ADA4410-6中文资料

合集下载

EMVY6R3ADA470ME55G中文资料(Nippon Chemi-Con)中文数据手册「EasyDatasheet - 矽搜」

EMVY6R3ADA470ME55G中文资料(Nippon Chemi-Con)中文数据手册「EasyDatasheet - 矽搜」
Series code Category
请参考“产品代码指南(表面贴装型)”
◆标记
D55 to JA0 EX) 6.3V100µF
7hY
100 6.3V
KE0 to MN0
EX) 16V1,000µF
0V MVY
1000 16V
(1/2)
芯片中文手册,看全文,戳
表面安装铝电解电容器
1.8
95 EMVY6R3ADA330ME55G
47 E55
1.8
95 EMVY6R3ADA470ME55G
100 F55
1.0
140 EMVY6R3ADA101MF55G
220 F55
1.0
140 EMVY6R3ADA221MF55G
330 F80
0.34
280 EMVY6R3ADA331MF80G
≦The initial specified value
≦The initial specified value
Shelf Life
The following specificationsshall be satisfied when the capacitorsare restored to 20℃ after exposing them for 1,000 hoursat 105℃ without
Lower Z MVE
◆技术指标
Items
特点
Category Temperature Range
-55 to +105℃ (6.3 to 63V dc ) -40 to +105℃ (80 & 100V dc )
Rated Voltage Range 6.3 to 100V dc

安捷伦科技噪声系数测试仪选择指南

安捷伦科技噪声系数测试仪选择指南

查找更多信息 /find/nf 2
噪声系数的测量技术
两种主要的噪声系数测量 方法为:
● Y 因子
● 冷噪声源法
要找到有关这些方法的更多信 息,请参见应用指南 57-1,射 频和微波噪声系数测量基础, 文献编号: 5952-8255E。
为了选择适当的仪表满足您测量噪声系数的要求,有必要首先了解一些测 试噪声系数的基本原理以及与之相关的测量结果的不确定性。噪声系数测量的 不确定性不仅取决于测试设备,同时也是被测器件 (DUT) 的某些特征,例如 S 参数和噪声参数的函数。
交互作用 S 参数 抖动
导致测试结果不确定性的因素
使用Y因子方法,主要的误差来源是噪声源与DUT之间的失配,以及DUT 产生的噪声与测试系统之间的相互作用。如果在测试环境中增加了 ATE 网络 (在噪声源与 DUT 之间增加了一个电网络 — 主要是开关和测试电缆) 则会导 致更大的误差。使用 PNA-X 的基于源校准的冷噪声源方法,最大的误差来源 是噪声源的 ENR 的不确定性,在校准的过程中,它会影响 PNA-X 的内部噪声 接收机的测量结果。
查找更多信息 /find/nf 3
测量结果的不确定性
有几个关键因素会影响到整个噪声系数测量结果的不确定性。选择噪声系 数测试方案时,非常重要的一点是要选择一种能把影响整个噪声系数不确定性 诸因素中最主要因素的影响降低到最小的方法。
这些可以影响噪声系数测量结果不确定性的因素,有一部分可在仪表的技 术指标中找到,例如仪表本身测试结果的不确定性、超噪声比 (ENR) 的不确定 性和抖动等。而其它因素则取决于测试系统与 DUT 之间的相互作用。例如,由 于系统源匹配的不完善 (偏离理想的 50 欧姆),就会有两种误差来源。第一个 为失配误差,这会导致测试系统与 DUT 之间的能量传送不理想。第二个误差 源则来自于DUT内部产生的噪声与从DUT一侧看到的源匹配 (Γs) 之间的相互 作用。下图比较了 Y 因子方法与冷噪声源方法 (PNA-X 所用的方法) 之间噪声 系数测量结果的不确定性。在这个例子中放大器的噪声系数为 3 dB,增益为 15 dB,输入和输出匹配为 10 dB,其噪声参数也是比较适中的 (Fmin = 2.8 dB、 Γopt = 0.27 + j0 和 Rn= 37.4)。对于 Y 因子方法,在计算噪声系数测试结果的 不确定性时考虑了两种不同的情况: 一种情况是噪声源与DUT直接连接; 另一 种情况是在噪声源和 DUT 之间有一个电网络 — 用它来仿真自动测试系统 (ATE) 中所用到的各种开关和测试电缆,以便把它们带来的损耗在测试结果中 校准掉。在这个以 PNA-X 为例的示意中包也括了 ATE 网络。

AD7656中文资料

AD7656中文资料

250 kSPS 、六通道、同步采样、双极性16/14/12-位 ADCAD7656/AD7657/AD7658Rev. D Information furnished by Analog Devices is believed to be accurate and reliable. However , no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Speci cations subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O.Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 Fax: 781.461.3113 2006–2012 Analog Devices, Inc. All rights reserved.功能框图V SSDGNDV DDREFCONVST ACONVST B CONVST C OUTPUT DRIVERSOUTPUT DRIVERSOUTPUT DRIVERSOUTPUT DRIVERSCONTROL LOGICBUFBUFBUFAGNDT/HT/H T/H T/HT/HT/HCLK OSCAV CCDV CCV1V2V3V4V5V6SER/PAR CSV DRIVE STBYDOUT ADOUT BDOUT C SCLKRD WRDATA/CONTROL LINES 05020-001AD7656/AD7657/AD765816-/14-/12-BIT SAR16-/14-/12-BIT SAR16-/14-/12-BIT SAR16-/14-/12-BIT SAR16-/14-/12-BIT SAR16-/14-/12-BIT SAR图1.-1受美国专利第6,731,232号保护。

全自动生化仪简介

全自动生化仪简介
全自动生化仪简介
OLYMPUS AU系列全自动生化仪
AU400
AU2700
AU640
AU系列各型号生化仪对比
机型
试剂位 R1/R2
项目 速度 样本 (双) 无 ISE (ul)
R1 (ul)
R2 (ul)
反应液 (ul)
AU400 48/48
AU600 AU640
48/48 48/48
AU2700 48/48
CX9
24
33 900 3-25
LX20
41
70 800 3-25
Beckman系列生化仪性能特点
光源采用长寿闪烁式氙灯,无需保养和 更换。
比色杯直径0.5cm,因数法检测时需要在 理论因数的基础上*2。
酶类项目采用因数法时免校正。 使用标准液定标一个项目,需要一个标
准液位置,不能重复使用。
AU400采用干式空气浴,AU640采用恒温液循 环加温方式,升温均匀。
带冷藏的48位试剂盘,R1/R2试剂位置可随意 设置,避免R1/R2不同盘造成的试剂位浪费。 单数为外圈,放30ml小瓶,双数为内圈,可放 60ml的大瓶。
除AU600外,都具有样本预稀释(5-100 倍)功能,可以检测高浓度标本,并且 可以通过预稀释降低试剂用量。
日立系列生化仪性能特点
从紧凑型的7020到组合式的7600,都具有强大的功能, 可以满足各种项目的检测需要。
开放式的试剂系统。试剂和样本微量化。
灵活的反应时间,可自由控制。
仪器线性宽,量程0-32000。
同样一个项目可以同时输入血清和尿液两套参数(不 占试剂通道)。
全反应过程监测,可以察看任意时间反应曲线 和吸光度,便于发现和解决问题。

BUF634中文资料

BUF634中文资料

1 Feature 1特点•High Output Current: 250 mA•高输出电流:250毫安•Slew Rate: 2000 V/µs •摆率(电压转换速率):2000 V /µS•Pin-Selected Bandwidth: 30 MHz to 180 MHz •引脚选择带宽:30兆赫至180兆赫•Low Quiescent Current: 1.5 mA (30 MHz BW) •低静态输出电流:1.5毫安(30兆赫带宽)•Wide Supply Range: ±2.25 to ±18 V •宽电压供应范围:2.25至18伏•Internal Current Limit •内部电流限制•Thermal Shutdown Protection •热关机保护•8-Pin PDIP, SOIC-8, 5-Lead TO-220, 5-Lead DDPAK-TO-263 Surface-Mount•8引脚PDIP,SOIC - 8、5引脚TO - 220,5引脚ddpak-to-263表面贴装2 Applications 2应用•Valve Driver •阀门驱动器•Solenoid Driver•螺线管(电磁)驱动器•Op Amp Current Booster•运算放大器电流放大器•Line Driver•线路驱动器•Headphone Driver•耳机驱动器•Video Driver•视频驱动程序•Motor Driver •电机驱动•Test Equipment•测试设备•ATE Pin Driver•ATE自测引脚驱动程序3 Description3 描述The BUF634 device is a high speed, unity-gain open-loop buffer recommended for a wide range of applications. The BUF634 device can be used inside the feedback loop of op amps to increase output current, eliminate thermal feedback, and improve capacitive load drive.是一种高速开环增益缓冲器广泛的应用范围中的建议,它可用于运算放大器的反馈环路内,一起增加输出电流消除热反馈和改善容性负载驱动。

MAX4410中文资料

MAX4410中文资料

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
80mW, DirectDrive Stereo Headphone Driver with Shutdown MAX4410
ABSOLUTE MAXIMUM RATINGS
PGND to SGND .....................................................-0.3V to +0.3V PVDD to SVDD .................................................................-0.3V to +0.3V PVSS to SVSS .........................................................-0.3V to +0.3V PVDD and SVDD to PGND or SGND .........................-0.3V to +4V PVSS and SVSS to PGND or SGND ..........................-4V to +0.3V IN_ to SGND ..........................................................-0.3V to +0.3V SHDN_ to SGND........................(SGND - 0.3V) to (SVDD + 0.3V) OUT_ to SGND ............................(SVSS - 0.3V) to (SVDD + 0.3V) C1P to PGND.............................(PGND - 0.3V) to (PVDD + 0.3V) C1N to PGND .............................(PVSS - 0.3V) to (PGND + 0.3V) Output Short Circuit to GND or VDD ...........................Continuous Continuous Power Dissipation (TA = +70°C) 14-Pin TSSOP (derate 9.1mW/°C above +70°C) ..........727mW 16-Bump UCSP (derate 15.2mW/°C above +70°C)....1212mW Junction Temperature ......................................................+150°C Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Bump Temperature (soldering) (Note 1) Infrared (15s) ...............................................................+220°C Vapor Phase (60s) .......................................................+215°C Lead Temperature (soldering, 10s) .................................+300°C

ADS1100中文资料及其应用

ADS1100中文资料及其应用

ADS1100中文资料及其应用ADS1100是美国TI(Texas Instruments Incorporated)公司生产的全差分输入、16位分辨率、SOT23-6封装、有自校准功能的精密A/D转换器,该芯片的内置自校准系统对于用户是透明的。

ADS1100使用I2C串行接口以电源电压作用参考电压,片内可编程增益放大器(PGA)可提供最大的为8的增益,因此,即使在高分辨情况下也能采样到小信号,在单次转换模式下,ADS1100在一次转换结束后可自动关闭自身电源,因而可减少系统在空闲周期的电流消耗,由于ADS1100的易用性,故可以大大降低精密测量设备工作的工作量,ADS1100主要应用在空间和功耗方面要求比较严格的高分辨率采样测量电路中,其典型应用包括便携设备、工业过程控制和智能发射机等。

ADS1100的主要特点如下:16位无丢码;8个地址范围;有连续自校准功能;单周期转换;内部带有系统时钟;具有I2C接口;精度:0.0125%(FSR MAX);可编程增益放大器的增益可在1、2、4或8中进行选择;低噪声:4μVp-p;可编程数据采样速率:8SPS-128SPS;电源电压为2.7-5.5V;电流损耗可低至90μA。

ADS1100以其独特的精度特性可广泛应用便携设备、工业过程控制器、智能发射器、消费类产品、工厂自动化设备和温度测量等系统之中。

ADS1100的极限参数,引脚功能和内部结构为了保证器件的使用可靠性,在设计时,建议在表1所列条件范围内使用ADS1100芯片,ADS1100的外部引脚图如图1所示,表2是其引脚功能说明。

图2是ADS1100的内部结构图。

ADS1100的内部包括ΔΣA/D转换器,可编程增益放大器,时钟发生器和I2C接口四大部分,芯片内部时钟发生器产生的时钟信号可直接送给ΔΣA/D转换核及I2C接口,而无需片外时钟,ΔΣA/D转换核包括差分开关电容ΔΣ转换结构以及其后的数字滤波器。

不断前进的经典产品——欧博M100第六代电子管放大器

不断前进的经典产品——欧博M100第六代电子管放大器

不断前进的经典产品——欧博M100第六代电子管放大器.马龙辉乍看欧博新推出的M100第六代产品,我以为是一部前级放大器,因为它小巧秀美,体积相当于一部前级大小.但仔细再看,才知道是一部不折不扣的EL34推挽放大的合并式放大器.在这之前,M100已生产了五代产品,十多年来始终旺销,是欧博产品的一棵长青树,也是国产电子管机产品的经典之一.而且,M100越做越好,工艺上今非昔比.十几年前那种声音好,外观简陋的形象已经不存在了.这一代M100是外观和工艺改动最大的一款,它超脱了传统电子管机结构的模式,将变压器和电子管全部卧沉机底,大大地缩小了整机的高度和体积.不过你不要认为它是M100的缩水版,其内部的零件一个也不少,并且在电路设计和结构布局上都有更科学更独特的理念,无论是外形还是声音都会让你耳目一新.产品能够长时间被人们推崇的重要原因就是性价比,谁都希望用最少的钱买到最好的东西.M100~够生存十几年而仍畅销不衰,其秘诀就是价格不高而品质优秀.M100品质的核心——声音已经很不错了.十多年始终为用家所爱,然而听了M100第六代之后,我可以肯定地说,M100—10(十周年产品)就不用买了——因为M100第六代的价格与M100—10的价格大致相似,而品质却大有提升——这是M100十多年来最残酷的一次"自我否定".十几年来中国电子管音响厂家都在努力将电子管产品发扬光大,欧博公司是较突出的一个.就这部M100第六代来说,它不止是外观概念的变化,而是在结构和电路设计上都有突破性的改良.首先在结构上,其改良不止是我们表面所看到的体积缩小,拉丝铝合金封盖,亚黑喷砂钢制机壳以及类似意大利原木工艺般线条优美的黑胡桃原木块装饰这样简单——它对于整机的工作性能都有改善的作用.不过M100第六代的外形我还是要说两句.长期以来,人们都在试图将电子管放大器的外观作得秀美一些,但笨重的变压器总是无法隐藏,即使是对变压器罩镶金描银,也还没有摆脱粗俗的工业感.高高的功率电子管也似乎一副裸机的样子.M100第六代则给了我们新的启示,原来电子管功放也可以做得小巧玲珑.在技术上,M100第六代的多种材料复合结构可以有效减低机械谐振;变压器及线路板卧底之后,支撑重心更低,更利于避震和稳定;而且线路板以尼龙材料支撑,搭配B&CM15号角音箱十分合拍以进一步吸收震动,并与上盖和机壳分离,从而全面提升整机的电器特性.从另一个角度讲,无论这个外形你喜不喜欢,它的设计都是成功的,因为它对声音有益.在电路设计上,M100第六代的推动电路使用了美国军用飞利浦6U8A古董管,它的特性与着名的Dynaco电路中的6AN8相近.国内与之相近的型号是6F2,但其声音特性与6U8不可同日而语.而6U8这只用在电视高频的管子当初产量较大,用在音响上也极为优秀,提前着手买到批量古董6U8还不是难事.目前,欧博收有大量的古董6U8,数年之内用不完.既然使用了6U8,那么推动电路也应该是Dynaco的经典电路了?没错,M100第六代使用了这个电路.Dynaco的这一推动电路最初用于Dynaco70,之后用这个电路生产的电子管放大器及其套件销售了数万台,可见魅力之大.这个电路欧博曾用在M99-10上,当时那沉稳而霸气的声底令人叹服,那种类似马兰士8B的中低频浑厚而清醇,着实不同凡响.而今用在M100第六代上,依然焕发出诱人的光彩.当然使用这一电路并非照搬Dynaco,必须活学活用, 整体的谐调变通及千百次的参数尝试是不可少的.该机的另一个改良是使用"胆整流",使用一只5Z4P整流管提供6U8用电.巧妙的是EL34功放管仍为晶体管整流供电,原因在于电子管整流虽然可以提供丰富的音乐表现力,但在力度和瞬态方面,晶体管整流仍有优势.M100第六代采用混合整流的好处是,它既提供了温暖松盈的电子管音色又能在大功率输出时保持强劲的动态,想来颇有些"前胆后石"的理念.构思缜密又不落俗套,欧博的校声和把握声音走向的功力由此可见一斑. 欧博M100所有年代的产品我不止一次地聆听过,这款M100第六代是最好的.首先它的声音取向并不是像外形那样小巧而娇美,而是霸气而丰厚.与以往不同的是第六代的M100中低频的分量更多,更有凝聚力和实体感, 而且控制能力有所增强.在听音室,试用M100第六代推动ATCSCM35落地音箱,不仅表现出从容自然的声场和结像,而且似有源源不断的底气支持.首先播放的是一曲德沃夏克的((自新大陆交响曲.乐器的定位和层次感很好,尤其是低音弦乐表现出的层次和延伸感让人觉得落地有根.第二乐章优美的双簧管华丽而哀婉,音色晶莹而透明.第三乐章的铜管乐更是空气感十足,音色透明如镜,且瞬态优良,似有一股股气浪缓缓扑来.从M100第六代上我又一次感觉到,设计优秀的电子管机推动大型音箱是完全可能的.当然推动较高效率的音箱更有优势一再用M100第六代推动B&CM15 号角音箱,其效果令我喜出望外.用300B推号角音箱已是不成文的规则,此乃玩家们的共识.M15也始终是用300B来推有更好的平衡度和厚润的音色.此处用M100 第六代搭配,M15表现出了更丰厚的中频,低频量感也更为充沛,底盘更稳,呈现出一种金字塔形的声像.M100 第六代的控制力和能量均优于300B,尤其播放大动态音乐时说服力就更强.聆听伯辽兹的((安魂曲可以清晰地表现出第二段中高亢的合唱下面持续不断的大鼓,使我又重新领悟了号角加15英寸低音演绎庞大阵容的威力.香港的评论家们习惯把这一片段演绎得出色形容为M100第六代的后面板姨"o●●@,'c (9)●,.,々,?●,..:=..,●兰一i,:I.●.Lo 圈曩, ., 一.,●一一■●●.'.,广◆,_。

ADAM-6250快速入门手册

ADAM-6250快速入门手册

Adam-6250 快速入门手册ADAMADAM-6250 快速入门手册第一章 产品介绍 .............................................................................................................................. 2 1.1 Adam-6200 概述 .................................................................................................................... 2 1.2 Adam-6250 概述 .................................................................................................................... 4 1.3 规格说明 ................................................................................................................................ 4 1.3.1 一般规格 ....................................................................................................................... 4 1.3.2 环境 ............................................................................................................................... 5 1.3.3 Adam-6200 系列私有特性 .......................................................................................... 5 1.3.4 数字量输入 ................................................................................................................... 5 1.3.5 数字量输出 ................................................................................................................... 6 第二章 Adam-6250 的软件安装 ...................................................................................................... 6 2.1 初始检查 ............................................................................................................................ 6 2.2 安装 Advantech Adam/ Utility.......................................................................... 6 2.2.1 软件下载路径 ............................................................................................................... 6 2.2.2 软件支持的操作系统 ................................................................................................... 6 2.2.3 安装 Advantech Adam/ Utility .................................................................... 7 第三章 硬件连接及测试 ................................................................................................................ 10 3.1 硬件连接 ............................................................................................................................ 10 3.1.1 电源连接 ..................................................................................................................... 10 3.1.2 硬件接线 ..................................................................................................................... 10 3.1.3 Adam-6250 数字量输入输出功能接线 ..................................................................... 12 3.2 Adam-6250 的 Modbus TCP 通信协议编程时的地址映射............................................. 14 3.3 软件测试 ............................................................................................................................ 17 3.3.1 Adam 模块通用参数配置 .......................................................................................... 17 3.3.2 Adam-6250 模块功能测试 ......................................................................................... 23 (1) 数字量输入输出功能概述 ........................................................................................ 24 (2) 通道高级功能设置 .................................................................................................... 27 A. DI 高级功能配置 ..................................................................................................... 27 B. DO 高级功能配置 .................................................................................................... 30 3.3.3 Adam-6250 GCL 功能 ................................................................................................. 32 第四章 例程使用详解 ...................................................................................................................... 33 4.1 Adam-6250 板卡支持例程列表 .......................................................................................... 33 4.2 常用例子使用说明(以 CSharp 例程为例) .................................................................... 33 4.2.1 Adam62XXDIO(数字量输入输出状态瞬时读值) ................................................. 33 4.2.2 DataStreaming(主动定时上传功能,监测数据流信息)........................................ 35 4.2.3 P2P_UdpEvent(点对点功能和事件触发) ............................................................... 36 第五章 遇到问题,如何解决? .................................................................................................... 381Adam-6250 快速入门手册第一章 产品介绍1.1 Adamdam-6200 6200 概述继以太网远程数据采集模块 Adam-6000 系列之后,研华又推出了新一代的智能型以太 网远程数据采集 I/O 模块— —Adam-6200 系列。

弹性体Vistamaxx 6102

弹性体Vistamaxx 6102

典型数值:此等典型数值不应被解释为规格。

©2012埃克森美孚。

埃克森美孚(ExxonMobil),埃克森美孚的徽标(ExxonMobil logo)及连接的“X”设计和在本文件中使用的所有其他产品或服务名称,除非另有标明,否则均为埃克森美孚的商标。

未经埃克森美孚的事先书面授权,不得分发、展示、复印或改变本文件。

使用者可在埃克森美孚授权的范围内,分发、展示和/或复印本文件,但必须毫无改动并保持其完整性,包括所有的页眉、脚注、免责声明及其它信息。

使用者不可将本文件全文或部份复制到任何网站。

Vistamaxx™ 6102Propylene-based Elastomer产品说明威达美6102丙烯基弹性体是一种烯烃基弹性体,采用埃克森美孚化工的EXXPOL™催化剂技术生产。

它具有优异的弹性,易于加工,并且可与各类材料相容。

它尤其有利于在热塑性和聚烯烃共混物中实现柔性、透明度和冲击性能之间的平衡。

关键特性•适用于各种吹膜和流延膜应用。

-其他典型应用包括压延或挤出型材、发泡或吹塑产品以及无纺布。

-与传统及茂金属PP 和PE 具有优异的粘合性能。

-优异的弹性和韧性。

-用于共挤结构的热封层时具有很低的热封始封温度和很高的密封强度。

-优异的耐化学性和长期耐老化性。

-尤其适用于要求在柔性、透明度和冲击性能之间实现良好平衡的热塑和聚烯烃混合物。

-符合EU 和中国RoHS 规范。

总体供货地区 1•北美洲•非洲和中东•拉丁美洲•南美洲•欧洲•亚太地区应用•吹膜•吹塑制品•发泡制品•挤压型材•聚丙烯(PP)/热塑性弹性体(TPE)改性•流延膜•压延型材用途•包装•薄膜•复合物RoHS 合规性•RoHS 合规形式•颗粒料修订信息•11/04/2011物理性能典型数值(英制)典型数值(公制)测试依据密度0.862g/cm³0.862g/cm³ASTM D1505熔融指数 2(190°C/2.16kg) 1.3g/10min 1.3g/10min ExxonMobil Method 熔流率(230°C/2.16kg) 3.0g/10min 3.0g/10min ASTM D1238熔流率(230°C/2.16kg) 3.0g/10min 3.0g/10min ISO 1133乙烯成份16.0wt%16.0wt%ASTM D3900硬度典型数值(英制)典型数值(公制)测试依据硬度计硬度(邵氏A,15秒,73°F (23°C))67 67 ASTM D2240机械性能典型数值(英制)典型数值(公制)测试依据弯曲模量-1%正割(73°F (23°C))1650psi 11.4MPa ASTM D790弯曲模量-1%正割(73°F (23°C))1650psi 11.4MPa ISO 178弹性体典型数值(英制)典型数值(公制)测试依据拉伸永久变形(73°F (23°C))13%13%ASTM D412拉伸永久变形(73°F (23°C))13%13%ISO 2285拉伸应力(在100%时)(73°F (23°C))308psi 2.12MPa ASTM D412拉伸应力(在100%时)(73°F (23°C))308psi 2.12MPa ISO 37300%时拉伸应力(73°F (23°C))388psi 2.68MPa ASTM D412300%时拉伸应力(73°F (23°C))388psi 2.68MPa ISO 37拉伸断裂强度(73°F (23°C))2020psi13.9MPaASTM D412ExxonMobil Chemical Vistamaxx™ 6102Propylene-based Elastomer典型数值:此等典型数值不应被解释为规格。

bbe AlgaeOnlineAnalyser 中文版说明书2.6 E2

bbe AlgaeOnlineAnalyser 中文版说明书2.6 E2
Version 2.6 E2, 2011 年 2 月
目录
目录
2
最新信息
7
软件版本 2.0
7
软件版本 2.2
7
软件版本 2.3
7
软件版本 2.4
7
软件版本 2.5
8
软件版本 2.6
8
安全须知
9
藻类在线分析仪
10
带清洁设备的传感器
10

12
操作方法
12
安装管子的方式:
12
调整泵压头
13
测量过程
13
首先,通盘考虑测量的特殊步骤。下面将进一步详细说明。关于详细资料,参见关于软件一章。 13
Page 16
电气连接 (墙上安装版)
标准设备带有连接盒及电源。
RS 232 To the Senso r
LED red
RS232 Sensor Power
Kl 14 upp e r sid e Kl 1
14 1312 1110 9
Kl 14 lo we r sid e
Relay
To the Sensor Power supply LED red Relay
电源连接
bbe 藻类在线分析仪交付时配备主干电缆,主干电缆带安全插头。与仪器连接时,请一定确保采用防水 连接插座。
数据接口 RS232 数据输出
AOA 提供 RS232 数据输出,这可以通过外部电脑的空闲 RS232 或通过 RS232 输出线来使用内部电脑
以太网
AOA 集成到 LAN 中。这使得可以使用外部电脑或者当用内部电脑通过 RS232 输出线来操作。
泵 USB 端口
藻类在线分析仪正视图

AO4410中文资料

AO4410中文资料

SymbolTyp Max 31405975R θJL 1624Maximum Junction-to-Ambient A Steady-State °C/W Maximum Junction-to-Lead CSteady-State°C/WThermal Characteristics ParameterUnits Maximum Junction-to-Ambient A t ≤ 10s R θJA °C/W AO4410AO4410SymbolMin TypMaxUnits BV DSS 30V 0.0051T J =55°C5I GSS 100nA V GS(th)0.8 1.11.5V I D(ON)80A 4.7 5.5T J =125°C6.47.45.2 6.2m Ωg FS 102S V SD 0.641V I S4.5A C iss 913010500pF C oss 625pF C rss 387pF R g0.40.5ΩQ g (4.5V)72.485nC Q gs 13.4nC Q gd 16.8nC t D(on)1115ns t r 711ns t D(off)99135ns t f 1319.5ns t rr 3340ns Q rr22.230nCTHIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE.Body Diode Reverse Recovery TimeBody Diode Reverse Recovery Charge I F =18A, dI/dt=100A/µsDrain-Source Breakdown Voltage On state drain currentI D =250µA, V GS =0V V GS =4.5V, V DS =5V V GS =10V, I D =18AReverse Transfer Capacitance I F =18A, dI/dt=100A/µsElectrical Characteristics (T J =25°C unless otherwise noted)STATIC PARAMETERS ParameterConditions I DSS µA Gate Threshold Voltage V DS =V GS I D =250µA V DS =24V, V GS =0VV DS =0V, V GS = ±12V Zero Gate Voltage Drain Current Gate-Body leakage current R DS(ON)Static Drain-Source On-ResistanceForward TransconductanceDiode Forward Voltage Maximum Body-Diode Continuous CurrentInput Capacitance Output Capacitance DYNAMIC PARAMETERS m ΩV GS =4.5V, I D =15AI S =1A,V GS =0V V DS =5V, I D =18ATurn-On Rise Time Turn-Off DelayTime V GS =10V, V DS =15V, R L =0.83Ω, R GEN =3ΩTurn-Off Fall TimeTurn-On DelayTime Gate Drain Charge V GS =0V, V DS =15V, f=1MHz SWITCHING PARAMETERS Total Gate Charge Gate Source Charge Gate resistanceV GS =0V, V DS =0V, f=1MHzV GS =10V, V DS =15V, I D =18AA: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.B: Repetitive rating, pulse width limited by junction temperature.C. The R θJA is the sum of the thermal impedence from junction to lead R θJL and lead to ambient.D. The static characteristics in Figures 1 to 6 are obtained using 80 µs pulses, duty cycle 0.5% max.E. These tests are performed with the device mounted on 1 in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The SOA curve provides a single pulse rating. Rev 4 : May 2005AO4410AO4410。

Agilent-86100A眼图仪设定指引内容

Agilent-86100A眼图仪设定指引内容

Agilent-86100A眼图仪设定指引内容Agilent 86100设定指引内容设定指引是您可以使用仪器去执行许多一般工作的逐步程序1、NRZ眼图2、RZ眼图3、示波器量测4、TDR/TDT量测5、模板测试6、校准7、设定和使用印表机8、管理的档案NRZ眼图量测设定指引设定指引是您可以使用仪器去执行许多一般工作的逐步程序1、消减率2、颤动3、平均功率4、交叉百分比5、上升时间6、下降时间7、位元率8、0位准9、1位准10、眼状高度11、眼状宽度12、信噪比13、信号周期失真14、眼状振幅消减率概念您可以量测NRZ肯眼图的消减率。

消减率是眼图的1位准和0位准比率1、选择NRZ的Eye/Mask(眼状./模板)模式2、执行消减率校准3、定义眼状视窗界限。

4、定义量测单位5、执行消减率量测选择NRZ眼状/模板模式A)按仪器前面板上的Eye /Mask Mode(眼状/模板模式)按钮。

您也可以开启(Setup(设定)功能表然后按一下/轻触Eye /Mask Mode。

B)如果仪器处于RZ眼状模式,请按一下/轻触位于仪器工具列底下的RZ/NRZ按钮以显示NRZ眼状模式量测C)按仪器前纲板上的Autoscale (自动刻度选择)按钮以便快带将眼图的水平和垂直的水平和垂直刻度最佳化。

您也可以开启Control(控制)功能表然后按一下/轻触Autoscale.执行减率校准执行消减率校准A)在Cakuvrate(校准)功能表上选择All Calibrations(所有校准)。

All Calibrations(所有校准)对话方会开启。

B)按一下/轻触Extinction ratio(消减率)标识。

消减率标识页面开启并允许您在仪器频道之一减謴校准确。

C)移除所有至即将进行校准频道的讯号D)按一下/轻触(Calibrate (校准)。

将会出现进度表作为校准状太的目测指示器E)完成校准时按一下/轻触Close关闭。

定义眼状视窗界限A)请在Measure(测量)功能表选取Configure Meas (设定量测)。

安捷伦科技Agilent 34410A 11A 6

安捷伦科技Agilent 34410A 11A 6

Agilent 34410A/11A 6½数字万用表用户指南通告© Agilent Technologies, Inc. 2005-2012根据美国和国际版权法,未经安捷伦科技公司事先许可和书面同意,不得以任何形式或通过任何方法(包括电子存储和检索以及翻译成其他语言)复制本手册的任何部分。

手册产品编号34410-90418版本第三版2012年 4 月马来西亚印刷Agilent Technologies, Inc.3501 Stevens Creek Blvd.Santa Clara, CA 95052 USAMicrosoft® 和 Windows® 是 Microsoft Corporation 在美国的注册商标。

软件修订版本指南对生产时安装在仪器中的固件有效。

但是,升级固件可能会增加或改变产品功能。

如需最新固件和文档,请访问产品网页:/find/34410A或者/find/34411A 保证本文档中的材料按“原样”提供,在以后的版本中内容如有更改,恕不另行通知。

此外,在适用的法律所允许的最大范围内,安捷伦对与此手册相关的内容及其中所含的信息不作任何明示或默示的保证,包括但不限于为特定目的的适销性和适用性所作的默示保证。

安捷伦公司对与提供、使用本手册及其所含信息以及与执行手册中的步骤有关的任何错误或偶然及继发性损坏不承担任何责任。

如果安捷伦公司与用户之间单独签定的协议中的保证条款涉及本文档中的内容,并且与本文档中的条款相抵触,则应以单独协议中的保证条款为准。

技术许可证本文档中所述的硬件和/或软件随附有许可证。

只能按照这些许可证条款的规定进行使用和复制。

限制性权利的说明美国政府限制性权利。

授予联邦政府的软件和技术数据权利仅包括正常情况下提供给最终用户的权利。

安捷伦按照FAR 12.211(技术数据)和 12.212(计算机软件)的规定提供软件和技术数据的普通商用许可;对于国防部使用,则按照 DFARS 252.227-7015(技术数据—商用品)和 DFARS 227.7202-3(商用计算机软件或计算机软件文档的权利)提供软件和技术数据的商用许可。

ADA-4643 Datasheet说明书

ADA-4643 Datasheet说明书

ADA-4643Silicon Bipolar Darlington Amplifi erData SheetAttention: Observe precautions forhandling electrostatic sensitive devices.ESD Machine Model (Class A)ESD Human Body Mode (Class 1B)Refer to Avago Application Note A004R:Electrostatic Discharge, Damage and Control.RFinGNDRFout & VdGND DescriptionAvago Technologies’ ADA-4643 is an economical, easy-to-use, general purpose silicon bipolar RFIC gain block am-plifi ers housed in a 4-lead SC-70 (SOT-343) surface mount plastic package which requires only half the board space of a SOT-143 package.The Darlington feedback structure provides inherent broad bandwidth performance, resulting in useful ope-rating frequency up to 2.5 GHz. This is an ideal device forsmall-signal gain cascades or IF amplifi cation. ADA-4643 is fabricated using Avago’s HP25 silicon bipolarprocess, which employs a double-diff used single poly-silicon process with self-aligned submicron emitter geometry. The process is capable of simultaneous high f T and high NPN breakdown (25 GHz f T at 6 V BVCEO). The process utilizes industry standard device oxide isolation technologies and submicron aluminum multilayer inter-connect to achieve superior performance, high uniformity, and proven reliability.Surface Mount PackageSOT-343Pin Connections and Package MarkingNote:Top View. Package marking provides orientation and identifi cation.“2T” = Device Code“x” = Date code character identifi es month of manufacture.V CC = 5 VRF inputRF Features∙ Small Signal gain amplifi er∙ Operating frequency DC – 2.5 GHz ∙ Unconditionally stable ∙ 50 Ohms input & output∙ Flat, Broadband Frequency Response up to 1 GHz∙ Operating Current: 20 to 60 mA ∙ Industry standard SOT-343 package∙ Lead-free option available Specifi cations900 MHz, 3.5 V, 35 mA (typ.)∙ 17 dB associated gain ∙ 13.4 dBm P 1dB ∙ 28.3 dBm OIP 3∙ 4 dB noise fi gure∙ VSWR < 2.2 throughput operating frequency ∙ Single supply, typical I d = 35 mAApplications∙ Cellular/PCS/WLL base stations ∙ Wireless data/WLAN ∙ Fiber-optic systems ∙ ISMTypical Biasing Confi gurationADA-4643 Electrical Specifi cationsT A = 25° C, Zo = 50 Ω, Pin = -25 dBm, I d = 35 mA (unless specifi ed otherwise)SymbolParameter and Test Condition:I d = 35 mA, Zo = 50 ΩFrequencyUnitsMin.Typ.Max.Std. Dev.V d Device Voltage I d = 35 mA V 3.2 3.5 3.9Gp Power Gain (|S 21|)2100 MHz 900 MHz [1,2]dB15.517.517.018.5∆Gp Gain Flatness 100 to 900 MHz 0.1 to 2 GHz dB 0.51.8F 3dB 3 dB BandwidthGHz3.2VSWR in Input Voltage Standing Wave Ratio0.1 to 6 GHz2.0:1VSWR out Output Voltage Standing Wave Ratio 0.1 to 6 GHz 1.6:1NF 50 Ω Noise Figure100 MHz 900 MHz [1,2]dB 3.94.00.070.1P 1dB Output Power at 1dB Gain Compression 100 MHz 900 MHz [1,2]dBm 14.713.4OIP 3Output 3rd Order Intercept Point100 MHz [3]900 MHz [1,2]dBm 29.028.3DV/dTDevice Voltage Temperature Coeffi cientmV/°C-5.3Notes:1. Typical value determined from a sample size of 500 parts from 3 wafers.2. Measurement obtained using production test board described in the block diagram below.3. I) 900 MHz OIP 3 test condition: F1 = 900 MHz, F2 = 905 MHz and Pin = -25 dBm per tone. II) 100 MHz OIP 3 test condition: F1 = 100 MHz, F2 = 105 MHz and Pin = -25 dBm per tone.ADA-4643 Absolute Maximum Ratings [1]SymbolParameterUnitsAbsolute MaximumI d Device CurrentmA 70P diss Total Power Dissipation [2]mW 270P in max.RF Input Power dBm 18T j Channel Temperature ︒C 150T STG Storage Temperature ︒C -65 to 150θjcThermal Resistance [3]︒C/W152Notes:1. Operation of this device above any one of these parameters may cause permanent damage.2. Ground lead temperature is 25° C. Derate 6.6 mW/°C for TL >109° C.3. Junction-to-case thermal resistance measured using 150° C Liquid Crystal Measurement method.Block diagram of 900 MHz production test board used for V d , Gain, P 1dB , OIP 3, and NF measurements.Circuit losses have been de-embedded from actual measurements.Product Consistency Distribution Charts at 900 MHz, I d= 35 mAGAIN (dB)300250200150100500V d (V)300250200150100500*********************************=15.5,Nominal=17,USL=18.5Figure 2. V d *********************=3.2,Nominal=3.5,USL=3.9Notes:1. Statistics distribution determined from a sample size of 500 parts taken from 3 diff erent wafers.2. Future wafers allocated to this product may have typical values anywhere between the minimum and maximum specifi cation limits.ADA-4643 Typical Performance Curves (at 25° C, unless specifi ed otherwise)Figure 3. Gain vs. Frequency at I d = 35 mA.Figure 4. P 1dB vs. Frequency at I d = 35 mA.Figure 5. OIP 3 vs. Frequency at I d = 35 mA.Figure 6. NF vs. Frequency at I d = 35 mA.Figure 7. Id vs. V d and Temperature.Figure 8. Gain vs. I d and Temperature at 900 MHz.FREQUENCY (GHz)G A I N (d B )62135420151050FREQUENCY (GHz)P 1d B (d B m )06213542015105FREQUENCY (GHz)O I P 3 (d B m )062135430252015105FREQUENCY (GHz)0621354N F (d B )65432V d (V)I d (m A )706050403020100I d (mA)G A I N (d B )18171615141312Figure 9. P 1dB vs. I d and Temperature at 900 MHz.Figure 10. OIP 3 vs. I d and Temperature at 900 MHz.Figure 11. NF vs. I d and Temperature at 900 MHz.Figure 12. Gain vs. I d and Frequency (GHz).Figure 13. P 1dB vs. I d and Frequency (GHz).Figure 14. OIP 3 vs. I d and Frequency (GHz).I d (mA)O I P 3 (d B m )0.10.50.91.52.02.53456403530252015105I d (mA)P 1d B (d B m )20151050-5-10I d (mA)O I P 3 (d B m )I d (mA)N F (d B )16543210I d (mA)G A I N (d B )402010303030302018161412108I d (mA)P 1d B (d B m )2520151050-5-10Figure 15. NF vs. I d and Frequency (GHz).Figure 16. Input Return Loss vs. I d and Frequency (GHz).Figure 17. Output Return Loss vs. I d and Frequency (GHz).I d (mA)N F (d B )65.554.543.53FREQUENCY (GHz)I R L(d B )-5-10-15-20FREQUENCY (GHz)O R L (d B )0-5-10-15-20-25Freq. GHz11 211222K Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang.0.10.172 1.1 17.2 7.246 175.9 0.093 -0.8 0.245 -4.1 1.10.5 0.202 10 17.04 7.113 160.2 0.091 -4.5 0.245 -12.6 1.10.9 0.277 12.3 16.67 6.814 144.7 0.088 -7.4 0.269 -20.4 1.11.0 0.286 9.9 16.56 6.726 141.1 0.087 -7.9 0.274 -23.1 1.11.5 0.349 -2.8 15.98 6.292 124.2 0.083 -9.3 0.28 -37.6 1.11.9 0.375 -11.3 15.54 5.984 111.4 0.080 -9.5 0.273 -48.9 1.22.0 0.382 -13.8 15.44 5.918 108.3 0.080 -9.5 0.271 -51.7 1.22.5 0.397 -24.2 14.93 5.581 93.20.078-8.9 0.249 -65.8 1.23.0 0.402 -34.7 14.475.29 78.60.078 -7.8 0.22 -81.7 1.33.5 0.394 -46 14.025.021 64.2 0.079 -6.6 0.192 -100.9 1.34.0 0.378 -58.7 13.58 4.775 50 0.082 -5.4 0.176 -123.8 1.34.5 0.361 -73.1 13.16 4.55 35.9 0.087 -4.6 0.179 -148.6 1.35.0 0.340 -89.3 12.64 4.284 21.9 0.094 -4.9 0.191 -169.9 1.35.5 0.328 -107.1 12.15 4.05 8.3 0.102 -5.9 0.212 173.3 1.26.0 0.318 -124.8 11.6 3.803 -5.4 0.112 -8.3 0.233 158.2 1.26.5 0.299 -141.1 11.09 3.584 -18.6 0.124 -11.5 0.25 141.6 1.17.0 0.274 -159.7 10.56 3.371 -32 0.138 -16.5 0.27 123 1.17.5 0.243 177.3 9.96 3.149 -45.6 0.150 -22.8 0.3 103.6 1.18.0 0.222 148.7 9.29 2.914 -59.1 0.161 -30 0.337 84.8 1.18.5 0.226 119.9 8.41 2.632 -71.8 0.168 -36.7 0.381 70.1 1.19.0 0.26 95.4 7.62 2.406 -83.7 0.177 -43 0.429 58.4 1.19.5 0.305 75.2 6.67 2.155-96.1 0.187 -49.9 0.48148.4 1.110.0 0.356 60.1 5.82 1.954 -107.1 0.195-57.3 0.529 39.7 1Notes:1. S-parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the input lead.The output reference plane is at the end of the output lead.Freq. GHz11211222K Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang.0.1 0.151 1.6 17.51 7.504 175.9 0.091 -0.8 0.223 -4.1 1.10.5 0.185 13.1 17.35 7.367 160.1 0.09 -4.2 0.224 -11.7 1.10.9 0.265 14.9 16.98 7.06 144.6 0.087 -7 0.251 -19 1.11.0 0.272 12.4 16.86 6.97 140.9 0.086 -7.5 0.256 -21.7 1.11.50.340 -0.7 16.27 6.511 123.9 0.082 -8.8 0.264 -36.2 1.11.9 0.367 -9.5 15.82 6.178 111 0.080 -9.1 0.259 -47.6 1.22.0 0.373 -12.1 15.72 6.107 108 0.079 -9.1 0.256-50.3 1.22.5 0.39 -22.7 15.19 5.745 92.8 0.078 -8.5 0.236 -64.4 1.23.0 0.395 -33 14.715.436 78.3 0.077 -7.3 0.209 -80.4 1.33.5 0.387 -44.3 14.235.149 63.9 0.079 -6 0.181 -99.9 1.34.0 0.370 -57.4 13.79 4.89 49.9 0.082 -4.8 0.166 -123.4 1.34.5 0.353 -71.6 13.36 4.657 35.9 0.087-3.9 0.17 -148.9 1.35.0 0.332 -87.7 12.84 4.383 21.9 0.093 -4.2 0.185 -170.6 1.25.5 0.319 -106 12.34 4.141 8.3 0.102 -5.1 0.207 172.5 1.26.0 0.310 -123.6 11.8 3.889 -5.4 0.112 -7.5 0.23 157.5 1.26.5 0.293 -140.2 11.28 3.666 -18.6 0.124 -10.8 0.248 140.9 1.17.0 0.266 -158.8 10.75 3.449 -32 0.138 -15.8 0.27 122.3 1.17.5 0.238 177.8 10.15 3.219 -45.5 0.151 -22.2 0.301 103 1.18.0 0.217 148.5 9.48 2.979 -59 0.161 -29.3 0.34 84.3 1.18.5 0.222 119.5 8.62 2.697 -71.7 0.169 -36.1 0.385 69.6 1.19.0 0.256 95 7.81 2.458 -83.4 0.178 -42.5 0.434 57.9 1.19.5 0.300 74.9 6.88 2.208 -95.8 0.188 -49.5 0.486 47.9 110.0 0.357 59.1 6.01 1.996 -107.2 0.196 -56.9 0.53439.2 1Notes:1. S-parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the input lead.The output reference plane is at the end of the output lead.Freq. GHz11211222K Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang.0.1 0.137 2.417.72 7.691 175.9 0.09-0.70.207 -4 1.10.5 0.174 15.317.567.547 1600.089 -4 0.209-10.9 1.10.9 0.25717.417.19 7.234 144.5 0.086 -6.8 0.238-17.6 1.11.0 0.267 14.717.087.144140.80.085 -7.2 0.243 -20.3 1.11.50.334 0.716.47 6.664 123.70.081 -8.50.253-34.8 1.11.9 0.36 -8.416.01 6.317 110.70.079 -8.7 0.249 -46.1 1.12.0 0.367-10.915.91 6.241107.70.079 -8.7 0.247-48.9 1.22.5 0.386-21.615.36 5.86292.5 0.077 -8.1 0.227 -62.9 1.23.0 0.39 -32.114.865.534 78 0.077 -7 0.201 -78.9 1.23.5 0.382-43.414.385.237 63.6 0.078 -5.70.174 -98.4 1.34.0 0.365 -56.4 13.93 4.97149.7 0.081 -4.5 0.159-122.3 1.34.5 0.348 -70.813.5 4.732 35.7 0.086-3.6 0.164-148.3 1.35.0 0.327 -86.8 12.97 4.45 21.7 0.093 -3.9 0.179-170.4 1.25.5 0.314 -105.112.48 4.205 8.20.101-4.8 0.202172.6 1.26.0 0.304-122.811.93 3.947 -5.5 0.112 -7.1 0.226 157.6 1.26.5 0.287 -139.6 11.41 3.721 -18.70.124 -10.40.245 140.9 1.17.0 0.26-159.1 10.88 3.498 -32 0.138 -15.40.268122.3 1.17.5 0.232177.610.28 3.264 -45.6 0.151 -21.80.3 102.9 1.18.0 0.213147.8 9.6 3.02 -59.10.161 -28.90.339 84.2 1.18.5 0.218120.28.7 2.724 -71.7 0.169 -35.80.385 69.5 1.19.0 0.2694.27.95 2.498 -83.70.179-42.10.434 57.9 1.19.5 0.30374 6.98 2.233 -96.20.189-49.20.48747.9 110.0 0.35259.4 6.14 2.027-107.1 0.196 -56.60.53539.1 1Notes:1. S-parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the input lead.The output reference plane is at the end of the output lead.Freq. GHz11211222K Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang.0.1 0.126 2.4 17.88 7.834 175.9 0.089 -0.7 0.194 -3.8 1.10.5 0.165 18.1 17.73 7.696 159.9 0.088 -3.8 0.196 -9.9 1.10.9 0.252 19.6 17.36 7.377 144.3 0.085 -6.4 0.227 -16.1 1.11.0 0.261 16.4 17.24 7.28 140.6 0.085 -6.9 0.233 -18.8 1.11.5 0.33 2 16.63 6.787 123.3 0.081 -8.2 0.244 -33.2 1.11.9 0.359 -7.4 16.16 6.424 110.3 0.079 -8.4 0.241 -44.4 1.12.0 0.365 -9.8 16.05 6.343 107.2 0.078 -8.4 0.239 -47.2 1.12.5 0.386 -21 15.49 5.948 91.9 0.077 -7.8 0.221 -61 1.23.0 0.387 -31.5 14.985.61 77.4 0.077 -6.7 0.195 -76.8 1.23.5 0.381 -43 14.495.301 63.1 0.078 -5.5 0.168 -96.2 1.34.0 0.363 -56 14.025.025 49 0.081 -4.3 0.153 -120.3 1.34.5 0.344 -70.7 13.58 4.777 35 0.086 -3.5 0.157 -146.9 1.35.0 0.323 -87.3 13.04 4.488 21 0.093 -3.7 0.172 -169.4 1.25.5 0.31 -105.8 12.54 4.235 7.5 0.101 -4.6 0.195 173.4 1.26.0 0.301 -123.6 11.98 3.971 -6.2 0.111 -6.9 0.22 158.2 1.26.5 0.281 -140.6 11.44 3.735 -19.4 0.124 -10.2 0.239 141.4 1.17.0 0.257 -159.9 10.9 3.507 -32.7 0.138 -15.2 0.262 122.5 1.17.5 0.228 176.3 10.29 3.271 -46.3 0.151 -21.5 0.294 103 1.18.0 0.212 145.6 9.61 3.022 -59.8 0.161 -28.6 0.333 84.3 1.18.5 0.218 117.8 8.72 2.728 -72.4 0.169 -35.6 0.38 69.5 1.19.0 0.257 92.7 7.94 2.494 -84.1 0.178 -41.8 0.429 57.9 1.19.5 0.302 72.9 6.98 2.234 -96.4 0.189 -48.9 0.482 47.9 110.0 0.359 57.7 6.11 2.02 -107.7 0.196 -56.4 0.531 39.2 1Notes:1. S-parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the input lead.The output reference plane is at the end of the output lead.11Ordering InformationPart NumberNo. of DevicesContainerADA-4643-TR1 3000 7” ReelADA-4643-TR2 10000 13” ReelADA-4643-BLK 100 antistatic bag ADA-4643-TR1G 3000 7” ReelADA-4643-TR2G 10000 13” Reel ADA-4643-BLKG 100antistatic bagNote: For lead-free option, the part number will have the character “G” at the end.Package DimensionsOutline 43SOT-343 (SC70 4-lead)Recommended PCB Pad Layout for Avago’s SC70 4L/SOT-343 ProductsDIMENSIONS (mm)MIN.1.151.851.800.800.800.000.150.550.100.10MAX.1.352.252.401.101.000.100.400.700.200.46SYMBOL E D HE A A2A1b b1c LNOTES:1. All dimensions are in mm.2. Dimensions are inclusive of plating.3. Dimensions are exclusive of mold flash & metal burr.4. All specifications comply to EIAJ SC70.5. Die is facing up for mold and facing down for trim/form, ie: reverse trim/form.6. Package surface to be mirror finish.1.30(0.051)Dimensions inmm (inches)(0.039)For product information and a complete list of distributors, please go to our web site: Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. Obsoletes 5989-3753EN AV02-3598EN - June 8, 2012(COVER TAPE THICKNESS)DESCRIPTIONSYMBOL SIZE (mm)SIZE (INCHES)LENGTH WIDTH DEPTH PITCHBOTTOM HOLE DIAMETERA 0B 0K 0P D 12.40 ± 0.102.40 ± 0.101.20 ± 0.104.00 ± 0.101.00 + 0.250.094 ± 0.0040.094 ± 0.0040.047 ± 0.0040.157 ± 0.0040.039 + 0.010CAVITYDIAMETER PITCH POSITIOND P 0E 1.50 ± 0.104.00 ± 0.101.75 ± 0.100.061 + 0.0020.157 ± 0.0040.069 ± 0.004PERFORATIONWIDTHTHICKNESS W t 18.00 + 0.30 - 0.100.254 ± 0.020.315 + 0.0120.0100 ± 0.0008CARRIER TAPE CAVITY TO PERFORATION (WIDTH DIRECTION)CAVITY TO PERFORATION (LENGTH DIRECTION)FP 23.50 ± 0.052.00 ± 0.050.138 ± 0.0020.079 ± 0.002DISTANCEWIDTHTAPE THICKNESSC T t 5.40 ± 0.100.062 ± 0.0010.205 + 0.0040.0025 ± 0.0004COVER TAPE Device OrientationTape DimensionsFor Outline 4TUSER FEEDEND VIEWTOP VIEW。

4410FR玻璃瓶童话字ountain产品说明书

4410FR玻璃瓶童话字ountain产品说明书
PVC fitting at the bottom of the 6" PVC tube and the valve drains through the small holes in the PVC cap. Provide ample drainage for these two items. It's always better to have too much then not enough. 3. The column (6" PVC tube) must remain vertical. Be sure it remains vertical when backfilling the excavating trench. 4. When the concrete pad, for mounting the fountain, is poured, be sure to allow adequate space around the top of the column so that the flexible cap may be removed for servicing the valve. 5. We recommend that the top of the column be flush or slightly above the top height of the concrete pad. 6. You should test the unit before you backfill. Simply blow on the clear, small diameter tubing. A steady stream should flow from the braided tubing line. When air pressure is removed from the clear tubing the water stream should stop. 7. Once you have tested the valve, backfilled the hole and poured the concrete mounting pad you are ready to set the fountain. After fastening the fountain in place with 3/8" minimum fasteners (not included), connect the air control valve tubing, supply water tubing and drain lines. The water supply line must have a straight run from the basin bubbler down to the control valve. If a straight run is not maintained water will become trapped and freeze leaving the unit inoperable. Test the fountain again. If it fails to work, the air control line may be kinked or connected improperly. Be sure to keep water out of the air control line. 8. These products are designed to operate on 20 PSI to 105 PSI supply line pressure. If inlet pressure above 105 PSI, a pressure regulator must be installed in the supply line. Any damage caused by reason of connecting this product to supply line pressure lower than 20 PSI or higher than 105 PSI is not covered by warranty.

Echomac FD-6 6A 超声波检测仪说明书

Echomac FD-6 6A 超声波检测仪说明书

Echomac®FD-6/6AUltrasonic Instrument for Flaw Detection, Thickness, and Dimensional Measurement in Tube & BarInspection FeaturesSuperior Performance❒GE Qualified as of 9-6-2016 for P3TF31Class A & B, & P29TF82 Class A & B (Model 6A only)❒Vivid, real time, flicker free full color display of test signals, thresholds and settings.❒High Signal-to-Noise ratio.❒Up to 32 Independent Channels in one Instrument.❒16 step damping adjustment for precise resolution.❒Wide choice of band pass filters.❒Negative square wave pulse echo or pitch-catch through transmission optimize transducer efficiency.❒Meets API, ASTM & EN standards.❒Excellent repeatability of test results.A-Scan display in the UT Screen shows the setup forChannel 1 with a gate interface and 4 gate thresholds. Gate Dialog Box in the UT Screen❒Set up and control all key test parameters on onescreen with a click of the mouse or keyboard.❒Move thresholds by selecting and dragging on screen.❒Adjust parameters for several channels at once with the“Global” key. Or easily copy a group of test parametersfrom one channel to another.❒Follow up test results and supervise operators remotely.❒Versatile, robust recorder functions and comprehensivelogging of results for tracking setups and recordings.❒Full tracking of end suppression, defect markingcapability, and customizable data retention.❒Seamless Integration with existing mill operations.Versatile, Intuitive OperationEchomac® electronics installed withan Echomac rotary transducer unit totest stainless steel and titaniumalloys in heat exchanger tubingEchomac Operation and ControlTracking System - Track ScreenProduction Recorder - Chart &Batch ScreenStrip charting and defect logging of all events for up to 32 individual channels or functional groups*, in both live or replay mode, is included as standard.Each chart clearly indicates Accept/Reject status. It also displays piece number and length, start time,date, line speed, and number of sample points taken.Batch screen manages record folders and production information input.Accurately track product through FD6/6A test chan-nels so each channel can be properly set for end suppression and flaw tracking through an encoder or simulated timer clock. Track screen provides control for all the parameters relating to the production line,alarm matrix routing, output control and sorting crite-ria. Complex arrangement and multiple line speed calibration are employed.Displays A-scan and Strip Chart of up to 32 individual channels or functional groups*, simultaneously. The strip chart shows the peak captured signal levels in color high-lighted outlines, along with the numerical peak measure-ment within each gate. Graphic editing of visual devices such as gate, DAC, and scope position provide convenient adjustment.Provides full access and display of ALL ultrasonic test parameters. A-scan captures infrequent flaw echoes of short duration. Up to 4 measurement gates can be employed for each channel with graphic adjustment, live peak and other relevant test results are displayed real time. A Strip Chart provides an elapsed time linear dis-play. All parameter settings from one channel can be easily copied to additional channels or adjust globally.Multi Channel View - Multi ScreenUltrasonic Control Panel - UT ScreenMulti Screen Strip Chart view ofpeak signal levels & numerical value* A Functional group consists of channels with similar test functions such as channels for detecting longitudinal defects. These related channels are mapped into one chart for easy viewing, adjusting, or copying..☑Includes up to 32 independent test channels in a single computer.☑Increased Gain Range with fine resolution and improved linearity.☑User configurable criteria for flaw, lamination and thickness gauging, independently for each channel.☑Adjustable pulse firing sequence to avoid crosstalk in multi-channel applications.☑Four independent flaw gates for each channel with improved resolution.☑15 segments distance amplitude correction (DAC).☑Improved DAC interface and resolution.☑Very high resolution thickness measurement for each channel.☑Programmable for Pulse Echo or Through Transmission.Echomac® Rotaries rotate up to 32transducers around the tube or bar,as it is moved through the test. Water is continuously circulated in the trans-ducer housing to maintain the cou-plant for the UT signals.☑Inspect carbon, duplex, or stainless steels, aluminum, titanium, copper and other metals and alloys.☑Detect flaws and measure dimensions and wall thickness. ☑Test tube & bar for internal defects and inclusions.☑Inspect for tube ovality and eccentricity.☑Inspect strip before welding.☑Upgrade and/or replace older ultrasonic testers & systems.☑Use with rotary, spin-the-tube, squirter, bubbler installations.Echomac FD-6/6A ApplicationsFeatures of Echomac ElectronicsTransducersMagnetic Analysis Corporation ~103FairviewParkDrive,Elmsford,NewYork10523-1544USA~Tel+1-914-530-2000~****************Echomac 6/6A 11/2017Echomac® FD-6/6A Instrument Technical Datacontinued next pageModel 6A Only: GE Certification: Integrated system with the Pulser/Receiver/Recorder version 3.0.95.41 has been qualified per Procedure UT_1335 as of Sept. 6, 2016 for P3TF31 Class A and B and P29TF82 Class A and B.Magnetic Analysis Corporation~103 Fairview Park Drive- Elmsford, New York 10523-1544 USA ~ Tel: +1.914.530.2000~****************Echomac FD-6/6A Spec 11/2017Specifications subject to change without notice. Echomac®, EchoHunter® and MAC® are registered trademarks ofMagnetic Analysis Corporation, Elmsford, NY. Windows® is a registered trademark of Microsoft Corporation.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Integrated Video Filter with Selectable CutoffFrequencies for RGB, HD/SD Y, C, and CVADA4410-6 Rev. BInformation furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 © 2006 Analog Devices, Inc. All rights reserved.FEATURESSixth-order filters with selectable cutoff frequencies36 MHz, 18 MHz, 9 MHzMany video standards supportedRGB/YPbPr/YUV/SD/YC/CVIdeal for resolutions up to 1080i−1 dB bandwidth of 30 MHz for HD2:1 multiplexers on all inputsSelectable gain: ×2 or ×4DC output offset adjust: ±0.5 V, input referredExcellent video specificationsNTSC differential gain: 0.11%NTSC differential phase: 0.25°Low input bias current: 6.6 μAWide supply range: +4.5 V to ±5 VRail-to-rail outputTypical output swing of 4.5 V p-p on single 5 V supply Disable featureAPPLICATIONSSet-top boxesDVD players and recordersHDTVsGENERAL DESCRIPTIONThe ADA4410-6 is a comprehensive integrated filtering solution that is carefully designed to give designers the flexibility to easily filter and drive many types of video signals, including high definition video. In the RGB/component channels, the cutoff frequencies of the sixth-order filters can be selected by two logic pins to obtain four filter combinations that are tuned for RGB, high definition, and standard definition video. Cutoff frequencies range from 9 MHz to 36 MHz.The ADA4410-6 also provides filtering for the legacy standard S-video and composite video signals. With a differential gain of 0.11% and a differential phase of 0.25°, the ADA4410-6 is an excellent choice for any composite video (CV) application.The ADA4410-6 offers gain and output offset voltage adjustments. With a single logic pin, the gain of the part can be selected to be ×2 or ×4. Output offset voltage is continuously adjustable over an input-referred range of ±500 mV by applying a differential voltage to an independent offset control input.FUNCTIONAL BLOCK DIAGRAMY/G OUTPb/B OUTPr/R OUTY OUTC OUTCV OUT5265-1Figure 1.The ADA4410-6 offers 2:1 multiplexers on its inputs that can be used in applications where multiple sources of video exist. The ADA4410-6 can operate on a single +5 V supply as well as ±5 V supplies. Single-supply operation is ideal for applications where power consumption is critical. The disable feature allows for further power conservation by reducing the supply current to typically 15 μA when a particular device is not in use.Dual-supply operation is best for applications where the negative-going excursions of the signal must swing at or below ground while maintaining excellent video performance. The output buffers have the ability to drive two 75 Ω doubly terminated cables that are either dc- or ac-coupled.The ADA4410-6 is available in a 32-lead LFCSP and operates in the extended industrial temperature range of −40°C to +85°C.ADA4410-6Rev. B | Page 2 of 16TABLE OF CONTENTSFeatures..............................................................................................1 Applications.......................................................................................1 General Description.........................................................................1 Functional Block Diagram..............................................................1 Revision History...............................................................................2 Specifications.....................................................................................3 Absolute Maximum Ratings............................................................7 Thermal Resistance......................................................................7 ESD Caution..................................................................................7 Pin Configuration and Function Descriptions.............................8 Typical Performance Characteristics.............................................9 Theory of Operation......................................................................12 Applications.....................................................................................13 Overview.....................................................................................13 Multiplexer Select Inputs...........................................................13 Throughput Gain........................................................................13 Disable.........................................................................................13 Cutoff Frequency Selection.......................................................13 Output DC Offset Control........................................................13 Input and Output Coupling......................................................14 Printed Circuit Board Layout...................................................15 Video Encoder Reconstruction Filter......................................15 Outline Dimensions.......................................................................16 Ordering Guide.. (16)REVISION HISTORY3/06—Rev. A to Rev. BChanges to Table 1............................................................................3 Changes to Table 2............................................................................5 Changes to Figure 4 through Figure 9...........................................9 Changes to Figure 10......................................................................10 Changes to Ordering Guide..........................................................16 Updated Outline Dimensions. (16)8/05—Rev. 0 to Rev. AChanges to Features, General Description, and Figure 1.............1 Changes to Table 1.............................................................................3 Changes to Table 2.............................................................................5 Changes to Figure 4...........................................................................9 Changes to Theory of Operation Section....................................12 Changes to Overview, Throughput Gain, and Output DCOffset Control Sections..................................................................13 Renamed Gain Select Section Throughput Gain Section ........13 Added Composite Video Path Gain Section...............................13 Changes to Table 6 and Table 7....................................................13 Changes to Figure 24 Caption......................................................14 Changes to Input and Output Coupling Section........................14 Added Figure 25 and Figure 26; Renumbered Sequentially.....14 Changes to Figure 27. (15)1/05—Revision 0: Initial VersionADA4410-6Rev. B | Page 3 of 16SPECIFICATIONSV S = 5 V , @ T A = 25°C, V O = 1.4 V p-p, G = ×2, R L = 150 Ω, unless otherwise noted. Table 1.Parameter Test Conditions/Comments Min Typ Max Unit OVERALL PERFOR M ANCE Offset Error Input referred, all channels except CV 10 32 mV Input referred, CV 12 40 mV Max Voltage Across LEVEL1 and LEVEL2 Inputs ±500 mV Input Voltage Range, All Inputs V S− − 0.1 V S+ − 2.0 V Output Voltage Swing, All Outputs Positive swing V S+ − 0.35 V S+ − 0.25 V Negative swing V S− + 0.10 V S− + 0.3 V Linear Output Current per Channel 30 mA Integrated Voltage Noise, Referred to Input All channels except CV 500 μV rms Filter Input Bias Current All channels 6.6 15 μA Total Harmonic Distortion at 1 MHz F C = 36 MHz, F C = 18 MHz/F C = 9 MHz 0.01/0.07 % RGB/YPbPr CHANNEL DYNAMIC PERFORMANCE −1 dB Bandwidth Cutoff frequency select = 36 MHz 31 MHz Cutoff frequency select = 18 MHz 15 MHz Cutoff frequency select = 9 MHz 8 MHz −3 dB Bandwidth Cutoff frequency select = 36 MHz 34 36 MHz Cutoff frequency select = 18 MHz 16 18 MHz Cutoff frequency select = 9 MHz 8 9 MHz Out-of-Band Rejection f = 75 MHz −33 −42 dB Crosstalk f = 5 MHz, F C = 36 MHz −68 dB Input Mux Isolation f = 1 MHz, R SOURCE = 300 Ω 86 dB Propagation Delay f = 16 MHz, F C = 36 MHz 20.5 ns Group Delay Variation Cutoff frequency select = 36 MHz 9.5 ns Cutoff frequency select = 18 MHz 16.5 ns Cutoff frequency select = 9 MHz 29.5 ns Y/C SD CHANNEL DYNAMIC PERFORMANCE −1 dB Bandwidth 7.5 MHz −3 dB Bandwidth 8 9 MHz Out-of-Band Rejection f = 27 MHz −56 dB Propagation Delay f = 1 MHz 72 ns Group Delay Variation 30 ns Crosstalk f = 1 MHz −72 dB Input Mux Isolation f = 1 MHz, R SOURCE = 75 Ω 77 dB Y/C, CV OUTPUT VIDEO PERFORMANCE Differential Gain NTSC 0.09 % Differential Phase NTSC 0.37 Degrees CONTROL INPUT PERFORMANCE Input Logic 0 Voltage All inputs except DISABLE 0.8 V Input Logic 1 Voltage All inputs except DISABLE 2.0 V Input Bias Current All inputs except DISABLE 7 15 μA DISABLE PERFOR MANCE DISABLE Assert Voltage V S+ − 0.5 V DISABLE Assert Time 100 ns DISABLE Deassert Time 130 ns DISABLE Input Bias Current 12 20 μA Input-to-Output Isolation—Disabled 100 dBADA4410-6Rev. B | Page 4 of 16Parameter Test Conditions/Comments Min Typ Max Unit POWER SUPPLY Operating Range 4.5 12 V Quiescent Current 82 88 mA Quiescent Current—Disabled 15 150 μA PSRR, Positive Supply All channels except CV 62 72 dB CV channel 59 66 dB PSRR, Negative Supply All channels except CV 55 62 dB CV channel 52 56 dBADA4410-6Rev. B | Page 5 of 16V S = ±5 V , @ T A = 25°C, V O = 1.4 V p-p, G = ×2, R L = 150 Ω, unless otherwise noted. Table 2.Parameter Test Conditions/Comments Min Typ Max Unit OVERALL PERFOR M ANCE Offset Error Input referred, all channels except CV 14 33.5 mV Input referred, CV 15 42.5 mV Max Voltage Across LEVEL1 and LEVEL2 Inputs ±500 mV Input Voltage Range, All Inputs V S− − 0.1 V S+ − 2.0 V Output Voltage Swing, All Outputs Positive swing V S+ − 0.35 V S+ − 0.25 V Negative swing V S− + 0.3 V S− + 0.5 V Linear Output Current per Channel 30 mA Integrated Voltage Noise, Referred to Input All channels except CV 500 μV rms Filter Input Bias Current All channels 6.3 15 μA Total Harmonic Distortion at 1 MHz F C = 36 MHz, F C = 18 MHz/F C = 9 MHz 0.01/0.07 % RGB/YPbPr CHANNEL DYNAMIC PERFORMANCE −1 dB Bandwidth Cutoff frequency select = 36 MHz 29 MHz Cutoff frequency select = 18 MHz 15 MHz Cutoff frequency select = 9 MHz 8 MHz −3 dB Bandwidth Cutoff frequency select = 36 MHz 33.0 35.5 MHz Cutoff frequency select = 18 MHz 16.5 18 MHz Cutoff frequency select = 9 MHz 8 9.5 MHz Out-of-Band Rejection f = 75 MHz −33 −41.5 dB Crosstalk f = 5 MHz, F C = 36 MHz −68 dB Input Mux Isolation f = 1 MHz, R SOURCE = 300 Ω 86 dBPropagation Delay f = 5 MHz, F C = 36 MHz 21 ns Group Delay Variation Cutoff frequency select = 36 MHz 7.5 ns Cutoff frequency select = 18 MHz 14 ns Cutoff frequency select = 9 MHz 26 ns Y/C SD CHANNEL DYNAMIC PERFORMANCE −1 dB Bandwidth 7.5 MHz −3 dB Bandwidth 8 9 MHz Out-of-Band Rejection f = 27 MHz −57 dB Propagation Delay f = 1 MHz 64 ns Group Delay Variation 26 ns Crosstalk f = 1 MHz −72 dB Input Mux Isolation f = 1 MHz, R SOURCE = 75 Ω 77 dB Y/C, CV OUTPUT VIDEO PERFORMANCE Differential Gain NTSC 0.11 % Differential Phase NTSC 0.25 Degrees CONTROL INPUT PERFORMANCE Input Logic 0 Voltage All inputs except DISABLE 0.8 V Input Logic 1 Voltage All inputs except DISABLE 2.0 V Input Bias Current All inputs except DISABLE 7 15 μA DISABLE PERFOR MANCE DISABLE Assert Voltage V S+ − 0.5 V DISABLE Assert Time 75 ns DISABLE Deassert Time 125 ns DISABLE Input Bias Current 35 45 μA Input-to-Output Isolation—Disabled 100 dBADA4410-6Rev. B | Page 6 of 16Parameter Test Conditions/Comments Min Typ Max Unit POWER SUPPLY Operating Range 4.5 12 V Quiescent Current 86 93 mA Quiescent Current—Disabled 15 150 μA PSRR, Positive Supply All channels except CV 62 72 dB CV channel 59 66 dB PSRR, Negative Supply All channels except CV 55 62 dB CV channel 52 56 dBADA4410-6Rev. B | Page 7 of 16ABSOLUTE MAXIMUM RATINGSTable 3.Parameter RatingSupply Voltage 12 VPower Dissipation See Figure 2Storage Temperature Range –65°C to +125°COperating Temperature Range –40°C to +85°CLead Temperature (Soldering 10 sec) 300°CJunction Temperature 150°CStresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or anyother conditions above those indicated in the operationalsection of this specification is not implied. Exposure to absolutemaximum rating conditions for extended periods may affectdevice reliability.THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, θJA isspecified for a device soldered in the circuit board with itsexposed paddle soldered to a pad on the PCB surface that isthermally connected to a copper plane.Table 4. Thermal Resistance Package TypeθJA θJC Unit 5 mm × 5 mm, 32-Lead LFCSP43 5.1 °C/WMaximum Power DissipationThe maximum safe power dissipation in the ADA4410-6package is limited by the associated rise in junction temperature (T J ) on the die. At approximately 150°C, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4410-6. Exceeding a junction temperature of 150°C for an extended time can result in changes in the silicon devices, potentially causing failure.The power dissipated in the package (P D ) is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive for all outputs. The quiescent power is the voltage between the supply pins (V S ) times the quiescent current (I S ). The power dissipated due to load drive depends upon the particular application. For each output, the power due to load drive is calculated by multiplying the load current by the associated voltage drop across the device. The power dissipated due to all of the loads is equal to the sum ofthe power dissipations due to each individual load. RMS voltages and currents must be used in these calculations. Airflow increases heat dissipation, effectively reducing θJA . In addition, more metal directly in contact with the package leads from metal traces, through-holes, ground, and power planes, reduces the θJA . The exposed paddle on the underside of the package must be soldered to a pad on the PCB surface that isthermally connected to a copper plane to achieve the specified θJA . Figure 2 shows the maximum safe power dissipation in the package vs. the ambient temperature for the 32-lead LFCSP (43°C/W) on a JEDEC standard 4-layer board with the underside paddle soldered to a pad that is thermally connected to a PCBplane. θJA values are approximations. 1.01.52.02.53.03.54.54.0–40–200204060LFCSP8005265-002AMBIENT TEMPERATURE (°C)M A X I M U M P O W E R D I S S I P A T I O N (W )Figure 2. Maximum Power Dissipation vs. Temperature for a 4-Layer BoardESD CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performancedegradation or loss of functionality.ADA4410-6Rev. B | Page 8 of 16PIN CONFIGURATION AND FUNCTION DESCRIPTIONS05265-003Figure 3. 32-Lead LFCSP Pin Configuration, Top ViewTable 5. Pin Function DescriptionsPin No. Mnemonic Description1 Pb1/B1_HD Channel 1 Pb/B High Definition Input2 GND Signal Ground Reference3 Pr1/R1_HD Channel 1 Pr/R High Definition Input4 F_SEL_A Filter Cutoff Select Input A5 F_SEL_B Filter Cutoff Select Input B6 Y2/G2_HD Channel 2 Y/G High Definition Input7 GND Signal Ground Reference8 Pb2/B2_HD Channel 2 Pb/B High Definition Input 9 GND Signal Ground Reference10 Pr2/R2_HD Channel 2 Pr/R High Definition Input11 MUX_SD Standard Definition Input Mux Select Line 12 Y1_SD Channel 1 Y Standard Definition Input 13 Y2_SD Channel 2 Y Standard Definition Input 14 C1_SD Channel 1 C Standard Definition Input 15 C2_SD Channel 2 C Standard Definition Input 16 VCCPositive Power Supply 17 VEE Negative Power Supply 18 CV_OUT Composite Video Output 19 C_SD_OUT C Standard Definition Output 20 Y_SD_OUTY Standard Definition Output 21 G_SEL Gain Select 22 Pr/R_HD_OUT Pr/R High Definition Output 23 Pb/B_HD_OUT Pb/B High Definition Output 24 Y/G_HD_OUTY/G High Definition Output 25 VEE Negative Power Supply 26 VCCPositive Power Supply27 DISABLE Disable/Power Down/Logic Reference 28 LEVEL2 DC Level Adjust Pin 2 29 LEVEL1 DC Level Adjust Pin 130 MUX_HD High Definition Input Mux Select Line 31 Y1/G1_HD Channel 1 Y/G High Definition Input 32 GNDSignal Ground ReferenceADA4410-6Rev. B | Page 9 of 16TYPICAL PERFORMANCE CHARACTERISTICSUnless otherwise noted, G = ×2, R L = 150 Ω, V O = 1.4 V p-p, V S = 5 V , T A = 25°C.11010005265-004FREQUENCY (MHz)G A I N (d B )Figure 4. Frequency Response vs. Power Supply and Cutoff Frequency (G = ×2)11010005265-005FREQUENCY (MHz)G A I N (d B )Figure 5. Frequency Response Flatness vs. Cutoff Frequency (G = ×2)11010005265-053FREQUENCY (MHz)G A I N (d B )Figure 6. Frequency Response vs. Cutoff Frequency and Output Amplitude1215–45–42–39–36–33–30–27–24–21–18–15–12–9–6–311010005265-006FREQUENCY (MHz)G A I N (d B )Figure 7. Frequency Response vs. Power Supply and Cutoff Frequency (G = ×4)12.512.011.511.010.510.09.59.011010005265-007FREQUENCY (MHz)G A I N (d B )Figure 8. Frequency Response Flatness vs. Cutoff Frequency (G = ×4)9630–3–6–9–12–15–18–21–24–27–30–33–36–39–42–45–4811001005265-017FREQUENCY (MHz)G A I N (d B )Figure 9. Frequency Response vs. Temperature and Cutoff FrequencyADA4410-6Rev. B | Page 10 of 1611010005265-008FREQUENCY (MHz)G R O U P D E L A Y (n s )Figure 10. Group Delay vs. Frequency, Power Supply, and Cutoff Frequency0.111001005265-018FREQUENCY (MHz)C R O S S T A L K R E F E R R ED T O I N P U T (d B )Figure 11. HD Channel Crosstalk vs. Frequency and Cutoff Frequency0.111001005265-013FREQUENCY (MHz)M U X I S O L A T I O N R E F E R R E DT O I N P U T (d B )Figure 12. HD Mux Isolation vs. Frequency and Cutoff Frequency–60–110–105–100–95–90–85–80–75–70–650143205265-020FREQUENCY (MHz)N O I S E (d B )5Figure 13. CV Noise Spectrum–40–110–100–90–80–70–60–500.111001005265-019FREQUENCY (MHz)C R O S S T A L K R E F E R R ED T O I N P U T (d B )Figure 14. SD Channel Crosstalk vs. Frequency0.111001005265-014FREQUENCY (MHz)M U X I S O L A T I O N R E F E R R E D T O I N P U T (d B )Figure 15. SD Mux Isolation vs. Frequency and Source ResistanceADA4410-60.111001005265-015FREQUENCY (MHz)P S R R R E F E R R E D T O I N P U T (d B )–5–75–65–55–45–35–25–150.111001005265-016FREQUENCY (MHz)P S R R R E F E R R E D T O I N P U T (d B )Figure 16. Positive Supply PSRR vs. Frequency and Cutoff FrequencyFigure 19. Negative Supply PSRR vs. Frequency and Cutoff Frequency05265-009O U T P U T V O L T A G E (V )05265-011O U T P U T V O L T A G E (V )Figure 17. Transient Response vs. Cutoff Frequency (G = ×2)Figure 20. Transient Response vs. Cutoff Frequency (G = ×4)t = 005265-010O U T P U T V O L T A G E (V )05265-012O U T P U T V O L T A G E (V )Figure 21. Overdrive Recovery vs. Cutoff FrequencyFigure 18. Settling Time05265-051MINIMUM-LOSS MATCHING NETWORK LOSS CALIBRATED OUTNETWORK NETWORKFigure 22. Basic Test Circuit for Swept Frequency MeasurementsADA4410-6 THEORY OF OPERATIONThe ADA4410-6 is an integrated video filtering and driving solution that offers variable bandwidth to meet the needs of several different video formats. There are a total of five filter sections, three for component video and two for Y/C and composite video. The component video filters have switchable bandwidths for standard definition interlaced, progressive, and high definition systems. The Y/C channels have fixed 9 MHz,3 dB cutoff frequencies and include a summing circuit that feeds an additional buffer for a composite video output. Each filter section has a sixth-order Butterworth response that includes group delay optimization. The group delay variation from 100 kHz to 36 MHz in the 36 MHz section is 8 ns, which produces a fast settling pulse response.The ADA4410-6 is designed to operate in many different video environments. The supply range is 5 V to 12 V, single supply or dual supply, and requires a relatively low quiescent current of 15 mA per channel. In single-supply applications, the PSRR is greater than 70 dB, providing excellent rejection in systems with supplies that are noisy or under-regulated. In applications where power consumption is critical, the part can be powered down to draw 15 μA by pulling the DISABLE pin to the most positive rail. The ADA4410-6 is also well suited for high encoding frequency applications because it maintains a stop-band attenuation of 50 dB beyond 200 MHz.The ADA4410-6 is intended to take dc-coupled inputs from an encoder or other ground-referenced video signals. The ADA4410-6 input is high impedance. No minimum or maximum input termination is required, though input terminations above 1 kΩ can degrade crosstalk performance at high frequencies. No clamping is provided internally. For applications where dc restoration is required, dual supplies work best. Using a termination resistance of less than a few hundred ohms to ground on the inputs and suitably adjusting the level shift circuitry provides precise placement of the output voltage. For single-supply applications (V S− = GND), the input voltage range extends from 100 mV below ground to within 2.0 V of the most positive supply. Each filter section has a 2:1 input multiplexer that includes level-shifting circuitry. The level-shifting circuitry adds a dc component to ground-referenced input signals so that they can be reproduced accurately without the output buffers hitting the negative rail. Because the filters have negative rail input and rail-to-rail output, dc level shifting is generally not necessary, unless accuracy greater than that of the saturated output of the driver is required at the most negative edge. This varies with load but is typically 100 mV in a dc-coupled, single-supply application. If ac coupling is used, the saturated output level is higher because the drivers have to sink more current on the low side. If dual supplies are used (V S− < GND), no level shifting is required. In dual-supply applications, the level shifting circuitry can be used to take a ground-referenced signal and put the blanking level at ground while the sync level is below ground.The output drivers on the ADA4410-6 have rail-to-rail output capabilities. They provide either 6 dB or 12 dB of gain with respect to the ground pins. Gain is controlled by the external gain select pin. Each output is capable of driving two ac- or dc-coupled 75 Ω source-terminated loads. If a large dc output level is required while driving two loads, ac coupling should be used to limit the power dissipation.Input mux isolation is primarily a function of the source resistance driving into the ADA4410-6. Higher resistances result in lower isolation over frequency, while a low source resistance, such as 75 Ω, has the best isolation performance. In the SD channels, the isolation variation is most pronounced due to the stray capacitance that exists between the adjacent input pins. The HD input pins are not adjacent; therefore, this effect is less pronounced on the HD channels. See Figure 15 for a performance comparison of the different source resistances feeding the SD inputs.ADA4410-6 APPLICATIONSOVERVIEWWith its high impedance multiplexed inputs and high output drive, the ADA4410-6 is ideally suited to video reconstruction and antialias filtering applications. The high impedance inputs give designers flexibility with regard to how the input signals are terminated. Devices with DAC current source outputs that feed the ADA4410-6 can be loaded in whatever resistance provides the best performance, and devices with voltage outputs can be optimally terminated as well. The ADA4410-6 outputs can each drive up to two source-terminated 75 Ω loads and can therefore directly drive the outputs from set-top boxes, DVD players, and the like without the need for a separate output buffer. Binary control inputs are provided to select cutoff frequency, throughput gain, and input signal. These inputs are compatible with 3 V and 5 V TTL and CMOS logic levels, referenced to GND. The disable feature is asserted by pulling the DISABLE pin to the positive supply.The LEVEL1 and LEVEL2 inputs comprise a differential input that controls the dc level at the output pins. MULTIPLEXER SELECT INPUTSSelection between the two multiplexer inputs is controlled by the logic signals applied to the MUX_SD and MUX_HD inputs. The MUX_SD input controls the standard definition (SD) inputs, and the MUX_HD input controls the high definition (HD) inputs. Table 6 summarizes the multiplexer operation. THROUGHPUT GAINThe throughput gain of the ADA4410-6 signal paths can be ×2 or ×4. Gain selection is controlled by the logic signal applied to the G_SEL pin. Table 6 summarizes how the gain is selected. Composite Video Path GainThe composite video signal is produced by passively summing the C and V outputs (see Figure 1), which have been amplified by their respective gain stages. Each signal experiences a 6 dB loss as it passes through the passive summer and is subsequently amplified by 6 dB in the fixed ×2 stage following the summer. The net signal gain through the composite video path is therefore 0 dB, and the resulting composite signal present at the ADA4410-6 output is the sum of Y and C with unity gain. The offset voltage at the composite video output is twice that of the offset on the Y or C outputs because the offsets on the Y and C outputs are the same and appear as a common-mode input to the summer. The voltage between the summing resistors due to the offset voltages is therefore equal to the output offset voltage on the Y and C outputs and appears at the composite video output with a gain of 2 after passing through the fixed ×2 gain stage. DISABLEThe ADA4410-6 includes a disable feature that can be used tosave power when a particular device is not in use. As indicatedin the Overview section, the disable feature is asserted by pullingthe DISABLE pin to the positive supply. Table 6 summarizes thedisable feature operation. The DISABLE pin also functions as areference level for the logic inputs and, therefore, must beconnected to ground when the device is not disabled.Table 6. Logic Pin Function DescriptionDISABLE MUX_HD MUX_SD G_SELV S+ =Disabled1 = HD Channel 1Selected1 = SD Channel 1Selected1 = ×4GainGND =Enabled0 = HD Channel 2Selected0 = SD Channel 2Selected0 = ×2GainCUTOFF FREQUENCY SELECTIONFour combinations of cutoff frequencies are provided for theHD video signals. The cutoff frequencies were selected tocorrespond with the most commonly deployed HD scanningsystems. Selection between the cutoff frequency combinations iscontrolled by the logic signals applied to the F_SEL_A andF_SEL_B inputs. Table 7 summarizes cutoff frequency selection.Table 7. Filter Cutoff Frequency SelectionF_SEL_A F_SEL_B Y/G Cutoff Pb/B Cutoff Pr/R Cutoff0 0 36 MHz 36 MHz 36 MHz0 1 36 MHz 18 MHz 18 MHz1 0 18 MHz 18 MHz 18 MHz1 1 9 MHz 9 MHz 9 MHzOUTPUT DC OFFSET CONTROLThe LEVEL1 and LEVEL2 inputs work as a differential input-referred output offset control. In other words, the output offsetvoltage of a given channel (with the exception of the CVchannel) is equal to the difference in voltage between theLEVEL1 and LEVEL2 inputs multiplied by the overall filtergain. This relationship is expressed in Equation 1.V OS (OUT) = (LEVEL1 − LEVEL2)(G) (1) where:LEVEL1 and LEVEL2 are the voltages applied to the respectiveinputs.G is throughput gain.For example, with the G_SEL input set for ×2 gain, settingLEVEL1 to 300 mV and LEVEL2 to 0 V shifts the offset voltagesat the ADA4410-6 outputs to 600 mV. This particular settingcan be used in most single-supply applications to keep theoutput swings safely above the negative supply rail.。

相关文档
最新文档