值及数列{a n}的通项公式.(2)令b n=1+log2a n(n∈N*),是否存在正整数k,使得++…+>对任意正整数n均成立?若存在,求出k的最大值;若不存在,说明理由.22. (14分)已知等差数列{a n}的公差为d(d≠0),前n项和为S n,且满足________(从①S10=5(a10+1);②a1,a2,a6成等比数列;③S5=35这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题).(1)求a n;(2)设b n=,数列{b n}的前n项和为T n,求证:T n<.。
甘肃省金昌市永昌县第一高级中学2023-2024学年高二下学期第一次月考英语试卷
甘肃省金昌市永昌县第一高级中学2023-2024学年高二下学期第一次月考英语试卷一、阅读理解Literary (文学的) festivals are all over the UK and Ireland this month. Here are four of them.Hay FestivalSet on the beautiful Wales-England border, this year’s Hay Festival includes travel writer Kapka Kassabova delivering the 2023 Jan Morris Lecture, Ray Mears discussing the British woodland, and Bear Grylls and Ranulph Fiennes celebrating a love of wild spaces. Author-led tours with Wayfair Walks explore the Brecon Beacons.Date: From 25 May to 4 JuneGuernsey Literary FestivalCelebrating great writing and big ideas in the beautiful island of Guernsey, this event includes activities such as a talk by Susie Dent centred on her book An Emotional Dictionary — Real Words For How We Feel, and family-focused drawing classes from painter Rob Biddulph. The festival also offers poetry competitions, writing workshops and the chance to stretch your legs on Guernsey’s coastal trails and nature walks.Date: From 2 to 14 MayInternational Literature Festival DublinThe ancient streets that were once inspiration for James Joyce, W·B Yeats and Oscar Wilde welcome Ireland’s leading literary festival this May. The 10-day event celebrates the best Irish and international writers, poets, playwrights and screenwriters. Book-themed guided walks are also offered.Date: From 19 to 28 MayThe Bath FestivalsFounded in 1948, The Bath Festivals is a year-round creative learning program that inspires and connects different people and communities through various activities. For example, we have Bath Contemporary Artists’ Fair in May and Bath Children’s Literature Festival in September. Ourother year-round hands-on music and literature projects give children and young people opportunities to gain real-world experience.1.Who will discuss the British woodland at Hay Festival?A.Bear Grylls.B.Ray Mears.C.Ranulph Fiennes.D.Kapka Kassabova.2.When will the literary event be held in Guernsey?A.From 2 to 14 May.B.From 20 May to 4 June.C.From 19 to 28 May.D.From 25 May to 4 June.3.What is unique about The Bath Festivals?A.It mainly attracts adults.B.It runs throughout the year.C.It has a variety of activities.D.It offers author-led city walks.Seba Stephens is only 10 years old, but he’s a very talented musician. He plays drums, bass, guitar and piano. Recently, he earned a professional certificate (证书) in music through the Berklee Online program at the famous Berklee College of Music.Seba and his family live in Memphis, Tennessee — a place famous for music. He grew up with music all around, but he especially loved the drumming of Stewart Copeland from the band The Police.Before he turned three, his parents asked him what he wanted for his birthday. “Drums!” he answered. His parents weren’t sure, but after seeing him play the drums at a local music store, they decided he was serious. They bought him a junior drum kit. It was a huge step. “He didn’t stop playing — ever,” said his dad, Everett.In just a few months, his drum teacher reported that Seba was learning extremely quickly and needed a higher level of training. He was still four.Seba’s parents encouraged him to explore music in other ways. Seba learned bass, guitar and piano. He faced challenges. “I couldn’t see over my drum set,” he said. He also had trouble finding a good bass that was small enough,In 2020, Everett got special permission for Seba to join a summer music program at Berklee as an 8-year-old boy. Seba studied bass in an online program. To keep up, he had to practise up to 36 hours a week.After the intense summer, Everett thought Seba might want a break. He was wrong. Instead, Seba asked his parents to home-school him so he could keep going to Berklee during the school year. His parents had to make some big changes to make the plan work, but they agreed.Last May, Seba became the youngest person ever to receive a professional certificate from Berklee. The certificate is equal to about four college-level classes.4.What is Stewart Copeland?A.A teacher.B.A drummer.C.A pianist.D.A soldier.5.How old was Seba Stephens when he got his first drum?A.Three years old.B.Four years old.C.Eight years old.D.Ten years old.6.What were challenges for little Seba?A.No time to practise.B.Many things to learn.C.Difficulties in finding proper instruments.D.The requests made by the teacher. 7.What may be the best title for the text?A.The Musical Journey of a Famous MusicianB.An Online Program at Berklee College of MusicC.A Teenage Drummer Inspires Kids’ Music EducationD.A 10-year-old Drummer Earns Certificate From BerkleeFrom self-driving cars to carebots (care+ robots) for elderly people, rapid development in technology has long represented a possible threat to many jobs normally performed by people. But experts now believe that almost 50 percent of occupations existing today will be completely unnecessary by 2035 as artificial intelligence (AI) continues to change businesses.“The next fifteen years will see a revolution in how we work, and a revolution will necessarily take place in how we plan and think about workplaces,” said Peter Andrew, Director of Workplace Strategy for CBRE Asia-Pacific. A growing number of jobs in the future will require creative intelligence, social skills and the ability to use artificial intelligence.The report is based on interviews with 200 experts, business leaders and young people from Asia-Pacific, Europe and North America. It shows that in the US technology already destroys more jobs than it creates. But the report states, “Losing occupations does not necessarily meanlosing jobs—just changing what people do.” Growth in new jobs could occur as much, according to the research. “The growth of 20- to 40-person companies that have the speed and technological know-how will directly challenge big companies,” it states.Another study by Pew Research Centre found 52 percent of experts in artificial intelligence and robotics were optimistic about the future and believed there would still be enough jobs in the next few years. The optimists pictured “a future in which robots do not take the place of more jobs than they create.”“Technology will continue to affect jobs, but more jobs seem likely to be created. Although there have always been unemployed people, when we reached a few billion people, there were billions of jobs. There is no shortage of things that need to be done and that will not change,” Microsoft’s Jonathan Grudin told researchers.8.Why are carebots mentioned?A.To give a definition.B.To provide an example.C.To make a comparison.D.To explain a theory.9.What does the report in paragraph 3 show?A.People will take the place of AI.B.US technology balances job opportunities.C.Many people have to change occupations.D.Big companies are more innovative and flexible.10.What is Jonathan Grudin’s attitude towards the future of human employment?A.Hopeful.B.Doubtful.C.Unconcerned.D.Worried 11.Which section of a website is the text most probably taken from?A.Art.B.Travel.C.Education.D.Technology.Every Saturday morning, at 9 am, more than 50, 000 runners set off to run 5km around their local park. The Parkrun phenomenon began with a dozen friends and has inspired 400 events in the UK and more abroad. The events are free, staffed by thousands of volunteers. Runners range from four years old to grandparents; their times range from Andrew Baddeley’s world record of 13 minutes 48 seconds up to an hour.Parkrun is succeeding where London’s Olympic “legacy (传承)” is failing. Ten years agoon Monday, it was announced that the Games of the 30th Olympics would be to inspire a nation of sport lovers away from their couches (沙发). The population would be fitter, healthier and produce more winners. It has not happened. Officials are still wondering why London Olympics failed to “inspire a generation”. The success of Parkrun offers answers.Parkrun is not a race but a time trial: Your only competitor is the clock. This kind of sport welcomes anybody. Both new runners and champion runners can have a lot of fun. The Olympic Games, by contrast, wanted to produce more elite athletes. The stress on success kept newcomers from taking part.In fact, state involvement in planning community sports associations is a bit overdone. If there is a role for government, it should really be getting involved in providing common goods — making sure there is space for playing fields and the money to build tennis and netball courts, and encouraging all these activities in schools. But all the while governments have been busy with selling green spaces, taking money from local authorities and declining attention on sports in education. Instead of wordy, worthy strategies, future governments need to do more to provide the conditions for sports to develop, or at least not make them worse.12.What does the author want to show about Parkrun in the first paragraph?A.Its history.B.Its difficulty.C.Its popularity.D.Its development. 13.What can we infer about the Games of the 30th Olympics?A.It promoted national sport participation.B.It didn’t bring citizens the expected benefits.C.It helped popularize the Parkrun movement.D.Its organizers found the answer to the failure in the Games.14.What does the underlined word “elite” in paragraph 3 probably mean?A.Intelligent.B.Brave.C.Excellent.D.Healthy. 15.What should governments do about sports according to the author?A.Sell or take up green spaces.B.Pay less attention to sports in education.C.Organize community sports associations.D.Provide the right conditions for sports to develop.How to Learn Several Languages at a TimeLearning a new language is a challenging and wonderfully rewarding experience. At some point, you may find yourself needing or wanting to learn several languages at the same time.16 However, it also allows you to challenge your brain and take advantage of the similarities and differences between the languages you’re learning.17 If you have a choice, choose to learn one language that is easier for you, and another or others that are more difficult. An easier language will be one that is similar to your native language or another language that you know, while a more difficult language will be one that is less similar.Make one language your priority. 18 This way, at the end of your hard work, you are more likely to be skilled in at least one of your languages, rather than only knowing a small amount of each of them.Translate between the languages you’re learning. One way to keep all the languages you are learning active in your mind is to try translating between them, rather than translating them back to your native language. 19Add all of the languages to a language-learning app or website. Several language-learning apps and websites, such as Duolingo, Memrise, Clozemaster, Anki and Lingvist allow you to add several languages at once. 20 This way, when you are on-the-go, you have quick access to a way to study any of the languages you are trying to learn.A.This process can be very difficult.B.Choose languages that vary in difficulty.C.Study the same topic in all of the languages.D.You can use a website to find a group like this.E.This can help you understand the languages on a deeper level.F.It is helpful to give one of the languages the most time and attention.G.Download an app, and then add all of your languages, if they are available on it.二、完形填空It’s never easy being the new kid in school, especially when you look a little bit differentfrom everyone else. Aside from the usual 21 about not knowing anyone at Henderson High School in Tennessee, 15-year-old Sergio Peralta worried that people would pick on him for his 22 . Sergio’s right hand didn’t form fully at birth.It turned out that his fellow students were a lot more open-minded than he 23 . In fact, when the school’s engineering teacher noticed Sergio’s 24 , he suggested the students in his class should be able to 25 him.The school is 26 with online modeling software and a 3D printer, so the teacher suggested a real-life application that would 27 both Sergio and the other students. Several engineering students 28 began working on a prosthetic (假肢) for their new 29 .Students 30 with Sergio to get the prosthetic right, and when it was 31 , it went beyond all expectations. Sergio was now 32 to catch a baseball in his right hand for the first time in his entire life.Beyond the practicality of having a(n) 33 prosthetic, Sergio felt something even more powerful: He 34 . Rather than being laughed at for his difference, he was celebrated and helped. “They 35 my life,” said the grateful teen.21.A.happiness B.anger C.confidence D.nervousness 22.A.impression B.difference C.purpose D.mistake 23.A.assumed B.regretted C.decided D.proved 24.A.head B.hand C.clothing D.leg 25.A.control B.believe C.help D.choose 26.A.covered B.faced C.pleased D.equipped 27.A.examine B.attack C.benefit D.carry 28.A.eagerly B.repeatedly C.sadly D.thankfully 29.A.mother B.classmate C.teacher D.father 30.A.mixed B.agreed C.competed D.worked 31.A.treated B.understood C.finished D.cleaned 32.A.sorry B.able C.disappointed D.ready 33.A.useful B.unimportant C.terrible D.untidy 34.A.spoke up B.checked in C.fit in D.came down35.A.changed B.destroyed C.saved D.enjoyed三、语法填空阅读下面短文,在空白处填入1个适当的单词或括号内单词的正确形式。
山东省泰安市新泰2023-2024学年高二下学期第一次月考试题 英语含答案
新泰2022级高二年级下学期第一次阶段性考试英语试题(答案在最后)2024/3/19第Ⅰ卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What is the man doing?A.Making a consultation.B.Renting a guitar.anizing a party.2.What is the relationship between the speakers?A.Salesperson and customer.B.Brother and sister.C.Classmates.3.How does the man feel about the concert?A.It was terrible.B.It was average.C.It was pleasant.4.What are the speakers mainly talking about?A.A weekend plan.B.A new company.C.A job opportunity.5.Why does the woman look tired?A.She walked a long distance.B.She did too much housework.C.She played tennis after school.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
精品解析:河南省南阳市六校+2023-2024学年高二下学期第一次月考历史试卷(原卷版)
3.春秋战国时期随着社会经济发展、阶级关系变化,在思想领域出现“百家争鸣”的局面,下表是战国时期部分思想主张。这些主张( )
内容
出处
民为贵,社稷次之,君为轻
《孟子·尽心章句下》
天之生民,非为君也,天之立君,以为民也
《荀子·大略》
故立天子以为天下,非立天下以为天子也。
A.军权政权呈现融合趋势B.中朝侵夺外朝权力
C.外戚参与朝廷中枢决策D.三公已经名存实亡
8.钱穆在《中国历代政治得失》中指出,汉代的征兵制度“一个壮丁,二十受田,可以独立谋生,但要他为国家服兵役,则应该顾及他的家庭负担。所以当时规定,从二十三岁起,照理他可以有一年储蓄来抽身为公家服役了。”钱穆意在强调该制度()
——摘编自王连旗、包朗《汉朝的西北屯垦战略与边疆安全》
材料二:唐初,以“怀柔远人,义在羁縻”为要义,在西北地区设置了大量的羁縻府州。对于封授的羁縻府都督、刺史等职,唐朝明确规定“皆得世袭”,对内附“酋领”厚予赏赐,其中包括官秩很高的虚衔。同时,唐朝还积极吸收当地的民族和部落参与作战,对参战首领授予军职。唐代龟兹地区存在着与中原大致相同的差役制度,胡汉同被征发服役。唐王朝还在龟兹建立都督府、州、城、村、坊等类似中原的地方行政建制。
A.为商人登上政治舞台创造了条件B.蕴含了时代统一的必要条件
C.有效减少了战争带来 破坏程度D.得益于工商食官制度的发展
6.秦统一后,诏书至桂林,一般人都不认识诏书上的文字。秦始皇命李斯“罢其不与秦文合者”,制定出小篆,并将其作为标准文字通用于公文法令。湖北云梦睡虎地秦墓出土的里耶秦简大部分是文书档案,基本都可以辨认。这说明( )
——摘编自范恩实《唐羁縻州制度是一体而治的重要一环》等
2023-2024学年江西省南昌市高二下学期第一次月考数学质量检测试题(含解析)
2023-2024学年江西省南昌市高二下册第一次月考数学质量检测试题一、单选题1.数列11111,,,,,371531---⋅⋅⋅的一个通项公式为()A .11(1)21n n n a +=--B .11(1)2nn n a -=-C .1(1)21nn a n =-+D .1(1)21nn n a =--【正确答案】D【分析】根据规律写出数列的通项公式【详解】奇数项为负,偶数项为正,可用(1)n -来实现,而各项分母可看作12345211,213,217,2115,2131,-=-=-=-=-=⋅⋅⋅,各项分子均为1,∴该数列的通项公式为1(1)21nn n a =-⋅-.故选:D.2.3名大学生利用假期到2个山村参加扶贫工作,每名大学生只能去1个村,则不同的分配方案共有()A .4种B .6种C .8种D .10种【正确答案】C【分析】根据分步乘法计数原理求得正确答案.【详解】每个大学生都有2种选择方法,所以不同的分配方案共有2228⨯⨯=种.故选:C3.在等比数列{}n a 中,24a =,1016a =,则2a 和10a 的等比中项为()A .10B .8C .8±D .10±【正确答案】C【分析】根据等比中项的定义可得结果.【详解】根据等比中项的定义可得2a 和10a 的等比中项为8==±.故选:C4.通过抽样调研发现,当地第三季度的医院心脑血管疾病的人数和便利店购买冷饮的人数的相关系数很高,甲认为这是巧合,两者其实没有关系:乙认为冷饮的某种摄入成分导致了疾病;丙认为病人对冷饮会有特别需求:丁认为两者的相关关系是存在的,但不能视为因果,请判断哪位成员的意见最可能成立()A .甲B .乙C .丙D .丁【正确答案】D【分析】正确理解相关系数,相关关系与因果关系的区别是解题的关键.【详解】当地第三季度的医院心脑血管疾病的人数和便利店购买冷饮的人数的相关系数很高,但相关关系是一种非确定性关系,相关关系不等于因果关系,丁的意见最可能成立.故选:D.5.某学校安排音乐、阅读、体育和编程四项课后服务供学生自愿选择参加,甲、乙、丙、丁4位同学每人限报其中一项.已知甲同学报的项目其他同学不报的情况下,4位同学所报项目各不相同的概率等于()A .118B .332C .29D .89【正确答案】C【分析】设A =甲同学报的项目其他同学不报,B =4位同学所报项目各不相同,利用条件概率求解.【详解】解:设A =甲同学报的项目其他同学不报,B =4位同学所报项目各不相同,由题得()4333n A =⨯⨯⨯,()4321n AB =⨯⨯⨯,所以()43212(|)()43339n AB P B A n A ⨯⨯⨯===⨯⨯⨯.故选:C6.下列说法正确的是()①若随机变量η的概率分布列为()(1,2,3,4,5)P k ak k η===,则110a =;②若随机变量()23,X N σ ,(5)0.6P X ≤=,则(1)0.4P X ≤=;③若随机变量28,3X B ⎛⎫~ ⎪⎝⎭,则16()3E X =;④在含有4件次品的10件产品中,任取3件,X 表示取到的次品数,则3(2)10P X ==A .②③B .②④C .①②③D .②③④【正确答案】D【分析】根据分布列的性质即可判断①,利用正态分布密度曲线判断②,根据二项分布的期望公式判断③,利用超几何分布判断④.【详解】对于A ,∴随机变量ξ的概率分布为()(1,2,3,4,5)P k ak k η===,∴(1)(2)(3)(4)(5)1P P P P P ηηηηη=+=+=+=+==,∴2345151a a a a a a ++++==,∴115a =,故①不正确;对于B ,(5)1(5)0.4P X P X >=-≤=,∴(1)(5)0.4P X P X ≤=>=,故②正确;对于C ,由28,3X B ⎛⎫~ ⎪⎝⎭,得216()833E X =⨯=,故③正确;对于D ,由题意,得2146310C C 3(2)C 10P X ⋅===,故④正确.故选:D.7.已知编号为1,2,3的三个盒子,其中1号盒子内装有两个1号球,一个2号球和一个3号球;2号盒子内装有两个1号球,一个3号球;3号盒子内装有三个1号球,两个2号球.若第一次先从1号盒子内随机抽取1个球,将取出的球放入与球同编号的盒子中,第二次从放入球的盒子中任取一个球,则第二次抽到3号球的概率为()A .12B .736C .1148D .16【正确答案】C【分析】记第一次抽到第i 号球的事件分别为()1,2,3i A i =,记第二次在第i 号盒内抽到3号球的事件分别为()1,2,3i B i =,再利用全概率公式求解即可.【详解】记第一次抽到第i 号球的事件分别为()1,2,3i A i =,则有()112P A =,()()2314P A P A ==,记第二次在第i 号盒内抽到3号球的事件分别为()1,2,3i B i =,而1A ,2A ,3A 两两互斥,和为Ω,()1114P B A =,()2214P B A =,()3316P B A =,记第二次抽到3号球的事件为B ,()()()()33111111111124444648i i i i i i i P B P A B P A P B A ==⎡⎤==⋅=⨯+⨯+⨯=⎣⎦∑∑.故选:C .8.有甲、乙两个盒子,甲盒子里有1个红球,乙盒子里有3个红球和3个黑球,现从乙盒子里随机取出()*16,n n n N ≤≤∈个球放入甲盒子后,再从甲盒子里随机取一球,记取到的红球个数为ξ个,则随着()*16,n n n N ≤≤∈的增加,下列说法正确的是()A .E ξ增加,D ξ增加B .E ξ增加,D ξ减小C .E ξ减小,D ξ增加D .E ξ减小,D ξ减小【正确答案】C【分析】由题意可知,从乙盒子里随机取出n 个球,含有红球个数X 服从超几何分布,即()6,3,X H n ,可得出2nEX =,再从甲盒子里随机取一球,则ξ服从两点分布,所以()111222E P n ξξ===++,()1111222D P n ξξ=-==-+,从而可判断出E ξ和D ξ的增减性.【详解】由题意可知,从乙盒子里随机取出n 个球,含有红球个数X 服从超几何分布,即()6,3,X H n ,其中()336k n k n C C P X k C -==,其中Nk ∈,3k ≤且k n ≤,362n nEX ==.故从甲盒中取球,相当于从含有12n+个红球的1n +个球中取一球,取到红球个数为ξ.故()111211222n P n n ξ+===+++,随机变量ξ服从两点分布,所以()111211222n E P n n ξξ+====++,随着n 的增大,E ξ减小;()()()211111422D P P n ξξξ⎡⎤=-===-⎣⎦+,随着n 的增大,D ξ增大.故选:C.本题考查超几何分布、两点分布,分布列与数学期望,考查推理能力与计算能力,属于难题.二、多选题9.已知曲线222:11x y C m m+=+,则下列说法正确的是()A .若C是椭圆,则其长轴长为B .若0m <,则C 是双曲线C .C 不可能表示一个圆D .若1m =,则C上的点到焦点的最短距离为2【正确答案】BC【分析】根据21m m +>可知若为椭圆,则焦点在x 轴上,进而可判断A,进而可判断BC ,根据椭圆的几何性质可判断D.【详解】由于22131024m m m ⎛⎫+-=-+> ⎪⎝⎭,所以21m m +>,对于A,当0m >时,故222:11x y C m m+=+表示焦点在x轴上的椭圆,故椭圆的长轴长为故A 错误,对于B,当0m <时,C 是双曲线,故B 正确,对于C,由于21m m +>,故C 不可能表示一个圆,故C 正确,对于D,1m =时,22:121x y C +=,表示焦点在x 轴上的椭圆,且此时2222,1,1,===a b c故椭圆上的点到焦点的最小距离为1a c --,故D 错误,故选:BC10.已知8件产品中有3件是一等品,其余都是二等品.从这些产品中不放回地抽取三次,令i A 为第(1,2,3)i i =次取到的是一等品,则()A .()138P A =B .1A 与2A 相互独立C .()213|8P A A =D .()32328P A A =【正确答案】AD【分析】根据古典概型的概率公式及条件概率概率公式计算可得;【详解】解:依题意()13118C 3C 8P A ==,故A 正确;()1132111827C C 3C C 28A A P =⋅=,所以()()()212113228|378P A A P A A P A ===,故C 错误()1111325322288C C C C 3A A 8P A =+=,因为()()()2112P P A A A P A ≠,故1A 与2A 不独立,故B 错误;对于D :()3123532383A +C A 3A 28P A A ==,故D 正确;故选:AD11.将9个相同的小球分给甲、乙等4个人,()A .不同的分配方法共有220种B .若每人至少分到1个小球,则不同的分配方法共有56种C .若每人至少分到2个小球,则不同的分配方法共有10种D .若甲至少分到2个小球,其余3人每人至少分到1个小球,则不同的分配方法共有35种【正确答案】ABD【分析】利用隔板法直接判断各选项.【详解】A 选项:不同的分配方法有312C 220=种,故A 选项正确;B 选项:若每人至少分到1个小球,则不同的分配方法共有38C 56=种,故B 选项正确;C 选项:若每人至少分到2个小球,则四人中只有一人分到3个球,其他三人各分到2各球,故不同的分配方法共有34C 4=种,故C 选项不正确;D 选项:若甲至少分到2个小球,其余3人每人至少分到1个小球,则不同的分配方法共有37C 35=种,故D 选项正确;故选:ABD.12.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,13,21,….该数列的特点如下:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n a 称为斐波那契数列,现将{}n a 中的各项除以2所得的余数按原来的顺序构成的数列记为{}n b ,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,下列说法正确的是()A .20221348T =B .100010021S a =-C .若2022n T =,则3033n =D .2222123500500501a a a a a a ++++= 【正确答案】ABD【分析】根据数列特征得到{}n b 为1,1,0,1,1,0,L ,周期为3的数列,从而得到()20221106741348T =++⨯=,A 正确,1000S =1002210021a a a -=-,B 正确,根据数列{}n b 的周期求和得到3033n =或3032n =,所以C 错误,根据提公因式和斐波那契数列的特征得到D 正确.【详解】根据斐波那契数列的特征可以看出,数列为依次连续两个奇数和一个偶数,所以数列{}n b 为1,1,0,1,1,0,L ,则数列{}n b 为周期数列,且周期为3,所以()20221106741348T =++⨯=,故A 正确;因为1000129991000S a a a a =++++ 32431001100010021001a a a a a a a a =-+-++-+- 1002210021a a a =-=-,故B 正确;因为()20221101011=++⨯,101133033⨯=,且30311b =,30321b =,30330b =,所以3033n =或3032n =,故C 错误;22222221235001223500a a a a a a a a a ++++=++++ L ()22222123500233500a a a a a a a a a =++++=+++ 2499500500500501a a a a a ==+= ,故D 正确.故选:ABD 三、填空题13.412x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为___________.【正确答案】24【分析】根据通项公式,确定常数项,再代入二项式定理的通项中即可计算结果.【详解】解:由通项公式得:()44421441C 22C rrr r r rr T x xx ---+⎛⎫== ⎪⎝⎭,令420r -=,即可得2r =,所以展开式的常数项为:42242C 24-=.故2414.写出一个同时具有下列性质①②③的数列{}n a ,①无穷数列;②递减数列;③每一项都是正数,则n a =______.【正确答案】21n (答案不唯一)【分析】根据题目中要求的数列性质,写出满足题意的一个数列即可.【详解】根据题意,要求的数列可以为21n a n =,故21n (答案不唯一).15.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题:①若89S S <,则910S S <;②若110S =,则2100a a +=;③若13140,0S S ><,则{}n S 中7S 最大;④若210S S =,则使0n S >的n 的最大值为11.其中所有真命题的序号是__________.【正确答案】②③④【分析】①由题意可以推出90a >,不能推出100a >,判断①错误;②由题意可得1110a a +=,判断出②正确;③由题意可得780,0a a ><,判断出③正确;④由题意可得670a a +=,进而670,0a a ><,判断出④正确.【详解】若89S S <,则90a >,不能推出100a >,即不能推出910S S <,故①错误;若110S =,则1111111()02a a S +==,即1110a a +=,则2101110a a a a +=+=,故②正确;若13140,0S S ><,则113781141371413()14()14()130,0222a a a a a a S a S +++==>==<,所以780,0a a ><,则{}n S 中7S 最大,故③正确;若210S S =,则1121045a d a d +=+,即11167211560a d a d a d a a +=+++=+=,因为首项为正数,则公差小于0,则670,0a a ><,则11111611()1102a a S a +==>,112126712()6()02a a S a a +==+=,则使0n S >的n 的最大值为11,故④正确.故②③④.四、双空题16.2020年高考前第二次适应性训练结束后,某校对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布的密度曲线()()222x p x μσ--=非常拟合.已知()()max 95p x p ==则方差为_________.据此估计,在全市随机抽取10名高三同学,设X 表示10名同学中英语成绩超过95分的人数,X 的数学期望是__________.【正确答案】645【分析】由()()max 95p x p =μ、σ,写出方差即可;而1(95)2p x >=,易知1(10,)2X B ,根据二项分布的期望公式求期望即可.【详解】由()()max 95p x p ==95μ=,8σ=,故方差264σ=,由正态分布的对称性知:1(95)2p x >=,故1(10,)2X B ,∴X 的数学期望1()1052E X =⨯=.故64,5五、解答题17.某种商品价格与该商品日需求量之间的几组对照数据如下表,经过进一步统计分析,发现y 与x 具有线性相关关系.价格x (元/kg )1015202530日需求量y (kg )1110865(1)根据上表给出的数据,求出y 与x 的线性回归方程ˆˆy bx a ∧=+;(2)利用(1)中的回归方程,当价格40x =元/kg 时,日需求量y 的预测值为多少?(参考公式:线性回归方程ˆˆy bx a ∧=+,其中()()()121ni ii n ii x x yy b x x ==--=-∑∑,a y bx =-.)【正确答案】(1)ˆ0.3214.4yx =-+(2)1.6kg.【分析】(1)根据题中所给的数据,结合参考方程,对数据进行分步计算即可;(2)将价格数据代入回归方程,即可求得预测值.【详解】(1)由所给数据计算得1(1015202530)205x =++++=,1(1110865)85y =++++=,()52222221(10)(5)0510250i i x x =-=-+-+++=∑,()()51103(5)2005(2)10(3)80iii x x yy =--=-⨯+-⨯+⨯+⨯-+⨯-=-∑,()()()51521800.32250iii ii x x y y b x x ==---===--∑∑.80.322014.4a y bx =-=+⨯=.所求线性回归方程为ˆ0.3214.4yx =-+.(2)由(1)知当40x =时,ˆ0.321014.4 1.6y=-⨯+=.故当价格40x =元/kg 时,日需求量y 的预测值为1.6kg.本题考查线性回归直线方程的求解,根据公式计算回归系数即可,属基础题.18.设等差数列{}n a 的前n 项和为n S ,1518a a +=-,972S =-;(1)求数列{}n a 的通项公式;(2)当n S 取最小值时,n 的值.【正确答案】(1)12122n a n =-(2)20或21【分析】(1)求得等差数列{}n a 的首项和公差,由此求得n a .(2)由0n a ≤求得正确答案.【详解】(1)设等差数列{}n a 的公差为d ,则11241893672a d a d +=-⎧⎨+=-⎩,解得1110,2a d =-=,所以()1121101222n a n n =-+-⨯=-.(2)由121022n a n =-≤解得21n ≤,所以当n S 取得最小值时,n 的值为20或21(210a =).19.已知数列{}n a 满足1511a =,()1432n n a a n -=-≥.(1)求证:数列{}1n a +为等比数列;(2)令()2log 1n n b a =+,求数列{}n b 的前n 项和n S .【正确答案】(1)证明见解析(2)2210,5=10+50,6n n n n S n n n ⎧-≤⎨-≥⎩【分析】(1)由11344n n a a -=-知:()11114n n a a -+=+,利用等比数列的通项公式即可得出;(2)()2log 1112n n b a n =+=-,设数列{}112n -的前n 项和为n T ,则210n T n n =-.当5n ≤时,n n S T =;当6n ≥时,52n n S T T =-.【详解】(1)(1)证明:由11344n n a a -=-知()11114n n a a -+=+,由10n a +≠知:11114n n a a -+=+,∴数列{}1n a +是以512为首项,14为公比的等比数列,∴11121151224n n n a --⎛⎫+=⨯= ⎪⎝⎭,∴11221nn a -=-;(2)由(1)知()2log 1112n a n +=-,设(){}2log 1n a +的前n 项和为n T ,210n T n n =-,∴()2log 1112n n b a n =+=-,当5n ≤时,()21log 0n a +>,210n n S T n n ==-,6n ≥,()()()252621555log 1log 21050n n n n S T a a T T T T T n n +=-+--=--=-=-+ ,综上得2210,5=10+50,6n n n n S n n n ⎧-≤⎨-≥⎩.20.已知点()2,0A -、()2,0B ,动点(),M x y 满足直线AM 与BM 的斜率之积为34-,记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)经过点()1,0P -的直线l 与曲线C 交于C 、D 两点.记ABD △与ABC 的面积分别为1S 和2S ,求12S S -的最大值.【正确答案】(1)()221243x y x +=≠±;是去掉两个长轴端点的椭圆【分析】(1)结合两点间的斜率公式求解即可;(2)当直线l 斜率不存在时,120S S -=;当直线l 斜率存在时,设直线l 的方程为()()10y k x k =+≠,与椭圆方程联立,结合韦达定理表示出进行化简变形,再利用基本不等式求解即可.【详解】(1)由题意,2AM y k x =+,2BM yk x =-,2x ≠±,所以3224AM BM y y k k x x ⋅==-+-,整理可得22143x y +=,所以C 的方程为()221243x y x +=≠±,曲线C 是去掉两个长轴端点的椭圆.(2)当直线l 斜率不存在时,直线l 的方程为=1x -,此时ABD △与ABC 的面积相等,所以120S S -=.当直线l 斜率存在时,设直线l 的方程为()()10y k x k =+≠,()11,C x y ,()22,D x y ,联立方程组()221143y k x x y ⎧=+⎪⎨+=⎪⎩,可得()22223484120k x k x k +++-=,则()()()42226443441214410k k k k ∆=-+-=+>,且2122834k x x k +=-+,212241234k x x k-=+,则()()()132212112186+2331244y x k kk y k k x k x x k k k +=+++=+-=+++=,此时221211211422324S S y y y y k k -=⨯⨯=+-=+,由于0k ≠,所以212123344kkk k=≤++当且仅当34k k =,即2k =时取等号,所以12S S -综上所述,12S S -21.甲、乙两支足球队将进行某赛事的决赛.其赛程规则为:每一场比赛均须决出胜负,若在规定时间内踢成平局,则双方以踢点球的方式决出胜负.按主、客场制先进行两场比赛,若某一队在前两场比赛中均取得胜利,则该队获得冠军;否则,需在中立场进行第三场比赛,其获胜方为冠军.假定甲队在主场获胜的概率为12,在客场获胜的概率为13,在第三场比赛中获胜的概率为25,且每场比赛的胜负相互独立.(1)已知甲队获得冠军,求决赛需进行三场比赛的概率;(2)比赛主办方若在决赛的前两场中共投资m (千万元),则能盈利2m(千万元).如果需进行第三场比赛,且比赛主办方在第三场比赛中投资n (千万元).若比赛主办方准备投资一千万元,以决赛总盈利的数学期望为决策依据,则其在前两场的投资额应为多少万元?【正确答案】(1)15(2)34千万元.【分析】(1)甲获胜,且比赛进行了三场,说明前两场一队赢一场,第三场中立场甲赢;(2)根据总盈利和进行的场次有关,求出总盈利2m,即比赛只需进行两场的概率,再求出总盈利为2m.【详解】(1)由于前两场对于比赛双方都是一个主场一个客场,所以不妨设甲队为第一场为主场,第二场为客场,设甲获得冠军时,比赛需进行的场次为X ,则111121(3)11232355P X ⎡⎤⎛⎫⎛⎫==⨯-+-⨯⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.(2)由题可得1m n +=,所以[]1,0,1m n n =-∈比赛结束需进行的场次即为Y ,则2,3Y =,设决赛总盈利为Z ,则,22m mZ =,11111((2)11223232m P Z P Y ⎛⎫⎛⎫====⨯+-⨯-= ⎪ ⎪⎝⎭⎝⎭,11111((3)11223232m P Z P Y ⎛⎫⎛⎫====⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭,所以决赛总盈利为Z 的分步列如下,所以11111()2222222m m E Z m n ⎛=⨯+⨯==-+ ⎝,所以211()22E Z =-+,12=,即14n =时,二次函数211()22E Z =-+有最大值为58,所以以决赛总盈利的数学期望为决策依据,则其在前两场的投资额应为13144m =-=千万元.22.为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按[)0,20,[)20,40,[)40,60,[)60,80,[]80,100分组,绘制频率分布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的22⨯列联表,并根据列联表及0.05α=的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.单位:只抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率p ;(ii )以(i )中确定的概率p 作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记n 个人注射2次疫苗后产生抗体的数量为随机变量X .试验后统计数据显示,当90X =时,()P X 取最大值,求参加人体接种试验的人数n 及()E X .参考公式:2χ2()()()()()n ad bc a b c d a c b d -=++++(其中n a b c d =+++为样本容量)参考数据:20()P k χ≥0.500.400.250.150.1000.0500.0250k 0.4550.7081.3232.0722.7063.8415.024【正确答案】(1)列联表答案见解析,认为注射疫苗后小白鼠产生抗体与指标值不小于60有关;(2)(i )0.9;(ii )当接种人数为n =99时,()89.1E X =;当n =100时,()90E X =.【分析】(1)根据频率分布直方图算出每个区间段的小白鼠数量,然后根据指标值完成列联表,并根据参考公式进行运算,然后进行数据比对,最终得到答案;(2)(i )根据古典概型公式,结合对立事件概率求法即可得到答案;(ii )根据()90P X =最大,结合二项定理概率求法列出不等式组解出X ,最后求出期望.【详解】(1)由频率分布直方图,知200只小白鼠按指标值分布为:在[)0,20内有0.00252020010⨯⨯=(只);在[)20,40内有0.006252020025⨯⨯=(只);在[)40,60内有0.008752020035⨯⨯=(只);在[)60,80内有0.025********⨯⨯=(只);在[]80,100内有0.00752020030⨯⨯=(只).由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570++=(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只抗体指标值合计小于60不小于60有抗体50110160没有抗体202040合计70130200零假设为0H :注射疫苗后小白鼠产生抗体与指标值不小于60无关联.根据列联表中数据,得()220.05200502020110 4.945 3.8411604070130x χ⨯⨯-⨯=≈>=⨯⨯⨯.根据0.05α=的独立性检验,推断0H 不成立,即认为注射疫苗后小白鼠产生抗体与指标值不小于60有关,此推断犯错误的概率不大于0.05.(2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体”,事件C =“小白鼠注射2次疫苗后产生抗体”.记事件A ,B ,C 发生的概率分别为()P A ,()P B ,()P C ,则()1600.8200P A ==,()200.540P B ==,()()()0.20.1150.9P C P A P B -⨯==-=.所以一只小白鼠注射2次疫苗后产生抗体的概率0.9p =.(ii )由题意,知随机变量(),0.9X B n ,()C 0.90.1k k n kn P X k -==⨯⨯(0,1,2,,k n =⋅⋅⋅).因为()90P X =最大,所以909090919191909090898989C 0.90.1C 0.90.1C 0.90.1C 0.90.1n n n n n n n n ----⎧⨯⨯≥⨯⨯⎨⨯⨯≥⨯⨯⎩,解得901999n ≤≤,因为n 是整数,所以99n =或100n =,所以接受接种试验的人数为99或100.①当接种人数为99时,()990.989.1E X np ==⨯=;②当接种人数为100时,()1000.990E X np ==⨯=.。
2023-2024学年甘肃省金昌市永昌县第一高级中学高二下学期第一次月考语文试卷
2023-2024学年甘肃省金昌市永昌县第一高级中学高二下学期第一次月考语文试卷阅读下面的文字,完成小题。
书院先贤致力于恢复儒学的师道传统,强调师道对于人才培养的重要意义:“后世之人才所以不古如者,以夫师道之不立故也。
”立师道,则要求老师自身学行高深,使学生能够就近取譬,以老师为楷模。
所以,书院总是选聘经明行修的硕儒名师担任山长、掌教,让学生“慕而从,从而服,服而思”,产生仰慕与向往。
在此基础之上,书院先贤努力构建密切的师生关系。
书院师生以道相交、密切互动、教学相长,师生之间感情笃厚。
在这种师生关系中,老师不仅深度了解学生的志趣个性,因材施教,还经常和学生分享学习经验与人生感悟,以学生的点滴进步为乐。
岳麓书院山长欧阳厚均“与诸生文行交勉,道艺兼资”,见到学生彬彬有礼,雅雅得体,雍容进退,欣慰不已。
学生则视老师为良师益友,对老师其人与其所传之学都会产生深刻的认同,由此产生了“亲其师信其道,尊其师奉其教,敬其师效其行”的效果,形成了持久的学习兴趣和动力。
书院强调学生以自学为主,反复思考之后,可以与同学商讨,仍有疑难,则与教师一同讨论。
教师则定期讲授,释疑解惑,引导学生进一步思考。
日常教学活动之外,参加书院的会讲活动,聆听、参与不同观点的论辩交锋,也是书院生徒学习的重要方式。
此外,书院还会在春秋二季、每月朔望祭祀先圣先贤,师生共同参加,在进退周旋之中学习礼仪,涵养性情。
教学的地点,也不拘一格,可以是在讲堂之内,也可以是在室外乃至书院之外的各种空间、场所。
在许多书院史料中,都可以看到书院师生共同徜徉于山林泉石之间,随处讲论,随机提点启发。
1167年,朱熹曾经率弟子从武夷山前往岳麓书院论学,而后又与张栻率众弟子登临南岳。
王阳明也经常带领弟子登山临水。
其弟子甚至认为,王阳明“点化同志,多得之登游山水间”。
清代岳麓书院山长罗典“晨起讲经义,暇则率生徒看山花,听田歌,徜徉亭台池坞之间”,“随所触为指示”。
众生徒“或罗坐花间,或侍立月下,或随行涧沼、墩径间,谈经道古,内而心性,外而身世之故,凡所欲闻者无不闻,而皆有以洽其意而餍其心”。
三明市第一中学2022-2023学年高二下学期第一次月考数学试题含答案
三明一中2022-2023学年下学期高二第1次月考数学学科试卷(总分150分,时间:120分钟)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.曲线()ln f x x x =在1x =处的切线的方程为A .022=--y xB .01=--y xC .01=-+y x D .013=--y x 2.有3名新冠肺炎疫情防控的志愿者,每人从2个不同的社区中选择1个进行服务,则不同的选择方法共有A .12种B .9种C .8种D .6种3.函数()()ln 21f x x x =-+的单调递增区间是A .1,02⎛⎫- ⎪⎝⎭B .11,22⎛⎫- ⎪⎝⎭C .1,2⎛⎫-+∞ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭4.函数()||2()e 2x f x x =-的大致图像为A .B .D .C.5.把一个周长为12cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的高为A .1B .πC .2D .216.《长津湖》和《我和我的父辈》都是2021年国庆档的热门电影.某放映厅在国庆节的白天可以放映6场,晚上可以放映4场电影.这两部影片只各放映一次,且两部电影不能连续放映(白天最后一场和晚上第一场视为不连续),也不能都在白天放映,则放映这两部电影不同的安排方式共有A .30种B .54种C .60种D .64种7.若函数()21ln 2f x x x a x =-+有两个不同的极值点,则实数a 的取值范围为A .10,4⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎤-∞ ⎥⎝⎦8.对任意()0,x ∈+∞,不等式()()1ln e xa x ax -+≤恒成立,则实数a 的取值范围为A .(]0,1B .(]0,e C .(]0,2e D .(20,e⎤⎦二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图是函数()y f x =的导函数()f x '的图象,则下面判断正确的是A .()f x 在(3,1)-上是增函数B .()f x 在(1,3)上是减函数C .()f x 在(1,2)上是增函数D .当4x =时,()f x 取得极小值10.在中共二十大代表“燃灯校长”张桂梅老师的不懈努力下,云南华坪山区的2000多名女孩圆了大学梦,她扎根基层教育默默奉献的精神感动了无数人.受她的影响,有甲,乙,丙,丁四名志愿者主动到A,B,C 三所山区学校参加支教活动,要求每个学校至少安排一名志愿者,下列结论正确的是A .共有18种安排方法B .若甲、乙被安排在同一所学校,则有6种安排方法C .若A 学校需要两名志愿者,则有24种安排方法D .若甲被安排在A 学校,则有12安排方法11.已知函数()2ln f x x x =-,则下列说法正确的是A .()f x在2x =处取得最大值B .()f x在12⎛ ⎝⎭上单调递增C .()f x 有两个不同的零点D .()2e 2xf x x <--恒成立(第9题图)12.已知1e a b <<<(e 为自然对数的底数),则A .baa b<B .eeabab >C .eeb aa a >D .eeb ba a <三、填空题:本题共4小题,每小题5分,共20分.13.小明跟父母、爷爷和奶奶一同参加《中国诗词大会》的现场录制,5人坐一排.则小明的父母都与他相邻的排法总数为****.14.由数字1,2,3,4可以组成多少个没有重复数字且比1300大的正整数****.15.设函数()ln 2f x x mx =-(m 为实数),若()f x 在[1,)+∞上单调递减,则实数m 的取值范围****.16.已知奇函数()f x 的定义域为R ,导函数为()f x ',若对任意[)0,x ∈+∞,都有()()30f x xf x '+>恒成立,()22f =,则不等式()()31116x f x --<的解集是****.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(10分)求值:(要有详细的运算过程)(1)计算:215103134A A A A -+;(2)已知()22*1717C C N x x x +=∈,求x .已知函数()322f x x ax bx a =+++在1x =处取得极小值1.(1)求实数,a b 的值;(2)求函数()y f x =在区间[]22-,上的值域.19.(12分)(1)某学校文艺汇演准备从舞蹈、小品、相声、音乐、魔术、朗诵6个节目中选取5个进行演出.要求舞蹈和小品必须同时参加,且他们的演出顺序必须满足舞蹈在前、小品在后.那么不同的演出顺序共有多少种;(2)某地病毒爆发,全省支援,需要从我市某医院选派5名医生支援,5名医生要分配到3个不同的病毒疫情严重的地方,要求每一个地方至少有一名医生.则有多少种不同的分配方法..已知函数()2(1)xf x x e ax =--.(1)讨论()f x 单调性;(2)若函数()()xg x f x xe x =-+在[]1,2上不单调,求a 的取值范围.21.(12分)2022年2月4日,第二十四届冬季奥林匹克运动会开幕式在北京国家体育场举行,拉开了冬奥会的帷幕.冬奥会发布的吉祥物“冰墩墩”、“雪容融”得到了大家的广泛喜爱,达到一墩难求的地步.当地某旅游用品商店获批经销此次奥运会纪念品,其中某个挂件纪念品每件的成本为5元,并且每件纪念品需向税务部门上交5a +元(58)a ≤≤的税收,预计当每件产品的售价定为x 元(1317)x ≤≤时,一年的销售量为2(18)x -万件.(1)求该商店一年的利润L (万元)与每件纪念品的售价x 的函数关系式;(2)求出L 的最大值()Q a .已知函数()()1e 1xf x x =-+.(1)证明:()2102f x x +≥;(2)若0x ≥时,()()ln 1f x mx x ≥+恒成立,求实数m 的取值范围.三明一中2022-2023学年下学期高二第1次月考数学学科参考答案一、选择题123456789101112BCDACBABCDBDABDAD二、填空题13.12种14.22个15.1,2⎡⎫+∞⎪⎢⎣⎭16.()1,3-三、解答题17.解:(1)215103134A A 5410101A A 321410-⨯-===+⨯⨯+………………5分(2)已知221717C C x x +=,则22x x =+或2(2)17x x ++=………………7分解得:2x =或5x =,经检验均符合.………………9分故2x =或5x =.…………………10分18.解:(1)因为()322f x x ax bx a =+++,所以()232f x x ax b '=++,………………1分根据题意,(1)1,(1)0,f f =⎧⎨='⎩………………3分即121,320,a b a a b +++=⎧⎨++=⎩………………5分解得a =3,b =-9,经检验满足题意.………………6分(2)由(1)知,()()()()322396,369331f x x x x f x x x x x =+-+=+-=+-',令()0f x '=,解得3x =-或1x =,………………7分当[]2,2x ∈-时,()f x '及()f x 的变化情况如下表:x 2-()2,1-1()1,22()f x '-+()f x 28单调递减1单调递增8………………9分因此当1x =时,()f x 取得最小值()11f =,当2x =-时,()f x 取得最大值()228f -=,………………11分故()f x 的值域为[]1,28.………………12分19.解:(1)先从相声、音乐、魔术、朗诵4个节目中选3个,有=344C 种,………2分再把5个节目排列且满足舞蹈在前、小品在后,有552260A A =,总共有460240⨯=种.………………5分(2)根据题意,先把5名医生分成3组再分配,一是分成3,1,1然后分配,共有3353C A 10660⋅=⨯=种分配方法,………………8分二是分成2,2,1然后分配,共有22353322C C 30A 690A 2⋅=⨯=种分配方法,………………11分所以共有6090150+=种分配方法.………………12分20.解:(1)函数)(x f 的定义域为R ,()()'(1)22x x x f x e x e ax x e a --=+-=,……………1分(i )当0a ≤时,20xe a ->,所以0x <时,()'0f x <,此时()f x 单调递减;0x >时,()'0f x >,此时()f x 单调递增;……………2分(ii )当102a <<时,ln 20a <时,令()'0f x >,得ln 2x a <或0>x ,令()'0f x <,得ln 20a x <<,所以()f x 的单调递增区间为),0(),2ln ,(+∞-∞a ,()f x 的单调递减区间为)0,2(ln a ……………3分(iii )当12a =时,()'0f x ≥恒成立,()f x 在R 上单调递增.……………4分(iv )当12a >时,ln 20a >,令()'0f x >,得ln 2x a >或0<x ,令()'0f x <,得0ln 2x a <<,所以()f x 的单调递增区间为),2(ln ),0,(+∞-∞a ,()f x 的单调递减区间为)2ln ,0(a 5分综上所述:当0a ≤时,()f x 在)0,(-∞上单调递减,在),0(+∞上单调递增;当102a <<时,()f x 在()ln 2,0a 上单调递减,在(),ln 2a -∞和(0,+∞)上单调递增;当12a =时,()f x 在R 上单调递增;当12a >时,()f x 在()0,ln 2a 上单调递减,在(),0-∞和),2(ln +∞a 上单调递增.……………6分(2)函数()()2xxg x f x xe x x e ax =-+=--,若函数()g x 在[]1,2上不单调,则()'0g x =在()1,2上有解.……………7分又()'120xg x e ax =--=,可得:12xe a x-=……………8分令()1xe h x x -=,则有()()()()221'11x x x e x e x e h x x x---=-⋅-=,……………9分因为()1,2x ∈,则有()'0h x <恒成立,所以()h x 在()1,2上单调递减,……………10分所以()21,12e h x e ⎛⎫-∈- ⎪⎝⎭,即21212e a e -<<-,……………11分解得:21142e e a --<<,则a 的取值范围为21,41(2ee --.……………12分21.解:(1)由题意,预计当每件产品的售价为x 元(1317)x ≤≤,而每件产品的成本为5元,且每件产品需向税务部门上交(5)a +元(58)a ≤≤,所以商店一年的利润L (万元)与售价x 的函数关系式为:2(10)(18),[13,17]L x a x x =---∈.……………3分(2)∵2(10)(18),[13,17]L x a x x =---∈,∴(3823)(18)L a x x =+--',……………4分令0L '=,解得:3823a x +=或18x =,而58a ≤≤,则38216183a +≤≤,……………5分①当38216173a +≤<,即5 6.5a ≤<时,……………6分当38213,3a x +⎛⎫∈ ⎪⎝⎭时,0L '>,L 单调递增,当382,173a x +⎛⎫∈ ⎪⎝⎭时,0L '<,L 单调递减,……………7分∴当3823a x +=时,L 取最大值34(8)27a -;……………8分②当38217183a +≤≤,即6.58a ≤≤时,……………9分当()13,17x ∈时,0L '>,L 单调递增,……………10分∴当17x =时,L 取最大值7a -,……………11分综上,()()348,5 6.5277,6.58a a Q a a a ⎧-≤<⎪=⎨⎪-≤≤⎩……………12分22.解:(1)证明:令()()()22111e 122x g x f x x x x =+=-++,x ∈R ,()00g =,………1分()()e 1x g x x '=+,由()0g x '<可得0x <,由()0g x '>可得0x >.……………2分所以,函数()g x 的减区间为(),0∞-,增区间为()0,∞+,……………3分所以,()()00g x g ≥=,故原不等式得证.……………4分(2)解:当0x ≥时,由()()ln 1f x mx x ≥+可得()()1e ln 110x x mx x --++≥,…………5分令()()()1e ln 11x h x x mx x =--++,其中0x ≥,()()e ln 11x x h x x m x x ⎡⎤'=-++⎢⎥+⎣⎦,且()00h '=,……………6分令()()p x h x '=,其中0x ≥,则()()()()()()32221e 21e 211xx m x x x p x x m x x x ⎡⎤+++'=+-=-⎢⎥+++⎢⎥⎣⎦,令()()31e 2xx t x m x +=-+,其中0x ≥,则()()()()222157e 02xx xx t x x +++'=>+,所以,函数()t x 在[)0,∞+上为增函数,则()()min102t x t m ==-.……………7分①当102m -≥时,即当12m ≤时,对任意的0x ≥,()0p x '≥且()p x '不恒为零,故函数()p x 在[)0,∞+上为增函数,则()()00h x h ''≥=且()h x '不恒为零,故函数()h x 在[)0,∞+上为增函数,则()()00h x h ≥=,合乎题意;……………8分②当102m -<时,即当12m >时,()1002t m =-<,()()()33321e 1210222mm m m m m t m m m m m m +++++=->-=>+++,高二数学第5页共5页所以,存在()00,x m ∈,使得()00t x =,当00x x <<时,()0t x <,则()0p x '<,此时函数()p x 单调递减,则当00x x <<时,()()00p x p <=,即()0h x '<,故函数()h x 在()00,x 上单调递减,所以,()()000h x h <=,不合乎题意.……………11分综上所述,12m ≤.……………12分。
2024-2025学年下高二年第一次月考英语试卷
2024-2025学年上学期高二年第一次月考英语试卷(20240930)出卷人:Allen 核对:高二年英语备课组第一部分听力(共两节,每小题1.5分,满分30分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What will the man do during the vacation?A. Go to the countryside.B. Work in a clothes store.C. Travel around with Sam.2. What’s the probable relationship between the speakers?A. Workmates.B. Husband and wife.C. Customer and waitress.3. How does the woman sound?A. Confused.B. Annoyed.C. Excited.4. What does the woman think Tom needs?A. Suggestions.B. Punishment.C. Encouragement.5. Where does the woman find her mobile phone?A. In her bag.B. On the chair.C. On the table.其次节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听下面一段对话,回答第6和第7两个小题。
6. What day is it today?A. Friday.B. Saturday.C. Thursday.7. What is the woman going to do first?A. Call Mark’s parents.B. Watch a match.C. Exchange tickets.听下面一段对话,回答第8和第9两个小题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页 共4页 ◎ 第2页 共4页
姓名 班级 得分
1、设集合}04|{},4,2,1{2
=+-==m x x x B A ,若}1{=B A ,则=B ( )
A 、}3,1{-
B 、}0,1{
C 、}3,1{
D 、}5,1{ 2.已知复数z=,是z 的共轭复数,则z •=( ) A .
B .
C .4
D .1
4.已知向量+=(2,﹣8),﹣=(﹣8,16),则与夹角的余弦值为( ) A .
B .
C .
D .
5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4=( ) A .15 B .7 C .8 D .16
6.某程序框图如图所示,若该程序运行后输出的值是
,则a 的值为( )
5、设y x ,满足约束条件⎪⎩
⎪
⎨⎧≥+≥+-≤-+0303320332y y x y x ,则y x z +=2的最小值为 ( )
A 、15-
B 、9-
C 、1
D 、9
.(2016·黄冈中学月考)下列四种说法中,
①命题“存在x ∈R ,x 2-x >0”的否定是“对于任意x ∈R ,x 2-x <0”; ②命题“p 且q 为真”是“p 或q 为真”的必要不充分条件; ③已知幂函数f (x )=x α的图象经过点(2,
22),则f (4)的值等于1
2
; ④已知向量a =(3,-4),b =(2,1),则向量a 在向量b 方向上的投影是2
5.
说法正确的个数是( ) A .1 B .2 C .3
D .4
若双曲线C :)0,0(12222>>=-b a b
y a x 的一条渐近线被圆4)2(2
2=+-y x 所截得的弦
长为2,则C 的离心率为 ( ) A 、2 B 、3 C 、2 D 、
3
3
2 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为2
3sin a A
(1)求sin B sin C ;
(2)若6cos B cos C =1,a =3,求△ABC 的周长
直角坐标系xOy 中,曲线C 的参数方程为3cos ,
sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程
为4,
1,x a t y t =+⎧⎨=-⎩
(t 为参数).
(1)若a=-1,求C 与l 的交点坐标;
(2)若C上的点到l
a.
23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.
第3页共4页◎第4页共4页。