2015年高考数学文真题分类汇编:专题01 集合与常用逻辑用语 Word版含解析
2015届高考数学 集合、常用逻辑用语专题汇编及详细答案
2015届高考数学集合、常用逻辑用语专题汇编1.(2013·高考新课标全国卷Ⅰ文)已知集合A={1,2,3,4},B={x|x=n2,x∈A},则A∩B =()A.{1,4} B.{2,3}C.{9,16} D.{1,2}解析:选A.∵A={1,2,3,4},B={x|x=n2,x∈A},∴B={1,4,9,16},∴A∩B={1,4}.2.(2013·高考新课标全国卷Ⅰ理)已知集合A={x|x2-2x>0},B={x|-5<x<5},则() A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B.∵A={x|x>2或x<0},B={x|-5<x<5},∴A∩B={x|-5<x<0或2<x<5},A∪B=R.3.(2013·高考新课标全国卷Ⅱ理)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=()A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}解析:选A.集合M={x|-1<x<3,x∈R},∴M∩N={0,1,2},故选A.4.(2013·高考新课标全国卷Ⅱ文)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}解析:选C.M∩N={-2,-1,0},故选C.5.(2013·高考大纲全国卷理)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4C.5 D.6解析:选B.由题意可知,集合M={5,6,7,8},共4个元素.6.(2013·高考大纲全国卷文)设全集U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2} B.{3,4,5}C.{1,2,3,4,5} D.∅解析:选B.∵U={1,2,3,4,5},A={1,2},∴∁U A={3,4,5}.7.(2013·高考山东卷理)已知集合A={0,1,2},则集合B={x-y |x∈A, y∈A}中元素的个数是()A.1 B.3C.5 D.9解析:选C.当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.8.(2013·高考山东卷文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3} B.{4}C.{3,4} D.∅解析:选A.∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3}.又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩∁U B={3}.9.(2013·高考浙江卷理)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁R S)∪T=() A.(-2,1] B.(-∞,-4]C.(-∞,1] D.[1,+∞)解析:选C.因为S={x|x>-2},所以∁R S={x|x≤-2}.而T={x|-4≤x≤1},所以(∁R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1}.10.(2013·高考浙江卷文)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=() A.[-4,+∞) B.(-2,+∞)C.[-4,1] D.(-2,1]解析:选D.S∩T={x|x>-2}∩{x|-4≤x≤1}={x|-2<x≤1}.11.(2013·高考北京卷理)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=() A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}解析:选B.∵A={-1,0,1},B={x|-1≤x<1}且1∉B,∴A∩B={-1,0}.12.(2013·高考天津卷理)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=() A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]解析:选D.由已知得A={x|-2≤x≤2},于是A∩B={x|-2≤x≤1}.13.(2013·高考福建卷文)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为() A.2 B.3C.4 D.16解析:选C.A∩B={1,3},其子集有∅,{1},{3},{1,3},共4个.14.(2013·高考辽宁卷文)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1}C.{0,2} D.{0,1,2}解析:选B.B={x||x|<2}={x|-2<x<2},A∩B={0,1}.15.(2013·高考辽宁卷理)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=() A.(0,1) B.(0,2]C.(1,2) D.(1,2]解析:选D.因为A={x|0<log4x<1}={x|1<x<4},B={x|x≤2},所以A∩B={x|1<x<4}∩{x|x≤2}={x|1<x≤2}.16.(2013·高考湖南卷文)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=________.解析:∵U={2,3,6,8},A={2,3},∴∁U A={6,8}.∴(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案:{6,8}17.(2013·高考江西卷理)已知集合M={1,2,z i},i为虚数单位,N={3,4},M∩N={4},则复数z=()A.-2i B.2iC.-4i D.4i解析:选C.因为M={1,2,z i},N={3,4},由M∩N={4},得4∈M,所以z i=4,所以z=-4i.18.(2013·高考江西卷文)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=() A.4 B.2C.0 D.0或4解析:选A.当a=0时,方程化为1=0,无解,集合A为空集,不符合题意;当a≠0时,由Δ=a2-4a=0,解得a=4.19.(2013·高考湖北卷理)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x | ⎝⎛⎭⎫12x ≤1,B ={x |x 2-6x +8≤0},则A ∩∁R B =( )A .{x |x ≤0}B .{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4}解析:选C.A =⎩⎨⎧⎭⎬⎫x | ⎝⎛⎭⎫12x ≤1={x |x ≥0},B ={x |x 2-6x +8≤0}={x |2≤x ≤4},所以∁R B ={x |x <2或x >4},于是A ∩∁R B ={x |0≤x <2或x >4}.20.(2013·高考湖北卷文)已知全集U ={1,2,3,4,5},集合A ={1,2},B ={2,3,4},则B ∩∁U A =( )A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}解析:选B.∵U ={1,2,3,4,5},A ={1,2},∴∁U A ={3,4,5},∴B ∩∁U A ={2,3,4}∩{3,4,5}={3,4}21.(2013·高考四川卷文)设集合A ={1,2,3},集合B ={-2,2},则A ∩B =( )A .∅B .{2}C .{-2,2}D .{-2,1,2,3}解析:选B.A ∩B ={1,2,3}∩{-2,2}={2},故选B.22.(2013·高考四川卷理)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( )A .{-2}B .{2}C .{-2,2}D .∅解析:选A.∵A ={x |x +2=0},∴A ={-2}.∵B ={x |x 2-4=0},∴B ={-2,2}.∴A ∩B ={-2}.故选A.23.(2013·高考重庆卷文)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}解析:选D.∵A ={1,2},B ={2,3},∴A ∪B ={1,2,3},∴∁U (A ∪B )={4}.24.(2013·高考重庆卷理)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}解析:选D.∵A ={1,2},B ={2,3},∴A ∪B ={1,2,3},∴∁U (A ∪B )={4}.25.(2013·高考广东卷)设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}解析:选D.集合M ={0,-2},N ={0,2},故M ∪N ={-2,0,2},故选D.26.(2013·高考广东卷文)设集合S ={x |x 2+2x =0,x ∈R },T ={x |x 2-2x =0,x ∈R },则S ∩T =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}解析:选A.集合S ={0,-2},T ={0,2},故S ∩T ={0},故选A.27.(2013·高考安徽卷文)已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B =( )A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1}解析:选A.因为集合A ={x |x >-1},所以(∁R A )={x |x ≤-1},则(∁R A )∩B ={x |x ≤-1}∩{-2,-1,0,1}={-2,-1}.28.(2013·高考新课标全国卷文Ⅰ)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A .p ∧qB .綈p ∧qC .p ∧綈qD .綈p ∧綈q解析:选B.当x =0时,有2x =3x ,不满足2x <3x ,∴p :∀x ∈R,2x <3x 是假命题.如图,函数y =x 3与y =1-x 2有交点,即方程x 3=1-x 2有解,∴q :∃x ∈R ,x 3=1-x 2是真命题.∴p ∧q 为假命题,排除A.∵綈p 为真命题,∴綈p ∧q 是真命题.选B.29.(2013·高考山东卷理)给定两个命题p 、q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈pq ,其逆否命题为p ⇒綈q 但綈q p ,∴p 是綈q 的充分不必要条件. 30.(2013·高考山东卷文)给定两个命题p 、q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈p q ,其逆否命题为p ⇒綈q 但綈q p ,∴p 是綈q 的充分不必要条件.31.(2013·高考浙江卷理)已知函数f (x )=A co s (ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.若f (x )是奇函数,则f (0)=0,所以co s φ=0,所以φ=π2+k π(k ∈Z ),故φ=π2不成立;若φ=π2,则f (x )=A co s (ωx +π2)=-As in(ωx ),f (x )是奇函数.所以f (x )是奇函数是φ=π2的必要不充分条件.32.(2013·高考浙江卷文)若α∈R ,则“α=0”是“s in α<co s α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.若α=0,则s in α=0,co s α=1,所以s in α<co s α,即α=0⇒s in α<co s α;但当α=-π2时,有s in α=-1<0=co s α,此时α≠0.所以α=0是s in α<co s α的充分不必要条件.33.(2013·高考北京卷文)“φ=π”是“曲线y =s in(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.当φ=π时,y =s in(2x +φ)=s in(2x +π)=-s in 2x ,此时曲线y =s in(2x +φ)必过原点,但曲线y =s in(2x +φ)过原点时,φ可以取其他值,如φ=0.因此“φ=π”是“曲线y =s in(2x +φ)过坐标原点”的充分而不必要条件.34.(2013·高考天津卷文)设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .即不充分也不必要条件解析:选A.由不等式的性质知(a -b )·a 2<0成立,则a <b 成立;而当a =0,a <b 成立时,(a -b )·a 2<0不成立,所以(a -b )·a 2<0是a <b 的充分而不必要条件.35.(2013·高考天津卷理)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18; ②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号是( )A .①②③B .①②C .①③D .②③解析:选C.对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确. 36.(2013·高考福建卷文)设点 P (x ,y ),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.当x =2且y =-1时,满足方程x +y -1=0,即点P (2,-1)在直线l 上.点P ′(0,1)在直线l 上,但不满足x =2且y =-1,∴“x =2且y =-1”是“点P (x ,y )在直线l 上”的充分而不必要条件.37.(2013·高考福建卷理)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.∵A ={1,a },B ={1,2,3},A ⊆B ,∴a ∈B 且a ≠1,∴a =2或3,∴“a =3”是“A ⊆B ”的充分而不必要条件.38.(2013·高考陕西卷文)设全集为R, 函数f (x )=1-x 的定义域为M, 则∁R M 为( )A .(-∞,1)B .(1,+∞)C .(-∞,1]D .[1,+∞)解析:选B.函数f (x )的定义域M =(-∞,1],则∁R M =(1,+∞).39.(2013·高考湖南卷)“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.设A ={x |1<x <2},B ={x |x <2},∴A B ,即当x 0∈A 时,有x 0∈B ,反之不一定成立.因此“1<x <2”是“x <2”成立的充分不必要条件.40.(2013·高考辽宁卷)下面是关于公差d>0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列{a n n}是递增数列;p 4:数列{a n +3n d}是递增数列. 其中的真命题为( )A .p 1,p 2B .p 3,p 4C .p 2,p 3D .p 1,p 4解析:选D.因为d>0,所以a n +1>a n ,所以p 1是真命题.因为n +1>n ,但是a n 的符号不知道,所以p 2是假命题.同理p 3是假命题.由a n +1+3(n +1)d -a n -3n d =4d>0,所以p 4是真命题.41.(2013·高考陕西卷理)设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞)解析:选D.由1-x 2≥0,知-1≤x ≤1,∴M =[-1,1],∴∁R M =(-∞,-1)∪(1,+∞).42.(2013·高考湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q解析:选A.依题意得綈p :“甲没有降落在指定范围”,綈q :“乙没有降落在指定范围”,因此“至少有一位学员没有降落在指定范围”可表示为(綈p )∨(綈q ).43.(2013·高考四川卷)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∉BB .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B 解析:选D.命题p 是全称命题:∀x ∈A,2x ∈B ,则綈p 是特称命题:∃x ∈A,2x ∉B .故选D. 44.(2013·高考重庆卷理)命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<0 解析:选D.因为“∀x ∈M ,p (x )”的否定是“∃x ∈M ,綈p (x )”,故“对任意x ∈R ,都有x 2≥0”的否定是“存在x 0∈R ,使得x 20<0”.45.(2013·高考安徽卷)“(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.当x =0时,显然(2x -1)x =0;当(2x -1)x =0时,x =0或x =12,所以“(2x -1)x =0”是“x =0”的必要不充分条件.46.(2013·高考陕西卷)设a ,b 为向量,则“|a·b |=|a||b|”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.若|a ·b |=|a ||b |,若a ,b 中有零向量,显然a ∥b ;若a ,b 均不为零向量,则|a ·b |=|a ||b ||co s 〈a ,b 〉|=|a ||b |,∴|co s 〈a ,b 〉|=1,∴〈a ,b 〉=π或0,∴a ∥b ,即|a ·b |=|a ||b |⇒a ∥b .若a ∥b ,则〈a ,b 〉=0或π,∴|a ·b |=||a ||b |co s 〈a ,b 〉|=|a ||b |,其中,若a ,b 有零向量也成立,即a ∥b ⇒|a ·b |=|a ||b |.综上知,“|a ·b |=|a ||b |”是“a ∥b ”的充分必要条件.47.(2013·高考江苏卷理)集合{-1,0,1}共有________个子集.解析:由于集合中有3个元素,故该集合有23=8(个)子集.答案:848.(2013.高考湖南卷)对于E ={a 1,a 2,...,a 100}的子集X ={a i 1,a i 2,...,a i k },定义X 的“特征数列”为x 1,x 2,...,x 100,其中x i 1=x i 2=...=x i k =1,其余项均为0.例如:子集{a 2,a 3}的“特征数列”为0,1,1,0,0, 0(1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于________.(2)若E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i ≤99;E 的子集Q 的“特征数列” q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j ≤98,则P ∩Q 的元素个数为________.解析:(1)子集{a 1,a 3,a 5}的“特征数列”中共有3个1,其余均为0,该数列为1,0,1,0,1,0,0,…,0.故该数列前3项的和为2.(2)E 的子集P 的“特征数列”p 1,p 2,…,p 100中,由于p 1=1,p i +p i +1=1(1≤i ≤99),因此集合P 中必含有元素a 1.又当i =1时,p 1+p 2=1,且p 1=1,故p 2=0.同理可求得p 3=1,p 4=0,p 5=1,p 6=0,….故E 的子集P 的“特征数列”为1,0,1,0,1,0,1,0,…,1,0,即P ={a 1,a 3,a 5,a 7,…,a 99}.E 的子集Q 的“特征数列”q 1,q 2,…,q 100中,由于q 1=1,q j +q j +1+q j +2=1(1≤j ≤98),因此集合Q 中必含有元素a 1.又当j =1时,q 1+q 2+q 3=1,当j =2时,q 2+q 3+q 4=1,当j =3时,q 3+q 4+q 5=1,…,故q 1=1,q 2=q 3=0,q 4=1,q 5=q 6=0,q 7=1,….所以E 的子集Q 的“特征数列”为1,0,0,1,0,0,1,0,0,…,0,1,即Q ={a 1,a 4,a 7,a 10,…,a 100}.因为100=1+(n -1)×3,故n =34.所以集合Q 中有34个元素,其下标为奇数的有17个.因此P ∩Q ={a 1,a 7,a 13,a 19,…,a 97},共有17个元素.答案:(1)2 (2)1749.(2013·高考重庆卷)对正整数n ,记I n ={1,2,…,n },P n =⎩⎨⎧⎭⎬⎫m k m ∈I n ,k ∈I n . (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.解:(1)当k =4时,⎩⎨⎧⎭⎬⎫m k m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n ⊇I n .不妨设I ∈A ,则因为1+3=22,故3∉A ,即3∈B .同理,6∈A,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求.当k =1时,⎩⎨⎧⎭⎬⎫m k m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集合⎩⎨⎧⎭⎬⎫m k m ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可求解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132. 当k =9时,集合⎩⎨⎧⎪⎪m k ⎭⎬⎫m ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133, B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143. 最后,集合C =⎩⎨⎧⎭⎬⎫m k m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上可知,所求n 的最大值为14.注:对P 14的分析方法不是唯一的.。
2015届高考数学必考题型过关练:专题一+集合与常用逻辑用语 解析版
第1练小集合,大功能题型一单独命题独立考查例1已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10破题切入点弄清“集合的代表元素”是解决集合问题的关键.答案 D解析∵B={(x,y)|x∈A,y∈A,x-y∈A},A={1,2,3,4,5},∴x=2,y=1;x=3,y=1,2;x=4,y=1,2,3;x=5,y=1,2,3,4.∴B={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)},∴B中所含元素的个数为10.题型二与函数定义域、值域综合考查例2设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为()A.[-1,0]B.(-1,0)C.(-∞,-1)∪[0,1) D.(-∞,-1]∪(0,1)破题切入点弄清“集合”代表的是函数的定义域还是值域,如何求其定义域或值域.答案 D解析因为A={x|y=f(x)}={x|1-x2>0}={x|-1<x<1}.∁R A=(-∞,-1]∪[1,+∞).则u=1-x2∈(0,1],所以B={y|y=f(x)}={y|y≤0},∁R B=(0,+∞),所以题图阴影部分表示的集合为(A ∩∁R B )∪(B ∩∁R A )=(0,1)∪(-∞,-1].故选D.题型三 与不等式综合考查例3 若集合A ={x |x 2-x -2<0},B ={x |-2<x <a },则“A ∩B ≠∅”的充要条件是( )A .a >-2B .a ≤-2C .a >-1D .a ≥-1破题切入点 弄清“集合”代表不等式的解集,“A ∩B ≠∅”说明两个集合有公共元素. 答案 C解析 A ={x |-1<x <2},B ={x |-2<x <a }, 如图所示:∵A ∩B ≠∅,∴a >-1.总结提高 (1)集合是一个基本内容,它可以与很多内容综合考查,题型丰富.(2)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(3)对于给出已知集合,进行交集、并集与补集运算时,可以直接根据它们的定义求解,也可以借助数轴、Venn 图等图形工具,运用分类讨论、数形结合等思想方法,直观求解.1.已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B 等于( )A .(0,1)B .(0,2]C .(1,2)D .(1,2]答案 D解析 A ={x |1<x <4},B ={x |x ≤2},∴A ∩B ={x |1<x ≤2}.2.已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若A ∩B =B ,则a 等于( )A .-12或1 B .2或-1 C .-2或1或0 D .-12或1或0 答案 D解析 依题意可得A ∩B =B ⇔B ⊆A .因为集合A ={x |x 2+x -2=0}={-2,1},当x =-2时,-2a =1,解得a =-12;当x=1时,a=1;又因为B是空集时也符合题意,这时a=0,故选D.3.已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B答案 B解析易求A={x|x<0或x>2},显然A∪B=R.4.(2014·浙江)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A等于()A.∅B.{2} C.{5} D.{2,5}答案 B解析因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.5.已知M={y|y=2x},N={(x,y)|x2+y2=4},则M∩N中元素个数为()A.0 B.1 C.2 D.不确定答案 A解析集合M是数集,集合N是点集,故其交集中元素的个数为0.6.(2014·自贡模拟)设集合S={x|x>2},T={x|x2-3x-4≤0},则(∁R S)∩(∁R T)等于() A.(2,4] B.(-∞,-1)C.(-∞,2] D.(4,+∞)答案 B解析因为T={x|-1≤x≤4},所以(∁R S)∩(∁R T)=∁R(S∪T)=(-∞,-1).7.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a等于()A.4 B.2 C.0 D.0或4答案 A解析当a=0时,显然不成立;当a≠0时,由Δ=a2-4a=0,得a=4.故选A.8.已知集合A={x∈R||x-1|<2},Z为整数集,则集合A∩Z中所有元素的和等于________.答案 3解析A={x∈R||x-1|<2}={x∈R|-1<x<3},集合A中包含的整数有0,1,2,故A∩Z={0,1,2}.故A∩Z中所有元素之和为0+1+2=3.9.已知集合A={3,m2},B={-1,3,2m-1}.若A⊆B,则实数m的值为________.答案 1解析 ∵A ⊆B ,∴m 2=2m -1或m 2=-1(舍).由m 2=2m -1得m =1.经检验m =1时符合题意.10.对于E ={a 1,a 2,...,a 100}的子集X ={ai 1,ai 2,...,ai k },定义X 的“特征数列”为x 1,x 2,...,x 100,其中xi 1=xi 2=...=xi k =1,其余项均为0.例如:子集{a 2,a 3}的“特征数列”为0,1,1,0,0, 0(1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于________;(2)若E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i ≤99;E 的子集Q 的“特征数列”q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j ≤98,则P ∩Q 的元素个数为________.答案 (1)2 (2)17解析 (1)由题意,可得子集{a 1,a 3,a 5}的“特征数列”为1,0,1,0,1,0,…,0,所以前3项和为1+0+1=2.(2)由题意,可知P 的“特征数列”为1,0,1,0,1,0, 0则P ={a 1,a 3,a 5,…,a 99},有50个元素.即集合P 中的元素的下标依次构成以1为首项,2为公差的等差数列,即这些元素依次取自集合E 中的项a 2n -1(1≤n ≤50,n ∈N *).Q 的“特征数列”为1,0,0,1,0,0,1, (1)则Q ={a 1,a 4,a 7,a 10,…,a 100},有34个元素.即集合Q 中的元素的下标依次构成以1为首项,3为公差的等差数列,即这些元素依次取自集合E 中的项a 3n -2(1≤n ≤34,n ∈N *).而P ∩Q 中的元素是由这两个集合中的公共元素构成的集合,所以这些元素的下标依次构成首项为1,公差为2×3=6的等差数列,即这些元素依次取自集合E 中的项a 6n -5,由1≤6n -5≤100,解得1≤n ≤352, 又n ∈N *,所以1≤n ≤17,即P ∩Q 的元素个数为17.11.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 (1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},又A ={x |-1<x ≤5},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},故4是方程-x 2+2x +m =0的一个根,∴有-42+2×4+m =0,解得m =8.此时B ={x |-2<x <4},符合题意.因此实数m 的值为8.12.已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a },全集为实数集R .(1)求A ∪B ;(2)(∁R A )∩B ;(3)如果A ∩C ≠∅,求a 的取值范围.解 (1)因为A ={x |3≤x <7},B ={x |2<x <10},所以A ∪B ={x |2<x <10}.(2)因为A ={x |3≤x <7},所以∁R A ={x |x <3或x ≥7}.所以(∁R A )∩B ={x |x <3或x ≥7}∩{x |2<x <10}={x |2<x <3或7≤x <10}.(3)如图,当a >3时,A ∩C ≠∅.第2练 常用逻辑用语中的“常考题型”题型一 充分必要条件问题例1 (1)若f (x )和g (x )都是定义在R 上的函数,则“f (x )与g (x )都为增函数”是“f (x )+g (x )是增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件(2)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件破题切入点 (1)增函数的性质以及互相推出的关键.(2)三角函数的图象和性质要熟练掌握.答案 (1)A (2)B解析 (1)若f (x )与g (x )都为增函数,根据单调性的定义易知f (x )+g (x )为增函数;反之f (x )+g (x )为增函数时,例如f (x )=-x ,g (x )=2x ,f (x )+g (x )=x 为增函数,但f (x )为减函数,g (x )为增函数.故“f (x )与g (x )都为增函数”是“f (x )+g (x )是增函数”的充分不必要条件.(2)φ=π2⇒f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx 为奇函数, ∴“f (x )是奇函数”是“φ=π2”的必要条件. 又f (x )=A cos(ωx +φ)是奇函数⇒f (0)=0⇒φ=π2+k π(k ∈Z )D /⇒φ=π2. ∴“f (x )是奇函数”不是“φ=π2”的充分条件. 即“f (x )是奇函数”是“φ=π2”的必要不充分条件. 题型二 逻辑联结词、命题真假的判定例2 下列叙述正确的个数是( )①l 为直线,α、β为两个不重合的平面,若l ⊥β,α⊥β,则l ∥α;②若命题p :∃x 0∈R ,x 20-x 0+1≤0,则綈p :∀x ∈R ,x 2-x +1>0;③在△ABC 中,“∠A =60°”是“cos A =12”的充要条件; ④若向量a ,b 满足a ·b <0,则a 与b 的夹角为钝角.A .1B .2C .3D .4破题切入点 判定叙述是否正确,对命题首先要分清命题的条件与结论,再结合涉及知识进行判定;对含量词的命题的否定,要改变其中的量词和判断词.答案 B解析 对于①,直线l 不一定在平面α外,错误;对于②,命题p 是特称命题,否定时要写成全称命题并改变判断词,正确;③注意到△ABC 中条件,正确;④a ·b <0可能〈a ,b 〉=π,错误.故叙述正确的个数为2.总结提高 (1)充要条件的判断及选择:首先要弄清楚所要考查的相关知识并将其联系起来;其次充要条件与互相推出的关系,有时以集合形式给出时找集合间的包含关系.牵扯到比较复杂的问题时,要将条件转化之后再判断.(2)命题真假的判定方法,注意真值表的使用.(3)四种命题的改写及真假判断.(4)含有一个量词的命题的否定的改写方法.1.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 若a =3,则A ={1,3}⊆B ,故a =3是A ⊆B 的充分条件;而若A ⊆B ,则a 不一定为3,当a =2时,也有A ⊆B .故a =3不是A ⊆B 的必要条件.故选A.2.命题“若α=π4,则tan α=1”的逆否命题是( ) A .若α≠π4,则tan α≠1 B .若α=π4,则tan α ≠1 C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 由命题与其逆否命题之间的关系可知,原命题的逆否命题是:若tan α≠1,则α≠π4. 3.(2014·达州模拟)下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列; p 4:数列{a n +3nd }是递增数列.其中的真命题为( )A .p 1,p 2B .p 3,p 4C .p 2,p 3D .p 1,p 4答案 D解析 如数列-2,-1,0,1,2,…,则1×a 1=2×a 2,排除p 2,如数列1,2,3,…,则a n n=1, 排除p 3,故选D.4.已知p :2x x -1<1,q :(x -a )(x -3)>0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A .(-∞,1)B .[1,3]C .[1,+∞)D .[3,+∞)答案 C解析 2x x -1-1<0⇒x +1x -1<0⇒(x -1)(x +1)<0⇒p :-1<x <1.当a ≥3时,q :x <3或x >a ;当a <3时,q :x <a 或x >3.綈p 是綈q 的必要不充分条件,即p 是q 的充分不必要条件,即p ⇒q 且qD ⇒/p ,从而可推出a 的取值范围是a ≥1.5.命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<0答案 D解析 全称命题的否定是一个特称命题,故选D.6.若命题p :函数y =x 2-2x 的单调递增区间是[1,+∞),命题q :函数y =x -1x的单调递增区间是[1,+∞),则( )A .p ∧q 是真命题B .p ∨q 是假命题C .綈p 是真命题D .綈q 是真命题答案 D解析 因为函数y =x 2-2x 的单调递增区间是[1,+∞),所以p 是真命题;因为函数y =x -1x的单调递增区间是(-∞,0)和(0,+∞),所以q 是假命题. 所以p ∧q 为假命题,p ∨q 为真命题,綈p 为假命题,綈q 为真命题,故选D.7.下列关于命题的说法中错误的是( )A .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”D .若p ∧q 为假命题,则p ,q 均为假命题答案 D解析 对于A ,命题綈p :∀x ∈R ,均有x 2+x +1≥0,因此选项A 正确.对于B ,由x =1可得x 2-3x +2=0;反过来,由x 2-3x +2=0不能得知x =1,此时x 的值也可能是2,因此“x =1”是“x 2-3x +2=0”的充分不必要条件,选项B 正确.对于C ,原命题的逆否命题是:“若x ≠1,则x 2-3x +2≠0”,因此选项C 正确,故选D.8.下列命题中,是真命题的是( )A .存在x ∈⎣⎡⎦⎤0,π2,使sin x +cos x > 2 B .存在x ∈(3,+∞),使2x +1≥x 2C .存在x ∈R ,使x 2=x -1D .对任意x ∈⎝⎛⎦⎤0,π2,使sin x <x 答案 D解析 A 中,∵sin x +cos x =2sin ⎝⎛⎭⎫x +π4≤2, ∴A 错误;B 中,2x +1≥x 2的解集为[1-2,1+2],故B 错误;C 中,Δ=(-1)2-4=-3<0,∴x 2=x -1的解集为∅,故C 错误;D 正确,且有一般结论,对∀x ∈⎝⎛⎭⎫0,π2, 均有sin x <x <tan x 成立,故选D.9.“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 当φ=π时,y =sin(2x +π)=-sin 2x ,则曲线y =-sin 2x 过坐标原点,所以“φ=π”⇒“曲线y =sin(2x +φ)过坐标原点”;当φ=2π时,y =sin(2x +2π)=sin 2x ,则曲线y =sin 2x 过坐标原点,所以“φ=π”D ⇐/“曲线y =sin(2x +φ)过坐标原点”,所以“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分而不必要条件,故选A.10.下列命题中错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若x ,y ∈R ,则“x =y ”是“xy ≤⎝⎛⎭⎫x +y 22中等号成立”的充要条件C .已知命题p 和q ,若p ∨q 为假命题,则命题p 与q 中必一真一假D .对命题p :∃x ∈R ,使得x 2-2ax -a 2<0,则綈p :∀x ∈R ,x 2-2ax -a 2≥0答案 C解析 易知选项A ,B ,D 都正确;选项C 中,若p ∨q 为假命题,根据真值表,可知p ,q 必都为假,故C 错.11.设m ,n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是( )A .当n ⊥α时,“n ⊥β”是“α∥β”成立的充要条件B .当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C .当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D .当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件答案 C解析 与同一条直线垂直的两个平面平行,反之,当两个平行平面中有一个与一条直线垂直时,另一个也与这条直线垂直,选项A 正确;根据平面与平面垂直的判定定理,选择B 正确;当直线n ⊂α时,直线n 不平行于平面α,选项C 不正确;根据线面垂直的性质,选项D 正确.12.对于原命题“单调函数不是周期函数”,下列陈述正确的是( )A .逆命题为“周期函数不是单调函数”B .否命题为“单调函数是周期函数”C .逆否命题为“周期函数是单调函数”D .以上三者都不正确答案 D解析 根据四种命题的构成可得选项A 、B 、C 中结论均不正确.第3练 突破充要条件的综合性问题题型一 充分必要条件的判断方法例1 “e a >e b ”是“log 2a >log 2b ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件破题切入点 有关充要条件的判断问题,弄清楚谁是条件谁是结论,然后看谁能推出谁. 答案 B解析 因为e a >e b ⇔a >b ,所以取a =1,b =-1,则a >bD ⇒/log 2a >log 2b ;若log 2a >log 2b ,则a >b .综上,“e a >e b ”D ⇒“log 2a >log 2b ”,但“e a >e b ”⇐“log 2a >log 2b ”.所以“e a >e b ”是“log 2a >log 2b ”的必要而不充分条件.题型二 根据充要条件求参数范围例2 函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( ) A .a <0 B .0<a <12C.12<a <1 D .a ≤0或a >1 破题切入点 把函数f (x )的零点问题转化为两个函数的图象的交点问题,从而求出f (x )有一个零点的充分必要条件,再利用“以小推大”的技巧,即可得正确选项.答案 A解析 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合,可得a ≤0或a >1.所以函数f (x )有且只有一个零点的充分必要条件是a ≤0或a >1,应排除D ;当0<a <12时,函数y =-2x +a (x ≤0)有一个零点,即函数f (x )有两个零点,此时0<a <12是函数f (x )有且只有一个零点的既不充分也不必要条件,应排除B ;同理,可排除C ,应选A.总结提高 (1)充要条件的判断,首先要审清什么是条件,什么是结论,然后再看谁能推出谁,有些还可以先找出条件和结论的等价条件,再看谁能推出谁,还有一些数集或集合形式给出的条件或结论,可以从集合的观点来判断充要条件.(2)根据充分、必要条件求参数的值或取值范围的关键是合理转化条件,常通过有关性质、定理、图象等将原问题转化为最值问题、有解问题等,得到关于参数的方程或不等式(组),然后通过解方程(组)或不等式(组)求出参数的值或取值范围.1.甲:x ≠2或y ≠3;乙:x +y ≠5,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件答案 B解析 “甲⇒乙”,即“x ≠2或y ≠3”⇒“x +y ≠5”,其逆否命题为:“x +y =5”⇒“x =2且y =3”显然不正确.同理,可判断命题“乙⇒甲”为真命题.所以甲是乙的必要不充分条件.2.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎣⎡⎭⎫12,+∞ D .(-∞,0)∪⎝⎛⎭⎫12,+∞ 答案 A解析 綈p :|4x -3|>1;綈q :x 2-(2a +1)x +a (a +1)>0,解得綈p :x >1或x <12;綈q :x >a +1或x <a . 若綈p ⇐綈q ,则⎩⎪⎨⎪⎧ a ≤12,a +1>1或⎩⎪⎨⎪⎧a <12,a +1≥1,即0≤a ≤12. 3.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析由题意知函数f(x)=a x在R上是减函数等价于0<a<1,函数g(x)=(2-a)x3在R上是增函数等价于0<a<1或1<a<2,∴“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的充分不必要条件.4.(2014·湖北)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B =∅”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析若存在集合C使得A⊆C,B⊆∁U C,则可以推出A∩B=∅;若A∩B=∅,由Venn图(如图)可知,存在A=C,同时满足A⊆C,B⊆∁U C.故“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充要条件.5.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析当α⊥β时,由于α∩β=m,b⊂β,b⊥m,由面面垂直的性质定理知,b⊥α.又∵a⊂α,∴b⊥a.∴“α⊥β”是“a⊥b”的充分条件.而当a⊂α且a∥m时,∵b⊥m,∴b⊥a.而此时平面α与平面β不一定垂直,∴“α⊥β”不是“a ⊥b ”的必要条件,故选A.6.“m =-1”是“直线l 1:2x -my =2m -1与直线l 2:x +2my =m -2垂直”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 若m =-1,则直线l 1、l 2垂直;若直线l 1、l 2垂直,则有m =±1,所以“m =-1”是“直线l 1:2x -my =2m -1与直线l 2:x +2my =m -2垂直”的充分不必要条件.选A.7.给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由题意知:綈p ⇐q ⇔(逆否命题)p ⇒綈q .8.已知下列各组命题,其中p 是q 的充分必要条件的是( )A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点B .p :f (-x )f (x )=1;q :y =f (x )是偶函数 C .p :cos α=cos β;q :tan α=tan βD .p :A ∩B =A ;q :A ⊆U ,B ⊆U ,∁U B ⊆∁U A答案 D解析 对于A ,由y =x 2+mx +m +3有两个不同的零点,可得Δ=m 2-4(m +3)>0,从而可得m <-2或m >6.所以p 是q 的必要不充分条件;对于B ,由f (-x )f (x )=1⇒f (-x )=f (x )⇒y =f (x )是偶函数,但由y =f (x )是偶函数不能推出f (-x )f (x )=1,例如函数f (x )=0,所以p 是q 的充分不必要条件;对于C ,当cos α=cos β=0时,不存在tan α=tan β,反之也不成立,所以p 是q 的既不充分也不必要条件;对于D ,由A ∩B =A ,知A ⊆B ,所以∁U B ⊆∁U A ;反之,由∁U B ⊆∁U A ,知A ⊆B ,即A ∩B =A .所以p ⇔q .综上所述,p 是q 的充分必要条件的是D.9.在直角坐标系中,点(2m +3-m 2,2m -32-m)在第四象限的充分必要条件是________. 答案 -1<m <32或2<m <3 解析 点(2m +3-m 2,2m -32-m )在第四象限⇔⎩⎪⎨⎪⎧ 2m +3-m 2>0,2m -32-m<0⇔-1<m <32或2<m <3. 10.(2014·自贡模拟)已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程x 2m -1+y 22-m=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为________.答案 ⎣⎡⎦⎤13,38解析 由a >0,m 2-7am +12a 2<0,得3a <m <4a ,即命题p :3a <m <4a ,a >0.由x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆, 可得2-m >m -1>0,解得1<m <32, 即命题q :1<m <32. 因为p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ 3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32,解得13≤a ≤38, 所以实数a 的取值范围是⎣⎡⎦⎤13,38.11.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件; ④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中,真命题的序号是________.答案 ①④解析 对于①,当数列{a n }是等比数列时,易知数列{a n a n +1}是等比数列;但当数列{a n a n +1}是等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确.对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确.对于③,当m =3时,相应的两条直线垂直;反过来,当这两条直线垂直时,不一定能得出m =3,也可能得出m =0,因此③不正确.对于④,由题意,得b a =sin B sin A =3,当B =60°时,有sin A =12,注意到b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°或B =120°,因此④正确. 12.下面有四个关于充要条件的命题:①“向量b 与非零向量a 共线”的充要条件是“有且只有一个实数λ使得b =λa ”;②“函数y =x 2+bx +c 为偶函数”的充要条件是“b =0”;③“两个事件为互斥事件”是“这两个事件为对立事件”的充要条件;④设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的充分不必要条件.其中,真命题的序号是________.答案 ①②④解析 由共线向量定理,知命题①为真.当b =0时,y =x 2+bx +c =x 2+c 显然为偶函数,反之,y =x 2+bx +c 是偶函数,则(-x )2+b (-x )+c =x 2+bx +c 恒成立,就有bx =0恒成立,得b =0,因此②为真.对立事件是互斥事件的特殊情形,所以③为假.在④中,若φ=0,则f (x )=cos x 是偶函数.但是若f (x )=cos(x +φ)(x ∈R )是偶函数,则φ=π也成立,故“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的充分不必要条件.。
2015年高考数学(新课标Ⅱ版)分项汇编专题01集合与常用逻辑用语(含解析)理
专题01 集合与常用逻辑用语一.基础题组1. 【2013课标全国Ⅱ,理1】已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N =( ).A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}【答案】:A2. 【2012全国,理2】已知集合A={1,3,},B={1, m},A∪B=A,则m=( )A.0或 B.0或3 C.1或 D.1或3【答案】 B3. 【2015高考新课标2,理1】已知集合,,则()A.B.C.D.【答案】A二.能力题组1.【2014新课标,理1】设集合M={0,1,2},N=,则=( )A. {1}B. {2}C. {0,1}D. {1,2}【答案】D【解析】因为N=,所以,故选D.2. 【2006全国2,理1】已知集合M={x|x<3},N={x|log2x>1},则M∩N等于(A. B.{x|0<x<3} C.{x|1<x<3} D.{x|2<x<3}【答案】:D3. 【2005全国2,理9】已知集合,,则为()(A) 或(B) 或(C) 或(D) 或【答案】A三.拔高题组1. 【2011新课标,理10】已知a与b均为单位向量,其夹角为θ,有下列四个命题:p1: |a+b|>1θ∈[0,)p2:|a+b|>1θ∈(,π]p3:|a-b|>1θ∈[0,)p4:|a-b|>1θ∈(,π]其中的真命题是( )A.p1,p4B.p1,p3C.p2,p3D.p2, p4【答案】A【解析】2. 【2005全国2,理16】下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.其中,真命题的编号是______________.(写出所有真命题的编号)【答案】①④。
2015届高考数学文科一轮总复习集合与常用逻辑用语.docx
2015 届高考数学(文科)一轮总复习集合与常用逻辑用语第一篇集合与常用逻辑用语第 1 讲集合及其运算基础巩固题组( 建议用时: 40 分钟 )一、填空题1 .(2013 ?安徽卷改编 ) 已知 A= {x|x + 1> 0} ,B= { - 2,-1,0,1} .则 ( ?RA)∩ B= ________.解析因为 A= {x|x >- 1} ,则 ?RA= {x|x ≤- 1} ,所以( ?RA)∩B= { - 2,- 1} .答案{ -2,- 1}2.已知集合= {1,2,3} ,N= {2,3,4} ,则下列各式不正确的是 ________.①? N;② N? ;③∩ N={2,3} ;④∪ N= {1,4} .解析由已知得∩ N={2,3},故选①②④ .答案①②④3.已知集合={0,1,2,3,4},N= {1,3,5},P=∩N,则P 的子集个数有________.解析P=∩ N= {1,3},故P 的子集共有 4 个.答案44.已知集合 A= {x|x2 -x- 2< 0} ,B= {x| - 1<x< 1} ,则 A 与 B 的关系是 ________.解析集合 A= {x| - 1< x<2} ,B= {x| -1< x< 1} ,则BA.答案BA5.设集合 A= {x|x2 + 2x- 8< 0} , B= {x|x < 1} ,则图中阴影部分表示的集合为 ________.解析阴影部分是A∩ ?RB.集合 A= {x| - 4< x<2} ,?RB={x|x ≥1} ,所以 A∩?RB= {x|1 ≤ x<2} .答案 {x|1 ≤ x< 2}6 .(2013 ?湖南卷 ) 已知集合 U= {2,3,6,8},A={2,3},B= {2,6,8},则( ?UA)∩ B=________.解析由集合的运算,可得 ( ?UA)∩ B={6,8}∩{2,6,8}={6,8} .答案 {6,8}7 .集合A= {0,2 , a} , B= {1 , a2} ,若A∪ B={0,1,2,4,16},则 a 的值为________.解析根据并集的概念,可知{a, a2}= {4,16},故只能是a= 4.答案48.集合 A= {x ∈ R||x - 2| ≤ 5} 中的最小整数为________.解析由 |x- 2|≤ 5,得-5≤ x- 2≤ 5,即-3≤ x≤ 7,所以集合 A 中的最小整数为- 3.答案- 3二、解答题9.已知集合 A= {a2 , a+ 1,- 3} , B={a - 3,a- 2,a2+ 1} ,若 A∩ B={ -3} ,求 A∪ B.解由 A∩B={ -3} 知,- 3∈B.又 a2+ 1≥ 1,故只有 a- 3, a- 2 可能等于- 3.①当 a-3=- 3 时,a= 0,此时 A= {0,1 ,- 3} ,B= { -3,- 2,1} , A∩B= {1 ,- 3} .故 a= 0 舍去.②当 a-2=- 3 时, a=- 1,此时 A={1,0 ,- 3} , B= { - 4,- 3,2} ,满足 A∩B= { - 3} ,从而 A∪ B= { - 4,- 3,0,1,2}.10.设 A= {x|x2 + 4x= 0} , B= {x|x2+ 2(a +1)x + a2-1=0} ,(1)若 B? A,求 a 的值;(2)若 A? B,求 a 的值.解(1)A = {0 ,- 4} ,①当 B=?时,=4(a+1)2-4(a2-1)=8(a+1)<0,解得 a<- 1;②当 B 为单元素集时,a=- 1,此时 B= {0} 符合题意;③当 B=A 时,由根与系数的关系得:-2 a+ 14, a2-1= 0,解得 a=1.综上可知: a≤- 1 或 a= 1.(2)若 A? B,必有 A= B,由 (1) 知 a= 1.能力提升题组( 建议用时: 25 分钟 )一、填空题1 .若集合 A= { - 1,1} ,B= {0,2} ,则集合 {z|z = x+ y,x∈ A, y∈ B} 中的元素的个数为 ________.解析当 x=- 1,y= 0 时, z=- 1;当 x=- 1, y= 2时, z=1;当 x= 1,y= 0 时, z= 1;当 x= 1,y= 2 时, z= 3. 故z 的值为- 1,1,3 ,故所求集合为 { - 1,1,3} ,共含有 3 个元素.答案32.已知集合A= {x∈ R||x+ 2|解析A= {x|- 5答案-113.设g(x) = (axa, b, c+ 1)(cx2为实数,+ bx+1)f(x)=(x.记集合+ a) ?(x2S= {x|f(x)+ bx+ c) ,=0, x∈R}, T= {x|g(x)=0,x∈ R}.若|S|,|T|分别为集合S, T 的元素个数,则下列结论:①|S| = 1 且|T| = 0;② |S| = 1且 |T| =1,③ |S| =2 且 |T| = 2;④ |S| = 2 且 |T| =3,其中不可能成立的是________.解析取 a= 0,b= 0,c= 0,则 S= {x|f(x)=x3=0},|S| = 1,T= {x|g(x)=1≠0},|T|=0.因此①可能成立.取a= 1, b= 0, c=1,则 S= {x|f(x)= (x + 1)(x2 + 1) = 0} ,|S| = 1, T= {x|g(x) = (x + 1)(x2+ 1) =0} , |T| =1,因此②可能成立.取 a=- 1, b= 0, c=- 1,则 S= {x|f(x)=(x - 1)(x2 - 1) = 0} , |S| = 2, T= {x|g(x) = ( - x+1)?( -x2+ 1) =0} ,|T| = 2. 因此③可能成立.对于④,若 |T|= 3,则= b2- 4c> 0,从而导致 f(x)= (x + a)(x2 + bx+c)也有3 解,因此 |S| = 2 且 |T| =3 不可能成立.故④不可能成立.答案④二、解答题4.已知集合A= {y|y= 2x- 1,0< x≤ 1}, B= {x|(x-a)[x- (a + 3)]< 0} .分别根据下列条件,求实数 a 的取值范围.(1)A∩ B=A;(2)A∩ B≠ ?.解因为集合 A 是函数 y= 2x- 1(0 < x≤ 1) 的值域,所以 A= ( - 1,1] , B= (a , a+ 3) .(1)A∩ B=A? A? B? a≤-1,a+3>1,即- 2< a≤- 1,故当 A∩ B=A 时,a 的取值范围是 ( - 2,-1] .(2)当 A∩B= ?时,结合数轴知, a≥ 1 或 a+ 3≤- 1,即a≥ 1 或 a≤- 4.故当 A∩B≠ ?时, a 的取值范围是 ( - 4,1).。
2015年全国各地高考数学试题及解答分类汇编大全(02 常用逻辑用语)
2015年全国各地高考数学试题及解答分类汇编大全(02常用逻辑用语)一.选择题:1.(2015安徽文)设p :x <3,q :-1<x <3,则p 是q 成立的( )(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件2.(2015安徽理)设:12,:21xp x q <<>,则p 是q 成立的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件3、(2015北京文)设a ,b 是非零向量,“a b a b ⋅=”是“//a b ”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】试题分析:||||cos ,a b a b a b ∙=∙<>,由已知得cos ,1a b <>=,即,0a b <>=,//a b .而当//a b 时,,a b <>还可能是π,此时||||a b a b ∙=-,故“a b a b ⋅=”是“//a b ”的充分而不必要条件.考点:充分必要条件、向量共线.4.(2015北京理)设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】试题分析:因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件. 考点:1.空间直线与平面的位置关系;2.充要条件.5.(2015福建理)若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α 的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B考点:空间直线和平面、直线和直线的位置关系.6. (2015湖北文)命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( )A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-【答案】C .【考点定位】本题考查特称命题和全称命题的否定形式,,属识记基础题.【名师点睛】本题主要考查特称命题的否定,其解题的关键是正确理解并识记其否定的形式特征.扎根基础知识,强调教材的重要性,充分体现了教材在高考中的地位和重要性,考查了基本概念、基本规律和基本操作的识记能力. 7.(2015湖北理)设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( ) A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【答案】A 【解析】试题分析:对命题p :12,,,n a a a 成等比数列,则公比)3(1≥=-n a a q n n且0≠n a ; 对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立;②当0≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a 成等比数列, 所以p 是q 的充分条件,但不是q 的必要条件.考点:1.等比数列的判定,2.柯西不等式,3.充分条件与必要条件.8. (2015湖北文)12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 【答案】A .【考点定位】本题考查充分条件与必要条件、异面直线,属基础题.【名师点睛】以命题与命题间的充分条件与必要条件为契机,重点考查空间中直线的位置关系,其解题的关键是弄清谁是谁的充分条件谁是谁的必要条件,正确理解异面直线的定义,注意考虑问题的全面性、准确性.9. (2015湖南理)设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】C.【考点定位】1.集合的关系;2.充分必要条件.【名师点睛】本题主要考查了集合的关系与充分必要条件,属于容易题,高考强调集合作为工具与其他知识点的结合,解题的关键是利用韦恩图或者数轴求解,充分,必要条件的判断性问题首要分清条件 和结论,然后找出条件和结论之间的推出或包含关系.10、(2015湖南文)设x ∈R ,则“x>1”是“2x >1”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 【答案】C【解析】试题分析:.由题根据明天的关系进行发现即可得到所给两个明天的关系;由题易知“x>1”可以推得“2x >1”, “2x >1”可以得到“x>1”,所以“x>1”是“2x >1”的充要条件,故选C. 考点:命题与条件11.(2015全国新课标Ⅰ卷理)设命题P :∃n ∈N ,2n >2n ,则⌝P 为( ) (A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n 【答案】C【解析】试题分析:p ⌝:2,2n n N n ∀∈≤,故选C.考点:特称命题的否定12. (2015山东文)设m R ∈,命题“若m>0,则方程20x x m +-=有实根”的逆否命题是( ) A.若方程20x x m +-=有实根,则>0 B.若方程20x x m +-=有实根,则.若方程20x x m +-=没有实根,则>0.若方程20x x m +-=没有实根,则0 【答案】D 【解析】试题分析:一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D. 考点:命题的四种形式.13. (2015陕西文、理) “sin cos αα=”是“cos20α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A【解析】试题分析:因为22cos 2cos sin 0ααα=-=,所以sin cos αα=或sin cos αα=-,因为“s i n c o s αα=”⇒“cos20α=”,但“sin cos αα=”⇐/“cos20α=”,所以“sin cos αα=”是“cos20α=”的充分不必要条件,故选A .考点:1、二倍角的余弦公式;2、充分条件与必要条件.14. (2015上海文) 设1z 、C ∈2z ,则“1z 、2z 均为实数”是“21z z -是实数”的( ). A. 充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件 【答案】A【解析】设),(11111R ∈+=b a i b a z ,),(22222R ∈+=b a i b a z ,若1z 、2z 均为实数,则021==b b ,所以21212121)(a a i b b a a z z -=-+-=-是实数;【考点定位】复数的概念,充分条件、必要条件的判定.15、(2015上海理)设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B16、(2015四川文)设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件 【答案】A【考点定位】本题考查对数函数的概念和性质、充要条件等基本概念,考查学生综合运用数学知识和方法解决问题的能力.【名师点睛】判断条件的充要性,必须从“充分性”和“必要性”两个方向分别判断,同时注意涉及的相关概念和方法.本题中涉及对数函数基本性质——单调性和函数值的符号,因此可以结合对数函数的图象进行判断,从而得出结论.属于简单题. 17. (2015四川理)设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 ( ) (A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件 【答案】B【考点定位】命题与逻辑.【名师点睛】充分性必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考.18. (2015天津文)设x R Î,则“12x <<”是“|2|1x -<”的( )(A) 充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件 【答案】A 【解析】试题分析:由2112113x x x -<⇔-<-<⇔<<,可知“12x <<”是“|2|1x -<”的充分而不必要条件,故选A.考点:1.不等式;2. 充分条件与必要条件.19.(2015天津理)设x R ∈ ,则“21x -< ”是“220x x +-> ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件【答案】A考点:充分条件与必要条件.20、(2015浙江文)设a ,b 是实数,则“0a b +>”是“0ab >”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】D考点:1.充分条件、必要条件;2.不等式的性质.21. (2015浙江理)命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( ) A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n > C. **00,()n N f n N ∃∈∈且00()f n n > D. **00,()n N f n N ∃∈∈或00()f n n >22. (2015重庆文) “x 1=”是“2x 210x -+=”的( ) (A) 充要条件 (B) 充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件 【答案】A 【解析】试题分析:由“x 1= ”显然能推出“2x 210x -+=”,故条件是充分的;又由“2x 210x -+=”可得10)1(2=⇒=-x x ,所以条件也是必要的; 故选A.考点:充要条件.23.(2015重庆理) “1x >”是“12log (2)0x +<”的 ( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件【答案】B【考点定位】充分必要条件.24. (2015浙江理)设A ,B 是有限集,定义(,)()()d A B card AB card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件;命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( ) A. 命题①和命题②都成立 B. 命题①和命题②都不成立 C. 命题①成立,命题②不成立 D. 命题①不成立,命题②成立二.填空题:1.(2015山东理)若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值为 . 【答案】1【考点定位】1、命题;2、正切函数的性质.【名师点睛】本题涉及到全称命题、正切函数的性质、不等式恒成立问题等多个知识点,意在考查学生综合利用所学知识解决问题的能力,注意等价转化的思想的应用,此题属中档题.。
(2021年整理)2015年高考数学试题分类汇编常用逻辑用语
2015年高考数学试题分类汇编常用逻辑用语编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2015年高考数学试题分类汇编常用逻辑用语)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2015年高考数学试题分类汇编常用逻辑用语的全部内容。
题十一 常用逻辑用语1.(15北京理科)设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥"是“αβ∥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】试题分析:因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件。
考点:1.空间直线与平面的位置关系;2。
充要条件。
2。
(15年安徽文科)设p :x 〈3,q :-1〈x 〈3,则p 是q 成立的( )(A )充分必要条件 (B)充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件【答案】C【解析】试题分析:∵3: x p ,31: x q -∴p q ⇒,但p ⇒/q ,∴p 是q 成立的必要不充分条件,故选C.考点:充分必要条件的判断.3.(15年新课标1理科)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N , 2n 〉2n (B )∃ n ∈N , 2n ≤2n(C)∀n ∈N , 2n ≤2n (D )∃ n ∈N , 2n =2n【答案】C【解析】p ⌝:2,2n n N n ∀∈≤,故选C 。
十年(2015-2024)高考真题分项汇编数学专题01集合与常用逻辑用语
专题01集合与常用逻辑用语考点十年考情(2015-2024)命题趋势考点1集合间的基本关系(10年2考)2023·全国新Ⅱ卷、2020全国新Ⅰ卷一般给两个集合,要求通过解不等式求出集合,然后通过集合的运算得出答案。
考点2交集(10年10考)2024·全国新Ⅰ卷、2024年全国甲卷、2023·北京卷、2023全国新Ⅰ卷、2022·全国新Ⅱ卷、2022年全国乙卷、2022年全国甲卷、2022全国新Ⅰ卷、2021年全国乙卷、2021年全国甲卷、2021年全国甲卷、2021全国新Ⅰ卷考点3并集(10年8考)2024·北京卷、2022·浙江卷、2021·北京卷、2020·山东卷、2019·北京卷、2017·浙江卷、2017·全国卷、2016·山东卷、2016·全国卷、2015·全国卷考点4补集(10年8考)2024年全国甲卷、2023年全国乙卷、2023年全国乙卷、2022·全国乙卷、2022·北京卷、2021全国新Ⅱ卷、2020全国新Ⅰ卷、2018·浙江卷、2018·全国卷、2017·北京卷考点5充分条件与必要条件(10年10考)2024·全国甲卷、2024·天津卷、2024·北京卷、2023·北京卷、2023·全国甲卷、2023·天津卷、2023·全国新Ⅰ卷、2022·浙江卷、2022·北京卷、2021·全国甲卷常以关联的知识点作为命题背景,考查充分条件与必要条件,难度随载体而定。
考点6全称量词与存在量词(10年4考)2024·全国新Ⅱ卷、2020·全国新Ⅰ卷、2016·浙江卷、2015·浙江卷、2015·全国卷、2015·湖北卷全称量词命题和存在量词命题的否定及参数求解是高考复习和考查的重点。
2015年高中数学高考真题分类汇编理科数学A单元 集合与常用逻辑用语
数 学A 单元 集合与常用逻辑用语A1 集合及其运算1.A1[2015·广东卷] 若集合M ={x |(x +4)(x +1)=0},N ={x |(x -4)(x -1)=0},则M ∩N =( )A .{1,4}B .{-1,-4}C .{0}D .∅1.D [解析] M ={x |(x +4)(x +1)=0}={-4,-1},N ={x |(x -4)(x -1)=0}={1,4},∴M ∩N =∅.9.A1[2015·湖北卷] 已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A B 中元素的个数为( )A .77B .49C .45D .309.C [解析] 集合A 表示如图所示的所有实心圆表示的点,集合B 表示如图所示的所有实心圆和所有空心圆表示的点,集合A B 显然是集合{(x ,y )||x |≤3,|y |≤3,x ,y ∈Z }中除去点(-3,-3),(-3,3),(3,-3),(3,3)之外的所有整点(横坐标与纵坐标都为整数的点),即集合A B 表示如图所示的所有实心圆、所有空心圆以及所有⊙表示的点,共45个.故A B 中元素的个数为45.故选C.1.A1[2015·江苏卷] 已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________.1.5 [解析] 因为A ∪B ={1,2,3,4,5},所以A ∪B 中元素的个数为5.1.A1[2015·全国卷Ⅱ] 已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}1.A [解析] 因为B ={x |-2<x <1},所以A ∩B ={-1,0},故选A.20.D5,A1[2015·北京卷] 已知数列{a n }满足:a 1∈N *,a 1≤36,且a n +1=⎩⎪⎨⎪⎧2a n ,a n ≤18,2a n -36,a n >18(n =1,2,…).记集合M ={a n |n ∈N *}.(1)若a 1=6,写出集合M 的所有元素;(2)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数;(3)求集合M 的元素个数的最大值.20.解:(1)6,12,24.(2)证明:因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数.由a n +1=⎩⎪⎨⎪⎧2a n ,a n ≤18,2a n -36,a n>18可归纳证明对任意n ≥k ,a n 是3的倍数. 如果k =1,则M 的所有元素都是3的倍数.如果k >1,因为a k =2a k -1或a k =2a k -1-36,所以2a k -1是3的倍数,于是a k -1是3的倍数.类似可得,a k -2,…,a 1都是3的倍数,从而对任意n ≥1,a n 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.(3)由a 1≤36,a n =⎩⎪⎨⎪⎧2a n -1,a n -1≤18,2a n -1-36,a n -1>18可归纳证明a n ≤36(n =2,3,…). 因为a 1是正整数,a 2=⎩⎪⎨⎪⎧2a 1,a 1≤18,2a 1-36,a 1>18,所以a 2是2的倍数,从而当n ≥3时,a n 是4的倍数.如果a 1是3的倍数,由(2)知对所有正整数n ,a n 是3的倍数.因此当n ≥3时,a n ∈{12,24,36},这时M 的元素个数不超过5.如果a 1不是3的倍数,由(2)知对所有正整数n ,a n 不是3的倍数.因此当n ≥3时,a n ∈{4,8,16,20,28,32},这时M 的元素个数不超过8.当a 1=1时,M ={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M 的元素个数的最大值为8.1.A1[2015·福建卷] 若集合A ={i ,i 2,i 3,i 4}(i 是虚数单位),B ={1,-1},则A ∩B 等于( )A .{-1}B .{1}C .{1,-1}D .∅1.C [解析] A ={}i ,-1,-i ,1,所以A ∩B ={}1,-1.1.A1[2015·山东卷] 已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则A ∩B =( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)1.C [解析] ∵A ={x |1<x <3},∴A ∩B =(2,3) .1.A1[2015·陕西卷] 设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( )A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]1.A [解析] 由题得集合M ={0,1},N =(0,1],所以M ∪N =[0,1].1.A12015·四川卷设集合A ={x |(x +1)(x -2)<0},集合B ={x |1<x <3},则A ∪B =( )A .{x |-1<x <3}B .{x |-1<x <1}C .{x |1<x <2}D .{x |2<x <3}1.A [解析] 因为集合A ={x |-1<x <2},B ={x |1<x <3},所以A ∪B ={x |-1<x <3}.1.A1[2015·天津卷] 已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩∁U B =( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}1.A [解析] ∁U B ={2,5,8},A ∩∁U B ={2,3,5,6}∩{2,5,8}={2,5},故选A.1.A12015·浙江卷已知集合P ={x |x 2-2x ≥0},Q ={x |1<x ≤2},则(∁R P )∩Q =( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]1.C [解析] P ={x |x ≤0或x ≥2},∁R P ={x |0<x <2},则(∁R P )∩Q =(1,2),故选C.6.A1[2015·浙江卷] 设A ,B 是有限集,定义:d (A ,B )=card(A ∪B )-card(A ∩B ),其中card(A )表示有限集A 中元素的个数.命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件;命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C ).( )A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立6.A [解析] 命题①显然成立,由下图亦可知d (A ,C )表示的区域不大于d (A ,B )+d (B ,C )表示的区域,故命题②也成立,故选1.A1[2015·重庆卷] 已知集合A ={1,2,3},B ={2,3},则( )A .A =B B .A ∩B =∅C .A BD .B A1.D [解析] 由子集的概念知B A ,故选D.A2 命题及其关系、充分条件、必要条件3.A2[2015·安徽卷] 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.A [解析] 由2x >1,得x >0.记P ={x |1<x <2},Q ={x |x >0},则P 是Q 的真子集,因此P ⇒Q ,反之Q ⇒/ P ,即p 是q 成立的充分不必要条件,故选A.5.A2、N4、D3[2015·湖北卷] 设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件5.A [解析] 当p 成立,即a 1,a 2,…,a n 成等比数列时,a 1a 2=a 2a 3=…=a n -1a n,满足柯西不等式(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )≥(a 1a 2+a 2a 3+…+a n -1a n )2等号成立的条件,故(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+ a n -1a n )2,即q 成立;但当q 成立时,不一定非要a 1,a 2,…,a n 成等比数列,如:当a 1=1,a 2=a 3=…=a n =0时,q 成立,但不满足a 1,a 2,…,a n 成等比数列.所以p 是q 的充分条件,但不是q 的必要条件.故选A.4.A2,G4[2015·北京卷] 设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.B [解析] 当m ⊂α,m ∥β时,不能确定平面α与β平行;当α∥β时,根据平面与平面平行的性质,可以推出m ∥β.7.A2,G4,G5[2015·福建卷] 若l ,m 是两条不同的直线,m 垂直于平面α,则“l ⊥m ”是“l ∥α”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.B [解析] 若m ⊥α,l ⊥m ,则l ⊂α或l ∥α;若m ⊥α,l ∥α,则l ⊥m .故选B.2.A2[2015·湖南卷] 设A ,B 是两个集合,则“A ∩B =A ”是“A ⊆B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.C [解析] 由集合的运算知,A ∩B =A ⇔A ⊆B ,故选C.6.A2、C6[2015·陕西卷] “sin α=cos α”是“cos 2α=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.A [解析] sin α=cos α时,cos 2α=cos 2α-sin 2α=0,反之cos 2α=0时,sin α=±cos α,故“sin α=cos α”是“cos 2α=0”的充分不必要条件.8.A2,B6,B7[2015·四川卷] 设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件8.B [解析] 当3a >3b >3时,有a >b >1,从而有log a 3<log b 3,充分性成立;取a =13,b =3,此时log a 3<log b 3,但不满足a >b >1,从而3a >3b >3不成立,即必要性不成立.故选B.4.A2、E2、E3[2015·天津卷] 设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.A [解析] 由|x -2|<1,解得1<x <3;由x 2+x -2>0,解得x >1或x <-2.由1<x <3可以推出x >1或x <-2,反之,不成立,所以“|x -2|<1”是“x 2+x -2>0 ”的充分不必要条件.故选A.4.A2[2015·重庆卷] “x >1”是“log 12(x +2)<0”的( ) A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件4.B [解析] 由log 12(x +2)<0,得x +2>1,解得x >-1,所以“x >1”是“log 12(x +2)<0”的充分而不必要条件.A3 基本逻辑联结词及量词3.A3[2015·全国卷Ⅰ] 设命题p :∃n ∈N ,n 2>2n ,则綈p 为( )A .∀n ∈N ,n 2>2nB .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n3.C [解析] 特称命题的否定是全称命题,故选C.12.A3、C3[2015·山东卷] 若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.12.1 [解析] ∵y =tan x 在区间⎣⎡⎦⎤0,π4上单调递增,∴y =tan x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π4的最大值为tan π4=1. 又∵“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,∴m ≥1. 4.A3[2015·浙江卷] 命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( )A .∀n ∈N *,f (n )∉N *且f (n )>nB .∀n ∈N *,f (n )∉N *或f (n )>nC .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 04.D [解析]图1-2A4 单元综合12.[2015·上饶一模] 给出下列四个命题:①方程3x -2+|y +1|=0的解集是⎩⎨⎧⎭⎬⎫23,-1; ②集合{}x ∈Z |x 3=x 用列举法表示为{-1,0,1};③集合M ={y |y =x 2+1}与集合P ={(x ,y )|y =x 2+1}表示同一集合;④集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪2x >12,B ={x |log 2x <1},则A ∩B =(-1,2). 其中真命题的个数为( )A .1B .2C .3D .412.A [解析] ①方程的解集应写成⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫23,-1,故①错;②正确;③集合M ={y |y ≥1},集合P 表示抛物线y =x 2+1上所有点的集合,故③错;④集合A ={x |x >-1},B ={x |0<x <2},则A ∩B ={x |0<x <2},故④错.故选A.14.[2015·丽水一模] 设全集U =R ,集合A ={x ∈R |x 2-2x -3>0},B ={x ∈R ||x -a |>3},则∁U A =________;若(∁U A )∩B =∅,则实数a 的取值范围是________ .14.[-1,3] [0,2] [解析] 由已知得A ={x |x 2-2x -3>0}={x |x <-1或x >3},则∁U A ={x |-1≤x ≤3}.又B ={x |x <a -3或x >a +3},所以若(∁U A )∩B =∅,则⎩⎪⎨⎪⎧a +3≥3,a -3≤-1,解得0≤a ≤2.8.[2015·马鞍山质检] 下列说法中,正确的是( )A. 命题“若am 2<bm 2,则a <b ”的逆命题是真命题B. 命题“∃x 0∈R ,x 20-x 0>0”的否定是“∀x ∈R ,x 2-x ≤0”C. p ∨q 为真命题,则命题p 和命题q 均为真命题D. 已知x ∈R ,则“x >1”是“x >2”的充分不必要条件8.B [解析] 因为原命题的逆命题为“若a <b ,则am 2<bm 2”,当m =0时不成立,所以逆命题为假命题,故选项A 错;特称命题的否定是全称命题,并把结论否定,故选项B 正确;若p ∨q 为真命题,则p ,q 至少有一个为真命题,故选项C 错;若x >1成立,则x >2不一定成立,故选项D 错.故选B.6.[2015·东北三省四市联考] 下列说法中正确的个数是( )①“x =1”是“x 2-3x +2=0”的充分不必要条件;②命题“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”;③若p :∀x ∈[)1,+∞,lg x ≥0,q :∃x 0∈R ,x 20+x 0+1<0,则p ∨q 为真命题.A .0B .1C .2D .36.D [解析] 由x =1,得x 2-3x +2=0,反之,若x 2-3x +2=0,则x =1或x =2,故①正确;全称命题的否定是特称命题,易知②正确;因为p 是真命题,q 是假命题,所以p ∨q 是真命题,故③正确.故选D.。
2015届高考数学(文)二轮专题课件:1.1集合与常用逻辑用语
主干考 点梳理
(1)特称量词(存在量词):短语
存在一个 ”“ 至少有一个 “__________ __________”等在逻辑中通常叫做 ∃________”表示. 特称量词(存在量词),用符号“ (2)特称命题(存在性命题):含有特称量词 ______________ (存在量词) 的命题叫做特称命题(存在性命题).
栏 目 链 接
主干考 点梳理 4.已知全集U=R,集合A={x|x+1<0},B ={x|x-3<0},则集合(∁UA)∩B=( A ) A.{x|-1≤x<3} B.{x|-1<x<3} C.{x|x<-1} D.{x|x>3}
栏 目 链 接
栏 目 链 接
高考热 点突破
突破点1
集合间的关系与运算问题
随堂讲义· 第一部分
知识复习专题
专题一 集合、常用逻辑用语、 函数与导数
第一讲
集合与常用逻辑用语
集合与常用逻辑用语在高考中是以选择题或 填空题的形式进行考查的,属于容易题,但命题 真假的判断,这一点综合性较强,联系到更多的
知识点,属于中档题,预测2015年高考,会以集
合的运算和充要条件作为考查的重点.
性.
逆 命题或________ ②两个命题互为________ 否 命题,它
们的真假性没有关系. 2.充分条件、必要条件与充要条件. (1)定义:对于“若p,则q”形式的命题,如果已知
栏 目 链 接
充分条件 ;如果q⇒p,那么p是q p⇒q,那么p是q的____________
主干考 点梳理 的____________ 必要条件 ;如果既有p⇒q,又有q⇒p,则记 p⇔q ,就是说p是q的____________ 充要条件 作__________ .
2015年高考数学《新高考创新题型》之1:集合与常用逻辑用语(含精析)
之1。
集合与常用逻辑用语(含精析)一、选择题。
1.用C (A )表示非空集合A 中的元素个数,定义A *B=⎩⎨⎧<-≥-)()(),()()()(),()(B C A C A C B C B C A C B C A C 。
若A ={1,2},B=}0)2()(|{22=++⋅+ax x ax x x ,且A *B=1,设实数a 的所有可能取值集合是S ,则C (S )=( ) A.4 B.3 C 。
2 D 。
12.下列命题:①△ABC 的三边分别为c b a ,,则该三角形是等边三角形的充要条件为bc ac ab c b a ++=++222;②数列{}n a 的前n 项和为n S ,则Bn An S n +=2是数列{}n a 为等差数列的必要不充分条件;③在△ABC 中,A =B 是sin A =sin B 的充分必要条件;④已知222111,,,,,c b a c b a 都是不等于零的实数,关于x 的不等式01121>++c x b x a 和02222>++c x b x a 的解集分别为P ,Q ,则212121c c b b a a ==是Q P =的充分必要条件,其中正确的命题是( )A .①④B .①②③C .②③④D .①③3.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:≥+()F x kx b 和≤+()G x kx b 恒成立,则称此直线=+y kx b 为()F x 和()G x 的“隔离直线".已知函数=∈=<=21()(),()(0),()2ln f x x x R g x x h x e x x.有下列命题:①=-()()()F x f x g x 在∈-31(,0)2x 内单调递增;②()f x 和()g x 之间存在“隔离直线”, 且b 的最小值为—4; ③()f x 和()g x 之间存在“隔离直线”, 且k 的取值范围是-(4,0]; ④()f x 和()h x 之间存在唯一的“隔离直线”=-2y ex e . 其中真命题的个数有( )A .1个B .2个C .3个D .4个4.定义一个集合A 的所有子集组成的集合叫做集合A 的幂集,记为()P A ,用()n A 表示有限集A 的元素个数,给出下列命题:①对于任意集合A ,都有()A P A ∈;②存在集合A ,使得()3n P A =⎡⎤⎣⎦; ③用∅表示空集,若AB =∅,则()()P A P B =∅;④若A B ⊆,则()()P A P B ⊆;⑤若()n A -()1n B =,则()()2n P A n P B =⨯⎡⎤⎡⎤⎣⎦⎣⎦其中正确的命题个数为( )A 。
2015高考理科数学试题分类解析之专题一集合与常用逻辑用语.doc
专题一 集合与常用逻辑用语试题部分1.【2015高考四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x <<(){|23}D x x <<2.【2015高考广东,理1】若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N = A .∅ B .{}1,4-- C .{}0D .{}1,43.【2015高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤ (C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈4.【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞5.【2015高考湖北,理5】设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.【2015高考天津,理4】设x R ∈ ,则“21x -< ”是“220x x +-> ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件7.【2015高考重庆,理1】已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、A ØBD 、B ØA8.【2015高考福建,理1】若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .φ9.【2015高考重庆,理4】“1x >”是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件10.【2015高考新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,211.【2015高考天津,理1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B =ð( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,812.【2015高考安徽,理3】设:12,:21x p x q <<>,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件13.【2015高考山东,理1】已知集合{}2430A x x x =-+<,{}24B x x =<<,则A B =( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)14.【2015高考浙江,理4】命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >15.【2015高考浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =ðA.[0,1)B. (0,2]C. (1,2)D. [1,2]16.【2015高考山东,理12】若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值为 .17.【2015高考江苏,1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______.18.【2015高考湖南,理2】.设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件19.【2015高考上海,理1】设全集U R =.若集合{}1,2,3,4A =,{}23x x B =≤≤,则U A B =ð .参考答案1.【解析】{|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<<,选A.2.【解析】因为()(){}{}|4104,1M x x x =++==--,()(){}{}|4101,4N x x x =--==,所以MN =∅,故选A .3.【解析】p ⌝:2,2n n N n ∀∈≤,故选C.4.【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1MN =,故选A .5.6.【解析】2112113x x x -<⇔-<-<⇔<<,2202x x x +->⇔<-或1x >,所以 “21x -< ”是“220x x +-> ”的充分不必要条件,故选A.7.【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D .8.【解析】由已知得{},1,,1A i i =--,故A B ={}1,1-,故选C .9.【解析】12log (2)0211x x x +<⇔+>⇔>-,因此选B .10.【解析】由已知得{}21B x x =-<<,故{}1,0A B =-,故选A .11.【解析】{2,5,8}U B =ð,所以{2,5}U A B =ð,故选A. 12.13.【解析】因为{}{}243013A x x x x x =-+<=<<, 所以{}{}{}132423A B x x x x x x =<<<<=<<.故选:C.14.【解析】根据全称命题的否定是特称命题,可知选D.15.【解析】由题意得,)2,0(=P C R ,∴()(1,2)R P Q =ð,故选C. 16.17.【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个.18.【解析】由题意得,A B A A B =⇒⊆,反之,A B A B A =⇒⊆ ,故为充要条件,选C.19.【答案】{}1,4【解析】因为{|32}U C B x x x =><或,所以{4,1}U A C B =。
2015高考数学(文)真题分类汇编:专题01+集合与常用逻辑用语
(A) {2}
【答案】C
(B) {1, 2}
(C) {1, 3}
(D) {1, 2,3}
【解析】由已知及交集的定义得 A B {1, 3} ,故选 C.
【考点定位】集合的运算.
【名师点睛】本题考查集合的概念和运算,本题属于基础题,注意观察的仔细.
3.【2015 高考浙江,文 3】设 a , b 是实数,则“ a b 0 ”是“ ab 0 ”的( )
【答案】 A 【解析】由 M {x | x2 x} M {0,1}, N {x | lg x 0} N {x | 0 x 1},
所以 M N [0,1] ,故答案选 A .
【考点定位】集合间的运算. 【名师点睛】1.本题考查以不等式为基础的集合间的运算,解不等式时注意原式意义的范
A、充分不必要条件 C、充要条件 【答案】C
B、必要不充分条件 D、既不充分也不必要条件
【解析】由题易知“ x >1”可以推得“ x2 >1”, “ x2 >1”不一定得到“ x >1”,所以“ x
>1”是“ x2 >1”的充分不必要条件,故选 A.
【考点定位】充要关系 【名师点睛】判断充分条件和必要条件的方法
(A) 充要条件 (C)必要不充分条件
【答案】A
(B) 充分不必要条件 (D)既不充分也不必要条件
【解析】由“ x =1 ”显然能推出“ x2 - 2x +1 = 0 ”,故条件是充分的,又由“ x2 - 2x +1 = 0 ”
可得 (x 1)2 0 x 1,所以条件也是必要的,故选 A.
【考点定位】充要条件. 【名师点睛】本题考查充要条件的概念和判断,采用推出法进行判断,本题属于基础题,注 意推理的正确性.
2015年高考数学理真题分类汇编:专题01 集合与常用逻辑用语 Word版含解析
专题一集合与常用逻辑用语1.【2015高考四川,理1】设集合,集合,则()【答案】A【解析】,选A.【考点定位】集合的基本运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.2.【2015高考广东,理1】若集合,,则()A. B. C. D.【答案】.【解析】因为,,所以,故选.【考点定位】一元二次方程的解集,集合的基本运算.【名师点睛】本题主要考查一元二次方程的解集,有限集合的交集运算和运算求解能力,属于容易题.3.【2015高考新课标1,理3】设命题:,则为( )(A)(B)(C)(D)【答案】C【解析】:,故选C.【考点定位】本题主要考查特称命题的否定【名师点睛】全称命题的否定与特称命题的否定是高考考查的重点,对特称命题的否定,将存在换成任意,后边变为其否定形式,注意全称命题与特称命题否定的书写,是常规题,很好考查了学生对双基的掌握程度.4.【2015高考陕西,理1】设集合,,则()A. B. C. D.【答案】A【解析】,,所以,故选A.【考点定位】1、一元二次方程;2、对数不等式;3、集合的并集运算.【名师点晴】本题主要考查的是一元二次方程、对数不等式和集合的并集运算,属于容易题.解题时要看清楚是求“”还是求“”和要注意对数的真数大于,否则很容易出现错误.5.【2015高考湖北,理5】设,.若p:成等比数列;q:,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件【答案】A【考点定位】等比数列的判定,柯西不等式,充分条件与必要条件.【名师点睛】判断p是q的什么条件,需要从两方面分析:一是由条件p 能否推得条件q,二是由条件q能否推得条件p.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.6.【2015高考天津,理4】设,则“ ”是“ ”的( )(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件【答案】A【解析】,或,所以“ ”是“ ”的充分不必要条件,故选A.【考点定位】不等式解法与充分条件、必要条件.【名师点睛】本题主要考查不等式的解法、充分条件与必要条件相关问题,将含绝对值不等式与一元二次不等式和解法、充分条件、必要条件、充要条件相关的问题联系在起来,体现综合应用数学知识解决问题的能力,是基础题7.【2015高考重庆,理1】已知集合A=,B=,则( )A、A=BB、AB=C、ABD、BA【答案】D【解析】由于,故A、B、C均错,D是正确的,选D.【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.【名师点晴】考查集合的关系,涉及集合的相等.集合的交集运算,子集等概念,是送分题.8.【2015高考福建,理1】若集合(是虚数单位),,则等于 ( ) A. B. C. D.【答案】C【解析】由已知得,故,故选C.【考点定位】1、复数的概念;2、集合的运算.【名师点睛】本题考查复数的概念和集合的运算,利用和交集的定义求解,属于基础题,要注意运算准确度.9.【2015高考重庆,理4】“”是“”的( )A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件【答案】B【解析】,因此选B.【考点定位】充分必要条件.【名师点晴】本题把充分必要条件与对数不等式结合在一起,既考查了对数函数的性质,又考查了充分必要条件的判断,从本题可知我们可能用集合的观点看充分条件、必要条件:A={x|x满足条件p},B={x|x满足条件q},(1)如果AB,那么p是q的充分不必要条件;(2)如果BA,那么p是q的必要不充分条件;(3)如果A=B,那么p是q的充要条件;(4)如果,且,那么p是q的既不充分也不必要条件.本题易错点在于解对数不等式时没有考虑对数的定义域.10.【2015高考新课标2,理1】已知集合,,则()A. B. C. D.【答案】A【解析】由已知得,故,故选A.【考点定位】集合的运算.【名师点睛】本题考查一元二次不等式解法和集合运算,要求运算准确,属于基础题.11.【2015高考天津,理1】已知全集,集合,集合,则集合( )(A)(B)(C)(D)【答案】A【解析】,所以,故选A.【考点定位】集合的运算.【名师点睛】本题主要考查集合的运算,涉及全集、补集、交集相关概念和求补集、交集的运算,是基础题.12.【2015高考安徽,理3】设,则是成立的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案】A【考点定位】1.指数运算;2.充要条件的概念.【名师点睛】对于指对数运算问题,需要记住常见的等式关系,如,进而转化成同底的问题进行计算;充要关系的判断问题,可以分为由“”推证“”以及由“”推证“”.13.【2015高考山东,理1】已知集合,,则()(A)(1,3)(B)(1,4)(C)(2,3)(D)(2,4)【答案】C【解析】因为,所以.故选:C.【考点定位】1、一元二次不等式;2、集合的运算.【名师点睛】本题考查集合的概念与运算,利用解一元二次不等式的解法化简集合并求两集合的交集,本题属基础题,要求学生最基本的算运求解能力.14.【2015高考浙江,理4】命题“且的否定形式是()A. 且B. 或C. 且D. 或【答案】D.【解析】根据全称命题的否定是特称命题,可知选D.【考点定位】命题的否定【名师点睛】本题主要考查了全称命题的否定等知识点,属于容易题,全称(存在性)命题的否定与一般命题的否定有着一定的区别,全称(存在性)命题的否定是将其全称量词改为存在量词(或把存在量词改为全称量词),并把结论否定;而一般命题的否定则是直接否定结论即可,全称量词与特称量词的意义,是今年考试说明中新增的内容,在后续的复习时应予以关注.15.【2015高考浙江,理1】已知集合,,则()A. B. C. D.【答案】C.【解析】由题意得,,∴,故选C.【考点定位】1.解一元二次不等式;2.集合的运算.【名师点睛】本题主要考查了解一元二次不等式,求集合的补集与交集,属于容易题,在解题过程中要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.16.【2015高考山东,理12】若“”是真命题,则实数的最小值为 .【答案】1【考点定位】1、命题;2、正切函数的性质.【名师点睛】本题涉及到全称命题、正切函数的性质、不等式恒成立问题等多个知识点,意在考查学生综合利用所学知识解决问题的能力,注意等价转化的思想的应用,此题属中档题.17.【2015高考江苏,1】已知集合,,则集合中元素的个数为_______.【答案】5【解析】,,则集合中元素的个数为5个.【考点定位】集合运算【名师点晴】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A或属于集合B的元素的个数. 本题需注意检验集合的元素是否满足互异性,否则容易出错.18.【2015高考湖南,理2】.设,是两个集合,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C.【解析】试题分析:由题意得,,反之,,故为充要条件,选C.【考点定位】1.集合的关系;2.充分必要条件.【名师点睛】本题主要考查了集合的关系与充分必要条件,属于容易题,高考强调集合作为工具与其他知识点的结合,解题的关键是利用韦恩图或者数轴求解,充分,必要条件的判断性问题首要分清条件和结论,然后找出条件和结论之间的推出或包含关系.19.【2015高考上海,理1】设全集.若集合,,则 .【答案】【解析】因为,所以【考点定位】集合运算【名师点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A或不属于集合B的元素的集合. 本题需注意两集合一个是有限集,一个是无限集,按有限集逐一验证为妥。
2015年高考试题分类汇编(常用逻辑用语)
2015年高考试题分类汇编(常用逻辑用语)考点1 简单的命题1.(2015·山东卷·理科)若m R ∈, 如题“0m >,则方程20x x m +-=有实根”的逆否命题是A.若方程20x x m +-=有实根,则0m >B.若方程20x x m +-=有实根,则0m ≤C.若方程20x x m +-=没有实根,则0m >D.若方程20x x m +-=没有实根,则0m ≤2.(2015·广东卷·文科)若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交3.(2015·山东卷·理科)若“[0,]4x π∀∈,tan x m ≤”是真命题,则实数m 的最小值为 .考点2 充分、必要条件1.(2015·北京卷·理科)设,A B 是两个集合,则“A B A =”是“A B ⊆”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.(2015·北京卷·理科)设,αβ是两个不同的平面,m 是直线且m α⊂. “m β∥”是“αβ∥” 的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(2015·北京卷·理科)若,l m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“//l α”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 4.(2015·北京卷·文科)设a r ,b r 是非零向量,“a b a b ⋅=r r r r ”是“a r //b r ”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(2015·陕西卷·文理科)sin cos αα=“”是cos 20α=“”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(2015·福建卷·文科)“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的 A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(2015·重庆卷·文科)“1x =”是“2210x x -+=”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件8.(2015·天津卷·理科)设x R ∈,则“21x -<”是“220x x +->”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.(2015·天津卷·文科)设R x ∈,则“12x <<”是“|2|1x -<”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.(2015·重庆卷·理科)“0x >”是“12(2)0x log +<”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件11.(2015·四川卷·理科)设,a b 都是不等于1的正数,则“333a b >>”是 “log 3log 3a b <”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件12.(2015·四川卷·文科)设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件13.(2015·安徽卷·理科)设p :12x <<,q :21x >,则p 是q 成立的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件14.(2015·安徽卷·文科)设p :3x <,q :13x -<<,则p 是q 成立的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件15.(2015·湖南卷·文科)设x R ∈,则“1x >”是“31x >”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件16.(2015·浙江卷·文科)设a ,b 是实数,则“0a b +>”是“0ab >”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 考点3 全称命题、特称命题1.(2015·全国卷Ⅰ·理科)设命题P :n N ∃∈,22n n >,则p ⌝为A.n N ∀∈, 22n n >B.n N ∃∈,22n n ≤C.n N ∀∈,22n n ≤D.n N ∀∈,22n n =2.(2015·浙江卷·理科)命题“任意*n N ∈,*()f n N ∈且()f n n ≤的否定形式是A.任意*n N ∈,*()f n N ∉且()f n n >B.任意*n N ∈,*()f n N ∉或()f n n >C.存在*0n N ∈,*()f n N ∉且00()f n n >D.存在*0n N ∈,*()f n N ∉或00()f n n >3.(2015·湖北卷·文科)命题“存在0(0,)x ∈+∞,00ln 1x x =-”的否定是A .任意(0,)x ∈+∞,ln 1x x ≠-B .任意(0,)x ∉+∞,ln 1x x =-C .存在0(0,)x ∈+∞,00ln 1x x ≠-D .存在0(0,)x ∉+∞,00ln 1x x =-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.【2015高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2【答案】D【解析】试题分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D.考点:集合运算【名师点睛】对集合运算问题,首项要确定集合类型,其次确定集合中元素的特征,先化简集合,若元素是离散集合,紧扣集合运算定义求解,若是连续数集,常结合数轴进行集合运算,若是抽象集合,常用文氏图法,本题是考查元素是离散的集合交集运算,是基础题.2.【2015高考重庆,文1】已知集合{1,2,3},B {1,3}A ==,则A B = ( )(A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3}【答案】C【解析】由已知及交集的定义得A B = {1,3},故选C.【考点定位】集合的运算.【名师点睛】本题考查集合的概念和运算,本题属于基础题,注意观察的仔细.3.【2015高考浙江,文3】设a ,b 是实数,则“0a b +>”是“0ab >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】本题采用特殊值法:当3,1a b ==-时,0a b +>,但0ab <,故是不充分条件;当3,1a b =-=-时,0ab >,但0a b +<,故是不必要条件.所以“0a b +>”是“0ab >”的即不充分也不必要条件.故选D.【考点定位】1.充分条件、必要条件;2.不等式的性质.【名师点睛】本题主要考查充分条件和必要条件.解答本题时要根据不等式的性质,采用特殊值的方法,对充分性与必要性进行判断.本题属于容易题,重点考查学生对不等式的性质的处理以及对条件的判断.4.【2015高考重庆,文2】“x 1=”是“2x 210x -+=”的( )(A) 充要条件 (B) 充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件【答案】A【解析】由“x 1= ”显然能推出“2x 210x -+=”,故条件是充分的,又由“2x 210x -+=”可得10)1(2=⇒=-x x ,所以条件也是必要的,故选A.【考点定位】充要条件.【名师点睛】本题考查充要条件的概念和判断,采用推出法进行判断,本题属于基础题,注意推理的正确性.5.【2015高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P = ( )A .[)3,4B .(]2,3C .()1,2-D .(]1,3-【答案】A【解析】由题意得,{}|31P x x x =≥≤或,所以[3,4)P Q = ,故选A.【考点定位】1.一元二次不等式的解法;2.集合的交集运算.【名师点睛】本题主要考查集合的交集运算.利用解一元二次不等式确定集合P 的范围,从而进行两个集合的交集运算.本题属于容易题,要注意不等式解的准确性.6.【2015高考天津,文1】已知全集{1,2,3,4,5,6}U =,集合{2,3,5}A =,集合{1,3,4,6}B =,则集合A U B=()ð( ) (A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5}【答案】B【解析】{2,3,5}A =,{2,5}U B =ð,则{}A 2,5U B=()ð,故选B. 【考点定位】本题主要考查集合的交集与补集运算.【名师点睛】集合是高考中的高频考点,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.7.【2015高考天津,文4】设x R Î,则“12x <<”是“|2|1x -<”的( )(A) 充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件【答案】A 【解析】由2112113x x x -<⇔-<-<⇔<<,可知“12x <<”是“|2|1x -<”的充分而不必要条件,故选A.【考点定位】本题主要考查不等式解法及充分条件与必要条件.【名师点睛】本题考查的知识点有两个,一是绝对值不等式的解法,与本题有关的结论是:若0a >,则()()f x a a f x a <⇔-<<,另一个是充分条件与必要条件,与本题有关的结论是:对于非空集合,A B ,若A 是B 的真子集,则x A ∈是x B ∈的充分不必要条件.8.【2015高考四川,文1】设集合A ={x |-1<x <2},集合B ={x |1<x <3},则A ∪B =( )(A ){x |-1<x <3} (B ){x |-1<x <1} (C ){x |1<x <2} (D ){x |2<x <3} 【答案】A9.【2015高考山东,文1】 已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( )(A )1,3() (B )1,4() (C )(2,3() (D )2,4()) 【答案】C【解析】因为|13B x x =<<{},所以{|24}{|13}(2,3)A B x x x x ⋂=<<⋂<<=,故选C .【考点定位】1.集合的基本运算;2.简单不等式的解法.【考点定位】1.集合的基本运算;2.简单不等式的解法.【名师点睛】本题考查集合的基本运算及简单不等式的解法,不等式中出现一次因式积的形式,降低了不等式求解的难度.本题属于基础题,注意基本概念的正确理解以及基本运算方法的准确性.10.【2015高考四川,文4】设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件【答案】A【解析】a >b >1时,有log 2a >log 2b >0成立,反之当log 2a >log 2b >0成立时,a >b >1也正确.选A【考点定位】本题考查对数函数的概念和性质、充要条件等基本概念,考查学生综合运用数学知识和方法解决问题的能力.【名师点睛】判断条件的充要性,必须从“充分性”和“必要性”两个方向分别判断,同时注意涉及的相关概念和方法.本题中涉及对数函数基本性质——单调性和函数值的符号,因此可以结合对数函数的图象进行判断,从而得出结论.属于简单题.11.【2015高考陕西,文1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A【解析】由2{|}{0,1}M x x x M ==⇒=,{|lg 0}{|01}N x x N x x =≤⇒=<≤,所以[0,1]M N = ,故答案选A .【考点定位】集合间的运算.【名师点睛】1.本题考查以不等式为基础的集合间的运算,解不等式时注意原式意义的范围.2.本题属于基础题,高考常考题型,注意运算的准确性. 12.【2015高考安徽,文2】设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U A C B = ( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 【答案】B【解析】∵{}6,5,1=B C U ,∴()U A C B = {}1,∴选B . 【考点定位】本题主要是考查了集合的交集、补集运算.【名师点睛】在判断充分、必要条件时,考生一定要作好三个步骤:①p ⇒q 是否成立;②p q ⇒是否成立;③形成结论,本题考查了考生的逻辑分析能力.13.【2015高考广东,文1】若集合{}1,1M =-,{}2,1,0N =-,则M N = ( )A .{}0,1-B .{}0C .{}1D .{}1,1-【答案】C【解析】{}1M N = ,故选C .【考点定位】集合的交集运算.【名师点晴】本题主要考查的是集合的交集运算,属于容易题.解题时要看清楚是求“ ”还是求“ ”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.14.【2015高考山东,文5】设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是( )(A )若方程20x x m +-=有实根,则0m >(B) 若方程20x x m +-=有实根,则0m ≤(C) 若方程20x x m +-=没有实根,则0m >(D) 若方程20x x m +-=没有实根,则0m ≤【答案】D【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D .【考点定位】命题的四种形式.【名师点睛】本题考查命题的四种形式,解答本题的关键,是明确命题的四种形式,正确理解“否定”的内容.本题属于基础题,是教科书例题的简单改造.15.【2015高考湖南,文3】设x ∈R ,则“x >1”是“2x >1”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件【答案】C【解析】由题易知“x >1”可以推得“2x >1”, “2x >1”不一定得到“x >1”,所以“x >1”是“2x >1”的充分不必要条件,故选A.【考点定位】充要关系【名师点睛】判断充分条件和必要条件的方法(1)命题判断法:设“若p ,则q ”为原命题,那么:①原命题为真,逆命题为假时,p 是q 的充分不必要条件;②原命题为假,逆命题为真时,p 是q 的必要不充分条件;③原命题与逆命题都为真时,p 是q 的充要条件;④原命题与逆命题都为假时,p 是q 的既不充分也不必要条件.(2)集合判断法:从集合的观点看,建立命题p ,q 相应的集合:p :A ={x |p (x )成立},q :B ={x |q (x )成立},那么:①若A ⊆B ,则p 是q 的充分条件;若A B 时,则p 是q 的充分不必要条件;②若B ⊆A ,则p 是q 的必要条件;若B A 时,则p 是q 的必要不充分条件;③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件.(3)等价转化法:p 是q 的什么条件等价于綈q 是綈p 的什么条件.16.【2015高考福建,文2】若集合{}22M x x =-≤<,{}0,1,2N =,则M N 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1【答案】D【解析】由交集定义得{}0,1M N = ,故选D .【考点定位】集合的运算.【名师点睛】本题考查集合的交集运算,理解交集的含义是正确解答的前提,属于基础题.17.【2015高考湖北,文3】命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( )A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =- 【答案】C .【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选C .【考点定位】本题考查特称命题和全称命题的否定形式,,属识记基础题.【名师点睛】本题主要考查特称命题的否定,其解题的关键是正确理解并识记其否定的形式特征.扎根基础知识,强调教材的重要性,充分体现了教材在高考中的地位和重要性,考查了基本概念、基本规律和基本操作的识记能力.18.【2015高考北京,文1】若集合{}52x x A =-<<,{}33x x B =-<<,则A B = ( ) A .{}32x x -<< B .{}52x x -<<C .{}33x x -<<D .{}53x x -<<【答案】A【解析】在数轴上将集合A ,B 表示出来,如图所示,由交集的定义可得,A B 为图中阴影部分,即{}32x x -<<,故选A .【考点定位】集合的交集运算.【名师点晴】本题主要考查的是集合的交集运算,属于容易题.解题时要看清楚是求“ ”还是求“ ”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.19.【2015高考安徽,文3】设p :x <3,q :-1<x <3,则p 是q 成立的( )(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件【答案】C【解析】∵3: x p ,31: x q -∴p q ⇒,但p ⇒/q ,∴p 是q 成立的必要不充分条件,故选C .【考点定位】本题主要考查充分、必要条件的判断.【名师点睛】在判断充分、必要条件时,考生一定要作好三个步骤:①p ⇒q 是否成立;②p q ⇒是否成立;③形成结论,本题考查了考生的逻辑分析能力.20.【2015高考湖南,文11】已知集合U={}1,2,3,4,A={}1,3,B={}1,3,4,则A (U B ð)=_____.【答案】{1,2,3}.【解析】由题U B ð={2},所以A (U B ð)={1,2,3}.【考点定位】集合的运算【名师点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或不属于集合B 的元素的集合. 本题需注意检验集合的元素是否满足互异性,否则容易出错.21.【2015高考上海,文2】设全集R =U .若集合}4,3,2,1{=A ,}32|{<≤=x x B ,则=)(B C A U .【答案】}4,1{【解析】因为}32|{<≤=x x B ,所以2|{<=x x B C U 或}3≥x ,又因为}4,3,2,1{=A , 所以}4,1{)(=B C A U .【考点定位】集合的运算.【名师点睛】先求B C U ,再求)(B C A U .集合的运算是容易题,应注意用描述法表示集合应注意端点值是否取号.【2015高考上海,文15】设1z 、C ∈2z ,则“1z 、2z 均为实数”是“21z z -是实数”的( ).A. 充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】A【考点定位】复数的概念,充分条件、必要条件的判定.【名师点睛】判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ,二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.。