线性代数练习材料五
(完整版)线性代数习题集(带答案)(最新整理)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ().(A) 24315 (B) 14325(C) 41523(D)243512.如果阶排列的逆序数是, 则排列的逆序数是( ).n n j j j 21k 12j j j n (A)(B)(C)(D)k k n -k n -2!k n n --2)1(3. 阶行列式的展开式中含的项共有()项.n 1211a a (A) 0(B)(C) (D) 2-n )!2(-n )!1(-n 4.( ).=0001001001001000(A) 0 (B) (C) (D) 21-15.( ).=01100000100100(A) 0 (B) (C) (D) 21-16.在函数中项的系数是( ).1000323211112)(x x x x x f ----=3x (A) 0(B) (C)(D) 21-17. 若,则 ( ).21333231232221131211==a a a a a a a a a D =---=3231333122212321121113111222222a a a a a a a a a a a a D (A) 4 (B)(C) 2 (D) 4-2-8.若,则 ( ).a a a a a =22211211=21112212ka a ka a(A) (B) (C) (D)ka ka -a k 2ak 2-9. 已知4阶行列式中第1行元依次是, 第3行元的余子式依次为3,1,0,4-, 则().x ,1,5,2-=x (A) 0(B)(C)(D) 23-310. 若,则中第一行元的代数余子式的和为().5734111113263478----=D D (A)(B)(C)(D)1-2-3-011. 若,则中第四行元的余子式的和为( ).2235001011110403--=D D (A)(B)(C)(D)1-2-3-012. 等于下列选项中哪个值时,齐次线性方程组有非零解.k ⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x ( )(A) (B)(C)(D)1-2-3-0二、填空题1. 阶排列的逆序数是.n 2)12(13)2(24-n n 2.在六阶行列式中项所带的符号是.261365415432a a a a a a 3.四阶行列式中包含且带正号的项是.4322a a 4.若一个阶行列式中至少有个元素等于, 则这个行列式的值等于n 12+-n n 0.5. 行列式.=01001110101001116.行列式.=-0100002000010 nn 7.行列式.=--0001)1(2211)1(111 n n n n a a a a a a 8.如果,则.M a a a a a a a a a D ==333231232221131211=---=3232333122222321121213111333333a a a a a a a a a a a a D 9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式.=--+---+---1111111111111111x x x x 11.阶行列式.n =+++λλλ11111111112.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式,为D 中第四行元的代数余子式,5678123487654321=D j A 4)4,3,2,1(=j 则.=+++44434241234A A A A 14.已知, D 中第四列元的代数余子式的和为.db c a c c a b b a b c a c b a D =15.设行列式,为的代数余子式,则62211765144334321-==D jA 4)4,3,2,1(4=j a j ,.=+4241A A =+4443A A16.已知行列式,D 中第一行元的代数余子式的和为nn D10301002112531-=.17.齐次线性方程组仅有零解的充要条件是.⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 18.若齐次线性方程组有非零解,则=.⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x k 三、计算题1.; 2.;cb a d b a dc ad c b dc b a dc b a dc b a++++++++33332222yx yx x y x y y x y x +++3.解方程; 4.;0011011101110=x x xx 111111321321221221221----n n n n a a a a x a a a a x a a a a x a a a a x5. (); na a a a111111111111210n j a j ,,1,0,1 =≠6. bn bb ----)1(1111211111311117. ; 8.; n a b b b a a b b a a a b 321222111111111xa a a a x a a a a x a a a a x n nn 3212121219.;10.2212221212121111nn n nnx x x x x x x x x x x x x x x +++210001200000210001210001211..aa a a a a a a aD ---------=111100011000110001四、证明题1.设,证明:.1=abcd 011111111111122222222=++++dddd c c c c b b b b a a a a 2..3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a x b a -=++++++3..))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a dc b a +++------=4..∏∑≤<≤=----=nj i i j n i i nnn nn nn n nna a a a a a a a a a a a a a a 1121222212222121)(1115.设两两不等,证明的充要条件是.c b a ,,0111333=c b a c ba 0=++cb a参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.;2.;3.;4.;5.;6.;7.n ”“-43312214a a a a 00!)1(1n n --; 8.; 9.; 10.; 11.; 12.;1)1(212)1()1(n n n n n a a a ---M 3-160-4x 1)(-+n n λλ2-13.; 14.; 15.; 16.; 17.; 18.009,12-)11(!1∑=-nk k n 3,2-≠k 7=k 三.计算题1.; 2. ;))()()()()()((c d b d b c a d a c a b d c b a ------+++-)(233y x +-3. ;4.1,0,2-=x ∏-=-11)(n k kax 5.;6. ;)111()1(00∑∏==-+-nk k nk k a a ))2(()1)(2(b n b b ---+- 7. ;8. ;∏=--nk k kna b1)()1(∏∑==-+nk k nk k a x a x 11)()(9. ;10. ;∑=+nk k x 111+n 11. .)1)(1(42a a a ++-四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
线性代数第五习题答案详解
第五章n 维向量空间习题一1. 解:a-b = a+(-b)= (1,1,0)T +(0,-1,-1)T = (1,0,-1)T3a+2b-c = 3a+2b+(-c)= (3,3,0)T +(0,2,2)T +(-3,-4,0)T = (0,1,2)T2. 解: 3(a 1-a)+2(a 2+a) = 5(a 3+a) 3a 1+2a 2+(-3+2)a = 5a 3+5a 3a 1+2a 2+(-a) = 5a 3+5a3a 1+2a 2+(-a)+a+(-5)a 3 = 5a 3+5a+a+(-5)a 3 3a 1+2a 2+(-5)a 3 = 6a61[3a 1+2a 2+(-5)a 3] = 616a21a 1+31a 2+(-65)a 3 = a将a 1=(2,5,1,3)T ,a 2=(10,1,5,10)T ,a 3=(4,1,-1,1)T 代入a =21a 1+31a 2+(-65)a 3 中可得: a=(1,2,3,4)T .3. (1) V 1是向量空间.由(0,0,…,0)∈V 1知V 1非空.设a=(x 1,x 2,…,x n )∈V 1,b=(y 1,y 2,…,y n )∈V 1,则有x 1+x 2+…+x n =0,y 1+y 2+…+y n =0.因为(x 1+y 1)+(x 2+y 2)+…+(x n +y n )= (x 1+x 2+…+x n )+( y 1+y 2+…+y n )=0所以a+b=( x 1+y 1,x 2+y 2,…,x n +y n )∈V 1.对于k ∈R ,有 kx 1+kx 2+…+kx n =k(x 1+x 2+…+x n )=0所以ka=( kx 1,kx 2,…,kx n ) ∈V 1.因此V 1是向量空间.(2) V 2不是向量空间.因为取a=(1, x 2,…,x n )∈V 2 ,b=(1, y 2,…,y n )∈V 2,但a+b=(2, x 2+y 2,…,x n +y n )∉V 2.因此V 2不是向量空间.习 题 二1. 求向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式:(1) 解:设向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式为: b=k 1a 1+k 2a 2+k 3a 3+k 4a 4其中, k 1,k 2,k 3,k 4为待定常数.则将b=(0,2,0,-1)T ,a 1=(1,1,1,1)T ,a 2=(1,1,1,0)T ,a 3=(1,1,0,0)T ,a 4=(1,0,0,0)T 向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式中可得: (0,2,0,-1)T =k 1(1,1,1,1)T +k 2(1,1,1,0)T +k 3(1,1,0,0)T +k 4(1,0,0,0)T 根据对分量相等可得下列线性方程组:⎪⎪⎩⎪⎪⎨⎧-====++++++1201213214321k k k k k k k k k k解此方程组可得:k 1=-1,k 2=1,k 3=2,k 4=-2.因此向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式为: b=-a 1+a 2+2a 3-2a 4 .(2) 与(1)类似可有下列线性方程组:⎪⎪⎩⎪⎪⎨⎧===-=+++++++++121332223212143214321k k k k k k k k k k k k k由方程组中的第一和第二个方程易解得:k 2=4,于是依次可解得:k 1=-2,k 3=-9, k 4=2.因此向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式为: b=-2a 1+4a 2-9a 3+2a 4 .2.(1) 解:因为向量组中向量的个数大于每个向量的维数,由推论2知a 1,a 2 ,a 3,a 4线性相关.(2) 解:()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛=400510111220510111331621111321a a a因为()3321=a a a R所以a 1,a 2,a 3线性无关.(3) 解:()⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-=00021011142012601117131442111321a a a因为()32321<=a a a R所以a 1,a 2,a 3线性相关.(4) 解:()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=500410111320410111211301111321a a a因为()3321=a a a R所以a 1,a 2,a 3线性无关.3. 证明:假设有常数k 1,k 2,k 3,使 k 1b 1+k 2b 2+k 3b 3=0又由于b 1=a 1,b 2=a 1+a 2,b 3=a 1+a 2+a 3,于是可得 k 1a 1+k 2(a 1+a 2)+k 3(a 1+a 2+a 3)=0 即(k 1+k 2+k 3)a 1+ (k 2+k 3)a 2+k 3a 3=0 因为a 1,a 2,a 3线性无关,所以有⎪⎩⎪⎨⎧==+=++000332321k k k k k k 解得⎪⎩⎪⎨⎧===000321k k k因此向量组b 1,b 2,b 3线性无关.4. 设存在常数k 1,k 2,k 3,k 4使k 1b 1+k 2b 2+k 3b 3+k 4b 4=0因为b 1=a 1+a 2,b 2= a 2+a 3,b 3=a 3+a 4,b 4= a 4+a 1 于是可得:k 1 (a 1+a 2)+k 2(a 2+a 3)+k 3(a 3+a 4)+k 4(a 4+a 1)=0 整理得:(k 1+k 4)a 1+ (k 2+k 1)a 2+(k 2+k 3)a 3+(k 3+k 4)a 4=0, (下用两种方法解)法 一:因为a 1,a 2,a 3,a 4为同维向量,则 (1) 当向量组a 1,a 2,a 3,a 4线性无关时,k 1+k 4=0, k 2+k 1=0,k 2+k 3=0,k 3+k 4=0可解得:k 2=- k 1,k 4=- k 1,k 3=k 1取k 1≠0可得不为0的常数k 1,k 2,k 3,k 4使k 1b 1+k 2b 2+k 3b 3+k 4b 4=0 因此b 1,b 2,b 3,b 4线性相关。
线性代数-作业册(2019.12)
上课教室
学号
1.计算下列二阶、三阶行列式:
线性代数同步习题册 第 - 1 - 页
2)
2xx11+−xx22+−xx33
=1 =1
.
姓名
x1 − x2 + x3 = 2
2 −3
1)
=
15
cos − sin
;
=
sin cos
201 2) 1 − 4 −1 =
−1 8 3
a b a+b 3) b a + b a =
0
0
0 0 4
3 0 1 2) 设 A = 1 1 0 ,且 AX = A + 2X , 求 X .
0 1 4
上课教室 1. 填空题
习题四
学号
线性代数同步习题册 第 - 7 - 页
2.解下列矩阵方程(X 为未知矩阵):
2 2 3 2 2
姓名
(1)
1
−1
0
X
=
3
2
;
−1 2 1 0 −2
y0
0x
a0 1 1
1
1 a1 0
0
(5) Dn+1 =
10
an−1 0
10
0 an
(其中 ai 0, i = 1, 2,, n )
3.已知齐次线性方程
(1 −
2
x1
) x1 + (3
− −
2x2 + 4x3 )x2 + x3
=0 =0
x1 + x2 + (1 − )x3 = 0
有非零解,求常数 的值.
( A + E)−1 =
《线性代数》第5章习题解答(r)new2_1
习题五(P213-215)1.写出下列二次型的矩阵:.)(),,,().4(;),,,().3(;),,,().2(;8223),,().1(211221111122142314321222∑∑∑∑==-=+=-=+=-=++-+-=ni i n i in n i i ini in x xn x x x f x xxx x x f x x x x x x x x f yz xz xy z y x z y x f解:(1)12123111442-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦;(2)12121212000000000000⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦;(3)1211221122111211111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4) 111111111n n n ---⎡⎤⎢⎥---⎢⎥⎢⎥⎢⎥---⎣⎦。
2.若二次型123(,,)T f x x x X AX =对任意向量123(,,)T x x x 恒有0),,(321=x x x f ,试证明:A 是零矩阵.解:取(1,0,0),(0,1,0),(0,0,1)T T TX X X ===等三个向量代入0,TX AX =则二次型的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A 的所有元素),3,2,1,3,2,1(0===j i a ij 从而有A =0. 3.设B A ,是n阶实对称矩阵,且对任意的n维向量x 有BX X AX X ''=成立,试证明:.B A = 证:设,21][,][,)',,,(n n ij n n ij n b B a A x x x X ⨯⨯=== 则AX X '中的j i x x 的系数BX X a a a ij ji ij ',2=+中j i x x 的系数为,2ij ji ij b b b =+比较j i x x 的系数知),,,2,1,(n j i b a ij ij ==所以.B A = 4.试证明:不可能有实数矩阵⎥⎦⎤⎢⎣⎡=d c b a C 使1010,0101TC C ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦即⎥⎦⎤⎢⎣⎡1001与⎥⎦⎤⎢⎣⎡-1001是不合同的. 证:用反证法.若,10011001'⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡d c b a d c b a 则推得,122-=+d b 这是不可能的.所以⎥⎦⎤⎢⎣⎡1001与⎥⎦⎤⎢⎣⎡-1001是不.5. 设D C B A ,,,均为n阶对称矩阵,且B A ,是合同的,D C ,是合同的,试证明:⎥⎦⎤⎢⎣⎡B A 00与⎥⎦⎤⎢⎣⎡D C00也是合同的.证: 设,','D CQ Q B AP P ==则.00000000'⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D BQ P C A Q P 所以矩阵⎥⎦⎤⎢⎣⎡B A 00与矩阵⎥⎦⎤⎢⎣⎡D C00是合同的. 6. 用正交变换法,把下列二次型化为标准形:.32414321242322213231212322212222).2(;4844).1(x x x x x x x x x x x x f x x x x x x x x x f --+++++=---++=解:(1).正交变换矩阵为,032622231322326222⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=Q 标准形为;455232221y y y f -+= (2) 正交变换矩阵为,0000212121212121212121212121⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----=Q 标准形为.324232221y y y y f +-+=7. 用配方法,把下列二次型化为标准形:2212121323121323(1).3226;(2).422.f x x x x x x x x f x x x x x x =--+-=-++解:(1).由已知2322321)2()(x x x x x f +-+-=,令,2333223211⎪⎩⎪⎨⎧=+=+-=x y x x y x x x y 则,33321221232322111⎪⎩⎪⎨⎧=-=-+=y x y y x y y y x 可逆线性变换矩阵为,1000121212321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=C 所以标准形为;2221y y f -=(2).先令⎪⎩⎪⎨⎧=-=+=,33212211yx y y x y y x 则,4)(4232223211y y y y f ++--=再令⎪⎩⎪⎨⎧==-=,33223111yz y z y y z 则⎪⎩⎪⎨⎧=+-=++=,33321212321211z x z z z x z z z x 可逆线性变换矩阵为,10011112121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=C 所以标准形为.44232221z z z f ++-= 8. 用初等变换法, 把下列二次型化为标准形:.22).2(;6422).1(3221232132********x x x x x x f x x x x x x x x f ++-=+-+-=解:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=⎪⎪⎭⎫ ⎝⎛100101100030001100010001032321211).1(531313E A ,令,10010113531Y X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-= 则;3233132221y y y f +-= (2).令,110110111Y X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--= 则.2221y y f -= 9.已知二次型),0(233232232221>+++=a x ax x x x f 通过正交替换QY X =化为标准形,52232221y y y f ++=求参数a 及正交矩阵Q .解: 给定二次型及其标准形的矩阵分别为:,521,3030002⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B a a A 由,4,10218,22==-=a a B A 得2=a (去舍2-=a ),与特征值 5,2,1321=λ=λ=λ 对应的特征向量分别为,)'1,1,0(,)'0,0,1(,)'1,1,0(321=α=α-=α 因特征向量321,,ααα是相互正交的,将它们单位化后得所求的正交巨阵.0001022222222⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=Q10.求二次型11222121121(,,,)22n n n ini i i i f x x x x xx x x --+===+++∑∑ 的标准形,并指出该二次型的秩和正惯性指数。
线性代数练习册-答案
第一章 行列式习题答案二、三阶行列式及n 阶行列式的定义部分习题答案1.计算下列二阶行列式 (1)23112=; (2)cos sin 1sin cos θθθθ-=;(3)1111121221212222a b a b a b a b ++++1122112211221122a a a b b a b b1221122112211221a a a b b a b b (4)1112111221222122a ab b a a b b +1122112212211221a a b b a a b b2.计算下列三阶行列式(1)10312126231-=--;(2)11121322233233a a a a a a a 112233112332a a a a a a 1122332332a a a a a(3)a c bba cc b a3333a b c abc3.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)3214; (2)614235.123t 112217t(3)()()()12322524212n n n n ---当n 为偶数时,2nk ,排列为143425212221223412k k k k k kk k --+++-1122(1)(1)t k k k (1)(2)21k k 22(1)1313142n kkkkk kn其中11(1)(1)k k 为1434252122k k k k --+的逆序数;k 为21k与它前面数构成的逆序数;(1)(2)21k k为23,25,,2(21)k k kk 与它们前面数构成的逆序数的和;113131k k k k 为2k ,22,24,,2k k与它们前面数构成的逆序数的和. 当n 为奇数时,21nk ,排列为142345212223225412k k k k k kk k ++++++1122t k k(1)21k k 2213323432n kkkkk kn其中1122k k 为1423452122k k k k +++的逆序数;(1)21k k 为23,25,,2(21)k kkk 与它们前面数构成的逆序数的和;3323k k k k 为2,22,,2k k与它们前面数构成的逆序数的和.4.确定,i j ,使6元排列2316i j 为奇排列. 解:4,5ij,()()23162431655t i j t ==为奇排列.5.写出4阶行列式中含有1321a a 的项. 解:13213244a a a a ;13213442a a a a -6.按定义计算下列行列式:(1)0001002003004000(4321)(1)2424(2)00000000000a c db (1342)(1)abcd abcd7. 求1230312()123122x x f x x xx-=的展开式中4x 和3x 的系数.4x 的系数为6;含3x 的项只有(4231)(1)(3)3t x x x ,所以3x 的系数为(4231)(1)3(3)119t行列式的性质与展开部分习题答案 1.计算下列行列式:(1)200819861964200919871965201019881966;解:32212008198619641110111r r r r D(2)123123123111a a a a a a a a a +++;解:2312323231(1)1111a a D a a a a a a a 各列加到第一列后提取公因式21312312331(1)0101r r r r a a a a a a 123(1)a a a(3)41232013201116011601110111031023500r r D213314116116(1)111027350818r r r 20(4)21120111011161126111211221110100c c D3141101100(1)26126116221223c c .(5)00100101D αβαβαβαβαβαβαβ++=++.()401100101D αβαβαβαβαβαβαβαβαβαβαβ+=++-+++ 32212D D D D D 4322342.证明:(1)011=++++=cb adb a dcd a c b d c b aD 11;证明:将D 的各列都加到最后一列再提出公因式有1111(1)01111a b c d a b b c a d b c Dabcd c d a b c d dabcda 1111(2)33()ax by ay bzaz bx x y z ay bzaz bx ax by a b yz x az bx ax by ay bzzxy ++++++=++++. 证明:左式12axayazbybzbxay bzaz bx ax by ay bzaz bx ax by D D az bx ax by ay bz az bx ax by ay bz=+++++++=+++++++311r br xy zx y z D a ay bzaz bx ax by a ay bz az bx ax byaz bx ax by ay bzazaxay-=+++=++++++23223r br x y z x y z x y z a ay bz az bx ax by a ay az ax a yz x zxyzxyzxy-=+++== 类似有1323322(1)r r r r yz x x y z D b zx y yz x xyzzxy ←−→←−→==-,所以33()ax by ay bzaz bxx y z ay bzaz bx ax by a b yz x az bx ax by ay bzzxy++++++=++++ 3.计算n 阶行列式(1)n D =ab b b b a b bbb a bb b b a ...........................; 各行加到第一行后提取公因式有:111...1...(1).....................nba b bD an b b b a bb b b a211111 (10)0 0(1)00...0 000...n r br r br a b an b ab a b1(1)n a n b ab(2)12121212n na n a n D n a ++=+12(0)n a a a ≠.211212111212121211210012000nn nr r n r r r nr r a a nna na a a n a a aa a a a a a a -----+++++--==--1112221211n n n n i i a na ia a a a a a a a =⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭∑ 4.利用范德猛行列式计算:1111123414916182764D =.2222333311111234(21)(31)(41)(32)(42)(43)1212341234==------=克拉默法则部分习题答案1.用克拉默法则解线性方程组(1)122313223(0)0bx ax abcx bx bc abc cx ax ;解:002350ba D cb abc ca,212023500ab a D bc c ba bc a22200350b ab D bc b ab c c a ,220250ba ab Dc bc abc c123,,x a x b x c(2)123412341234123432125323348246642x x x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨-++-=⎪⎪--+=⎩.解:132125321734826164D --==----,1132135323444822164D --==----211212332034826264D --==---,3131125321734426124D ==---,13212533853*******D --==---12342,0,1,5x x x x =-===2.当λ为何值时,齐次线性方程组⎪⎩⎪⎨⎧=+=+-=++0 00433221321x x x x x x x λλλ(1) 仅有零解;(2) 有非零解. 解:3410(1)(3)01D,(1)1且3时0D ,该齐次线性方程组只有零解。
线性代数第五章练习及解答
对应于同一特征值的不同特征向量的非零线性组合是 A 的特征向量。 证明由本节第 3 题可知属于不同特征值的特征向量的和不是特征向量,而属于同一特征值的不同特征 向量满足
Aξ1 = λξ1 , Aξ2 = λξ2 , 于是 A(k1 ξ1 + k2 ξ2 ) = k1 Aξ1 + k2 Aξ2 = λ(k1 ξ1 + k2 ξ2 ) 由定义命题得证 11.λ ̸= 0 是矩阵 A 的特征值,求 A−1 , A⋆ 的特征值。
证明:因为 A + E = A + AAT = A(A + E )T ,那么 |A + E |(1 − |A|) = 0,于是 |A + E | = 0, 即 λ = −1 是 A 的一个特征值
5. 设 A1 , A2 , A3 是 3 个非零的 n 阶矩阵 n ≥ 3 , 满足 A2 i = Ai (i = 1, 2, 3), 且 Ai Aj = O (i ̸= j ; j = 1, 2, 3)
1
若 Ai 有非零和 1 的特征值 λ,由于 λ2 − λ = 0, 故有且仅有 0 和 1 为特征值
(2) 若 Aj ξ = ξ, 那么 Ai (Aj ξ ) = Ai ξi , 即 Ai ξ = 0ξ (3) 反证,若三个向量线性相关不妨设 α3 = k1 α1 + k2 α2
那么 A3 α3 = k1 A3 α1 + k2 A3 α2 , 由 (2) 知 A3 αj = 0(j = 1, 2) 那么 α3 = 0 与特征向量的定义矛盾 2 0 0 2 0 0 与 B = 6. 已知矩阵 A = 0 0 y 0 0 1 0 0 −1 0 1 x P −1 AP = B
线性代数习题集(带答案)
. .. . ..第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题. .. . ..1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .. .. . ..16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a aa a a a aD ---------=1101100011000110001.. .. . ..四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略). .. . ..第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
线性代数练习题库及答案
线性代数练习册答案第五章 相似矩阵及二次型51ξ- 内积52ξ- 方阵的特征值与特征向量一.填空题:1.A 是正交矩阵,则A1A =± . 2.已知n 阶方阵A 的特征值为12,,,n λλλ⋅⋅⋅, 则E A λ-= ()()()12n λλλλλλ--⋅⋅⋅- .3.已知3阶方阵A 的特征值为1,1,2-,则232B A A =-的特征值为 1,5,8 ;A = 2- ;A 的对角元之和为 2 .4.若0是A 的特征值,则A 不可逆 (可逆,不可逆).5.A 是n 阶方阵,A d =,则AA *的特征值是 ,,,d d d ⋅⋅⋅(共n 个) . 二.用施密特法把下列向量组规范正交化123111(,,)124139ααα⎛⎫⎪= ⎪ ⎪⎝⎭解:()111,1,1Tβα==[]()()()2122121,61,2,31,1,11,0,13TT Tαββαββ=-=-=- [][]313233122212,,αβαββαββββ=--()()()1481211,4,91,1,11,0,1,,32333TTTT⎛⎫=---=- ⎪⎝⎭故)1111,1,1T b ββ==,)2221,0,1T b ββ==-,)3331,2,1Tb ββ==-.三.求下列矩阵的特征值和特征向量1. 1221A ⎛⎫= ⎪⎝⎭2. 100020012B ⎛⎫⎪= ⎪ ⎪⎝⎭解:1. A 的特征多项式为12(3)(1)21A E λλλλλ--==-+-故A 的特征值为123,1λλ==-.当13λ=时,解方程()30A E x -=.由221132200rA E --⎛⎫⎛⎫-= ⎪ ⎪-⎝⎭⎝⎭:得基础解系111P ⎛⎫= ⎪⎝⎭,故1(0)kPk ≠是对应于13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭:得基础解系211P -⎛⎫= ⎪⎝⎭,故2(0)kP k ≠是对应于21λ=-的全部特征向量.2. B 的特征多项式为2100020(1)(2)012B E λλλλλλ--=-=--- 故B 的特征值为1231,2λλλ===.当11λ=时,解方程()0B E x -=.由000011010010011000r B E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:得基础解系1100P ⎛⎫⎪= ⎪ ⎪⎝⎭,故1(0)kP k ≠是对应于11λ=的全部特征向量. 当232λλ==时,解方程()20B E x -=.由1001002000000010010r B E -⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:得基础解系2001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,故2(0)kP k ≠是对应于232λλ==的全部特征向量.四.证明下列各题1. x 为n 维列向量,且1T x x =,求证:2T H E xx =-是对称的正交阵.2. 设A 、B 为同阶正交阵,证明:AB 也是正交阵. 证明:1. ()()222TTTTT TT T H E xx H E xxE xx H =-⇒=-=-=故H 为对称阵.又()()()224444T T T T T T T T H H E xx E xx E xx x x x x E xx xx E =--=-+=-+=故H 为正交阵.2. 因,A B 为同阶正交阵,故,T T A A E B B E ==. 又()()TT T T T AB AB B A AB B EB B B E ====,故AB 为正交阵.五.A 是n 阶方阵,命题P 为:A 的特征值均不为0.请尽量多的列举与P 等价的命题.(如A 可逆.至少列举3个) 解:等价命题:1P :A 的列(行)向量组线性无关 2P :0A ≠3P :齐次线性方程组0Ax =只有0解 4P :A 的秩为n53ξ- 相似矩阵54ξ- 实对称矩阵的相似矩阵一.填空题:1.若ξ是A 的特征向量,则 1P ξ- 是1P AP -的特征向量.2.若A 与B 相似,则A.3.20000101A x ⎛⎫ ⎪= ⎪ ⎪⎝⎭与20000001B y ⎛⎫ ⎪= ⎪ ⎪-⎝⎭相似,则x = 0 ,y = 1 .4.若λ是A 的k 重特征根,则必有k 个相应于λ的线性无关的特征向量, 不对 (对,不对),若A 是实对称的呢? 对 (对,不对).二.多项选择题(选出全部正确的选项,可能不只一个)1.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个( C ) (A )互不相同的特征值; (B )互不相同的特征向量; (C )线性无关的特征向量; (D )两两正交的特征向量;2.方阵A 与B 相似,则必有( BD )(A )E A E B λλ-=-; (B )A 与B 有相同的特征值; (C )A 与B 有相同的特征向量; (D )A 与B 有相同的秩; 3.A 为n 阶实对称矩阵,则( ACD )(A )属于不同特征值的特征向量必定正交; (B )0A >;(C )A 必定有n 个两两正交的特征向量; (D )A 的特征值均为实数;三.100021012A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试求一个可逆矩阵P 使得1P AP -为对角阵,并求m A .解:先求A 的特征值和特征向量.2100021(1)(3)012E A λλλλλλ--=-=--- 故A 的所有特征值为1233,1λλλ===.当13λ=时,解方程()30A E x -=.2001003011011011000rA E -⎛⎫⎛⎫⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭:令1011P ⎛⎫⎪= ⎪ ⎪⎝⎭,则1P 即为对应于13λ=的特征向量. 当231λλ==时,解方程()0A E x -=.000000011011011000r A E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:令23100,101P P ⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则23,P P 即为对应于231λλ==的特征向量.显然,123,,P P P 线性无关.令()123010,,101101P P P P ⎛⎫⎪==- ⎪ ⎪⎝⎭,则11110031313102211313022mm m m mm P AP A P P A P P ---⎛⎫ ⎪⎛⎫ ⎪+-+ ⎪⎪Λ==⇒=Λ⇒=Λ= ⎪⎪⎪ ⎪⎝⎭-++ ⎪⎪⎝⎭四.三阶实对称矩阵A 的特征值为0,2,2,又相应于特征值0的特征向量为1111P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求出相应于2的全部特征向量.解:因为A 为三阶实对称矩阵,故A 有三个线性无关的特征向量,且对应于不同特征值的 特征向量两两正交.已知对应于10λ=的特征向量为1P ,设对应于232λλ==的特征向量为23,P P ,则12130,0T T P P P P ==.即23,P P 为齐次线性方程组10T P x =的两个线性无关的解.由10T P x =得1230x x x ++=.令2310,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则11,1x =--.取23111,001P P --⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则23,P P 即为对应于232λλ==的特征向量.令2233k P k P ξ=+(23,k k 不全为零),则ξ为对应于232λλ==的全部特征向量. 五.设3阶方阵A 的特征值为1231,0,1λλλ===-,对应的特征向量分别依次为1231222,2,1212P P P -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求A .解:因为123λλλ≠≠,故A 可对角化,且123,,λλλ所对应的特征向量123,,P P P 线性无关.显然()()112312323,,,,A P P P P P P λλλ⎛⎫⎪= ⎪ ⎪⎝⎭,令()123,,P PP P =, 故1112311021001231220A P P P P λλλ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.55ξ- 二次型及其标准形56ξ- 用配方法化二次型为标准形57ξ- 正定二次型一.填空题:1. 22(,)22f x y x xy y x =+++是不是二次型?答: 不是 .2. 123121323(,,)422f x x x x x x x x x =-++的秩是 3 ;秩表示标准形中 平方项 的个数.3.21101000A k k ⎛⎫⎪= ⎪ ⎪⎝⎭,A 为正定矩阵,则k 满足 大于1 .二.A 为实对称矩阵,选出全部的A 为正定矩阵的充分必要条件( 12346 ) 1.对任意的列向量0x ≠,0x Ax '> 2.存在可逆方阵C ,使得A C C '= 3.A 的顺序主子式全部大于零 4.A 的主子式全部大于零 5.A 的行列式大于零 6.A 的特征值全部大于零三.212312331001(,,)(,,)300430x f x x x x x x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭1.求二次型123(,,)f x x x 所对应的矩阵A ;2.求正交变换x Py =,将二次型化为标准形.解:1. 2112312331232123001(,,)(,,)300(,,)343043x x f x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭22212233343x x x x x =+++ 故二次型123(,,)f x x x 所对应的矩阵100032023A ⎛⎫⎪= ⎪ ⎪⎝⎭.2. 问题可转化为求正交矩阵P ,将A 化为对角形.21032(1)(5)023A E λλλλλλ--=-=--- 故A 的特征值为1231,5λλλ===.当121λλ==时,解方程()0A E x -=.000011022000022000r A E ⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:.令1310,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得20,1x =-.取12100,101ξξ⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则12,ξξ即为对应于121λλ==的特征向量.显然,12,ξξ正交.将12,ξξ单位化得121212010,0P P ξξξξ⎛⎫ ⎪ ⎪⎛⎫⎪==== ⎪ ⎪⎝⎭⎪ ⎪⎝⎭当35λ=时,解方程()50A E x -=.4001005022011022000rA E -⎛⎫⎛⎫⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭:.令31x =,得1201x x =⎧⎨=⎩.取3011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则3ξ即为对应于35λ=的特征向量.将3ξ单位化得3330P ξξ⎛⎫⎪ ⎪==. 令()123P P P P =,则1115P AP -⎛⎫⎪= ⎪ ⎪⎝⎭.故123(,,)f x x x 的标准形为2221235y y y ++.四.已知A 和B 都为n 阶正定矩阵,求证A B +的特征值全部大于零. 证明:因为,A B 都为n 阶正定矩阵,则对任意n 维列向量0x ≠, 有()0,00T T T x Ax x Bx x A B x >>⇒+>.即A B +是正定矩阵. 故A B +的特征值全部大于零. 五.已知A 为n 阶正定矩阵,求证1A E +>.证明:因为A 为n 阶正定矩阵,则A 的n 个特征值12,,,n λλλ⋅⋅⋅全大于零且存在正交矩阵P ,使得112211n n P AP A P P λλλλλλ--⎛⎫⎛⎫⎪⎪⎪ ⎪=⇒= ⎪ ⎪⋅⋅⋅⋅⋅⋅⎪ ⎪⎝⎭⎝⎭. 由1122111n n A E P P PP P E P λλλλλλ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪+=+=+ ⎪ ⎪ ⎪⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121111n P P λλλ-+⎛⎫⎪+⎪= ⎪⋅⋅⋅ ⎪+⎝⎭,得()()()121121111111n n A E PP λλλλλλ-+++==++⋅⋅⋅+>⋅⋅⋅+六.求22:1L x xy y ++=围成的面积.解:设二次型()22112(,),112x f x y x xy y x y y ⎛⎫ ⎪⎛⎫=++=⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭. 令112112A ⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭,则A 是对称矩阵且正定.设12,λλ为A 的特征值,可知存在正交矩阵P ,使得11200T P AP P AP λλ-⎛⎫== ⎪⎝⎭.由0E A λ-=,得1213,22λλ==. 因为正交变换不改变向量的长度,故可用正交变换12z x P z y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,使得1221122T T T T X AX Z P APZ Z P APZ z z λλ-===+,其中12,z x X Z z y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 综上可知,经过正交变换后,221213(,)22f x y z z =+.故L 的面积即为椭圆: 221213122z z +=的面积.面积S =.第五章 复习题三、计算题1、设3阶对称阵A 的特征值为6,3,3,与特征值6对应的特征向量为()11,1,1Tp =,求A解:因为对称矩阵对应于不同特征值的特征向量是两两正交的,所以求对应于3的特征向量即为求与()1,1,1T正交的特征向量。
线性代数A期末练习题五参考答案
4 3 =0 4
2、设 3 阶矩阵 A 的特征值为 1, −1,1 ,则行列式 A3 + 2 A − E = .
分析:记 f ( x) = x3 + 2x − 1,所以 f ( A) = A3 + 2 A − E ,由于 A 的特征值为 1, −1,1 ,
所以
f ( A) = A3 + 2A − E 的特征值分别为 f (1) =2, f (−1) =−4, f (1) =2 。故
1 1 1 1 1 1
(α1
,α1
+
α
2
,α1
+
α2
+
α3
)
= (α1
,α2
,α3
)
0
1
1
,
且
0
1
1 是可逆矩阵
0 0 1 0 0 1
所以 R (α1 ,α1 + α2 ,α1 += α2 + α3 ) R (α= 1 ,α2 ,α3 ) 3 ,且 α1 ,α2 ,α3 与
α1 ,α1 + α2 ,α1 + α2 + α3 等价,从而 α1 ,α1 + α2 ,α1 + α2 + α3 也是一组基础解系。
−3 2 0
0
0 =
1 4
−21
−54
−27
9 21 12
−3 2
3
6
2
−1
−1
1
2
五、设向量组 α1
=
1 4
,
α2
=
1
,
−6
α3
=
−2 2
, α4
向量组的线性相关性线性代数习题集-5页word资料
线性代数练习题 第四章 向量组的线性相关性系 专业 班 姓名 学号 第一节 向量组及其线性组合 第二节 向量组的线性相关性一.选择题1.n 维向量s ααα,,,Λ21)(01≠α线性相关的充分必要条件是 [ D ](A )对于任何一组不全为零的数组都有02211=+++s s k k k αααΛ(B )s ααα,,,Λ21中任何)(s j j ≤个向量线性相关(C )设),,,(s A αααΛ21=,非齐次线性方程组B AX =有唯一解(D )设),,,(s A αααΛ21=,A 的行秩 < s.2.若向量组γβα,,线性无关,向量组δβα,,线性相关,则[ C ](A )α必可由δγβ,,线性表示 (B )β必不可由δγα,,线性表示(C )δ必可由γβα,,线性表示 (D )δ比不可由γβα,,线性表示二.填空题:1. 设T T T ),,(,),,(,),,(0431********===ααα 则=-21αα (1,0,1)T - =-+32123ααα (0,1,2)T2. 设)()()(αααααα+=++-321523,其中T ),,,(31521=α,T )10,5,1,10(2=α T ),,,(11143-=α,则=α (1,2,3,4)T3. 已知T T T k ),,,(,),,,(,),,,(84120011211321---===ααα线性相关,则=k 24. 设向量组),,(,),,(,),,(b a c b c a 000321===ααα线性无关,则c b a ,,满足关系式 0abc ≠三.计算题:1. 设向量()11,1,1T αλ=+,2(1,1,1)T αλ=+,3(1,1,1)T αλ=+,2(1,,)T βλλ=,试问当λ为何值时 (1)β可由321ααα,,线性表示,且表示式是唯一?(2)β可由321ααα,,线性表示,且表示式不唯一?(3)β不能由321ααα,,线性表示?线性代数练习题 第四章 向量组的线性相关性系 专业 班 姓名 学号 第三节 向 量 组 的 秩一.选择题:1.已知向量组4321αααα,,,线性无关,则下列向量组中线性无关的是 [ C ](A )14433221αααααααα++++,,, (B )14433221αααααααα----,,,(C )14433221αααααααα-+++,,, (D )14433221αααααααα--++,,,2.设向量β可由向量组m ααα,,,Λ21线性表示,但不能由向量组(Ⅰ):121-m ααα,,,Λ线性表示,记向量组(Ⅱ):βααα,,,,121-m Λ,则 [ B ](A )m α不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示(B )m α不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示(C )m α可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示(D )m α可由(Ⅰ)线性表示,但不可由(Ⅱ)线性表示3.设n 维向量组s ααα,,,Λ21的秩为3,则[ C ](A )s ααα,,,Λ21中任意3个向量线性无关 (B )s ααα,,,Λ21中无零向量(C )s ααα,,,Λ21中任意4个向量线性相关 (D )s ααα,,,Λ21中任意两个向量线性无关4.设n 维向量组s ααα,,,Λ21的秩为r ,则[ C ](A )若s r =,则任何n 维向量都可用s ααα,,,Λ21线性表示(B )若n s =,则任何n 维向量都可用s ααα,,,Λ21线性表示(C )若n r =,则任何n 维向量都可用s ααα,,,Λ21线性表示 (D )若n s >,则n r =二.填空题:1.已知向量组),,,(,),,,(,),,,(25400021121321--==-=αααt 的秩为2,则t = 32.已知向量组),,,(43211=α,),,,(54322=α,),,,(65433=α,),,,(76544=α,则该向量组的秩为 22. 向量组T a ),,(131=α,T b ),,(322=α,T ),,(1213=α,T ),,(1324=α的秩为2, 则a = 2 b = 5三.计算题:1.设T ),,,(51131=α,T ),,,(41122=α,T ),,,(31213=α,T ),,,(92254=α,T d ),,,(262=β(1)试求4321αααα,,,的极大无关组(2)d 为何值时,β可由4321αααα,,,的极大无关组线性表示,并写出表达式 3. 已知3阶矩阵A ,3维向量x 满足323A x Ax A x =-,且向量组2,,x Ax A x 线性无关。
线性代数第五章练习题
第五章练习题一、 填空题1. 设A 是n 阶矩阵,0A a =≠,*A 是A 的伴随矩阵,E 是n 阶单位矩阵,若A 有特征值λ,则*2()A E +必有特征值 .2. 设A 是3阶矩阵,它的特征值为2,-2,1,则224A A E +-的特征值为 , 224A A E +-= . 3. 设 10102001,100,010*******A B C ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,与A 相似的矩阵是 . 4. 设A ,B 都是3阶矩阵,满足E B AB +=,且A 的特征值为2,3,0,则B 的特征值是 .5. 设A 是3阶矩阵, 且||A =0, 111,A =222A =, 334A =-, 则*A 的特征值是*1λ= , *2λ= , *3λ= . 6. 设A 是元素全为2的n 阶矩阵, 则A 的特征值是 .二、计算与证明题1. 已知三阶矩阵231303132A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, (1)求A 的特征值和特征向量;(2)求可逆矩阵P ,使得1P AP -为对角矩阵,并写出此对角矩阵.2. 设A 为4阶实对称矩阵,()2r A =, 特征值122λλ==是A 的2重特征值,123(1,1,0,0),(1,1,2,0),(2,2,2,0)T T Tααα===-是A 的属于特征值122λλ==的特征向量.(1) 求矩阵A 的另外两个特征值和特征向量;(2) 求矩阵A .3. 设3阶实对称矩阵100032023A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,(1) 求矩阵A 的特征值和特征向量;(2) 求正交矩阵Q ,使得1Q AQ -=Λ(其中Λ是对角矩阵),并写出对角矩阵Λ;(3) 多项式87()21G x x x =-+,求矩阵()G A .4. 设A 是3阶实对称矩阵, 它的特征值是1, -1, -1, 且属于特征值1的特征向量是(1,0,1)T β=-1) 求属于特征值-1的所有特征向量;2) 求矩阵A ;3) 求10A .5. 设(1,2,3)T α=,11(1,,)23β=,A αβ=,求A 的特征值和特征向量.6. 设A 是3阶实对称矩阵,特征值1232,6λλλ===,属于特征值122λλ==的特征向量为123(1,1,0),(1,0,1),(0,1,1)T T T ααα=-=-=-,求1)属于特征值36λ=的特征向量;2)矩阵A.7. 设,A B 都是3阶实可逆矩阵, A 的特征值是123111,,,λλλ 这里123,,λλλ是互不相同的正数, 若B 的特征值是-5, 1, 7, 12()6B A A -=-, 求123,,λλλ, 并写出与1,,A A B -相似的对角矩阵.8. 设A 是3阶实对称矩阵且38A E =,求232A A E +-的值.9. 设A 是3阶实对称矩阵,特征值是2,2,3,属于特征值3的特征向量是1(1,1,1)T α=,求矩阵A .10. 证明:若n 阶矩阵A 满足22E A A =+,则A 与对角矩阵相似.11. 证明: 设A 为n 阶矩阵,则2A E =的充要条件是()()r A E r A E n ++-=.12. 设矩阵A 与对角矩阵100020004⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦相似, ()(2)(4)B A E A E A E =---, 求证 0B =. 13. 设矩阵1()T T A E X X X X -=-,其中E 是n 阶单位矩阵,X 是n m ⨯实矩阵,且()()r X m m n =≤,求证存在正交矩阵Q ,使得10n m m E Q AQ --⎛⎫= ⎪⎝⎭,这里n m E -是n m -阶单位矩阵,0m 是m 阶零矩阵. 14. A 是n 阶矩阵且32A E =, 若222B A A E =-+,试证明:B 可逆,并求出1B -.。
线性代数练习题
习题练习答案整理一、行列式求解方法练习题知识点导航:本部分主要是求解行列式,我们上课所讲到求解行列式有三种方法:一是求逆序法,此方法不常用,只在求展开项正负项和行列式每一行只有一个为零的数且每行不为零的数是错位的或者是符合阶梯型行列式等;二是讲行列式化为阶梯型行列式在求解;三是利用代数余子式按照行列展开求解,后两种是常用方法。
1.练习演练(1)3214214314321111=D解:16040401210400401210111111311311032111113,2,11=---=---=--==--I R R I I D (2)abc d e e d c b a D 010000010000010=解:依次按照第2行展开2201001000010e a a eeaa bee d a ab c eedc a D -====。
(3)1020110220101221=D解:91221122112`0021`00`````10`1212`211100101221001221====D(4)dc b a D 004030020100=解:()()4641324`001`00`````00`300`200410003002013--====ab bc da cb da cb da cb D C(5)bb a a D -+-+=1111111111111111 解:220000000011100000011114321b a bba ab aba a a aD C baC b a C C =--=-----+=-+-(6)用行列式性质计算下列n(n>1)阶行列式(要求写出计算过程):1121122112111211111-----+++n n n n n b a a a a b a a a a b a a a a解:分析把行列式归结化简为上(下)三角形行列式来求解.),,2(,0000000111111211211112112211211121n i b b b a a a R R b a a a a b a a a a b a a a a n n i n n n n n=-+++-------.1-n 21b b b 上三角形 (7)111110000000001-n 1-n 2211a a a a a a ---解:),(1,,2,1132100000000000111110000000012111-n 1-n 2211-=----+----+n i nn a a a C C a a a a a a n i i.1-121-n na a na )(下三角形(8)2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c cb b b b a a a a解: 2212221222122212,5232125232125232125232122222233422221++++--++++++++++++--d d c cb b a a C C C C d d d dc c c cb b b b a a a a C C i i=0(9)计算行列式.84212793111111111----=D解: D 是4阶范德蒙德行列式),,(2-3,1-1=D 的转置,所以)32()12)(13()12)(13)(11()2,3,1,1(--⋅+-+⋅-----=--=D D .240)5()4(12=-⨯-⨯=(10).100000000000010001321nn a a a a a-解:逐次按第2行展开===-nnn a a a a a a a a a 0100100100000000000010003121321).1(1111321132-==--n n nn a a a a a a a a a a (11)计算行列式:.8814412-21111132x xx - 解:)12)(12)(22)(1)(2)(2(),2,2,1(8814412-21111132-------+=-=-x x x x D x x x).4)(1(122--=x x(12)计算n (n>1)阶行列式:.0000000000000000x y y x x y x y x解:yxx y xy y xy x y x xxyy x x y x y x n0000000000)1(00000)1(10000000000000000111++-+-列展开按第.)1(1n n n y x +-+=(13)计算当),,2,1(0n i a i =≠时,.1111111111111111321na a a a ++++解:)1,,1(11110000001111111111111111321321-=+----++++=n i a a a a a a a R R a a a a D nn nn n i n n, )0(,11000000011132111≠++----+∑∑-=-=i n i in n n n nn i ii n a a a a a a a a a a R a R 注意).11(121∑=+=ni i n a a a a(14)计算.15432215433215443215543215=D解:)5,4,3,2(4111332202223011110543215154315215415321515432115543215154322154332154432155432115215=-----------+=∑=i R R C C D i i i ,.53500550005550011110543215,234252423⨯=----------+++R R R R R R , 二、解线性方程组方法练习 1.练习演练(1)⎪⎪⎩⎪⎪⎨⎧=+-+--=++-=+-+-=++-42315223322124321432143214321x x x x x x x x x x x x x x x x 解:对增广矩阵进行初等行变换化为阶梯型⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=5`42002`31004`71001`21114`23111`52112`33221`2111A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→1`00002`100004`71001`21113`100002`100004`71001`2111 增广矩阵的秩与系数矩阵的秩不同,所以原方程组无解。
线性代数(含全部课后题详细答案)5第五章线性方程组习题解答.docx
习题五1・填空题(1)当方程的个数等于未知数的个数时,Ax = b有惟一解的充分必要条件是解因为R(A) = R(A \b) = n是4x = b有惟一解的充要条件.故由R(A) = n可得\A\^0.(2)线性方程组X)+兀2 =Q|,兀2 + 兀3 = °2,可+兀4 =。
3, x4 + %)=a4有解的充分必要条件是______ .解对方程组的增广矩阵施行初等行变换所以方程组有解的充要条件是R(A) = R(B),(3)设川阶方阵力的各行元素之和均为零,且-1,则线性方程组Ax = 0的通解为_____________________解令1x =.■■丄显然x满足方程组,又因为R(A) = n-l f所以2?(/) = 1,即方程组的基础解系中有一个向量,通解为⑴1 T x = k . =£(1,1,・・・,1)T, £为任意常数.■■(4)设/为〃阶方阵,|力|=0,且伽的代数余子式4,工0 (其屮,\<k<n,丿= 1,2, •••/),则Ax = O 的通解 ______ •解 因为同=0,又九・工0,所以R(4)F — 1,并且有f0, i 壬 k;认+。
皿+・・・+绻仆仏|=0,匚=匕所以(血|,心2,…,血)丁是方程组的解,又因为R(A) = n-h 可知方程组的通解为TX = c(4】,42,…,4J ,其中c 为任意常数.(5)设Q 】A= a;■ ■其中,a 严J (i 韭j; i,j = \,2,…,n),则非齐次线性方程组A Jx = b 的解是x = _________解 x = (l,0,0,・・・,0)T.解 ci — —2 .2.单项选择题(1) _______________________________ 齐次线性方程组4x5^5xl = 〃解的情况是 •(A)无解;(B)仅有零解;(C)必有非零解; (D)可能有非零解,也可能没有非零解.答(C).(2) 设〃元齐次线性方程组的系数矩阵的秩/?(/) = 〃-3,且垃,$为此方程组的三个线性无关的解,则此方程组的基础解系是 ______ .1a 29Cl;■ ■"a 1(6)设方程1 a1、1有无穷多个解,(A) -6, 2§, 3§3+§] - 2§2;(B) §1+§2, §2 - §3,刍+厶;答(A).(3)要使§=(l,0,2)T, :=(0,1,—1)T都是线性方程组Ax = O的解,只要/为(A) (-2 1);(B)1)(C)1-1) '-1 0 2、;(D)4-2-2、0 1 -L\ / <011/答(A).(4)已知屈,良是Ax = h的两个不同的解, a n a2是相应的齐次方程组Ax = 0的基础解系,k^k2为任意常数,则Ax = b的通解是______(A) kg + k2 a +~~~—(c)kg +他(屈-角)+ " 2"(B) kg + k2a -a2) + 卩';几(D) k0\ + k2 (0] - 02)+ 卩'答(B).(5)设斤阶矩阵/的伴随矩阵A^O则对应的齐次线性方程组Ax = 0的基础解系是_______ .(A)不存在;(B)仅含一个非零解向量;(C)含有两个线性无关的解向量;(D)含有三个线性无关的解向量.答(B).(6)设有齐次线性方程组Ax =〃和Bx = 0,其屮〃均为mxn矩阵,现有4个命题:①若Ax = 0的解均是Bx = 0的解,则R(A)>R(B);②若R(A) > R(B),则Ax = 0的解均是Bx = 0的解;③若Ax = 0与Bx = 0同解,则R⑷二R(B);④若R(A) = R(B),则Ax = 0 与 Bx = 0同解.以上命题正确的是—(A)①,②;答(B). (B)①,③;若:是非齐次线性方程组Ax = b的互不相等的解,(C)②,④; (D)③,④.(7)设/是mxn矩阵,B是nxm矩阵,则线性方程组(AB)x = 0(A)当n>m时仅有零解;(C)当m > n时仅有零解;答(D). (B)当n>m时必有非零解;(D)当m > n时必有非零解.(8)设力是〃阶矩阵,a是〃维列向量. 若秩(B) A a "0>Ax = a必有惟一解;=秩(昇),则线性方程组.(C)A a'A么、=0仅有零解;(D)& °丿& °丿J丿(A) Ax = a必有无穷多解;〃必有非零解. 答(D).3.求下列齐次线性方程组的一个基础解系X { + X 2+ 2兀3 -兀4 = 0,(1) { 2兀]+ *2 + 兀3 一 兀4 = °,2X] + 2X 2 + X3 + 2兀=°;解对系数矩阵施行初等行变换,有与原方程组同解的方程组为4X3~~X4 =0,或写为4其中为任意常数•所以,基础解系为4、X )+ 2X 2 + X3 — X4 = 0, (2) < 3旺 + 6X 2 -x 3 - 3X 4 = 0,5x } +10x 2 +呂-5X 4 =0; 解<12 1 -0<1 2 0 -1] A = 3 6 -1 -3 T 0 0 1 0<5 \ 10 1 _5丿<0 0 0°丿与原方程组同解的方程组为(42 -1、1 0 0 ~31 -1 T 0 1 0 3 1 24 70 0 1~3>A= 21 ,2 2或写为£ =-2x 2兀3 = 0,其中,X 2, x 4可取任意常数你伦,故所以,基础解系为"-2、 1 0 <0,2x, + 3X 2 -兀3 +5兀4 = 0, 3X| + x 2 + 2*3 — 7兀4 = 0, 4兀]+x 2 - 3X 3 + 6兀=0,X] —2X 2 + 4X 3 -7X 4 = 0; 解7?(力)=4 = 〃,方程组组只有零解.3%] + 4X 2 一 5X 3 + 7X 4 = 0,2%j 一 3X 2 + 3X 3 一 2X 4 = 0, 4x, +1 lx 2 -13X 3 +I6X4 = 0, 7xj - 2X 2 + X3 + 3X 4 = 0.V3 -1 5、(\-2 4 7、3 1 2 -7 0 -3 1 21 -264 1 -3 6 0 0 1 5J -2 4 一7丿〔0 0 0 327丿A =x } +2XX =4. 求解下列非齐次线性方程组.4旺 + 2X 2 一 x 3 = 2,(1) < 3兀]—x 2 +2X 3 =10,11 兀I + 3 兀2 = &解对增广矩阵施行初等行变换<42 -1 * 2、<13 -3 '-8、B = 3 -1 2 10T-10 11 343 0 1 8丿<0 0 0 -6y« 7$ 与原方程组同解的方程组为或写为所以皐础解系为<32 -3 11 3丿3 V 13 4. 17 3 17' 19 20 ---- X173 ]73—13 * — A 17 3 17 19 — 20■ _17~ J 173 17 19 17 131720 17X = 兀2兀3<3> 1917 + k. 厂-13、-20J 丿」7丿=0, x 4,所以 /?(/) = 2, R(B) = 3.无解.2兀 + 3尹+ z = 4, x — 2y + 4z = -5, 3x + 8尹一 2z = 13,4x- j? + 9z = -6;R(A) = R(B) = 2,所以原方程组有解.与原方程组同解的方程组为x = —2z — 1, y= z + 2, z =2x+ y- z+w=l,4x+2尹一 2z+w=Z 2x+ y- z-w=l ;<2 4 2R(A) = R(B) = 2.原方程组有解.与原方程组同解的方程组为1 1 1x =——y+ —z + —,2 2 2 y= y , z =所以原方程组的通解为厂2 31 ・4<1 0 2・ -1)1 -2 4 -5T0 1 -1 2 3 8 -2 130 0 0 0 <4 -1 9<0 00 •°丿 B =/ 、"-2、r-ny =k 1 + 2 工丿k b<-1 -2z,z .5. 问九取何值时,非齐次线性方程组九X] + x 2 + x 3 = L2x+ y- z+ w=l, 3x-2y+ z-3w=4, x+4p-3z+5w=-2・[1]<r~222 1+ Z+10 0\ 丿< )<1、rp2 + & 0 02 < 0>o20 01 -24 -1 1 1 -3-351 4 -2£ 7 5 7£ 7 9 76 7 5 7= = 原方程组有解. 与原方程组同解的方程组为1 1 6 X = —z + —w + —,7 7 7 5 9 5 2 y = — z -- w —,7 7 7 z = z,故通解为6\z \ X「1、< ny5-9 =k 、 7 + k"0 zo< 7>7 _5 ~7 0y z严« X] +心2 +兀3 =入,£ +勺+ Z =九'(1)有惟一解;(2)无解;(3)有无穷个解? 解系数行列式2 1 1D= 1 几 1 =(久一1)2(2 + 2)・1 1A当2工1且2工-2时D H O,方程组有惟一解.当2 = 1时,对增广矩阵施行初等行变换则R(4) = R(B) = 1<3,故原方程组有解且有无穷多解.当A = -2时,对增广矩阵施行初等行变换<-21 1r'11 -2 4、B =1 -21-2 T 1 -2 1 -2< 11 -2 4><-2 1 1<1 1 -2 4、<1 1 -2 4、 T0 -3 3 -6 T 0 -3 3 -6 ,<0 3 -3 9丿<0 0 0 3丿/?(/) = 2, R(B) = 3.所以方程组无解.6. 非齐次线性方程组—2%| ++ 兀3 = —ZX { 一2兀2 + 兀3 =儿兀1 + X 2 - 2X 3 =九2当入取何值时有解?并求出它的全部解.解对增广矩阵施行初等行变换,得<-2 1 1 -2)<11 -2B = 1 -21T0 -3 3 A(1 —兄)< J1-2 才丿0 0 (久一1)仇+ 2)丿当Q H I 且2^-2时,R(4) = 2, R(B) = 3方程组无解. 当2 = 1时,有Q o -1 r0 1 —1 o o o o ?R(4) = R(B) = 2,方程组有解,且与原方程组同解的方程组为<1 1 1r—> 0 0 0 0<0 0 0 0.故原方程组的解为当2 = -2时,有10—12、1 -12 (0 0 0 0丿与原方程组同解的方程组为故方程组的解为(2—九)X] +2x, —2兀3 = 1,7.设{2旺+(5-九)吃- 化=2, 问九为何值吋,此方程组有惟一解、无解或有无穷—2^| —4七 + (5 —九)七=一入一1,多解?并在有无穷多解时求出其通解.解系数行列式2-2 2 -2D= 25-2 -4 =-(2-1)2(2-10). -2-45 —久当2工1且2工10时,方程组有惟一解. 当2 = 1时,有< 12-2<1 2 -2B =2 4 -42 T0 0 0 0<-2 -44_2丿<0 00 0丿R(4) = R(B) = 1,方程组有无穷多解,此时兀2 二 k\1 + 0卫3丿<1>x =X] + 2兀2 一2兀3 = 1 通解为/ 、兀2,-2、 1+嘉0 + ⑴0 "丿< °丿<1>\ / x =当2 = 10时,有厂-8 2 -2r(2 -5 -4 2B =2 -5 -42 T 01 1 1「2 -4 -5 —11丿,00 -3/?(/) = 2, R(B) = 3,故方程组无解.8•问为何值时,非齐次线性方程组(1) 有惟一解,求出惟一解; 解方程组的增广矩阵兀[+兀2X?_ *2 +(Q _ 3)兀3 _ 2X 4 =b. 3X[ + 2X 2 + X3 + ax 4 =-l有无穷多解,并写出通解.+ X3 + X4 = 0,+ 2X + 2X = 1,1 1 1 0、1 1 1 0) 0 12 21T0 1221 0 -1 67-3 -2 b0 0 a-\ 0 b + l<3 21a j 丿<0 00 a-\o>当GH1时,R(A) = R(B) = 4,方程组有惟一解.B Trr. —a + b — 2 a — 2b + 3所以,£ = ----------- ,也= ---------- ,兀3a-\ 'a-1 B T(0a-ia —2b —a-\b + la-1=0.b+1所以,当Q = 1且b^-\时,/?(/!) = 2, R(B) = 3,方程组无解.(2)无解;(3) B此时V 、[1、24 ,”2七% =364求该方程组的通解.解 斤=4,尸=/?(/)二3,所以川一尸=1,令则§为基础解系,故方程组的通解为<0厂3、624835 J0丿<4>、6丿©=2小-(小+吃)而当G = 1且/? = 一1时,有1 o -1 -r —1、0 12 2 1 B T0 0 0R(A) = R(B) = 2,方程组有解,且与原方程组同解的方程组为x 4 = _1,x 2 +2兀3 +2 兀4 = h或写为故原方程组的通解为其中心为任意实数9.设四元非齐次线性力程组的系数矩阵的秩为3,已知% ,弘,〃3是它的三个解向量,且其中R 可取任意常数.10. 设4〃都是〃阶方阵,且AB = O .证明R(A) + R(B)S ・证明设B = ®,筠,…,仇),则有Ab. =0 (丿=1, 2,…,n)・可见每个曾都是Ax = O 的解向量.因R(A) = r,可知/lx 二〃的解空间的维数是n-r ,所以向量组叽 X ,…,叽的秩小于等于 m ,从而— i 于是R(4) + R(B)— + (m) = n.11. 己知非齐次线性方程组X )+吃 +兀3 +兀4 = _] 4%j + 3X 2 + 5X 3 —X 4 = —1 ax } + x? + 3X 3 + hx 4 = 1有3个线性无关的解.(1) 证明方程组的系数矩阵Z 的秩R(A) = 2; (2) 求的值及方程组的通解.解(1)设a p a 2,a 3是方程组Ax =0的3个线性无关的解,其中<111 1、r-rA = 4 3 5 -14 -i1 3 b)则有A©、_a?) = 0、A(a 、_aj = 0 ,即a } -a 2,a }-a y 是对应齐次线性方程组Ax = O 的解,且线 性无关.(否则,易推出a,,a 2,a 3线性相关,矛盾).所以n-R(A)>2,即4 — R(/)n2nR(/)52.又矩阵/中有一个2阶子式】1 =-1^0,所 以7?(/1)>2.因此R(A) =2.(2) 因为<1 1 1 1 ><1 1 1 1、<1 1 11 ) A = 4 3 5 -1 T 0 -11-5T0 -11-5W 13 b 丿(0 \-a3-a b_a 丿<0 0 4 —2Q b + 4a — 5丿又7?(力)=2,贝ijJ4-2d = 0, J G = 2, 爲+ 4a-5 = 0 戶爲二-3.对原方程组的增广矩阵施行初等行变换,x = kg\+TJ\ = k<1 1 1 1 -1、<1 0 2 -4 2、 B = 4 3 5 -1 -1 —> 0 1 -1 5 -3<2 1 3 -3 /<0 0 0 0 0>故原方稈组与下面的方程组同解Xj — —2 兀3 + 4 兀4 + 2x 2= x 3 - 5X 4 _ 3选兀3,兀为自由变量,则故所求通解为1a,b,c 不全为零,矩阵〃 =2 .3且AB = O,求线性方程组Ax = O 的通解.解 由于AB = O ,故&/) + 7?(〃)53,又由a,b,c 不全为零,可知R(A) > 1. 当&H9 时,R(B) = 2 ,于是R(A) = 1;当 k = 9 时,)= 1,于是 R(4) = 1 或 7?(/) = 2.①对于殳工9,由AB = O 可得由于7=(l,2,3)T,%=(3,6,k)T 线性无关,故弘,弘为Ax = O 的一个基础解系,于是Ax = O 的通 解为x =C X TJ { + c 2r]2,其中q,C2为任意常数.②对于k = 9,分别就R(A) = 2和/?(/) = 1进行讨论.如果R(4) = 2 ,则Ax = 〃的基础解系由一个向量构成.又因为/ 2 = 0 ,所以Ax = O 的通解为X = C 1(1,2,3)T ,其中q 为任意常数.如果7?(/) = 1,则Ax = O 的基础解系由两个向量构成.又因为力的第1行是(a,b,c),且a,b,c 不 全为零,所以Ax = 0 等价于 ax } + bx 2 += 0 .不妨设 a 工0 , “】=(一/>,。
线性代数练习题库及答案
线性代数练习册答案第五章相似矩阵及二次型51内积52方阵的特征值与特征向量一.填空题:1.A 是正交矩阵,则A 1A.2.已知n 阶方阵A 的特征值为12,,,n,则EA12n.3.已知3阶方阵A 的特征值为1,1,2,则232BAA 的特征值为1,5,8;A2;A 的对角元之和为2.4.若0是A 的特征值,则A 不可逆(可逆,不可逆).5.A 是n 阶方阵,Ad ,则AA 的特征值是,,,d d d (共n 个).二.用施密特法把下列向量组规范正交化123111(,,)124139解:111,1,1T2122121,61,2,31,1,11,0,13TTT313233122212,,1481211,4,91,1,11,0,1,,32333TT TT 故11111,1,13Tb ,22211,0,12Tb ,33311,2,16Tb .三.求下列矩阵的特征值和特征向量1. 1221A2. 100020012B 解:1. A 的特征多项式为12(3)(1)21A E故A 的特征值为123,1.当13时,解方程30A E x .由2211322rA E:得基础解系111P ,故1(0)kP k是对应于13的全部特征向量. 当21时,解方程0A E x .由22112200rA E :得基础解系211P ,故2(0)kP k是对应于21的全部特征向量.2.B 的特征多项式为210020(1)(2)12B E故B 的特征值为1231,2.当11时,解方程0B E x .由000011010010011rBE :得基础解系1100P ,故1(0)kP k 是对应于11的全部特征向量.当232时,解方程20B E x.由10010*********11rBE :得基础解系201P ,故2(0)kP k 是对应于232的全部特征向量.四.证明下列各题1. x 为n 维列向量,且1Tx x,求证:2THExx 是对称的正交阵.2. 设A 、B 为同阶正交阵,证明:AB 也是正交阵. 证明:1.222TTTTTTTTHExxHExxExxH故H 为对称阵.又224444TTTTT TTTH HE xxExxExxx x x xExxxxE故H 为正交阵.2. 因,A B 为同阶正交阵,故,TTA AE B BE .又TT TT TABAB B A ABB EBB BE ,故AB 为正交阵.五.A 是n 阶方阵,命题P 为:A 的特征值均不为0.请尽量多的列举与P 等价的命题.(如A 可逆.至少列举3个)解:等价命题:1P :A 的列(行)向量组线性无关2P :0A3P :齐次线性方程组0Ax只有0解4P :A 的秩为n53相似矩阵54实对称矩阵的相似矩阵一.填空题:1.若是A 的特征向量,则1P是1P AP 的特征向量. 2.若A 与B 相似,则AB .3.20000101Ax与2000001B y 相似,则x 0,y 1.4.若是A 的k 重特征根,则必有k 个相应于的线性无关的特征向量,不对(对,不对),若A 是实对称的呢?对(对,不对).二.多项选择题(选出全部正确的选项,可能不只一个)1.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个(C )(A )互不相同的特征值;(B )互不相同的特征向量;(C )线性无关的特征向量;(D )两两正交的特征向量;2.方阵A 与B 相似,则必有(BD )(A )E A E B ;(B )A 与B 有相同的特征值;(C )A 与B 有相同的特征向量;(D )A 与B 有相同的秩;3.A 为n 阶实对称矩阵,则(ACD )(A )属于不同特征值的特征向量必定正交;(B )0A ;(C )A 必定有n 个两两正交的特征向量;(D )A 的特征值均为实数;三.100021012A,试求一个可逆矩阵P 使得1P AP 为对角阵,并求mA .解:先求A 的特征值和特征向量.2100021(1)(3)12EA故A 的所有特征值为1233,1.当13时,解方程30A E x.2001003011011011rA E :令1011P ,则1P 即为对应于13的特征向量.当231时,解方程0A E x.00000011011011rAE:令2310,101P P ,则23,P P 即为对应于231的特征向量.显然,123,,P P P 线性无关.令123010,,10111PP P P ,则1111003131312211313022mmmmm m P APAP PAPP四.三阶实对称矩阵A 的特征值为0,2,2,又相应于特征值0的特征向量为1111P ,求出相应于2的全部特征向量. 解:因为A 为三阶实对称矩阵,故A 有三个线性无关的特征向量,且对应于不同特征值的特征向量两两正交.已知对应于10的特征向量为1P ,设对应于232的特征向量为23,P P ,则12130,0T TP P P P .即23,P P 为齐次线性方程组10T P x 的两个线性无关的解.由10TP x得1230x x x .令2310,1x x ,则11,1x .取23111,001P P ,则23,P P 即为对应于232的特征向量.令2233k P k P (23,k k 不全为零),则为对应于232的全部特征向量.五.设3阶方阵A 的特征值为1231,0,1,对应的特征向量分别依次为1231222,2,1212P P P ,求A . 解:因为123,故A 可对角化,且123,,所对应的特征向量123,,P P P 线性无关.显然112312323,,,,A P P P P P P ,令123,,PP P P ,故111231102100123122A P PP P.55二次型及其标准形56用配方法化二次型为标准形57正定二次型一.填空题:1. 22(,)22f x y xxy yx 是不是二次型?答:不是.2. 123121323(,,)422f x x x x x x x x x 的秩是3;秩表示标准形中平方项的个数.3.2110100A k k,A 为正定矩阵,则k 满足大于1.二.A 为实对称矩阵,选出全部的A 为正定矩阵的充分必要条件(12346)1.对任意的列向量0x ,0x Ax2.存在可逆方阵C ,使得A C C3.A 的顺序主子式全部大于零4.A 的主子式全部大于零5.A 的行列式大于零6.A 的特征值全部大于零三.212312331001(,,)(,,)3043x f x x x x x x x x 1.求二次型123(,,)f x x x 所对应的矩阵A ;2.求正交变换xPy ,将二次型化为标准形.解:1. 2112312331232123001(,,)(,,)300(,,)34343x x f x x x x x x x x x x x x x x 22212233343xxx x x故二次型123(,,)f x x x 所对应的矩阵100032023A. 2.问题可转化为求正交矩阵P ,将A 化为对角形. 210032(1)(5)23AE故A 的特征值为1231, 5.当121时,解方程0A E x.000011022*******rA E :.令1310,1x x ,得20,1x .取1210,101,则12,即为对应于121的特征向量.显然,12,正交.将12,单位化得121212110,2012P P 当35时,解方程50A E x.4001005022011022rA E :.令31x ,得1201x x .取311,则3即为对应于35的特征向量.将3单位化得3331212P .令123PP P P ,则1115P AP.故123(,,)f x x x 的标准形为2221235y yy .四.已知A 和B 都为n 阶正定矩阵,求证A B 的特征值全部大于零.证明:因为,A B 都为n 阶正定矩阵,则对任意n 维列向量0x,有0,00T T Tx Axx BxxA B x .即A B 是正定矩阵.故A B 的特征值全部大于零. 五.已知A 为n 阶正定矩阵,求证1A E.证明:因为A 为n 阶正定矩阵,则A 的n 个特征值12,,,n全大于零且存在正交矩阵P ,使得112211nnP APAPP .由1122111nnAE P PPPPE P121111nPP ,得121121111111nnA E PP六.求22:1L x xy y围成的面积.解:设二次型22112(,),112x f x y xxy yx yy.令112112A,则A 是对称矩阵且正定.设12,为A 的特征值,可知存在正交矩阵P ,使得112TP APP AP.由0E A,得1213,22.因为正交变换不改变向量的长度,故可用正交变换12z x P z y,使得1221122TT TT X AXZ P APZZ P APZzz ,其中12,z x XZz y.综上可知,经过正交变换后,221213(,)22f x y zz .故L 的面积即为椭圆:221213122zz的面积.面积23S .第五章复习题三、计算题1、设3阶对称阵A 的特征值为6,3,3,与特征值6对应的特征向量为11,1,1Tp ,求A解:因为对称矩阵对应于不同特征值的特征向量是两两正交的,所以求对应于3的特征向量即为求与1,1,1T正交的特征向量。
线性代数练习题及答案
线性代数练习题及答案线性代数作为一门重要的数学学科,对于理工科学生来说是必修课程之一。
在学习线性代数的过程中,练习题是非常重要的一环,通过练习题的完成,可以巩固理论知识,提高解题能力。
本文将介绍一些常见的线性代数练习题及其答案,希望对读者有所帮助。
一、向量与矩阵1. 给定向量a=(2,3,1)和b=(1,-1,2),求向量a与向量b的内积及外积。
答案:向量a与向量b的内积为a·b=2*1+3*(-1)+1*2=1,向量a与向量b的外积为a×b=(7,3,-5)。
2. 给定矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的转置矩阵和逆矩阵。
答案:矩阵A的转置矩阵为A^T = [1 4 7; 2 5 8; 3 6 9],矩阵A的逆矩阵不存在,因为A的行列式为0。
二、线性方程组1. 解方程组:2x + 3y - z = 13x - 2y + 4z = 5x + y + 2z = 0答案:通过高斯消元法,可以得到方程组的解为x = -1,y = 2,z = -1。
2. 解方程组:x + 2y + z = 32x + 4y + 2z = 63x + 6y + 3z = 9答案:该方程组为一个超定方程组,通过最小二乘法可以得到方程组的近似解为x = 1,y = 1,z = 1。
三、特征值与特征向量1. 给定矩阵A = [2 1; 1 2],求矩阵A的特征值和特征向量。
答案:首先求解A的特征方程det(A-λI)=0,得到特征值λ=1,λ=3。
然后,将特征值代入(A-λI)x=0,得到特征向量x=(1,1)和x=(-1,1)。
2. 给定矩阵A = [3 -1; 1 3],求矩阵A的特征值和特征向量。
答案:同样地,求解特征方程det(A-λI)=0,得到特征值λ=2,λ=4。
将特征值代入(A-λI)x=0,得到特征向量x=(1,1)和x=(-1,1)。
四、线性变换1. 给定线性变换T:R^2 -> R^2,将向量(1,0)和(0,1)分别变换为(2,3)和(-1,4),求线性变换T的矩阵表示。
线性代数习题集(带答案)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ). (A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1000323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=01111010100111.6.行列式=-0100002000010nn .7.行列式=--0001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知d b c a c c a b ba b ca cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001031002112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dc b a dc b a dc b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a xa a a a x a a a a xa a a a x;5. na a a a111111111111210(n j a j ,,1,0,1 =≠);6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.x a a a a x a a a a x a a a a xn nn321212121;9.2212221212121111nn n nn x x x x x x x x x x x x x x x +++; 10.211200000210001210001211.aa a aa a a aaD ---------=110110001100011001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++d ddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a dc b a +++------=.4.∏∑≤<≤=----=nj i i jni in nn nn n n n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c b a的充要条件是0=++c b a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
线性代数习题集第五章
线性代数习题集第五章1.设三维线性空间V内的一个线性变换σ在基ε1,ε2,ε3下的矩阵为A=a b ca1b1c1a2b2c2,则σ在基ε1,ε2,ε3下的矩阵为()(1)a2b2c2a1b1c1a b c(2)c2b2a2c1b1a1c b a(3)a b ca1b1c1a2b2c2(4)a b ca1b1c1a2b2c22.设a,b,c是线性空间R3中的任意向量,下列对应法则哪一个是R3中的线性变换()(1)σa,b,c=(a2,0,0)(2)τa,b,c=a,b(3)υa,b,c=0,0,a b(3)φa,b,c=0,b,03.线性空间R3的两个线性变换σ,τ为σx1,x2,x3=x1?x2,x2,x3?x1;τx1,x2,x3=x1,0,0,并且α=1,0,1∈R3则σ+τα为()(1)2,0,0(2)2,0,1(3)1,0,0(4)1,0,14.R2的两个线性变换σ,τ为σx1,x2=x1,x2300?1;τx1,x2=x1,?x2,则σ?τx1,x2为()(1)2x1,0(2)3x1,0(3)x1+x2,0(4)x1+x2,x25.R3的两个线性变换σ,τ为σx1,x2,x3=0,x1,x2;τx1,x2,x3=x1,0,x2;则στ?L x1,x2,x3为()(1)1,1,x22(2)?x1,x1?x2,?x3(3) ?1,x1?x2,?1(4)?x1,?x2,x1?x36.已知R2的线性变换σx1,x2=x1+x2,2x1+x2,则σ2x1,x2为()(1)(x1+x2)2,(2x1+x2)2(2)x12+x22,4x12+x22(3)x1+x2,2x1+x2(4)3x1+2x2,4x1+3x2 7.“有相同的特征多项式”这是两个矩阵相似的()条件。
(1)充分(2)必要(3)充分必要(4)既不充分也不必要8.在线性空间R3中,线性变换σx,y,z=z,x,y,则σ在基ε1=1,0,0,ε2= 0,1,0,ε3=0,0,1下的矩阵为(1)010001100(2)001010100(3) 100010001(4) 001100010 9.矩阵 2202的特征值为()(1)λ1=λ2=2 (2)λ1=λ2=4 (3)λ1=2,λ2=4 (4)λ1=0,λ2=110.令 a b c d,则f A (x)的表达式为()(1)x 2?T r A x + A (2)x 2+T r A x + A(3)x 2?T r A x ? A (4)x 2?T r A x11.对f A x = x ?2 2(x +3)时矩阵A 的特征值为()(1)λ1=2 (2)λ1=?3,λ2=2(二重根)(3)λ1=3 (4)λ1=3,λ2=-212.以线性空间V 的任何非零向量作为特征值的线性变换只能是()(1)变换(2)位似(数乘)变换(3)单位变换(4)零变换13.n 维线性空间V 的线性变换σ可逆的充分必要条件是()(1)σ的特征多项式的常数项不等于零(2)σ的特征多项式不等于零(3)σ有n 个互异的特征值(4)σ有n 个线性无关的特征向量14.设λ是矩阵A 的特征值,且A 2=A ,则λ只能是()(1)0 (2)1 (3)正实数(4)0或115.实对称矩阵的特征值为()(1)都是实数(2)都不是实数(3)都是非负的实数(4)有实数也有非实数16.设线性空间V 的线性变换σ在基ε1,ε2,…,ε3下的矩阵是A ,在基ξ1,ξ2,…,ξn 下的矩阵是B ,并且从ε1,ε2,…,εn 到基ξ1,ξ2,…,ξn 的过度矩阵T ,则A,B,T 之间的关系是()(1)T=AB (2)TB=AT (3)TA=BT (4)B=T ’AT17.设数域K 上的n 维线性空间V 的线性变换σ关于V 的一个基的矩阵是A=(a ij ),σ的特征多项式f(x)=x n +a 1x n?1+?+a n?1x +a n ,则a n 等于(1) A (2)(?1)nA (3) a ij n i =1 (4) a ij n i=1 18.设B=T ?1AT ,λ是A ,B 的一个特征值,ξ是A 的关于λ的特征向量,则B 的关于λ的特征向量是()(1)ξ (2)T ξ (3)T ?1ξ (4)T ’ ξ19.矩阵A=? a 11?a 1n a n 1?a nn的迹T r A 为()(1) a i 1n i=1 (2)(?1)n a 1j (3)? a i 1n i=1 (4)(?1)na 1i n i=1 20.设σ是一线性变换,若Ker (σ)={0},则下面说法正确的是()(1)σ无特征值零(2)σ有特征值零(3)σ有特征值1 (4)σ有特征值-121.设λ=2是非奇异矩阵A的特征值,则矩阵(1/3A2)?1的特征值等于()(1)4/3 (2)3/4 (3)1/2 (4)1/422.设A为N阶可逆矩阵,λ是A的一个特征值,则A?的特征值等于()(1)λ?1A n(2)λA n(3)λA(4)λ?1A23.n阶方阵A具有n个不同的特征值是A与对角矩阵相似的()(1)充分必要条件(2)必要非充分条件(3)充分非必要条件(4)非充分非必要条件24.二维平面上的旋转变换σ,()非平凡的不变子空间(1)有(2)有一个(3)有无限多个(4)没有25.对于数域K上的线性空间V的数乘变换来说,()不变子空间(1)每个子空间都是(2)有一个(3)有两个(4)不存在26.线性变换σ的多项式f(σ)的像与核都是σ的不变子空间,因为()(1)f(σ)仍是一个线性变换(2)σ是一个线性变换(3)σ的不变子空间也是f(σ)的(4)f(σ)与σ可交换II.填空题1.设σ是线性空间V的线性变换,若满足;则称σ是可逆变换,并且σ的逆变换是。
线性代数同步练习册第五章(19题,10页)
第五章特征值与特征向量1、求下列矩阵的特征值以及特征向量.(1)310 22⎛⎫ ⎪⎝⎭.(2)100110232⎛⎫⎪-⎪⎪⎝⎭.(3)222254245-⎛⎫⎪-⎪⎪--⎝⎭.(4)212533102-⎛⎫⎪-⎪⎪--⎝⎭.2、已知矩阵 74147144A a -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭的特征值为3(二重)和12,求a 的值及矩阵A 的特征向量.3、已知矩阵2253102x A y ⎛⎫ ⎪= ⎪ ⎪--⎝⎭的特征值为-1(三重),求,x y 的值及矩阵A 的特征向量.4、已知矩阵 111A a bc d e f ⎛⎫⎪= ⎪ ⎪⎝⎭. 向量123(1,1,1),(1,0,1),(1,1,0)T T Tααα==-=-是A 的特征向量,求,,,,,a b c d e f 的值..5、已知矩阵15310ac A b c a -⎛⎫ ⎪= ⎪ ⎪--⎝⎭.其行列式1A =-. 又A 的伴随矩阵*A 有一个特征向量0λ,且属于0λ的特征向量为(1,1,1)T α=--,求0,,,a b c λ的值.6、设,A E 分别是三阶方阵和单位矩阵,且满足0E A -=,0E A +=以及20E A +=,求行列式2E A A ++的值..7、设123,,x x x 分别是1232210318x x x -+-=--的根,求123x x x ++的值.8、若n 阶方阵A 满足2A A =,则称A 是幂等矩阵. 证明幂等矩阵的特征值只能是0或1.9、若n 阶方阵A 满足0mA =,则称A 是幂零矩阵. 证明幂零矩阵的特征值只能是0.10、设向量(1,1,1)T α=-是矩阵2125312A a b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭的一个特征向量.(1)求参数,a b 及特征向量α所对应的特征值;(2)判断A 是否可以相似对角化,并说明理由.11、设矩阵,A B 相似,其中11124233A a -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,20002000B b ⎛⎫ ⎪= ⎪ ⎪⎝⎭.(1)求参数,a b 的值;(2)求可逆矩阵P ,使得1P AP B -=.12、设矩阵3513A -⎛⎫= ⎪-⎝⎭,求100A .13、设矩阵460350361A ⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭,求mA (其中m 为正整数).14、设矩阵320222021A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭.求正交矩阵T ,使得1T AT -为对角矩阵,并写出相应的对角矩阵.15、设3阶实对称矩阵A 的特征值是1,2,3,且属于特征值1,2的特征向量分别是12(1,1,1),(1,2,1).T T αα=--=-- (1)求A 的属于特征值3的一个特征向量; (2)根据(1)中的结果试求矩阵A .16、试证:若A是n阶实对称矩阵,且A是幂零矩阵,则0A=. 17、试证:若A是奇数阶实正交矩阵,且1A=,则1是A的一个特征值.18、试证:若A是n阶实正交矩阵,且1A=-,则-1是A的一个特征值. 19、设矩阵A是n阶矩阵,且满足2A A=. 证明存在可逆矩阵T,使得1(1,1,,1,0,,0)T AT diag-=.第五章 特征值与特征向量 自测题一、选择题1、设n 阶方阵A 满足2230A A E --= ,则下面选项错误的是 ( ). (A) 3是A 的特征值 (B) A 是可逆矩阵(C)A 可以相似对角化 (D) -1不是TA 的特征值2、已知矩阵A 与对角矩阵100010001D ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭相似,则2A =( ).(A) A (B)D (C) E (D) E -3、矩阵311131113--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭ 和100010001⎛⎫⎪ ⎪ ⎪⎝⎭的关系是( ). (A) 既合同又相似 (B )相似但不合同(C) 合同但不相似 (D) 既不合同又不相似4、设n 阶实方阵A 满足120A =,则( ).(A)A E +可逆,但A E -不可逆 (B )A E +、A E -都可逆 (C)A E +不可逆,但A E -可逆 (D) A E +、A E -都不可逆5、已知Q 是n 阶可逆方阵,T A Q Q =,λ为A 的特征值,则( ). (A) 0λ>; (B) 0λ=; (C)0λ< (D)前三个选项都有可能.二、填空题1、设3阶方阵A 的特征值为1,1,2-,*A 为A 的伴随矩阵,则*2A E += .2、设123,,x x x 分别是1113110911x x x ---+-=---的根,则123x x x 的值= . 3、设126,2λλ==是实对称矩阵A 的特征值,向量(2,1,1),Tt α=-+(,1,2)T t β=-为分别属于6,2的特征向量,则t = .4、若矩阵01ac b c ⎛⎫ ⎪⎪⎪⎪ ⎪ ⎪⎝⎭是正交矩阵,222)a b c ++= . 5、设,A E 分别是三阶方阵和单位阵,且E A -,,E A +2E A +均不可逆,则行列式2E A += .三、利用特征值、特征向量以及相似对角化等知识,计算100011210121103---⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭.四、设A 为三阶方阵,123,,ααα为线性无关的三维向量组,且满足1123,A αααα=++2232,A ααα=+32323A ααα=+.(1)求矩阵B ,使得123123(,,)(,,)A B αααααα=;(2)由(1)中结果,利用相似矩阵的性质,求矩阵A 的特征值; (3)由(1)、(2)中结果,利用相似矩阵的性质,求可逆矩阵P ,使得1P AP -为对角矩阵.五、当b为任意实数时,矩阵b bb bAb b⎛⎫⎪⎪=⎪⎪⎝⎭是否可以相似对角化?为什么?若能对角化,写出与矩阵A相似的对角形矩阵. 六、已知n阶实方阵1000010000010000Aλλλλ⎛⎫⎪⎪⎪=⎪⎪⎪⎝⎭,求证A不能相似对角化.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、填空题 一、选择题
a1
1.若 2b1 3a1
a2 2b2 3a2 c2
a3
-a1 -a2 b2 c2
2
-a3 b3 ( c3
2
1.设 A, B,C 均为 n 阶矩阵,若由 AB = AC 能推出 B = C ,则 A 应该满 ) 足条件 2. 向量组 1 3,1, a ,
T 2
c1
(A) 3 ;
2b3 3a3 6 ,则 b1 c3 c1
(C) 6 ;
。
4, a, 0 , 3 1, 0, a 线性相无关, 则a
T T
(B) 3 ;
(D) 6 。
应满足条件
。
2.设 A, B 为 n 阶可逆矩阵, 如果 A B A B A B 成立, 则 A, B 必须满足条件( ) (A) A = E 或者 B = E ; (C) A = B ; 3. 设 A 为 三 阶 矩 阵 , 且 A (B) A = O 或者 B = O ; (D) AB BA 。
1 , 设 A* 为 A 的 伴 随 矩 阵 , 则 2
。
3 A
1
2 A*
x1 x2 x3 1 2 x2 x3 2 3.如果线性方程组 有惟一解, 则 ( ) x3 3 1 x3 3 1
。
三.计算题
1 2 1.已知四阶行列式 D 4 1
2 4 1 4
3 3 3 3
4 1 ,求 A11 A12 A13 A14 (其中 A ij 是 2 2
行列式位于第 i 行、第 j 列的元素的代数余子式) 。
1 1 1 2 0 3. 设 A 1 1 0 , B 2 1 0 。已知 R AB 2 ,求 的值。 0 0 1 1 2 1
0 1 0 1 1 1 , B = 2 0 ,且 AX B = X , 2.已知矩阵 A 1 1 1 0 1 5 3
求矩阵 X 。
2 x1 x2 x3 2 5. 设 3 维 列 向 量 1 (1,3, 2)T , 2 (3, 2,1)T , 3 (2, 5,1)T , 4.已知线性方程组 x1 2 x2 x3 , 问 为何值时,方程组无解? 方程 x x 2x 2 (4,11,3)T ,试判断向量 是否可由向量组 1 , 2 , 3 线性表示?若可以, 3 1 2
(A)1 或 2; (B)—1 或 2; (C)1 或 3; (D)—1 或—3。 件
2 x1 x2 x3 0 4. 若 齐 次 线 性 方 程 组 x1 kx2 x3 0 有 惟 一 零 解 , 则 k 满 足 条 kx x x 0 1 2 3
组有解? 并求出它的通解. 求出相应的表达式。
0 0 6.设 A 0
1 0 ,求 A 的特征值及其对应的特征向量. 0 0