GPS-41SMD中文资料

合集下载

ZG-1121Q ZG-1121U 快速、高精度、低功耗 12 通道 SMD 封装 GPS 接收模块

ZG-1121Q ZG-1121U 快速、高精度、低功耗 12 通道 SMD 封装 GPS 接收模块

ZG-1121QZG-1121U快速,高精度,低功耗 12 通道SMD封装GPS 接收模块用户手册制造商:郑州紫辰科技开发有限公司承销: 友利华(河南)高科技开发有限公司声明郑州紫辰科技开发有限公司并未对本产品的精度做出关于精准和完全的任何表述和相关授权(内在保证或其他),也不会承担因此所引起的任何商业损失,这包括特殊的,附带的,相关的或其他形式的损坏。

以防该产品故障引起的不必要的损坏,产品将不应用于医药,呼吸设备,及有生命风险,个人伤害,或是关乎财产损失的任何应用。

本公司保留对本产品的最终变更和解释的权利。

商标辰星是郑州紫辰科技开发有限公司的商标。

在本文件中提及的品牌商标及产品名称均为相关公司的商标或注册商标。

版权郑州紫辰科技开发有限公司2007©版权所有。

未经郑州紫辰科技开发有限公司许可不得对本文进行摘录或作出修改。

目 录概述 (5)1.0技术性能 (6)2.0GPS 接收管脚模块图 (7)表3-1 管脚定义(ZG-1121Q) (7)表3-2 管脚定义(适用于ZG-1121U参考设计模块) (7)3.0管脚装置图 (8)表4-1管脚图(适用于ZG-1121Q参考设计模块) (8)表4-2 管脚定义(适用于ZG-1121U参考设计模块) (9)5.0 *P1PPS 输出 (10)6.0模块外形尺寸图 (10)7.0推荐元件封装尺寸图 (11)8.0电气特性 (12)表8-1 电气特性 (12)9.0电气最大参考值 (12)表9-1 电气最大参考值 (12)10.0NMEA 格式语句输出 (13)10.1 GGA-GPS定位数据 (13)10.2 GLL-经纬度、时间及位置信息 (14)10.3GSA-GPS DOP 和有效卫星信息 (14)10.4 GSV-GPS 视域内卫星 (15)10.5 RMC-推荐精简数据 (16)10.6 VTG-方位角及对地速度 (17)10.7 ZDA-时间和日期 (17)11.0二进制语句输入 (18)11.1二进制输入语句类型<F1h> (19)11.2重启动(01h) (20)11.3设置GPS模块输出通讯波特率(02h) (21)11.4设置NMEA 语句输出 (04h) (22)11.5恢复出厂默认值(08h) (23)11.6设置ID(0Dh) (23)11.7查询模块ID(0Eh) (23)11.8设置DOP 门限(0Fh) (24)11.9设置仰角门限(10h) (24)11.10 DGPS 控制(11h) (25)11.11 1PPS 控制(12h) (25)11.12设置输出格式(13h) (26)11.13 查询导航参数(17h) (26)11.14 查询系统设置(18h) (27)11.15 设置当地时间(19h) (27)11.16 设置补充数据(1Bh) (28)11.17 记录轨迹(1Dh) (28)11.18 记录航行轨迹(1Eh) (29)11.19 设置轨迹记录状态(1Fh) (29)11.20 设置更新率(20h) (30)12.0修正 (31)概述ZG-1121Q是一款采用高速专用基带处理器设计的高性能、低功耗、12并行通道的GPS OEM微型模块。

罗盈网络(Roving Networks)RN-41 RN-41-N类1蓝牙模块说明说明书

罗盈网络(Roving Networks)RN-41 RN-41-N类1蓝牙模块说明说明书

RN-41/RN-41-N Class 1 Bluetooth Module
RN-41-DS
Features
• Fully qualified Bluetooth® version 2.1 module, supports version 2.1 + Enhanced Data Rate (EDR)
> 140
115
Units
dBm dBm dBm dBm dBm dBm kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz
Table 5. Digital I/O Characteristics
3.0 V ≤ VDD ≤ 3.3 V Input Logic Level Low Input Logic Level High Output Logic Level Low Output Logic Level High All I/O pins (Except reset) Default to Weak Pull Down
Typ.
-80 -80 -80 16.0 16.0 16.0 5 5 5 900 15 13 165 165 165 190 190 190
Max.
-86 -86 -86
Bluetooth Specification
≤ -70
≤ 20
75 75 75 1000 175 175 175 -
75
≤ 1000 40 20
RN-41
Rstal
CSR BlueCore-04 External
VCC GND GPIO4 GPIO5 GPIO6 USB UART PCM
Flash Memory

gps-01系列说明书资料

gps-01系列说明书资料

国 电 南 自 Q/GDNZ.JB46.003-2004标准备案号:2492-2004GPS-01系列卫星同步时钟装置说明书国电南京自动化股份有限公司GUODIAN NANJING AUTOMATION CO.,LTD安全声明警告:请不要带电插拔天线,以免损坏精密器件。

危险:请不要用手触摸装置除机壳外的裸露带电部分和印制板上的器件管脚。

版本声明本说明书适用于GPS-01系列(含A型、B型、D型)卫星同步时钟装置。

1.软件1.2版本。

2.硬件1.2版本。

产品说明书版本修改记录表* 技术支持电话:(025)51183240传真:(025)51183077*本说明书可能会被修改,请注意核对实际产品与说明书的版本是否相符* 2009年2月第2版第1次印刷国电南自技术部监制目录安全声明版本声明1 概述 (1)1.1 适用范围 (1)1.2 功能配置及型号 (1)1.3 性能特点....................................................... 错误!未定义书签。

2 技术性能及指标 (2)2.1 额定电气参数 (2)2.2 主要技术指标 (2)2.3 环境条件 (5)2.4 功率消耗 (6)2.5 绝缘性能 (6)2.6 耐湿热性能 (7)2.7 电磁兼容性 (7)2.8 机械性能 (7)2.8.1振动 (7)2.8.2冲击 (7)2.8.3碰撞 (7)3 装置工作原理 (7)4 系统异常处理 (9)5 系统连接 (9)5.1 通信与规约 (9)6 硬件构成 (9)6.1 系统/装置的构成特点 (9)6.2 结构、外观及安装尺寸 (9)6.3 面板布置 (11)7 装置的安装及操作说明 (15)7.1 天线的安装 (15)7.2 装置的安装位置 (15)7.3 装置的投入及运行 (15)8 装置的故障与维修 (16)9 订货须知及其他 (16)1 概述 1.1 适用范围GPS-01系列(含A 型、B 型、D 型)卫星同步时钟装置,接收GPS(全球定位系统)卫星发送的同步信号串行数据,以多种接口方式提供精准时间和同步信号。

EM-411 使用手冊说明书

EM-411 使用手冊说明书

環天衛星科技股份有限公司PRODUCT USER MANUALGPS RECEIVER ENGINE BOARDEM-411GlobalSat Technology Corporation台北縣中和市建一路186號16樓(遠東世紀廣場)16, No.186,Chien 1 Road, 235Chung Ho City,Taipei Hsien, Taiwan ,R.O.C. Tel: 886-2-8226-3799(Rep.) Fax: 886-2-8226-3899Web: E-mail:*********************.twFeatures:SiRF starⅢhigh performance GPS Chip SetVery high sensitivity (Tracking Sensitivity: -159 dBm)Extremely fast TTFF (Time To First Fix) at low signal level Support NMEA 0183 data protocolBuilt-in SuperCap to reserve system data for rapid satellite acquisition Built-in patch antennaLED indicator for GPS fix or not fixLED O FF: Receiver switch offSignalsearchingfixed,ON: NoLEDFlashing: PositionFixedLEDSpecification:GeneralChipset SiRF StarⅢMHzFrequency L1,1575.42C/A code 1.023 MHz chip ratetrackingall-in-viewChannels20channeldBmSensitivity -159Accuracymeters,RMS2DPosition10WAASenabledRMS,2D5meters,m/sVelocity0.1GPStimetosynchronizedTime 1usDatumDefault WGS-84Acquisition Timeaveragesec.,Reacquisition0.11averagesec.,startHotaveragesec.,start 38Warmaveragesec.,Coldstart 42Dynamic Conditionsmaxfeet)(60,000Altitude18,000metersknots)max(1000meters/second515Velocity4gthanAccelerationLess**3Jerk20m/secPowerMain power input 4.5V ~ 6.5V DC inputconsumption 60mAPowerProtocolElectrical level TTL level, Output voltage level: 0V ~ 2.85VRS-232 levelbps4,800BaudrateOutput message NMEA 0183 GGA, GSA, GSV, RMC, VTG, GLLPhysical CharacteristicsDimension 30mm*30mm*10.5mm±0.3mmOperating temperature-40℃ to +85℃Pin AssignmentPin description* VIN (DC power input):This is the main DC supply for a 4.5V ~6.5 DC input power.* TX:This is the main transmits channel for outputting navigation and measurement data to user’s navigation software or user written software.* RX:This is the main receive channel for receiving software commands to the engine board from SiRFdemo software or from user written software.* GND:GND provides the ground for the engine board. Connect all grounds.SOFTWARE COMMANDNMEA Output CommandGGA-Global Positioning System Fixed DataTable B-2 contains the values for the following example:$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M,,,,0000*18Table B-2 GGA Data FormatName Example Units Description Message ID $GPGGA GGA protocol headerUTC Time 161229.487hhmmss.sssLatitude 3723.2475ddmm.mmmmN/S Indicator N N=north or S=southLongitude 12158.3416dddmm.mmmmW=west E/W Indicator W E=eastor Position Fix Indicator 1 See Table B-3Satellites Used 07 Range 0 to 12HDOP 1.0 Horizontal Dilution of Precision MSL Altitude19.0 metersUnits M metersGeoid Separation1 metersmetersUnits MAge of Diff. Corr.second Null fields when DGPS is not used Diff. Ref. Station ID 0000Checksum *18message termination <CR><LF> Endof SiRF Technology Inc. does not support geoid corrections. Values are WGS84 ellipsoid heights.Table B-3 Position Fix IndicatorValue Description0Fix not available or invalid1GPS SPS Mode,fix valid2Differential GPS, SPS Mode , fix valid3GPS PPS Mode, fix validGLL-Geographic Position-Latitude/LongitudeTable B-4 contains the values for the following example:$GPGLL,3723.2475,N,12158.3416,W,161229.487,A*2CTable B-4 GLL Data FormatName Example Units DescriptionMessage ID $GPGLL GLL protocol headerLatitude 3723.2475ddmm.mmmmN/S Indicator n N=north or S=southLongitude 12158.3416dddmm.mmmmW=westorE/W Indicator W E=eastUTC Position 161229.487hhmmss.sssStatus A A=data valid or V=data not valid Checksum *2Cmessage termination<CR><LF> EndofGSA-GNSS DOP and Active SatellitesTable B-5 contains the values for the following example: $GPGSA,A,3,07,02,26,27,09,04,15,,,,,,1.8,1.0,1.5*33Table B-5 GSA Data FormatUnits Description Name ExampleMessage ID $GPGSA GSA protocol headerB-6 Mode1 A SeeTableB-7Table Mode2 3 SeeSatellite Used107 Sv on Channel 1Satellite Used102 Sv on Channel 2…..Satellite Used1Sv on Channel 12PDOP 1.8 Position dilution of PrecisionHDOP 1.0 Horizontal dilution of PrecisionVDOP 1.5 Vertical dilution of PrecisionChecksum *33<CR><LF> End of message termination1.Satellite used in solution.Table B-6 Mode1Value DescriptionM Manual-forced to operate in 2D or 3D modeA 2Dautomatic-allowed to automatically switch 2D/3DTable B-7 Mode 2Value DescriptionAvailableNot1 Fix2 2D3 3DGSV-GNSS Satellites in ViewTable B-8 contains the values for the following example:$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71 $GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41Table B-8 GSV Data FormatName Example DescriptionMessage ID $GPGSV GSV protocol headerNumber of Messages1 2 Range 1 to 3Message Number1 1 Range 1 to 3Satellites in View07Satellite ID 07 Channel 1(Range 1 to 32)Elevation 79degrees Channel 1(Maximum90)degrees Channel 1(True, Range 0 to 359) Azimuth 048SNR(C/No) 42 dBHz Range 0 to 99,null when not tracking……. …….Satellite ID 27 Channel 4 (Range 1 to 32)Degrees Channel 4(Maximum90) Elevation 27Degrees Channel 4(True, Range 0 to 359) Azimuth 138SNR(C/No) 42 dBHz Range 0 to 99,null when not trackingChecksum *71message termination <CR><LF> EndofDepending on the number of satellites tracked multiple messages of GSV data may be required.RMC-Recommended Minimum Specific GNSS DataTable B-10 contains the values for the following example:$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598,,*10Table B-10 RMC Data FormatName Example Units Description Message ID $GPRMC RMC protocol headerUTC Time 161229.487hhmmss.sssStatus A A=data valid or V=data not valid Latitude 3723.2475ddmm.mmmmN/S Indicator N N=north or S=southLongitude 12158.3416dddmm.mmmmW=westE/W Indicator W E=eastorSpeed Over Ground 0.13 knotsCourse Over Ground 309.62 degrees TrueDate 120598 ddmmyyMagnetic Variation2 degrees E=east or W=westChecksum *10<CR><LF> Endmessage terminationofSiRF Technology Inc. does not support magnetic declination. All “course over ground” data are geodetic WGS48 directions.VTG-Course Over Ground and Ground Speed$GPVTG,309.62,T,,M,0.13,N,0.2,K*6EName Example Units DescriptionMessage ID $GPVTG VTG protocol headerdegrees Measured headingCourse 309.62Reference T Truedegrees Measured headingCourseReference M Magnetichorizontalspeedknots MeasuredSpeed 0.13Units N KnotsKm/hr Measured horizontal speedSpeed 0.2per hourUnits K Kilometers Checksum *6Emessage termination<CR><LF> EndofNMEA Input CommandA). Set Serial Port ID:100 Set PORTA parameters and protocolThis command message is used to set the protocol(SiRF Binary, NMEA, or USER1) and/or the communication parameters(baud, data bits, stop bits, parity). Generally,this command would be used to switch the module back to SiRF Binary protocol mode where a more extensive command message set is available. For example,to change navigation parameters. When a valid message is received,the parameters will be stored in battery backed SRAM and then the receiver will restart using the saved parameters.Format:$PSRF100,<protocol>,<baud>,<DataBits>,<StopBits>,<Parity>*CKSUM<CR><LF><protocol> 0=SiRF Binary, 1=NMEA, 4=USER1<baud> 1200, 2400, 4800, 9600, 19200, 38400<DataBits> 8,7. Note that SiRF protocol is only valid f8Data bits<StopBits> 0,1<Parity> 0=None, 1=Odd, 2=EvenExample 1: Switch to SiRF Binary protocol at 9600,8,N,1$PSRF100,0,9600,8,1,0*0C<CR><LF>Example 2: Switch to User1 protocol at 38400,8,N,1$PSRF100,4,38400,8,1,0*38<CR><LF>**Checksum Field: The absolute value calculated by exclusive-OR the8 data bits of each character in the Sentence,between, butexcluding “$” and “*”. The hexadecimal value of the mostsignificant and least significant 4 bits of the result are converttedto two ASCII characters (0-9,A-F) for transmission. The mosttransmittedfirst.characterissignificant**<CR><LF> : Hex 0D 0AB). Navigation lnitialization ID:101 Parameters required for startThis command is used to initialize the module for a warm start, by providing current position (in X, Y, Z coordinates),clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters will enable the receiver to acquire signals more quickly, and thus, produce a faster navigational solution.When a valid Navigation Initialization command is received, the receiver will restart using the input parameters as a basis for satellite selection and acquisition.Format:$PSRF101,<X>,<Y>,<Z>,<ClkOffset>,<TimeOfWeek>,<WeekNo>,<chnlCount>,<R esetCfg>*CKSUM<CR><LF><X> X coordinate positionINT32<Y> Y coordinate positionINT32<Z> Z coordinate positionINT32<ClkOffset> Clock offset of the receiver in Hz, Use 0 forlast saved value if available. If this isunavailable, a default value of 75000 forGSP1, 95000 for GSP 1/LX will be used.INT32<TimeOf Week> GPS Time Of WeekUINT32<WeekNo> GPS Week NumberUINT16(Week No and Time Of Week calculationfrom UTC time)<chnlCount> Number of channels to use.1-12. If yourCPU throughput is not high enough, youcould decrease needed throughput byreducing the number of active channelsUBYTE<ResetCfg> bit mask0×01=Data Valid warm/hotstarts=10×02=clear ephemeris warm start=10×04=clear memory. Cold start=1UBYTEExample: Start using known position and time.$PSRF101,-2686700,-4304200,3851624,96000,497260,921,12,3*7FC). Set DGPS Port ID:102 Set PORT B parameters for DGPS inputThis command is used to control Serial Port B that is an input only serial port used to receiveRTCM differential corrections.Differential receivers may output corrections using differentcommunication parameters.The default communication parameters for PORT B are 9600Baud, 8data bits, 0 stop bits, and no parity. If a DGPS receiver is used which has different communication parameters, use this command to allow the receiver to correctly decode the data. When a valid message is received, the parameters will be stored in battery backed SRAM and then the receiver will restart using the saved parameters.Format:$PSRF102,<Baud>,<DataBits>,<StopBits>,<Parity>*CKSUM<CR><LF><baud> 1200,2400,4800,9600,19200,38400 <DataBits> 8<StopBits> 0,1<Parity> 0=None,Odd=1,Even=2Example: Set DGPS Port to be 9600,8,N,1$PSRF102,9600,8,1.0*12D). Query/Rate Control ID:103 Query standard NMEA message and/or set output rateThis command is used to control the output of standard NMEA message GGA,GLL, GSA, GSVRMC, VTG. Using this command message, standard NMEA message may bepolled once, or setup for periodic output. Checksums may also be enabledor disabled depending on the needs of the receiving program. NMEAmessage settings are saved in battery backed memory for each entry when themessage is accepted.Format:$PSRF103,<msg>,<mode>,<rate>,<cksumEnable>*CKSUM<CR><LF><msg>0=GGA,1=GLL,2=GSA,3=GSV,4=RMC,5=VTG<mode> 0=SetRate,1=Query<rate> Output every <rate>seconds, off=0,max=255 <cksumEnable> 0=disable Checksum,1=Enable checksumfor specified messageExample 1: Query the GGA message with checksum enabled$PSRF103,00,01,00,01*25Example 2: Enable VTG message for a 1Hz constant output with checksumenabled$PSRF103,05,00,01,01*20Example 3: Disable VTG message$PSRF103,05,00,00,01*21E). LLA Navigation lnitialization ID:104 Parameters required to start using Lat/Lon/AltThis command is used to initialize the module for a warm start, by providing current position (in Latitude, Longitude, Altitude coordinates), clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters will enable the receiver to acquire signals more quickly, and thus, will produce a fasternavigational soution.When a valid LLANavigationInitialization command is received,the receiver will restart using the input parameters as a basis for satellite selection and acquisition.Format:$PSRF104,<Lat>,<Lon>,<Alt>,<ClkOffset>,<TimeOfWeek>,<WeekNo>,<ChannelCount>, <ResetCfg>*CKSUM<CR><LF><Lat> Latitude position, assumed positive north of equator andnegative south of equator float, possibly signed<Lon> Longitude position, it is assumed positive east of Greenwichand negative west of GreenwichFloat, possibly signed<Alt> Altitude positionfloat, possibly signed<ClkOffset> Clock Offset of the receiver in Hz, use 0 for last saved value ifavailable. If this is unavailable, a default value of 75000 forGSP1, 95000 for GSP1/LX will be used.INT32<TimeOfWeek> GPS Time Of WeekUINT32<WeekNo> GPS Week NumberUINT16<ChannelCount> Number of channels to use. 1-12UBYTE<ResetCfg> bit mask 0×01=Data Valid warm/hot starts=10×02=clear ephemeris warm start=10×04=clear memory. Cold start=1UBYTEExample: Start using known position and time.$PSRF104,37.3875111,-121.97232,0,96000,237759,922,12,3*37F). Development Data On/Off ID:105 Switch Development DataMessages On/OffUse this command to enable development debug information if you are having trouble getting commands accepted. Invalid commands will generate debug information that should enable the user to determine the source of the command rejection. Common reasons for input command rejection are invalid checksum or parameter out of specified range. This setting is not preservedacross a module reset.Format: $PSRF105,<debug>*CKSUM<CR><LF><debug> 0=Off,1=OnExample: Debug On $PSRF105,1*3EExample: Debug Off $PSRF105,0*3FG). Select Datum ID:106 Selection of datum to be used for coordinateTransformationsGPS receivers perform initial position and velocity calculations using an earth-centeredearth-fixed (ECEF) coordinate system. Results may be converted to an earth model (geoid)defined by the selected datum. The default datum is WGS 84 (World Geodetic System 1984)which provides a worldwide common grid system that may be translated into local coordinatesystems or map datums. (Local map datums are a best fit to the local shape of the earth and not valid worldwide.)Examples:Datum select TOKYO_MEAN$PSRF106,178*32。

星网锐捷软件监控工作站用户手册

星网锐捷软件监控工作站用户手册
5.2.6.1 5.2.6.2 5.2.6.3 5.2.6.4 5.2.6.5
安装和卸载 ............................................................................................................................. 7
GPS
星网 GPS 车载智能监控 防盗系统
监控工作站 V3.11 使用手册 版本 1.0
事 业 部
文档编号:UHS-MW311501-001 版权所有 © 2002-2008 福建星网锐捷通讯股份有限公司 公司网址:/gps/
ห้องสมุดไป่ตู้
星网 GPS 车载智能监控防盗系统 监控工作站 V3.11 使用手册
初始启动工作站 ................................................................................................................... 13
登陆工作站 ................................................................................................................... 13 断开服务器 ................................................................................................................... 16 修改密码 ....................................................................................................................... 16 注销 ............................................................................................................................... 16 查找车辆 ....................................................................................................................... 16 参数设置 ....................................................................................................................... 16

深圳市蝙蝠无线技术有限公司 GPS 贴片天线 BWGPSZWX46-38JL1000 产品规格承认书

深圳市蝙蝠无线技术有限公司 GPS 贴片天线 BWGPSZWX46-38JL1000 产品规格承认书

承认厂商:(Recognized制造厂商(Manufacturer)产品名称:GPS贴片天线(Description)产品选型表:(Product Type)型号说明备注BWGPSZWX46-38JL1000SMA内螺内针线长可选配供应商承认签栏制表者审核者核准者客户承认栏审核者核准者1.2AntennaPicture(可定制)*注:因天线功能较为敏感,主体周边机构有变更请通知我们评估。

上图型号:BWGPSZWX46-38JL10002.Electrical S pecification2.1Test EquipmentA.VSWR and input impedance:Agilent8753/E5071Network AnalyzerB.Antenna gain and efficiency:ETS three-dimensional anechoic chamber2.2Test Setup2.2.1Frequency Range2.2.2VSWRStep1:The antenna is arranged on the customer provided test fixture.Step2:The VSWR of the antenna is measured via Agilent8720/8753Network Analyzer(see figure.1).Figure.12.2.3Radiation pattern and GainA.The3D chamber provides less than-40dB reflectivity from800MHz to6GHz and a40cm diameterspherical quiet zone.The measurement results are calibrated using both dipoles and standard gainhorns(see figure.2).B.The antenna under tested is arranged in the turned table and a decoupling sleeve is used to reducefeed line radiation(see figure.3).C.The measured results of the radiation patterns and antenna gain are obtained from the controlsystem and showed on the monitor(see figure.4and5).Figure.2Figure.3Figure.4Figure.53.Performance Data3.1Passive dataVSWR(电压驻波比)/Return Loss(回波损耗)/Smith Chart(史密斯圆图)*注:以上为实测数据,仅供参考;因天线功能较为敏感,主体周边机构有变更请通知我们评估。

中海达GPS培训手册

中海达GPS培训手册

静态控制测量【GPS布网等级】根据我国1992年所颁布的全球定位系统测量规范,GPS基线向量网被分成了人、B、C、D、E五个级别。

下图是我国全球定位系统测量规范中有关GPS网等级的有关内容。

GPS网的精度指标,通常是以网中相邻点之间的距离误差来表示的,其具体形式为:仃=+(bx£))2其中,°7:网中相邻点间的距离中误差(mm);靠:固定误差(mm);::比例误差(ppm[8]);::相邻点间的距离(加。

对于不同等级的GPS网,有下列的精度要求:A级网一般为区域或国家框架网、区域动力学网;B级网为国家大地控制网或地方框架网;C级网为地方控制网和工程控制网;D级网为工程控制网;E级网为测图网。

【GPS布网形式】1、点连式特点:点连式观测作业方式的优点是作业效率高,图形扩展迅速;它的缺点是图形强度低,如果连接点发生问题,将影响到后面的同步图形。

2、边连式特点:边连式观测作业方式具有较好的图形强度和较高的作业效率。

【选点原则】1、测站点开阔(15度以上)2、无电磁波干扰(离无线电发射台距离大于200米,离高压线距离大于50米)。

3、减弱多路径效应的影响(观测站附近不应有大面积的幕墙或对电磁波反映或吸收强烈的物体)。

4、观测站应选在交通方便的地方。

5、测点易保存。

【静态野外观测】1、对中整平GPS。

2、测量仪高(三个方面取平均值)。

3、开机观测。

4、做好观测记录。

(1)点名(不大于4位数,只能是数字或字母)。

(2)时段(同一点、同一天『北京时间第一天的8:00一第二天的8:00』观测N次就为N )。

(3)仪器高度(4)开机记录时间(在状态灯闪时开始记录)。

(5)关机记录时间(6)仪器号5、同步观测一段时间后关机搬站(注:是以晚开机时间为准,距离不能超过50公里)观测注意事项:・设置GPS采样间隔和高度截止角(同步的几台GPS要设置相同)。

・观测时使用对讲机,手提电话等无线设备与GPS距离大于10米。

GPS-41ML中文资料

GPS-41ML中文资料

FEATURES12 parallel channel GPS receiver4100 simultaneous time-frequency search binsSBAS (WAAS, EGNOS) supportHigh Sensitivity:-140dBm acquisition sensitivity-150dBm tracking sensitivity Fast Acquisition:< 10 second hot start< 50 second cold start5m CEP accuracy‘F’ Module Programmable GPS-41MLFast Acquisition Enhanced Sensitivity12 Channel GPS Sensor ModuleThe GPS-41ML is a compact all-in-one GPS module solution intended for a broad range of Original Equipment Manufacturer (OEM) products, where fast and easy system integration and minimal development risk is required.The receiver continuously tracks all satellites in view and provides accurate satellite positioning data. The GPS-41ML is optimized for applications requiring good performance, low cost, and maximum flexibility; suitable for a wide range of OEM configurations including handhelds, sensors, asset tracking, PDA-centric personal navigation system, and vehicle navigation products.Its 12 parallel channels and 4100 search bins provide fast satellite signal acquisition and short startup time. Acquisition sensitivity of –140dBm and tracking sensitivity of –150dBm offers good navigation performance even in urban canyons having limited sky view.Satellite-based augmentation systems, such as WAAS and EGNOS, are supported to yield improved accuracy.Both the LVTTL-level and RS232-level serial interface are provided on the interface connector. Supply voltage of 3.8V~8.0V is supported.The GPS-41MLF module has programmable flash memory. This enables users to modify the NMEA sentence configuration and re-flash the firmware in the modem.Ordering InformationPart Number DescriptionGPS-41MLR GPSModule, Onboard Antenna GPS-41MLF GPS Module, Onboard Antenna, ProgrammableTECHNICAL SPECIFICATIONSReceiver Type 12 parallel channel, L1 C/A codeCEP5mPositionAccuracyVelocity 0.1m/secStartup Time < 10sec hot startwarmstart35sec<startcold50sec<Signal Reacquisition 1sacquisitionSensitivity-140dBmtracking-150dBmRate 1HzUpdate(39.2m/sec2)4GDynamicsOperational Limits Altitude < 18,000m or velocity < 515m/s(COCOM limit, either may be exceeded but not both)Serial Interface LVTTL level and RS-232 levelNMEA-0183V3.01ProtocolGPGGA, GPGLL, GPGSA, GPGSV, GPRMC, GPVTG, GPZDA1N,baud,8,4800WGS-84Datum DefaultdefinableUserInterface Connector Two 1.0mm pitch WTB S/R wafer 87213 SMT R/A type connector Input Voltage 3.8V ~ 8.0VPower Consumption 110mWDimension 34mm L x 34mm W x 8.6mm HWeight: 14gOperating Temperature -40o C ~ +85o C95%~Humidity5%Lateral ViewPINOUT DESCRIPTIONPin Number Signal Name Description1 Serial Data Out 1 Asynchronous serial output at LVTTL level, to output NMEA message2 Serial Data In 1 Asynchronous serial input at LVTTL level, to input configuration commands3 Serial Data Out 2 Asynchronous serial output at RS-232 level, to output NMEA message4 Serial Data In 2 Asynchronous serial input at RS-232 level, to input configuration commands5 Power 3.8V ~ 8.0V DC input6 Ground Power and signal groundPlease note: The onboard rechargeable Lithium battery may require an initial charge time of approximately 8hrs.NMEA MessagesThe serial interface protocol is based on the National Marine Electronics Association’s NMEA 0183 ASCII interface specification. This standard is fully define in “NMEA 0183, Version 3.01” The standard may be obtained from NMEA, GGA - GPS FIX DATATime, position and position-fix related data (number of satellites in use, HDOP, etc.).Format:$GPGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,<11>,<12>,*<13><CR><LF>Example:$GPGGA,104549.04,2447.2038,N,12100.4990,E,1,06,01.7,00078.8,M,0016.3,M,,*5C<CR><LF>Field Example Description1 104549.04 UTC time in hhmmss.ss format, 000000.00 ~ 235959.992 2447.2038 Latitude in ddmm.mmmm formatLeading zeros transmitted3 N Latitude hemisphere indicator, ‘N’ = North, ‘S’ = South4 12100.4990 Longitude in dddmm.mmmm formatLeading zeros transmitted5 E Longitude hemisphere indicator, 'E' = East, 'W' = West6 1 Position fix quality indicator0: position fix unavailable1: valid position fix, SPS mode2: valid position fix, differential GPS mode7 06 Number of satellites in use, 00 ~ 128 01.7 Horizontal dilution of precision, 00.0 ~ 99.99 00078.8 Antenna height above/below mean sea level, -9999.9 ~ 17999.910 0016.3 Geoidal height, -999.9 ~ 9999.911 Age of DGPS data since last valid RTCM transmission in xxx format (seconds)NULL when DGPS not used12 Differential reference station ID, 0000 ~ 1023NULL when DGPS not used13 5CChecksumNote: The checksum field starts with a ‘*’ and consists of 2 characters representing a hex number. The checksum is the exclusive OR of all characters between ‘$’ and ‘*’.GLL - LATITUDE AND LONGITUDE, WITH TIME OF POSITION FIX AND STATUSLatitude and longitude of current position, time, and status.Format:$GPGLL,<1>,<2>,<3>,<4>,<5>,<6>,<7>*<8><CR><LF>Example:$GPGLL,2447.2073,N,12100.5022,E,104548.04,A,A*65<CR><LF>Field Example Description1 2447.2073 Latitude in ddmm.mmmm formatLeading zeros transmitted2 N Latitude hemisphere indicator, ‘N’ = North, ‘S’ = South3 12100.5022 Longitude in dddmm.mmmm formatLeading zeros transmitted4 E Longitude hemisphere indicator, 'E' = East, 'W' = West5 104548.04 UTC time in hhmmss.ss format, 000000.00 ~ 235959.996 A Status, ‘A’ = valid position, ‘V’ = navigation receiver warningindicator7 AMode‘N’ = Data invalid‘A’ = Autonomous‘D’ = Differential‘E’ = EstimatedChecksum8 65GSA - GPS DOP AND ACTIVE SATELLITESGPS receiver operating mode, satellites used for navigation, and DOP values.Format:$GPGSA,<1>,<2>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<4>,<5>,<6>*<7><CR><LF> Example:$GPGSA,A,3,26,21,,,09,17,,,,,,,10.8,02.1,10.6*07<CR><LF>Field Example Description1 A Mode, ‘M’ = Manual, ‘A’ = Automatic2 3 Fix type, 1 = not available, 2 = 2D fix, 3 = 3D fix3 26,21,,,09,17,,,,,, PRN number, 01 to 32, of satellite used in solution, up to 12 transmitted4 10.8 Position dilution of precision, 00.0 to 99.95 02.1 Horizontal dilution of precision, 00.0 to 99.96 10.6 Vertical dilution of precision, 00.0 to 99.9Checksum7 07GSV - GPS SATELLITE IN VIEWNumber of satellites in view, PRN number, elevation angle, azimuth angle, and C/No. Only up to four satellite details are transmitted per message. Additional satellite in view information is sent in subsequent GSV messages.Format:$GPGSV,<1>,<2>,<3>,<4>,<5>,<6>,<7>,…,<4>,<5>,<6>,<7> *<8><CR><LF>Example:$GPGSV,2,1,08,26,50,016,40,09,50,173,39,21,43,316,38,17,41,144,42*7C<CR><LF> $GPGSV,2,2,08,29,38,029,37,10,27,082,32,18,22,309,24,24,09,145,*7B<CR><LF>Field Example Description 1 2 Total number of GSV messages to be transmitted 2 1 Number of current GSV message 3 08 Total number of satellites in view, 00 ~ 12 4 26 Satellite PRN number, GPS: 01 ~ 32, SBAS: 33 ~ 64 (33 = PRN120) 5 50 Satellite elevation number, 00 ~ 90 degrees 6 016 Satellite azimuth angle, 000 ~ 359 degrees 7 40 C/No, 00 ~ 99 dBNull when not tracking8 7C ChecksumRMC - RECOMMANDED MINIMUM SPECIFIC GPS/TRANSIT DATA Time, date, position, course and speed data.Format:$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*<13><CR><LF>Example:$GPRMC,104549.04,A,2447.2038,N,12100.4990,E,016.0,221.0,250304,003.3,W,A*22<CR><LF>Field Example Description 1 104549.04 UTC time in hhmmss.ss format, 000000.00 ~ 235959.99 2 A Status, ‘V’ = navigation receiver warning, ‘A’ = valid position 3 2447.2038 Latitude in dddmm.mmmm formatLeading zeros transmitted4 N Latitude hemisphere indicator, ‘N’ = North, ‘S’ = South5 12100.4990 Longitude in dddmm.mmmm formatLeading zeros transmitted6 E Longitude hemisphere indicator, 'E' = East, 'W' = West7 016.0 Speed over ground, 000.0 ~ 999.9 knots8 221.0 Course over ground, 000.0 ~ 359.9 degrees 9 250304 UTC date of position fix, ddmmyy format 10 003.3 Magnetic variation, 000.0 ~ 180.0 degrees 11 W Magnetic variation direction, ‘E’ = East, ‘W’ = West 12 A Mode indicator‘N’ = Data invalid ‘A’ = Autonomous ‘D’ = Differential ‘E’ = Estimated13 22 ChecksumVTG - COURSE OVER GROUND AND GROUND SPEEDVelocity is given as course over ground (COG) and speed over ground (SOG).Format:GPVTG,<1>,T,<2>,M,<3>,N,<4>,K,<5>*<6><CR><LF>Example:$GPVTG,221.0,T,224.3,M,016.0,N,0029.6,K,A*1F<CR><LF>Field Example Description1 221.0 True course over ground, 000.0 ~ 359.9 degrees2 224.3 Magnetic course over ground, 000.0 ~ 359.9 degrees3 016.0 Speed over ground, 000.0 ~ 999.9 knots4 0029.6 Speed over ground, 0000.0 ~ 1800.0 kilometers per hourModeindicator5 A‘N’ = Data invalid‘A’ = Autonomous‘D’ = Differential‘E’ = EstimatedChecksum6 1FZDA TIME AND DATEFormat:$GPZDA,<1>,<2>,<3>,<4>,<5>,<6>*<7><CR><LF>Example:$GPZDA,104548.04,25,03,2004,,*6C<CR><LF>Field Example Description1 104548.04 UTC time in hhmmss.ss format, 000000.00 ~ 235959.992 25 UTC time: day (01 ... 31)3 03 UTC time: month (01 ... 12)4 2004 UTC time: year (4 digit year)5 Local zone hourNot being output by the receiver (NULL)6 Local zone minutesNot being output by the receiver (NULL)Checksum7 6CBinary MessagesPlease refer to DS-41COM, Binary Message Protocol Guide for detailed descriptions on configuration of the NMEA string.RF Solutions Ltd.,Unit 21, Cliffe Industrial Estate,South Street, Lewes, E Sussex, BN8 6JL. EnglandTel +44 (0)1273 898 000 Fax +44 (0)1273 480 661 Email sales@ 。

Mid-Continent Instruments and Avionics MD41-( ) Se

Mid-Continent Instruments and Avionics MD41-( ) Se

INSTALLATION MANUAL ANDOPERATING INSTRUCTIONSMD41-( ) Series GPS ANNUNCIATION CONTROL UNITFOR GARMIN GPS 155/165MFG. P/N: MD41-1428 28VDC Horizontal MountMFG. P/N: MD41-1424 14VDC Horizontal MountMFG. P/N: MD41-1438 28VDC Vert. Mount (shown on page 11)MFG. P/N: MD41-1434 14VDC Vert. Mount (shown on page 11)Mid-Continent Instruments and Avionics MANUAL NUMBER 7019805 9400 E. 34th Street N., Wichita, KS 67226 USA REV. 2 Jan. 2, 1998Phone 316-630-0101 Fax 316-630-0723MANUAL REVISION AND HISTORYMANUAL: MD41-1424, -1428, -1434, -1438, -1428(5v), -1438(5v) REVISION: 1 Oct. 18, 1997MANUAL NUMBER: 7019805This revision level of this manual consist of the following changes:Added AlliedSignal KI 208A/209A Navigation Indicators to be used with the MD41-142X/143X series ACU in place of the MD41-244/248 series Relay Units. REVISION: 2 Jan 2, 1998Removed KI 208A/209A from install manual due to incapability of OBS resolver.TABLE OF CONTENTSSECTION 1 GENERAL DESCRIPTION 1.1 INTRODUCTION 1.2 SPECIFICATIONS, TECHNICAL 1.2.1 PHYSICAL CHARACTERISTICS 1.2.2 ENVIRONMENTAL CHARACTERISTICS 1.2.3 SPECIFICATIONS, ELECTRICAL 1.2.4 FRONT PANEL CONTROLS AND ANNUNCIATIONS 1.2.4.1 CONTROLS 1.2.4.2 ANNUNCIATIONS 1.2.5 INTERFACE 1.2.6 EQUIPMENT LIMITATIONS 1.2.7 MAJOR COMPONENTSSECTION 2 INSTALLATION CONSIDERATIONS 2.1 COOLING 2.2 EQUIPMENT LOCATION 2.3 ROUTING OF CABLESSECTION 3 INSTALLATION PROCEDURE 3.1 GENERAL INFORMATION 3.2 UNPACKING AND INSPECTING 3.3 MOUNTING THE MD41-( ) 3.4 INSTALLATION LIMITATIONSSECTION 4 POST INSTALLATION CHECKOUT 4.1 PRE-INSTALLATION TEST 4.2 OPERATING INSTRUCTIONSFIGURE N0. LIST OF ILLUSTRATIONS 3.1 SCHEMATIC PINOUT, 25 PIN DSUB 3.2 OUTLINE DRAWING 3.3 WIRING DIAGRAM, MD41-1424/1434 (14Volt), MD41-1428/1438/1428(5V)/1438(5V) (28volt) MD41-244/248APPENDIXENVIRONMENTAL QUALIFICATION FORMSECTION 1 GENERAL DESCRIPTION1.1 INTRODUCTIONThe MD41-( ) is a compact, self -contained GPS Annunciation and Control unit. It combines all the necessary functions required to interface the Garmin GPS 155/165 approach certified GPS receiver with the MD41-244/248 remote mounted relay transfer system. In addition, the MD41-( ) contains several GPS status annunciations used to indicate modes selected by the front panel switches and various inputs from the GPS receiver.A special ILS override feature has been incorporated to cause the MD41-( ) to automatically switch to the NAV mode when the NAV (VOR) receiver is tuned to an ILS frequency. Other features include dual 20,000 hour lamps used for all annunciations, internally lighted selection switches and automatic photocell dimming. A external annunciation dimming adjustment is provided for balancing low level light conditions. The MD41-142X/143X series annunciation control unit must be installed with the companion MD41-244/248 series Relay Unit.1.2 SPECIFICATIONS, TECHNICAL1.2.1 PHYSICAL CHARACTERISTICSMounting:PanelInches3.25Width:InchesHeight: .80InchesDepth:3.20lbs.Weight: 0.501.2.2 ENVIRONMENTAL CHARACTERISTICSC129TSOTSOCompliance:DO-160C,DO-208Documents: RTCAApplicableRange: -55︒C to +70︒CTemperatureOperatingNon-Condensing95%Humidity:ft.55,000toAltitudeRange: 0NandVibration:MCat.Operational Shock: Rigid Mounting, 6 G Operational15 G Crash Safety1.2.3 SPECIFICATIONS, ELECTRICALDesign All Solid StateMD41-1424/1434 (14VDC) 0.40 AmpsMD41-1428/1438 (28VDC) 0.30 AmpsAmps0.30(28DC)MD41-1428(5V)/1438(5V)1.2.4 FRONT PANEL CONTROLS AND ANNUNCIATIONS1.2.4.1 CONTROLSNAV/GPS Alternate action switch, when pressed, will selectNAV (VOR) GPS presentation on HSI/CDI.GPS/APR Alternate action switch, when pressed, will arm GPSApproach Mode.GPS/SEQ Alternate action switch, when pressed, will select betweenAUTO and HOLD modes.1.2.4.2 ANNUNCIATIONSNAV NAV (VOR) information presented on the HSI or CDI.GPS GPS information presented on the HSI or CDI.ARM GPS is armed for automatic transition to approach mode.ACTV GPS is actively engaged in the approach mode.HOLD This will activate the course selector and also disablewaypointGPSsequencing.theautomaticAUTO This will disable the course selector input to the GPSand will enable automatic GPS waypoint sequencing.MSG GPS message alert, from the GPS receiver.WPT GPS waypoint alert, from the GPS receiver.1.2.5 INTERFACENAV annunciation Receives ground from transfer relayJ1 Pin 2 when relays are in NAV mode.GPS annunciation Receives ground from transfer relayJ1 Pin 1 when relays are in GPS mode.1.2.5 INTERFACE (cont.)Lamp Test Receives ground from remote test switchJ1 Pin 7 to light all annunciations.(optional connection)APR ARM Select Provides a logic low to theJ1 Pin 6 GPS receiver when approach arm is selected.GPS/SEQ select Provides a logic low to the GPS receiverJ1 Pin 10 when HOLD is selected.GPS APR ACTV Receives a logic low from the GPS receiverJ1 Pin 8 when a transition is made from arm to active.MSG and WPT A logic low will cause the appropriateannunciation annunciation to illuminate. GPS receiver mustaccept100ma.toablebeILS Override Receives a logic low from the NAV (VOR)JI Pin 15 receiver when tuned to an ILS frequency.This will force the MD41-( ) into NAV moderegardlessThisNAV/GPSselection.theofoptional.connectionisFCS LOC ENGAGE Logic low when GPS is in ACTIVE mode.J1 pin 11 Used to provide a ILS ground to the flightGPSapproachisthecontrolsystemwhenactive.1.2.6 EQUIPMENT LIMITATIONSThe MD41-( ) series control units contain specific dash numbers to be used with various GPS receivers. The installer must match the correct controller part number with the GPS receiver being installed.The conditions and tests required for TSO approval of this article are minimum performance standards. It is the responsibility of those desiring to install this article eitheron or within a specific type or class of aircraft to determine that the aircraft installation conditions are within the TSO standards. The article may be installed only if further evaluation by the applicant documents an acceptable installation and is approved by the Administrator.The MD41-1424/1434/1428/1438/1428(5V)/1438(5V) ACU MUST be installed with the Mid-Continent Instruments and Avionics MD41-244/248 remote transfer relay in order to be approved as a complete TSO system. These items will not be TSO’d if one is installed without the other.The MD41-1424/1434/1428/1438/1428(5V)/1438(5V) is TSO’D and certified for use with the Garmin GPS 155/165 system. Any attempts to install the listed units in an installation other than the Garmin GPS 155/165 is prohibited. This will void the TSO.NOTE: Anytime the MD41-( ) is disconnected or removed from the aircraft, the HSI/CDI will default to NAV (VOR) mode.1.2.7 MAJOR COMPONENTSThis system is comprised of two major components, the MD41-142X/143X series GPS Annunciation Control Unit and the MD41-244/248 Remote Relay.SECTION 2 INSTALLATION CONSIDERATIONS2.1 COOLINGNo direct cooling is required. As with any electronic equipment, overall reliability may be increased if the MD41-( ) is not located near any high heat source or crowded next to other equipment. Means of providing a gentle air flow will be a plus.2.2 EQUIPMENTLOCATIONThe MD41-( ) must be mounted as close to the pilot’s field of view as possible. The preferable location is near the HSI/CDI that will be displaying the GPS information. The unit depth, with connector attached, must also be taken into consideration. Note: Unlike previous versions of the MD41 Annunciation Control Units (ACU), the transfer relays have been removed and are now remotely mounted in a separate package designated as the MD41-244/248 Relay Unit. This has allowed a for a smaller size ACU which now provides more options for panel mounting.2.3 ROUTING OF CABLESCare must be taken not to bundle the MD41-( ) logic and low level signal lines with any high energy sources. Examples of these sources include 400 HZ AC, Comm, DME, HF and transponder transmitter coax. Always use shielded wire when shown on the installation print. Avoid sharp bends in cabling and routing near aircraft control cables.SECTION 3 INSTALLATION PROCEDURESINFORMATION3.1 GENERALThis section contains interconnect diagrams, mounting dimensions and other information pertaining to the installation of the MD41-( ). After installation of cabling and before installation of the equipment, insure that power is applied only to the pins specified in the interconnect diagram.3.2 UNPACKING AND INSPECTING EQUIPMENTWhen unpacking equipment, make a visual inspection for evidence of damage incurred during shipment. The following parts should be included:1. MD41-1424 (14volt) or MD41-1428 (28 volt) Horiz. MountMD41-1434 (14volt) or MD41-1438 (28volt) Vert. MountMD41-1428(5V) (28volt) 5 volt button lighting Horiz. MountMD41-1438(5V) (28volt) 5 volt button lighting Vert. Mount2. J1 Connector Kit (25 pin). MCI PN 70145173. Installation Manual. MCI PN 70198053.3 MOUNTING THE MD41-( )Plan a location in the aircraft for the MD41-( ) to be mounted as close to the pilot’s field of view as possible. The preferable location is near the HSI/CDI that will be displaying the GPS information. Avoid mounting close to heater vents or other high heat sources. Allow a clearance of at least 3 inches from back of unit for plug removal.The indicator is secured in place behind the panel since it is designed for rear mount only. Make a panel cutout as shown in Figure 3-2 Secure the indicator in place with two 4-40 x 3/8 flat head phillips screws.3.4 INSTALLATION LIMITATIONSWire the aircraft harness according to figure 3-3 or 3-4 . Use at least 24 AWG wire for all connections. Avoid sharp bends and routing cable near high energy sources. Care must be taken to tie the harness away from aircraft controls and cables. Normal installation techniques should be applied. Also see equipment limitations, section 1.2.6.REAR VIEW OF J1 (bottom) CONNECTORJ1PIN NO.1 ---------------------------- GPS ANNUNCIATION (receives ground from remote transfer relays)2 ---------------------------- NAV ANNUNCIATION(receives ground from remote transfer relays)3 ---------------------------- MSG ANNUNCIATION (receives logic low from GPS receiver)4 ---------------------------- SPARE5 ---------------------------- DIMMER IN (from aircraft dimming bus)6 ---------------------------- GPS APR ARM SELECT (logic low sent to GPS)7 ---------------------------- LAMP TEST (receives ground from remote test switch)(optional conn.)8 ---------------------------- ACTV ANNUNCIATION (receives logic low from GPS receiver)9 ---------------------------- WPT ANNUNCIATION (receives logic low from GPS receiver)10 -------------------------- GPS SEQ HOLD LOW (logic low to the GPS)11 -------------------------- FCS LOC ENGAGE (provides ground when GPS is in active mode)(forautopilot)12 -------------------------- TO NAV CIRCUIT BREAKER (for fault monitoring)13 -------------------------- 14 or 28 VDC UNIT POWER (depends on dash number)14 -------------------------- EXTERNAL RELAY ENERGIZE (provides ground to energize remotetransfer relays when GPS is selected)15 -------------------------- ILS FROM NAV (VOR) REC. (for ILS override) (optional)16 -------------------------- SPARE17 -------------------------- SPARE18 -------------------------- SPARE19 -------------------------- SPARE20 -------------------------- SPARE21 -------------------------- SPARE22 -------------------------- SPARE23 -------------------------- SPARE24 -------------------------- SPARE25 -------------------------- POWER GROUNDFIGURE 3-1 SCHEMATIC PINOUT, 25 PIN DSUBNote 1: Use two 4-40 X 3/8” Flat Head Phillips Screws for Mounting FIGURE 3-2 OUTLINE DRAWINGFIGURE 3-3 WIRING DIAGRAM, MD41-1424/1434/1428/1438, 1428(5V)/1438(5V), MD41-244/248 for GPS 155/165SECTION 4 POST INSTALLATION CHECKOUT4.1 PRE INSTALLATION TESTSWith the MD41-( ) disconnected, turn on the avionics master switch and verify that aircraft power is on pin 13. Using an ohm meter, verify pin 25 is aircraft ground.4.2 OPERATINGINSTRUCTIONSTurn off the avionics master switch and connect the mating connector to the MD41-( ). Turn on the avionics master switch and the MD41-( ) should come on with the following annunciations.1. NAV or GPS2. HOLD or AUTO3. MSG and/or WPT may be flashing depending on the status of the GPSreceiver.Press the lamp test button, (if installed) all annunciations should light. Continue pressing the lamp test button and cover the photocell window located in the center of the front panel. All annunciations should dim.Annunciation brightness at the minimum dimming level may be adjusted by rotation of the dimmer control located on the bottom of the MD41-( ) case. CW rotation lowers the dimming level.Select NAV using the NAV/GPS button. The presentation on the HSI/CDI will now be information from the VOR receiver. Using a VOR test generator or equivalent VOR signal, verify that the presentation and operation of the HSI/CDI is correct. This will include course resolver, left-right meter, to-from meter and nav warn flag. Now select GPS on the MD41-( ) and tune the VOR receiver to an ILS frequency. The MD41-( ) will be forced to NAV mode and ILS information will be displayed on the HSI/CDI. NOTE, this feature will not work if “ILS Energize” (J1 pin 14) was not connected at the time of installation.Next, verify that HOLD and AUTO annunciations will cycle alternately when pressing the GPS/SEQ button two times. Press the GPS/APR button and the ARM annunciation will illuminate. ARM can be canceled by pressing the GPS/APR button a second time, or by ACTV input from the GPS receiver. Please refer to Section 4 of the Garmin installation manual for the remaining system tests.No periodic maintenance or calibration is necessary for continued airworthiness of theMD41-( ).ENVIRONMENTAL QUALIFICATION FORMRTCA / DO160CNOMENCLATURE: MD41-( ) GPS ANNUNCIATION CONTROL UNITMODEL NO: MD41-( ) TSO NO: C129CLASS A1 MANUFACTURER TEST SPECIFICATION: MPS 7015613 MANUFACTURER: Mid-Continent Instruments and Avionics9400 E. 34th Street N.Wichita, KS 67226Phone (316) 630-0101Conditions Section Description of Conducted TestsTemperature and Altitude Low TemperatureHigh TemperatureIn-Flight Loss of Cooling Altitude Decompression Overpressure4.04.5.14.5.2 & 4.5.34.5.44.6.14.6.24.6.3Equipment tested to Categories A1 & F2 except as notedCooling air not requiredNot TestedTemperature Variation 5.0 Equipment tested to Category B Humidity 6.0 Equipment tested to Category AShock Operational Crash Safety 7.07.27.3Equipment tested per DO-160CPar. 7.2.1Vibration 8.0 Equipment tested without shockmounts to Categories Mand N(Table 8-1)Explosion 9.0 Equipment identified as Category X, no test required Waterproofness 10.0 Equipment identified as Category X , no test required Fluids Susceptibility 11.0 Equipment identified as Category X, no test requiredEnvironmental Qualification (cont.)Conditions Section Description of Conducted TestsSand and Dust 12.0 Equipment identified as Category X, no test required Fungus 13.0 Equipment identified as Category X, no test required Salt Spray 14.0 Equipment identified as Category X, no test required Magnetic Effect 15.0 Equipment tested to Class ZPower Input 16.0 Equipment tested to Category BVoltage Spike 17.0 Equipment tested to Category A18.0 Equipment tested to Category BAudio FrequencySusceptibilityInduced Signal Susceptibility 19.0 Equipment tested to Category A20.0 Equipment tested to Category TRadio FrequencySusceptibilityRadio Frequency Emissions 21.0 Equipment tested to Category Z22.0 Equipment identified as Category X, no tests required Lightning Induced TransientSusceptibilityLightning Direct Effects 23.0 Equipment identified as Category X, no tests required Icing 24.0 Equipment identified as Category X, no test required。

GPS(全球定位系统)详解

GPS(全球定位系统)详解

GPS(全球定位系统)详解全球定位系统(Global Positioning System - GPS)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。

经近10年我国测绘等部门的使用表明,GPS 以全天候、高精度、自动化、高效益等显著特点,赢得广大测绘工作者的信赖,并成功地应用于大地测量、工程测量、航空摄影测量、运载工具导航和管制、地壳运动监测、工程变形监测、资源勘察、地球动力学等多种学科,从而给测绘领域带来一场深刻的技术革命。

全球定位系统(Global Positioning System,缩写GPS)是美国第二代卫星导航系统。

是在子午仪卫星导航系统的基础上发展起来的,它采纳了子午仪系统的成功经验。

和子午仪系统一样,全球定位系统由空间部分、地面监控部分和用户接收机三大部分组成。

按目前的方案,全球定位系统的空间部分使用24颗高度约2.02万千米的卫星组成卫星星座。

21+3颗卫星均为近圆形轨道,运行周期约为11小时58分,分布在六个轨道面上(每轨道面四颗),轨道倾角为55度。

卫星的分布使得在全球的任何地方,任何时间都可观测到四颗以上的卫星,并能保持良好定位解算精度的几何图形(DOP)。

这就提供了在时间上连续的全球导航能力。

地面监控部分包括四个监控间、一个上行注入站和一个主控站。

监控站设有GPS用户接收机、原子钟、收集当地气象数据的传感器和进行数据初步处理的计算机。

监控站的主要任务是取得卫星观测数据并将这些数据传送至主控站。

主控站设在范登堡空军基地。

它对地面监控部实行全面控制。

主控站主要任务是收集各监控站对GPS卫星的全部观测数据,利用这些数据计算每颗GPS卫星的轨道和卫星钟改正值。

上行注入站也设在范登堡空军基地。

它的任务主要是在每颗卫星运行至上空时把这类导航数据及主控站的指令注入到卫星。

GPS全解

GPS全解

GPS组成及各自作用GPS卫星发射的信号由载波、测距码和导航电文组成。

载波除了能很好地传送测距码和导航电文这些有用的信息之外,在载波相位测量中它又被当作一种测距信号来使用。

其测距精度比伪距测量的精度高2~3个数量级。

因此,载波相位测量在高精度定位中得到了广泛的应用。

特点所选择的频率有利于测定多普勒频移所选择的频率有利于减弱信号所受的电离层折射影响选择两个频率可以较好地消除信号的电离层折射延迟(电离层折射延迟于信号的频率有关)在GPS卫星发射的测距码信号中,包含了C/A码和P码两种伪随机噪声码信号。

C/A码的特点:1、C/A码的码长较短,易于捕获,而通过捕获C/A码所得到的信息,又可以方便地捕获P码,所以,通常称C/A码为捕获码。

2、C/A码的码元宽度较大。

由于其精度较低,所以称C/A码为粗精度码。

P码的特点:1、P码的码长较长,一般是先捕获C/A码,然后根据导航电文中给出的相关信息,再捕获P码。

2,、P码的码元宽度为C/A码的1/10,可用于较精密的导航和定位,称为精码。

卫星导航电文是包含卫星的星历、工作状态等导航信息的数据码,是利用GPS进行定位的数据基地。

周跳:在跟踪卫星过程中,若由于某种原因,如卫星信号被障碍物挡住而暂时中断,受无线电信号干扰造成失锁,则计数器无法连续计数。

当信号重新被跟踪后,整周计数就不正确,但是不到一个整周的相位观测值仍是正确的。

这种现象称为周跳。

整周模糊度(ambiguity of whole cycles)又称整周未知数,是在全球定位系统技术的载波相位测量时,载波相位与基准相位之间相位差的首观测值所对应的整周未知数。

正确地确定它,是全球定位系统载波相位测量中非常重要且必须解决的问题之一。

单差、双差和三差是广泛使用的线性组合观测值。

主要目的是为了消除卫星钟差、接收机钟差及整周模糊度等未知参数,简化平差计算工作。

差分GPS按用户进行数据处理的时间的不同可分为实时差分和事后差分。

GPS原理-中海达

GPS原理-中海达
全球卫星导航系统(GNSS):一个 能在地球表面或近地空间的任何地 点为适当装备的用户提供24小时、 三维坐标和速度以及时间信息的空 基无线电定位系统,包括一个或多 个卫星星座及其支持特定工作所需 的增强系统。
全球导航卫星系统
GNSS系统
GPS 格洛纳斯
伽利略
北 斗
广州中海达卫星导航技术股份有限公司
• 接收机不仅需要机内软件,还需 要GPS数据后处理软件包才完整 • 按接收的载波频率类别多少,分 为单频(L1)和双频(L1、L2)
GPS信号
载波信号:调制有导航电文和伪随 机码,有两种:L1(19cm, 1575.42MHz);L2(24cm, 1227.60MHz) 伪随机码:是一个“开”、“关” 脉冲的序列,由卫星产生并发送至 用户接收机,调制导航电文形成组 合码,C/A码和P码两种 导航电文:关于卫星轨道、时钟改 正和其它系统状态信息的低频信号
2012年10月25日发射了第十六颗北斗导航卫 星

现在公布北斗卫星系统的精度是25米,以后可达到 10米,定位精度越高,应用的范围就越广泛。我们 现在发射了15颗卫星。如果希望实现2020年覆盖全 球能力的卫星导航系统,至少需要发射30颗卫星。 卫星发射越多,对精度贡献越大。
北斗与GPS主要区别
GPS高程和海拔高
H h N
h H N
h H N
h = 正常高 H = 椭球高(大地高) N = 大地水准面高(正高)

大地高系统
大地高系统是以参考椭球面为基准面的高 程系统,某点的大地高是该点到通过该点 的参考椭球的法线与参考椭球面的交点间 的距离。大地高也称为椭球高。大地高一 般用符号H 表示。 大地高是一个纯几何量,不具有物理意义, 同一个点在不同的基准下具有不同的大地 高。

GPS多天线阵形监测系统项目说明书

GPS多天线阵形监测系统项目说明书

GPS多天线阵形监测系统项目说明书第一章、概述部分 (2)一、产品 (2)产品名称 (2)产品用途 (2)产品功能 (2)技术指标 (2)产品特点: (2)二、市场 (3)1、市场特征 (3)2、市场分析 (3)3、竞争分析 (3)第二章、产品介绍部分 (3)一、产品名称: (3)二、GPS多天线阵列观测系统简介: (3)三、产品技术成熟度 (6)四、相关领域的基本情况 (6)五、产品优势比较: (7)第三章、市场分析部分 (8)一、市场环境 (8)1、测绘行业环境分析 (8)2、变形监测领域分析 (9)二、市场容量 (10)1、目标市场分析 (11)2、市场需求分析 (12)3、竞争分析 (15)第一章、概述部分一、产品名称:GPS多天线阵列变形监测系统用途:用于大坝变形观测、建筑物安全监测,而且可以对可能发生滑坡、崩塌、泥石流等地质灾害区域进行不间断的连续的监控。

产品功能:系统的软件功能主要包括用户管理、数据采集、数据处理、数据库管理、生成报表、变形分析与预报、变形矢量图绘制等。

技术指标:1、一台接收机控制8个天线2、各监测点的监测时间客任意调整3、天线离接收机的距离最大可达400米产品特点:1、测站间无需通视。

GPS测量只需测站上空开阔即可,从而使变形监测的点位布设方便灵活,并节省不必要的中间过度点,节省开支.2、可同时提供监测点的三维位移信息。

3、全天候监测,GPS测量不受气候条件限制,配备防雷设施后,GPS变形检测系统便可以实现全天候观测,它对防汛抗洪、滑坡、泥石流等地质灾害检测等领域极为重要。

4、检测精度高5、操作简便,易于实现检测自动化6、GPS大地高用于垂直位移测量。

本产品较以前的检测系统1、成本低;2、测量精度高;3、操作简便,易于实现监测自动化等特点,具有良好的社会和经济效应。

二、市场1、市场特征:本产品的客户主要是国家大型基础工程项目建设的事业单位,其工程项目大都为国家基础建设部分,因此受到了中央和各地政府的高度关注和支持。

GPS-41SMD:嵌入式GPS方案

GPS-41SMD:嵌入式GPS方案

GPS-41SMD:嵌入式GPS方案
佚名
【期刊名称】《世界电子元器件》
【年(卷),期】2009(000)007
【摘要】RF Solution公司的GPS-41SMD是一个微型16通道OEMGPS接收器模块。

该模块经过优化具有高精确性、易于使用、灵活和低成本的优势。

该GPS 接收器适用于多种导航和追踪应用。

16个平行通道和4100多个相关器提供快速的卫星信号捕获以及很短的启动时间。

【总页数】2页(P17-18)
【正文语种】中文
【相关文献】
1.MIMU/GPS嵌入式组合导航中GPS信号非相干搜索算法分析 [J], 唐康华;黄新生;吴美平;胡小平
2.沙利度胺联合GP方案与GP方案治疗晚期非小细胞肺癌临床对照研究 [J], 姜维美;王永;蒋华;胡春霞;周彦
3.GPS导航方案:稳定压倒一切——稳定性和可靠性是GPS导航方案最重要考量指标 [J],
4.Xilinx FPGA处理器解决方案为嵌入式系统设计人员提供强大的性能优势独立测试结果再次肯定了Xilinx业界最全面的基于FPGA的32位嵌入式处理解决方案的领先地位 [J],
5.凌华科技发布高性能第二代Intel Core^TMi7四核处理器无风扇嵌入式计算机——支持WiFi/蓝牙/3G/GPS无线通信。

是智能交通与物流应用理想的解决方案 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

EM-401 GPS引擎板有活动天线的产品指南说明书

EM-401 GPS引擎板有活动天线的产品指南说明书

EM-401GPS ENGINE BOARD with Active AntennaPRODUCT GUIDEGlobalsat Technology Corporation (Taiwan)USGlobalSat, Inc. (USA)EM-401 GPS BOARD with Active Antenna OVERVIEW* Compact Size* SiRF StarII low power consumption chip set* Built-in active antenna* Support standard NMEA 0183 protocol* All-in-view 12-channel parallel processing* Snap Lock 100mc re-acquisition time* Enhanced algorithm for navigation stability* Superior urban canyon performance* Foliage Lock for Weak signal tracking* Built-in super cap to reserve system data for rapid satellite acquisition SPECIFICATIONSElectricalCharacteristicsReceiverFrequency L1, 1575.42 MHzC/A code 1.023 MHz chip rateChannels12Sensitivity-170dBWAccuracyPosition15 meters, 2D RMS, SA off10 meters, 2D RMS, WAAS enabled, SA offVelocity0.1 m/s 95% (SA off)Time 1 microsecond synchronized to GPS time DatumDefault WGS-84Acquisition TimeReacquisition 0.1 sec., averageHot start8 sec., averageWarm start 38 sec., averageCold start 48 sec., averageDynamic ConditionsAltitude 18,000 meters (60,000 feet) maxVelocity 515 meters /second (1000 knots) maxAcceleration Less than 4gJerk20m/sec **3PowerMain power input 3.3 Vdc ~ 5.5VdcCurrent supply Continuous mode: 80mATrickle power mode:27mASerial PortElectrical level TTL level, Output voltage level: 0V ~ 2.85VCommunication Full duplex asynchronousGPS Protocol NMEA 0183 or SiRf binaryOutput NMEA sentences GGA, GSA, GSV, RMC (VTG and GLL are optional) GPS transfer rateSoftware command setting (Default: 4800,n, 8,1) EnvironmentalCharacteristicsTemperatureOperating -20 deg. C to +80 deg. CStorage -40 deg. C to +85 deg. CHumidity 5% to 95% non-condensingDimension 41*41*14mmAntennaSpecificationsAntennaFrequency 1575.42+2MHzVSWR 1.5 Max.Bandwidth 10 MHz Min.Axial Ratio 3 dB TypicalImpedance 50 (OHMS)Peak Gain 4 dBic Min.Gain Coverage > -4dBic at 90 deg~ 90deg (over 75% volume)Power handling 1 wattPolarization RHCPAmplifier ModuleAmplifier Gain 27dB TypicalNoise Figure 1.5 dB TypicalFiltering -25dB (+ 100MHz)Output VSWR 2.0 Max.Voltage DC3~5VCurrent 20mA Max.DIMENSIONSPIN ASSIGNMENTPIN DESCRIPTION#1 & #2 GND:GND provides the ground for the engine board. Connect all grounds.#3 RESET:This pin provides an active-low reset input to the GPS board it causes the GPS to reset and start searching for satellites#4 RXA:This is the main receive channel for receiving software commands to the engine board from SiRFdemo software or from user written software.#5 TXA:This is the main transmits channel for outputting navigation and measurement data to user’s navigation software or user written software.#6 VIN (DC power input):This is the main DC supply for a 3.3V ~5.5 DC input power.All product specifications subject to change without notice.NMEA OUTPUT COMMANDSGGA-Global Positioning System Fixed DataTable B-2 contains the values for the following example:$GPGGA, 161229.487,3723.2475,N, 12158.3416,W, 1,07,1.0,9.0,M, 0000*18Table B-2 GGA Data FormatName Example Units Description Message ID $GPGGA GGA protocol headerUTC Time 161229.487hhmmss.sssLatitude 3723.2475ddmm.mmmmN/S Indicator N N=north or S=southLongitude 12158.3416dddmm.mmmmE/W Indicator W E=east or W=westPosition Fix 1 See Table B-3Satellites Used 07 Range 0 to 12HDOP 1.0 Horizontal Dilution of PrecisionMSL Altitude1 9.0 metersUnits M metersGeoid Separation1metersUnits M metersAge of Diff. Corr.second Null fields when DGPS is not usedDiff. Ref. Station ID 0000Checksum *18<CR><LF> End of message terminationSiRF Technology Inc. does not support geoid corrections. Values are WGS84 ellipsoid heights.Table B-3 Position Fix IndicatorValue Description0 Fix not available or invalid1 GPS SPS Mode, fix validGPS, SPS Mode , fix valid2 Differential3 GPS PPS Mode, fix validGLL-Geographic Position-Latitude/LongitudeTable B-4 contains the values for the following example:$GPGLL,3723.2475,N,12158.3416,W,161229.487,A*2CTable B-4 GLL Data FormatName Example Units Description Message ID $GPGLL GLL protocol headerLatitude 3723.2475ddmm.mmmmN/S Indicator n N=north or S=southLongitude 12158.3416dddmm.mmmmE/W Indicator W E=east or W=westUTC Position 161229.487hhmmss.sssStatus A A=data valid or V=data not valid Checksum *2C<CR><LF> End of message termination GSA-GNSS DOP and Active SatellitesTable B-5 contains the values for the following example:$GPGSA,A,3,07,02,26,27,09,04,15,,,,,,1.8,1.0,1.5*33Table B-5 GSA Data FormatName ExampleDescriptionUnitsMessage ID $GPGSA GSA protocol headerTableB-6 Mode1 A SeeB-7Table Mode2 3 SeeSatellite Used107 Sv on Channel 1Satellite Used102 Sv on Channel 2…..Satellite Used1Sv on Channel 12PDOP 1.8 Position dilution of PrecisionHDOP 1.0 Horizontal dilution of Precision VDOP 1.5 Vertical dilution of PrecisionChecksum *33<CR><LF> End of message termination(1. Satellite used in solution)Table B-6 Mode1Value DescriptionM Manual-forced to operate in 2D or 3D modeA 2Dautomatic-allowed to automatically switch 2D/3DTable B-7 Mode 2Value DescriptionAvailableNot1 Fix2 2D3 3DGSV-GNSS Satellites in ViewTable B-8 contains the values for the following example:$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41Table B-8 GSV Data FormatName Example DescriptionMessage ID $GPGSV GSV protocol headerNumber of Messages1 2 Range 1 to 3Message Number1 1 Range 1 to 3Satellites in View 07Satellite ID 07 Channel 1(Range 1 to 32)degrees Channel 1(Maximum90)Elevation 79degrees Channel 1(True, Range 0 to 359) Azimuth 048SNR(C/No) 42 dBHz Range 0 to 99,null when not tracking……. …….Satellite ID 27 Channel 4 (Range 1 to 32)Degrees Channel 4(Maximum90)Elevation 27Degrees Channel 4(True, Range 0 to 359) Azimuth 138SNR(C/No) 42 dBHz Range 0 to 99,null when not trackingChecksum *71<CR><LF> End of message terminationDepending on the number of satellites tracked multiple messages of GSV data may be required.MSS-MSK Receiver SignalTable B-9 contains the values for the following example:$GPMSS,55,27,318.0,100,*66Table B-9 MSS Data FormatName Example Units Descriptionprotocol headerMessage ID $GMSS MSSSignal Strength 55 dB SS of tracked frequencySignal-to-Noise Ratio 27 dB SNR of tracked frequencyBeacon Frequency 318.0 kHz Currently tracked frequencyBeacon Bit Rate 100 Bits per secondThe MSS NMEA message can only be polled or scheduled using the MSK MNEA input message. Reference “MSK-MSK Receiver Interface” (Note: Available upon request, not included in this document).RMC-Recommended Minimum Specific GNSS DataTable B-10 contains the values for the following example:$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598,,*10Table B-10 RMC Data FormatName Example Units Description Message ID $GPRMC RMC protocol headerUTC Time 161229.487hhmmss.sssStatus A A=data valid or V=data not validLatitude 3723.2475ddmm.mmmmN/S Indicator N N=north or S=southLongitude 12158.3416dddmm.mmmmE/W Indicator W E=east or W=westSpeed Over Ground 0.13 knotsCourse Over Ground 309.62 degrees TrueDate 120598 ddmmyyMagnetic Variation2degrees E=east or W=westChecksum *10<CR><LF> End of message terminationSiRF Technology Inc. does not support magnetic declination. All “course over ground” data are geodetic WGS48 directions.VTG-Course Over Ground and Ground SpeedTable B-10 contains the values for the following example:$GPVTG,309.62,T,,M,0.13,N,0.2,K*6ETable B-11 RMC Data FormatName Example Units Description Message ID $GPVTG VTG protocol headerCourse 309.62degrees Measured headingReference T TrueCourse degrees Measured headingReference M MagneticSpeed 0.13 knots Measured horizontal speedUnits N KnotsSpeed 0.2 Km/hr Measured horizontal speedper hour Units K KilometersChecksum *6E<CR><LF> End of message terminationAll specifications subject to change without notice.。

数控技术常用术语中英文对照

数控技术常用术语中英文对照

数控技术常用术语中英文对照更新时间:2007-3-28 为了方便读者阅读相关数控资料和国外数控产品的相关手册,在此选择了常用的数控词汇及其英语对应单词,所选用的数控术语主要参考国际标准ISO 2806和中华人民共和国国家标准GB 8129—1987 以及近年新出现的一些数控词汇。

1)计算机数值控制(Computerized Numerical Control, CNC)用计算机控制加工功能,实现数值控制。

2)轴(Axis)机床的部件可以沿着其作直线移动或回转运动的基准方向。

3)机床坐标系(Machine Coordinate Sister )固定于机床上,以机床零点为基准的笛卡尔坐标系。

4)机床坐标原点(Machine Coordinate Origin )机床坐标系的原点。

5)工件坐标系(Work piece Coordinate System )固定于工件上的笛卡尔坐标系。

6)工件坐标原点(Wrok-piexe Coordinate Origin)工件坐标系原点。

7)机床零点(Machine zero )由机床制造商规定的机床原点。

8)参考位置(Reference Position )机床启动用的沿着坐标轴上的一个固定点,它可以用机床坐标原点为参考基准。

9)绝对尺寸(Absolute Dimension)/绝对坐标值(Absolute Coordinates)距一坐标系原点的直线距离或角度。

10)增量尺寸(Incremental Dimension ) /增量坐标值(Incremental Coordinates)在一序列点的增量中,各点距前一点的距离或角度值。

CATIA 模块中英文对照[ 录入者:win | 时间:2007-05-26 19:17:06 | 作者: | 来源: | 浏览:673次 ]零件设计 PDG :Part Design装配设计 ASD :Assembly Design交互式工程绘图 IDR :Interactive Drafting创成式工程绘图GDR:Generative Drafting结构设计STD:Structure Design线架和曲面设计WSF:Wire frame and Surface钣金设计SMD:Sheet Metal Design航空钣金设计ASL:Aerospace Sheet metal Design钣金加工设计SHP:Sheet Metal Production三维功能公差与标注设计FTA:3D Functional Tolerance & Annotation 模具设计MTD:Mold Tooling Design阴阳模设计CCV:Core & Cavity Design焊接设计WDG:Weld Design自由风格曲面造型FSS:Freestyle Shaper自由风格曲面优化FSO:Freestyle Optimizer基于截面线的自由风格曲面造型FSP:Freestyle Profiler基于草图的自由风格曲面造型FSK:Freestyle Sketch Tracer创成式外形设计GSD:Generative Shape Design创成式曲面优化GSO:Generative Shape Optimizer汽车白车身接合ABF:Automotive Body In White Fastening数字化外形编辑DSE:Digitized Shape Editor汽车A级曲面造型ACA:Automotive Class A快速曲面重建QSR:Quick Surface Reconstruction创成式零件结构分析GPS :Generative Part Structural Analysis创成式装配件结构分析GAS :Generative Assembly Structural Analysis 变形装配件公差分析TAA:Tolerance Analysis of Deformable Assembly Elfin 结构分析EST:Elfin Solver Verification电路板设计CBD:Circuit Board Design电气系统功能定义EFD:Electrical System Functional Definition电气元件库管理员ELB:Electrical Library电气线束安装EHI:Electrical Harness Installation电气线束布线设计EWR:Electrical Wire Routing电气线束展平设计EHF:Electrical Harness Flattening管路和设备原理图设计PID:Piping & Instrumentation Diagrams HVAC 图表设计HVD:HVAC Diagrams电气连接原理图设计ELD:Electrical Connectivity Diagrams系统原理图设计SDI:Systems Diagrams管线原理图设计TUD:Tubing Diagrams波导设备原理图设计WVD:Waveguide Diagrams系统布线设计SRT:Systems Routing系统空间预留设计SSR:Systems Space Reservation电气缆线布线设计ECR:Electrical Cableway Routing设备布置设计EQT:Equipment Arrangement线槽与导管设计RCD:Raceway & Conduit Design波导设备设计WAV:Waveguide Design管路设计PIP:Piping Design管线设计TUB:Tubing DesignHVAC设计HVA:HVAC Design支架设计HGR:Hanger Design结构初步布置设计SPL:Structure Preliminary Layout结构功能设计SFD:Structure Functional Design设备支撑结构设计ESS:Equipment Support Structures厂房设计PLO Plant Layout数控加工审查NCG:NC Manufacturing Review数控加工验证NVG:NC Manufacturing Verification2轴半加工准备助手PMA:Prismatic Machining Preparation Assistant 2轴半加工PMG:Prismatic Machining3轴曲面加工SMG:3 Axis Surface Machining多轴曲面加工MMG:Multi-Axis Surface Machining车削加工LMG:Lathe Machining高级加工AMG:Advanced Part MachiningSTL快速成型STL:STL Rapid Prototyping知识工程顾问KWA:Knowledge Advisor知识工程专家KWE:Knowledge Expert产品工程优化PEO:Product Engineering Optimizer产品知识模板PKT:Product Knowledge Template业务流程知识模板BKT:Business Process Knowledge Template 产品功能定义PFD:Product Function Definition产品功能优化PFO:Product Function OptimizerDMU 漫游器DMN:DMNDMU NavigatorDMU 运动机构模拟KIN:DMU Kinematics SimulatorDMU 空间分析SPA:DMU Space AnalysisDMU装配模拟FIT:DMU Fitting SimulatorDMU优化器DMO:DMU OptimizerDMU工程分析审查ANR:DMU Engineering Analysis Review DMU空间工程助手SPE:DMU Space Engineering Assistant人体模型构造器HBR:Human Builder人体模型测量编辑HME:Human Measurements Editor人体姿态分析HPA:Human Posture Analysis 人体行为分析HAA:Human Activity Analysis刀具管理更新时间:2007-4-5 1.刀具管理的意义及其面临的挑战机械制造业的生产过程涉及大量的机械加工,特别是金属切削加工所加工产品的尺寸、形状、位置精度、表面形貌等都与刀具有关,刀具的性能、质量及其管理直接影响到能否顺利加工出所需要的合格产品,影响到加工节拍和生产效率,影响制造成本的控制和降低,关系到制造型企业的核心竞争力,这在汽车制造业中表现得更为突出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FEATURES12 parallel channel GPS receiver4000+ correlatorsSBAS (WAAS, EGNOS) supportSupports active and passive antenna High Sensitivity:-137dBm acquisition sensitivity-147dBm tracking sensitivity Fast Acquisition:< 5 second hot start< 50 second cold start5m CEP accuracyLow Power Consumption, < 100mW Small Size, 22.4 x 17.0 x 3.3 mm GPS-41SMDFast-Acquisition Enhanced-Sensitivity12-Channel SMD GPS Receiver ModuleThe GPS-41SMD is a miniature 12-channel OEM GPS receiver module. It is optimized for high-performance,ease-of-use, flexibility, and low-cost. The GPS receiver is suitable for a wide range of navigation and tracking applications.12 parallel channels and 4000+ correlators provide fast satellite signal acquisition and short start-up time. Acquisition sensitivity of –137dBm and tracking sensitivity of –147dBm offers good performance even under difficult environments.The GPS-41SMD provides one 3.3V UART serial I/O and one GPIO pins. Self-contained LNA supports direct connection to passive or active antenna.Sub-100mW power consumption makes the GPS-41SMD ideal for battery-operated portable devices.Satellite-based augmentation systems, such as WAAS and EGNOS, are supported to yield improved accuracy.Small size and SMD mounting allow standard SMT assembly process, making it ideal for high volume production.Ordering InformationPart Number DescriptionGPS-41SMDR EmbeddedGPSModule, 12 Channel GPS-41SMDF EmbeddedGPSModule, 12 Channel, Programmable GPSANT-MMCX GPS Antenna with MMCX ConnectionTECHNICAL SPECIFICATIONSReceiver Type 12 parallel channel, L1 C/A code5mCEPPositionAccuracyVelocity 0.1m/sec1uS1PPSTiming +/-Startup Time < 5sec hot startstartwarm35sec<startcold50sec<Signal Reacquisition 1sacquisitionSensitivity-137dBmtracking-147dBmRate 1HzUpdate(39.2m/sec2)4GDynamicsOperational Limits Altitude < 18,000m or velocity < 515m/s(COCOM limit, either may be exceeded but not both)LVTTLlevelInterfaceSerialV3.01NMEA-0183ProtocolGPGGA, GPGLL, GPGSA, GPGSV, GPRMC, GPVTG, GPZDA8,1N,4800baud,Datum Default WGS-84+/-10%DCInputVoltage 3.3VPower Consumption < 100mWDimension 22.4mm L x 17.0mm W x 3.3mm HWeight: 2gOperating Temperature -40o C ~ +85o C95%~Humidity5%BLOCK DIAGRAMPINOUT DESCRIPTIONPin Number Signal Name I/O Description1 NC - No connection2 NC - No connection3 TXD0 O 3.3V LVTTL async serial output, to output NMEA message4 RXD0 I 3.3V LVTTL async serial input, to input binary commands5 NC - No connection6 DVCC - Regulated 3.3V supply input for digital section7 GND - Ground8 NC - No connection9 NC - No connection10 RESETN I Manual reset input, active LOW. Leave open if not used.11 VCC BAT - 2.0V ~ 3.9V supply voltage to sustain RTC and SRAM data. Connect toGND if not used; will cold start every time.12 NC - No conection13 RF GND - RF ground14 RF GND - RF ground15 RF GND - RF ground16 RF IN I GPS signal input. 50Ω impedance.17 RF GND - RF ground18 VCC RF - Regulated 3.3V supply voltage for the RF section19 VCC ANT - Power input for active antenna. Leave open if not used.20 NC - No connection21 NC - No connection22 NC - No connection23 NC - No connection24 BAUD SEL0 I Baud rate selection 025 BAUD SEL1 I Baud rate selection 1BAUDSEL[1:0] 00 4800 baud019600baud1019200baud11 38400baud26 GPIO11(LED)O 3.3V GPIO, default used for GPS status indication27 NC - No connection28 P1PPS O 1 pulse per second time mark1PPS OutputThe GPS receiver is in navigation mode upon power-up, with 1PPS output free running. After 3 minutes of valid position fix and remaining under static-mode, the receiver changes to timing-mode, with 1PPS output signal synchronized to the UTC second. The receiver will change to navigation-mode, with 1PPS output free running, if the receiver is in motion. The 1PPS output will become synchronized to the UTC second again after the receiver had remained in static mode for 3 minutes.MODULE DIMENSIONSRECOMMENDED PAD LAYOUTACTIVE ANTENNA APPLICATIONPATCH ANTENNA APPLICATIONNMEA MessagesThe serial interface protocol is based on the National Marine Electronics Association’s NMEA 0183 ASCII interface specification. This standard is fully define in “NMEA 0183, Version 3.01” The standard may be obtained from NMEA, GGA - GPS FIX DATATime, position and position-fix related data (number of satellites in use, HDOP, etc.).Format:$GPGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,<11>,<12>,*<13><CR><LF>Example:$GPGGA,104549.04,2447.2038,N,12100.4990,E,1,06,01.7,00078.8,M,0016.3,M,,*5C<CR><LF>Field Example Description1 104549.04 UTC time in hhmmss.ss format, 000000.00 ~ 235959.992 2447.2038 Latitude in ddmm.mmmm formatLeading zeros transmitted3 N Latitude hemisphere indicator, ‘N’ = North, ‘S’ = South4 12100.4990 Longitude in dddmm.mmmm formatLeading zeros transmitted5 E Longitude hemisphere indicator, 'E' = East, 'W' = West6 1 Position fix quality indicator0: position fix unavailable1: valid position fix, SPS mode2: valid position fix, differential GPS mode7 06 Number of satellites in use, 00 ~ 128 01.7 Horizontal dilution of precision, 00.0 ~ 99.99 00078.8 Antenna height above/below mean sea level, -9999.9 ~ 17999.910 0016.3 Geoidal height, -999.9 ~ 9999.911 Age of DGPS data since last valid RTCM transmission in xxx format (seconds)NULL when DGPS not used12 Differential reference station ID, 0000 ~ 1023NULL when DGPS not used13 5CChecksumNote: The checksum field starts with a ‘*’ and consists of 2 characters representing a hex number. The checksum is the exclusive OR of all characters between ‘$’ and ‘*’.GLL - LATITUDE AND LONGITUDE, WITH TIME OF POSITION FIX AND STATUS Latitude and longitude of current position, time, and status.Format:$GPGLL,<1>,<2>,<3>,<4>,<5>,<6>,<7>*<8><CR><LF>Example:$GPGLL,2447.2073,N,12100.5022,E,104548.04,A,A*65<CR><LF>Field Example Description 1 2447.2073 Latitude in ddmm.mmmm formatLeading zeros transmitted2 N Latitude hemisphere indicator, ‘N’ = North, ‘S’ = South3 12100.5022 Longitude in dddmm.mmmm formatLeading zeros transmitted4 E Longitude hemisphere indicator, 'E' = East, 'W' = West5 104548.04 UTC time in hhmmss.ss format, 000000.00 ~ 235959.996 A Status, ‘A’ = valid position, ‘V’ = navigation receiver warning7 A Mode indicator‘N’ = Data invalid ‘A’ = Autonomous ‘D’ = Differential ‘E’ = Estimated8 65 ChecksumGSA - GPS DOP AND ACTIVE SATELLITESGPS receiver operating mode, satellites used for navigation, and DOP values.Format:$GPGSA,<1>,<2>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<4>,<5>,<6>*<7><CR><LF>Example:$GPGSA,A,3,26,21,,,09,17,,,,,,,10.8,02.1,10.6*07<CR><LF>Field Example Description 1 A Mode, ‘M’ = Manual, ‘A’ = Automatic 2 3 Fix type, 1 = not available, 2 = 2D fix, 3 = 3D fix 3 26,21,,,09,17,,,,,, PRN number, 01 to 32, of satellite used in solution, up to 12 transmitted 4 10.8 Position dilution of precision, 00.0 to 99.9 5 02.1 Horizontal dilution of precision, 00.0 to 99.9 6 10.6 Vertical dilution of precision, 00.0 to 99.9 7 07 ChecksumGSV - GPS SATELLITE IN VIEWNumber of satellites in view, PRN number, elevation angle, azimuth angle, and C/No. Only up to four satellite details are transmitted per message. Additional satellite in view information is sent in subsequent GSV messages.Format:$GPGSV,<1>,<2>,<3>,<4>,<5>,<6>,<7>,…,<4>,<5>,<6>,<7> *<8><CR><LF>Example:$GPGSV,2,1,08,26,50,016,40,09,50,173,39,21,43,316,38,17,41,144,42*7C<CR><LF>$GPGSV,2,2,08,29,38,029,37,10,27,082,32,18,22,309,24,24,09,145,*7B<CR><LF>Field Example Description1 2 Total number of GSV messages to be transmitted2 1 Number of current GSV message3 08 Total number of satellites in view, 00 ~ 124 26 Satellite PRN number, GPS: 01 ~ 32, SBAS: 33 ~ 64 (33 = PRN120)5 50 Satellite elevation number, 00 ~ 90 degrees6 016 Satellite azimuth angle, 000 ~ 359 degrees7 40 C/No, 00 ~ 99 dBNull when not trackingChecksum8 7CRMC - RECOMMENDED MINIMUM SPECIFIC GPS/TRANSIT DATATime, date, position, course and speed data.Format:$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*<13><CR><LF>Example:$GPRMC,104549.04,A,2447.2038,N,12100.4990,E,016.0,221.0,250304,003.3,W,A*22<CR><LF>Field Example Description1 104549.04 UTC time in hhmmss.ss format, 000000.00 ~ 235959.992 A Status, ‘V’ = navigation receiver warning, ‘A’ = valid position3 2447.2038 Latitude in dddmm.mmmm formatLeading zeros transmitted4 N Latitude hemisphere indicator, ‘N’ = North, ‘S’ = South5 12100.4990 Longitude in dddmm.mmmm formatLeading zeros transmitted6 E Longitude hemisphere indicator, 'E' = East, 'W' = West7 016.0 Speed over ground, 000.0 ~ 999.9 knots8 221.0 Course over ground, 000.0 ~ 359.9 degrees9 250304 UTC date of position fix, ddmmyy format10 003.3 Magnetic variation, 000.0 ~ 180.0 degrees11 W Magnetic variation direction, ‘E’ = East, ‘W’ = WestModeindicator12 A‘N’ = Data invalid‘A’ = Autonomous‘D’ = Differential‘E’ = EstimatedChecksum13 22DS-41SMD-2 June ’06©2006 RF Solutions Ltd, Page 11 Tel 01273 898000 Fax 01273 480661 Embedded GPS Module GPS-41SMDR GPS-41SMDFVTG - COURSE OVER GROUND AND GROUND SPEEDVelocity is given as course over ground (COG) and speed over ground (SOG).Format:GPVTG,<1>,T,<2>,M,<3>,N,<4>,K,<5>*<6><CR><LF>Example:$GPVTG,221.0,T,224.3,M,016.0,N,0029.6,K,A*1F<CR><LF>Field Example Description 1 221.0 True course over ground, 000.0 ~ 359.9 degrees 2 224.3 Magnetic course over ground, 000.0 ~ 359.9 degrees 3 016.0 Speed over ground, 000.0 ~ 999.9 knots4 0029.6 Speed over ground, 0000.0 ~ 1800.0 kilometers per hour5 A Mode indicator‘N’ = Data invalid‘A’ = Autonomous‘D’ = Differential‘E’ = Estimated6 1F ChecksumZDA TIME AND DATEFormat:$GPZDA,<1>,<2>,<3>,<4>,<5>,<6>*<7><CR><LF>Example:$GPZDA,104548.04,25,03,2004,,*6C<CR><LF>Field Example Description 1 104548.04 UTC time in hhmmss.ss format, 000000.00 ~ 235959.99 2 25 UTC time: day (01 ... 31)3 03 UTC time: month (01 ... 12)4 2004 UTC time: year (4 digit year)5 Local zone hourNot being output by the receiver (NULL)6 Local zone minutesNot being output by the receiver (NULL)7 6C ChecksumBinary MessagesSee Binary Message Protocol User’s Guide, DS-41COM for detailed descriptions.RF Solutions Ltd.,Unit 21, Cliffe Industrial Estate,South Street, Lewes, E Sussex, BN8 6JL. EnglandTel +44 (0)1273 898 000 Fax +44 (0)1273 480 661Email sales@ 元器件交易网。

相关文档
最新文档