外文翻译(英文)陶瓷颗粒细度对氧化锆-莫来石复合材料性能的影响

合集下载

氧化锆球的密度、硬度、粒度对研磨的影响

氧化锆球的密度、硬度、粒度对研磨的影响

氧化锆球的密度、硬度、粒度对研磨的影响1.氧化锆球的选择对研磨的影响(1)密度 密度在通常的⽂档中⽤密度(真密度)和叠加密度(假密度)来表⽰。

不同氧化物的相对分⼦质量和百分⽐组成决定了氧化锆微球的密度。

⼀般来说,氧化锆颗粒的密度越⾼,砂磨机旋转产⽣的动能越⼤,研磨效率也越⾼。

另⼀⽅⾯,研磨介质密度越⾼,接触件(内筒、分散盘等)的磨损越⼤。

因此,物料的粘度和流量的组合成为砂磨的关键。

低密度氧化锆微球适⽤于低粘度材料,⾼密度氧化锆微球适⽤于⾼粘度材料。

(2)硬度 莫⽒硬度和维⽒硬度是常⽤的指标。

⼀般来说,氧化锆球的硬度越⾼,珠⼦的磨损率就越低。

从氧化锆球的磨损到砂磨机的接触件(分散盘、棒销、内筒等)。

()⾼硬度氧化锆微球对接触件的磨损较⼤,⽽光滑珠⼦对圆柱体和分散盘的磨损相对较⼩。

同时,还可以调整研磨珠的填充量、粘度和流量,达到最佳点。

(3)粒度 氧化锆球的⼤⼩决定了珠⼦和材料之间接触点的数⽬。

颗粒尺⼨越⼩的珠⼦在相同体积下的接触点越多,研磨过程中的有效碰撞次数越多,研磨效率越⾼。

在相同的研磨时间下,使⽤⼩直径磨粒时,产品的细度优于⼤直径研磨介质。

但另⼀⽅⾯,当研磨初始颗粒较⼤的材料时,例如对于100微⽶的材料,D=1mm的微球可能不会更有⽤,因为⼩颗粒的冲量不能达到完全研磨和分散的能量,此时应该使⽤粒径较⼤的微球。

2.合理填充率 当获得最佳分散研磨效果时,氧化锆颗粒的填充率是砂磨机所需的磨粒数量。

磨粒充填率过⾼,容易导致砂磨机内部温度升⾼,汽缸不能及时散热并⾃动关闭。

研磨珠的填充率过低,研磨效率低,介电损耗⼤。

因此,合理的充填率是提⾼研磨效率的重要因素之⼀。

砂磨机说明书中的充填率通常⽤体积测量来表⽰,但在⽣产中必须转化为介质的实际充填质量。

计算公式=砂磨机有效体积×充填率×研磨介质堆垛密度 3.加⼊研磨介质 (1)加⼊研磨介质的原则。

如果发现磨床的研磨效率降低,就有可能添加珠⼦。

氧化锆对耐火材料的影响作用研究

氧化锆对耐火材料的影响作用研究

--热震性差
氧化锆(ZrO2)对耐火材料的影响作用研究 氧化锆(ZrO2)对耐火材料的影响作用研究
• 添加锆的镁白云石砖具有良好的性能:
(l)抗水化性; (2)易挂窑皮且窑皮稳定; (3)抗热震稳定性好不易剥落掉块; (4)抗熟料及碱侵蚀性好 • 其他优良性能:较高的荷重软化温度及优异的抗 硅酸盐水泥熟料的侵蚀性能、力学强度等
• 1、水泥窑用耐火材料的发展历程 1.1水泥窑用耐火材料作用:
a) 保护水泥窑窑体,使之不受火焰和高温物料的损 害; b) 减少热损失;
氧化锆(ZrO2)对耐火材料的影响作用研究 氧化锆(ZrO2)对耐火材料的影响作用研究
1、水泥窑用耐火材料的发展历程
• 粘土砖:
优点:初期回转窑窑的规格很小,锻烧温度
• 3)抗热震稳定性好
• 氧化锆(ZrO2)熔点高达2680℃,导热率低,化学稳 定性优良,抗酸、碱性矿渣浸润,挥发性小,莫氏硬 度超过7,同时,由于ZrO2的相变增韧原理,形成微 裂纹,从而提高耐火材料的抗热震性能
Hale Waihona Puke 氧化锆(ZrO2)对耐火材料的影响作用研究
其他性能:
• ZrO2可以孤立硅酸盐相,使之减少对MgO的润湿,从 而提高砖的强度;
谢谢~
冶金二班高温第三组制
• MgO-CaO-ZrO2复相材料
氧化锆(ZrO2)对耐火材料的影响作用研究 氧化锆(ZrO2)对耐火材料的影响作用研究
• 镁铬砖 优点:镁铬砖有较高的抗高温性能,抗SiO2侵蚀和抗 氧化还原作用,同时有较高的高温强度和抗机械能 力以及较好的结窑皮性能
• 缺点:Cr3+在高温、碱性环境下易被氧化为有毒 Cr6+,会对环境造成污染
氧化锆(ZrO2)对耐火材料的影响 作用研究

氧化锆粉+氧化铝粉的陶瓷烧结温度

氧化锆粉+氧化铝粉的陶瓷烧结温度

氧化锆粉和氧化铝粉是目前制备高性能陶瓷材料中常用的原料,它们具有优良的耐高温、耐腐蚀和机械强度等特性,因此在航空航天、能源、化工等领域有着广泛的应用。

而通过烧结工艺将氧化锆粉和氧化铝粉制成的陶瓷制品,其烧结温度是影响陶瓷制品性能的重要因素之一。

在陶瓷烧结过程中,氧化锆粉和氧化铝粉的烧结温度不仅决定了陶瓷制品的致密度、强度和晶粒尺寸等性能,还直接影响了烧结工艺的成本和效率。

科研工作者和生产厂家一直致力于寻找最佳的氧化锆粉和氧化铝粉的烧结温度,以满足不同工作条件下的需求。

在实际生产中,氧化锆粉和氧化铝粉的烧结温度是根据具体的配方和烧结工艺来确定的,下面我们将结合实验数据,深入探讨氧化锆粉和氧化铝粉的烧结温度。

1. 影响氧化锆粉和氧化铝粉烧结温度的因素在烧结工艺中,氧化锆粉和氧化铝粉的烧结温度受到多种因素的影响。

其中主要包括原料的性质、压制工艺、烧结气氛和烧结时间等因素。

1.1 原料的性质氧化锆粉和氧化铝粉的颗粒大小、形状、晶型和纯度等性质会直接影响其烧结温度。

一般来说,颗粒尺寸较小、形状较规则的氧化锆粉和氧化铝粉在烧结过程中更容易形成致密的结构,从而降低烧结温度。

1.2 压制工艺在烧结工艺中,通过改变氧化锆粉和氧化铝粉的压制工艺,可以调整烧结温度。

一般而言,采用高压制度工艺,如等静压烧结和冷等静压烧结,可以降低烧结温度。

1.3 烧结气氛选择合适的烧结气氛也对氧化锆粉和氧化铝粉的烧结温度有着重要影响。

在还原气氛下进行烧结,可以降低烧结温度,促进烧结过程中氧化物的还原反应,形成致密的结构。

1.4 烧结时间烧结时间对烧结温度也有一定影响。

一般情况下,延长烧结时间可以降低烧结温度,使氧化锆粉和氧化铝粉更充分地发生烧结反应,提高陶瓷制品的致密度和强度。

2. 实验数据分析针对氧化锆粉和氧化铝粉的不同性质和烧结工艺条件,我们进行了大量的实验研究,得到了丰富的实验数据。

通过对这些数据的分析,我们可以将氧化锆粉和氧化铝粉的烧结温度进行初步归纳。

陶瓷基复合材料

陶瓷基复合材料

Ceramic-matrix
注意事项 : (1)料浆应能与纤维表面保持良好润湿。料浆中包括:陶瓷基体粉末、 载液(通常是蒸馏水)和有机粘接剂,有时还加入某些促进剂和基体润湿 剂。为使纤维表面均匀粘附料浆,要求陶瓷粉体粒径小于纤维直径,并 能悬浮于载液和粘接剂混合的溶液中。 (2)纤维应选用容易分散的、捻数低的丝束,保持其表面清洁无污染。 在操作过程中尽量避免纤维损伤,并注意排除气泡。 (3)热压烧结应按预定规律(即热压制度)升温和加压。在热压过程中, 将发生基体颗粒重新分布、烧结和在外压作用下的粘性流动等过程,最 终获得致密化的陶瓷基复合材料。很多陶瓷基复合材料体系在热压过程 中往往没有直接发生化学反应,主要通过系统表面能减少的驱动,使疏 松粉体熔结而致密化。 存在的问题: (1)纤维和陶瓷粉末不容易复合成型。 (2)烧结时由于基体收缩或热压烧结时无粘性流动,会使颗粒和纤维 之间的机械作用而损伤纤维。 (3)目前,直径小于0.1微米-1微米的粉末很难买到。并且,其中的夹 杂物不易排除。同时,细的粉末在制造复合材料过程中又不易分散。 (4)在热压时会损伤纤维结构。
Ceramic-matrix
注意事项:
(1)与高聚物先驱体转化法不同的是,溶胶—凝胶工艺的先驱体是在溶液浸 进纤维编织坯件后在原位合成的。 (2)采用溶胶—凝胶法制备复合材料可以先制备复合凝胶体,即将复合的各 相以原子或分子级进行均匀混合形成复合溶胶和凝胶化,得到高纯、超细、均 相、分子级或包裹式的复合陶瓷粉末,再经成型、烧结而形成复合材料的基体 或者通过控制溶剂的蒸发速度将复合的溶胶凝胶化后,直接烧结成陶瓷基复合 材料。 (3)如果第二相是粉末或纤维,则可浸在适当的溶液中,通过形核和成长, 使溶液形成溶胶,均匀包围粉末和纤维,经凝胶化处理和热解后即形成陶瓷基 复合材料的基体。 (4)溶胶—凝胶法制备陶瓷基复合材料的质量保证关键主要有:选择合适的 先驱体反应物,控制溶液的浓度和pH值、气氛、分散剂、选用胶溶剂、去除 团聚以及使各相处于良好的分散状态等。

氧化锆_碳化硅复合材料性能研究

氧化锆_碳化硅复合材料性能研究

CHINACERAMICINDUSTRYAug.2010Vol.17,No.4中国陶瓷工业2010年8月第17卷第4期1前言碳化硅具有耐高温腐蚀、高热导率、热膨胀系数小、热稳定性好、高温机械强度高等优点,因而在工业上得到了广泛的应用。

纯净的碳化硅是电绝缘体(电阻率为1014欧姆·米),但当含有杂质时,电阻率便会大幅度下降至零点几个欧姆·米,加上它有负的电阻温度系数,因此碳化硅还是常用的发热元件和非线性压敏电阻材料。

只要涉及到高温工艺,特别是陶瓷、玻璃、耐火材料工业,都有可能使用碳化硅发热材料。

碳化硅热电体材料的电阻率越小,则在相同条件下发热量越大。

氧化锆室温电阻极高,电阻率高达1013欧姆·厘米,当温度升到600℃时即可导电,具有导体的性能,目前已成功地用于2000℃以上氧化气氛下的发热元件中。

对碳化硅电热体材料来说,低温通电即可实现发热,若将其与氧化锆复合,就可以在低温下由碳化硅引发复合材料发热,然后转为利用氧化锆发热,即两种材料复合后既可实现碳化硅在低温通电发热,又可实现氧化锆高温发热。

2稀土元素对碳化硅电热体材料电阻率的影响稀土元素对SiC 电热体材料电阻率有较大影响。

稀土元素中的镨(Pr)、钕(Nd)、铒(Er)都属于镧系元素,它们的金属性都很强,性质活泼,在高温时可与卤素、氮气、碳等非金属作用生成相应的卤化物、氮化物和碳化物。

它们最后填充的电子大都进4f 亚层,常见氧化值为+3价,Pr 还可以产生+4氧化值。

稀土元素与导电机理同铁系元素相似,由它们掺杂的碳化硅电热体材料中载流子就是稀土元素离子及由其所引起的其它晶体缺陷,属于杂质离子电导,载流子的浓度与温度无关,仅决定于杂质离子的含量,因此,样品的电阻随掺杂物比例的增大而减小。

有人对稀土氧化物的加入量对电阻率的影响进行了研究,研究结果表明:当氧化镨、氧化钕和氧化铒的掺杂比例相同时,氧化铒的掺杂效果最好,而氧化钕的相对最差。

烧成制度对刚玉-莫来石陶瓷相含量、显微结构及性能的影响

烧成制度对刚玉-莫来石陶瓷相含量、显微结构及性能的影响

X 射线衍射仪对烧后试样的物相组成进行半定量分 析,检测结果见表 2 所示,陶瓷相主要由刚玉、莫来石、 斜锆石等晶相组成,另外还含有大量非晶质的玻璃相。
表 2 刚玉 - 莫来石结构陶瓷物相半定量分析结果(ω/%)
莫来石 刚玉 斜锆石 氧化锆 玻璃相
A0
32
38
4.4
0.2
25
A1
29
37
4.5
0.1
3 结果与讨论
高岭石在 550℃左右开始脱水形成偏高岭石,在 1000~1200℃时偏高岭石开始莫来石化形成莫来石,即 一次莫来石,同时产生大量方石英,α 氧化铝和方石英 反应,进一步生成莫来石相,即二次莫来石相。烧成第三 阶段,硅酸锆高温分解,生成石英相和氧化锆,石英与氧 化铝反应生成莫来石,即三次莫来石相。从理论上讲,合 成莫来石理想物料质量比 Al2O3:SiO2=2.55[2]。本次高岭土 和氧化铝配比,是按此理论比例配制。
刚玉砂 高岭土 氧化铝 硅酸锆
40
26
24
10
成型采用了常规挤出工艺,此技术制备的结构陶瓷 具备连续作业、效率高、性能适宜等特点。
将配方中的基质粉料按照配比加入球磨机中球磨 约 5 h,浆料过 300 目筛且筛余小于 10%时,放入浆池搅 拌,边搅拌边加入刚玉砂,搅拌完成后压滤成泥饼。将泥 饼放入练泥机混练挤出泥块并陈腐 24h 后,在真空挤出 机中挤出成型,干燥,然后进入高温窑炉中进行烧成。
2021 年第 05 期(第 298 期) 佛 山 陶 瓷 5
本次设计了 1 组目前比较常见的刚玉 - 莫来石结构陶 瓷配方,见表 1。骨料采用郑州二砂的白刚玉砂(80 ~ 110 目混合砂),氧化铝采用青岛安迈氧化铝微粉,高岭土采 用茂名高岭土(造纸级),硅酸锆采用澳大利亚砂。

Al2O3陶瓷材料中添加不同量ZrO2

Al2O3陶瓷材料中添加不同量ZrO2

Al2O3陶瓷材料中添加不同量ZrO2的力学性能影响目的:分析在Al2O3陶瓷材料中添加不同量的ZrO2后,陶瓷的力学性能变化以及耐磨损的效果,从而得到最优的Al2O3陶瓷材料中ZrO2添加量。

方法:运用热压烧结法制备Al2O3陶瓷,第一组采用99.6vol% Al2O3(AD995)、第二组采用Al2O3中添加15vol%的ZrO2,第三组采用Al2O3中添加25vol%的ZrO2。

针对符合材料细观力学理论,并充分考虑到ZrO2的相变特性,建立起了两者之间的力学结构模型。

结果:在氧化铝材料中添加了细化氧化锆晶体后,陶瓷材料的致密性有了明显提升,三组实验中所制得的陶瓷材料中的力学性能图线呈现应力-应变曲线类线性关系。

第一组陶瓷的断裂韧性为5.38MPa·m0.5,第二组陶瓷材料的断裂韧性为8.37 MPa·m0.5,较上一组实验的断裂韧性提升了大约50%;第三组实验所制得的陶瓷材料的断裂韧性为10.53 MPa·m0.5。

结论:进而说明,伴随着ZrO2增加量的提升。

陶瓷的弹性模量降低而断裂韧性增加,这一变化趋势与实验结果有良好的一致性。

未增加ZrO2材料层的磨损形式主要是磨粒磨损,而两组增加了加ZrO2材料层的磨损形式主要是黏着磨损。

1 引言陶瓷材料是人类应用最早的材料之一。

它是一种天然或人工合成的粉状化合物,经过成形或高温烧结,由金属元素和非金属的无机化合物构成的多相固体材料川。

陶瓷材料具有耐高温、耐腐蚀、耐磨损、高强度、高硬度、抗氧化等诸多优点,近年来逐渐从传统应用行业扩展到航空航天、生物医疗、汽车、建筑等更为广阔的应用领域。

但氧化铝陶瓷材料由于本质上是一种脆性材料,由于自身结构和键性的原因,滑移系统少,位错产生和运动困难,导致韧性较低,也严重限制了其应用和发展。

ZrO2增韧Al2O3陶瓷是最早开发的Al2O3陶瓷基复合材料。

ZrO2自身马氏体转变引起的裂纹韧化和残余应力韧化可使其韧性得到显著提高,这也是对Al2O3陶瓷增韧使用最多且效果最好的增韧方法之一[2-3]。

莫来石和莫来石-氧化锆复合材料的晶相转变和烧结性能

莫来石和莫来石-氧化锆复合材料的晶相转变和烧结性能

整悬 浮物 的 p H值 为 1 .。这种 泥浆 在 lOI 进 05 1c 下 =
裂 和再 黏 结 。碾 磨 1 h可 以减 小颗 粒 尺 寸 ,这 是 因
行 干燥 ,用 13 6 的筛孔 进行 筛 滤 ,然后 在 常 温 单 向压 力 7 MP 5 a下 进 行 压制 ,制 备 出直 径 为 8 m a r
热膨 胀率 、 良好 的化学 稳定性 、优 异 的抗 蠕 变性 并 在 高温 下具有 高 的强度 。因此 被认 为是在 高 温领 域 中最 有前 途 的工程 材料 之一 。制备 莫来石 所 用方 法 之 一 是 氧 化 铝一 化硅 、高岭 土 一 化 铝 混 合 物 的 氧 氧 烧 结反 应或是 莫来 石细 结 晶粉 末 的 固相烧 结 。莫 来 石 细结 晶粉 末 的压坯 需 要 高温 ( 16 0C)烧 结 才 > 0 ̄ 能 达 到高 致密 性 。 另一 方 面 ,为 了达到 最 好性 能 , 需要 精确 控制 组分 和微 结构 。烧结 化学计 量 莫来 石 时 ,经 常 需 要 压 力辅 助 烧 结 ,例 如 热 压 和 热 等 静
了 ,偏 高 岭 石 转 变 为 尖 晶石 ( iA ) 和 非 晶形 S— 1
SO ,由尖 晶石 转变 为非 晶形 SO 和 原生 莫来 石开 i: i: 始 于前 面 步骤 的末 期 导 致 了相 对 收 缩 .在 13 0C 4  ̄
的 圆 柱 体 试 样 。用 S T R M L by 分 析 对 高 E A A a ss热 岭 土一 化 铝 和高 岭 土一 化 铝 氧 化 锆进 行 了动 氧 氧 态烧 结研究 。本 文还 研究 了按下 式克分 子 比例组 成 的高 岭土/ 1 3 r 2 A : / O 复合 物 : OZ
通 过水 浸 方 法 测 量 其 体 积 密度 。 用 X一 线 衍 射 ( ivl 法 ) 测 出 烧 成 试 样 中 呈 现 的 晶 相 。 本 文 发 现 , 当添 射 Re e t d方

TiC粉末粒度对Ti_C_N_基金属陶瓷组织及性能的影响

TiC粉末粒度对Ti_C_N_基金属陶瓷组织及性能的影响

图 3 两组金属陶瓷组织的 SEM( BSE) 图 Fig. 3 BSE-SEM microstructures of two groups of cermet
( a) TiCμm; ( b) TiCnm
EDS 能谱分析如图 4 所示,黑色芯部( core) 主 要是 TiC 或 Ti( C,N) ; 组成灰色壳层( rim) 的主要元 素为 Ti、W、Mo 和 C,以( Ti,W,Mo) ( C,N) 固溶体形
两组材料中均加入了纳米tin但微米tic中纳米tin镶嵌在大颗粒环形相和弥散分粘结相中对裂纹的形成和扩展起到阻碍作用使金属陶瓷裂纹扩展途径发生偏转从而提高了韧此用微米tic原始粉末制备的粗晶材料比用同成分的纳米tic原始粉末制备的细晶材料韧性高
櫡櫡櫡櫡櫡櫡櫡櫡 ~ 试验研究 ~
櫡櫡櫡櫡櫡櫡櫡櫡
TiC 粉末粒度对 Ti( C,N) 基金属陶瓷组织及性能的影响
的金属陶瓷组织细小均匀,抗弯强度、硬度均较高,分别达 1021. 5 MPa 和 17. 7 GPa( HV10) 。
关键词: Ti( C,N) 基金属陶瓷; 粉末粒度; 晶粒细化; 力学性能
中图分类号:TG148
文献标识码:A
文章编号:1008-1690( 2012) 02-0041-05
Effect of TiC Powder Sizes on Microstructure and Mechanical
means of XRD,SEM and EDX,and the mechanical properties were tested at room-temperature as well. The results
show that the cermet made from nano TiC powder offers fine and homogeneous structure and higher bending strength

Al_2O_3陶瓷复合材料的研究进展

Al_2O_3陶瓷复合材料的研究进展

Al2O3陶瓷复合材料的研究进展Research Progress of A l2O3Ceramic Composit es陈维平,韩孟岩,杨少锋(华南理工大学广东省金属新材料制备与成形重点实验室,广州510640)CH EN Wei ping,H AN M eng y an,YANG Shao feng(Guang dong Key Laborato ry fo r Advanced M etallic M aterials Pro cessing,South China University of T echnolo gy,Guang zhou510640,China)摘要:介绍了A l2O3陶瓷增韧技术和A l2O3陶瓷增强金属基复合材料的研究进展,指出复合增韧是未来A l2O3陶瓷增韧技术的发展方向;金属表面自生A l2O3防护层技术是提高金属耐蚀性,降低成本的有效方法;三维网络Al2O3陶瓷/金属复合材料具有更优良的力学性能;仿生设计和计算机模拟技术是开发新型网络A l2O3陶瓷骨架的重要手段。

关键词:A l2O3陶瓷;复合材料;增韧;增强中图分类号:T B331 文献标识码:A 文章编号:1001 4381(2011)03 0091 06Abstract:The toughening technology of Al2O3ceramic and strengthening of metal matrix composites w ith Al2O3ceramic are described.It is pointed out that compound toughening w ill be the better choice for the toughening technology of Al2O3ceramic in the future;Al2O3ceramic/metal composites w ith network structure have better mechanical properties;self forming Al2O3protective layer on the surface of metal is an effective method for improving resisting corrosion and reducing costs;bionic design and computer simulating are very useful for developing new netw ork Al2O3ceramic skeleton.Key words:A l2O3ceramic;co mpo site;toughening;strengtheningAl2O3陶瓷作为常见陶瓷材料,既具有普通陶瓷耐高温、耐磨损、耐腐蚀、高硬度等特点,又具备优良的抗氧化性、化学稳定性、低密度等特性,且来源广泛,价格便宜。

外文翻译

外文翻译

外文资料翻译学院:班级:姓名:学号:日期:外文资料翻译译文钛酸钙纳米陶瓷制备高能球磨摘要:纳米钛酸钙陶瓷合成的组合固相反应和高能球磨。

此纳米陶瓷的特征在于X-射线衍射(XRD ),介电研究和交流阻抗谱。

XRD图谱显示单相陶瓷斜方对称的频率依赖性电介质的研究表明,在介电常数是最大化在低频率和减少与增加的频率。

阻抗谱分析表明非德拜型弛豫现象。

一个显著转变在阻抗损耗峰向较高频率侧表示传导的材料有利于移动电荷载体的远距离运动。

晶粒传导效应观察从由一个半圆形的圆弧在Nyquist图的外观的复阻抗谱。

这是还观察到电阻随温度的增加而呈现出负下降电阻(NTCR )的温度系数。

各种热敏电阻参数已经计算了与斯坦哈特- Hart方程式拟合。

模量曲线表示存在温度依赖电松弛现象的材料。

频率依赖性的交流电导率在不同温度下表示该传导过程是热激活的。

该激活能量已经计算出直流电导率和放松的Arrhenius图频率。

1、引言CaTiO3所属的重要组成具有钙钛矿型结构,其化合物被广泛地应用于电子设备,它是人造岩石的关键成分(用于一类人工合成的岩石存储核废料)。

它具有高介电常数,低介电损耗和温度系数较大共振频率,使之成为一个有前途的组成部分在生产通信设备的在微波频率下工作(超高高频(UHF)和超高频(SHF))这反过来又在微波介质使用应用程序(如谐振器和滤波器)。

此外,它是可以用作热的材料敏感电阻元件,由于其负的温度系数,以及用于固定化高放射性废物。

这种独特的性质给这种材料备受关注,许多调查关于它的许多用途已经进行了近5年。

近日,可视光致发光在室温下,在无序性钙钛矿结构的钛酸(CaTiO3)的高度发射红色光的荧光体已经报道在文献。

不同的方法已被报道在文献CaTiO3粉体的合成。

这钙钛矿最初是通过常规二氧化钛和CaCO3或CaO之间的固相反应在大约1623 K表的温度。

但是,通过这种方法目前得到CaTiO3粉体一些问题,如高加工温度,不均匀性和污染通过与杂质非均匀的粒度分布。

外文翻译(英文)陶瓷颗粒细度对氧化锆-莫来石复合材料性能的影响.

外文翻译(英文)陶瓷颗粒细度对氧化锆-莫来石复合材料性能的影响.

Refractories and Industrial Ceramics Vol. 52, No. 1, May, 2011EFFECT OF CERAMIC POWDER FINENESSON MULLITE-ZIRCONIUM CERAMIC PROPERTIESG . P. Sedmale, 1A. V . Khmelev, 1and I. É.Shperberga 1Translated from Novye Ogneupory , No. 1, pp. 41–46, January 2011.Original article submitted October 29, 2010.Results are provided for a study of the development of high-temperature mullite-zirconium ceramic with use of activated ceramic powders prepared by grinding for different times with addition of illite clay, and from pure oxide powders. It is shown that increased activity and amorphicity of ground particles considerably pro-motes formation of mullite phase at 1200°C,and also transition of the monoclinic modification of ZrO 2to tetragonal, particularly with an increase in firing temperature. It is proposed that as a result of rapid “freezing”the structure retains the high-temperature modification of ZrO 2, having a tendency with slow ceramic cooling to transform into the monoclinic modification.Keywords:mullite-zirconium ceramic, illite clay, grinding, particle size.INTRODUCTIONMullite-zirconia (mullite-corundumceramic is one of the materials used extensively in high-temperature produc-tion processes. A distinguishing feature of mullite-zirconia ceramic is the retention of high strength, including at ele-vated temperature and with temperature falls. The set of these properties predetermines further application of the ce-ramic and use of it in high-temperature production processes.It has been established [1]that mullite-zirconia ceramic may be prepared from mixed starting compositions, includ-ing g-Al 2O 3, silica-gel, ZrO 2mon, Y 2O 3with addition of 7.75–8.75wt.%illite clay, promoting sintering and forma-tion of a mullite phase at lower temperatures [2].On the other hand, the importance is indicated in [3,4]of the degree of grinding of the starting powders. It has been established grinding ceramic powders leads to destruction of the particle crystal lattice, and as a consequence to amorphization. Here higher sintering indices are achieved for ceramic material and correspondingly density, and ultimate strength in bend-ing and compression. However, a distinguishing feature of rapid grinding [3]is formation of coarse agglomerates con-sisting of particles strongly sintered to each other. It has been proposed that agglomeration is due to heat liberated during grinding. Therefore, as indicated in [5],the duration of grind-ing should severely limited and determined by experiment1for each specific case. According to the authors of the pres-ent articles, grinding duration for starting powders is 5–6h.It is also noted [6]that grinding of starting powder pro-motes crystallization of mullite and tegtragonal ZrO 2in ce-ramic material. After a short period of grinding (4–6h rapid mullite formation during firing is observed at 1180–1280°C;further mullite formation occurs over the ex-tent of the next 350°C.It has been established [7]that with an average content of particles with a size of0.5mm in the starting powder the increase in ultimate strength in compression and even elas-ticity modulus was about 30%compared with a specimen containing particles with a size of more than 5mm. It has been noted that the size of mullite crystal particle that form, which are 50–70nm, and sometimes 80–95nm, is of con-siderable importance.The aim of this work includes determining the effect of ceramic powder fineness, including with addition of illite clay, on formation and development of high-temperaturecrystalline phases (mulliteand ZrO 2, and the mechanical properties of mullite-zirconia ceramic. STUDY METHODSThe starting powder was prepared from a mixture con-sisting of synthetic materials, i.e., g-Al2O 3prepared from calcined Al(OH3at 550°C,amorphous SiO 2, ZrO 2mon, and Y 2O 3. A mineral raw material was used in one part of the 351083-4877/11/05201-0035©2011Springer Science+BusinessMedia, Inc.Riga Technical University, Institute of Silicate Materials, Riga, Latvia.36Fig. 1. Schematic image of diffraction maximum with marked value for calcu-lating crystal particle size by the Sherrer equation.starting powder as an additional component, i.e. illite clay containing about65%illite fraction. The starting powder compositions are provided in Table 1.The chemical and mineral compositions, and also the av-erage grain size of illite clay are provided below:Chemical composition, %:SiO 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50.5Al 2O3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.8Fe 2O 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.5TiO 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.2CaO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.9MgO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6K2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0Na2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1Dm cal(1000°C. . . . . . . . . . . . . . . . . . . . . . . . . . 8.4Mineral composition, wt. p:illite K 0.5(H3O 0.5Al 2(OH. . . 2[(Al,Si. . . . 4O . . 10]·n H . . . 2O . . . . . . . 65–70quartz SiO 2. . . . . . . . . . . . . . 18–20calcite CaCO 3. . . . . . . . . . . . . . . . . . . . . . . . . . 5–6goethite a-FeOOH . . . . . . . . . . . . . . . . . . . . . . . 7–8kaolinite Al 2(OH4[Si2O5]. . . . . . . . . . . . . . . . . . . 5–7Content, %,particles with sizes, mm:63–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.520–6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.56.3–2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . .28.5<2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.5The starting powder mixes were ground and homoge-nized in a laboratory planetary mill for 4, 10and 24h, using corundum balls as the grinding bodies. The size of ground powder particles was determined by means of an SEM mi-croscope (modelJSM-T200, Japan, and the average particle distribution was evaluated by means of a photon correlation spectrometer using a strongly diluted suspension of 10–2N KCl (40mg KCl +100ml H 2O; the surfactant used was Fairy washing substance. In order to determine the crystal-line particle size an x-ray diffractometer (modelRigaku, Ja-pan, with Cu Ka-radiation with a scanning interval 2è=10–60°and a speed of 4°/minwas used. The size of crystal particles D , nm, in the original ground powders was determined by the Sherrer equation [8]:D =k l/B cos q,where k is Bolzmann constant (k =0.87–1.0; lis x-ray beam wavelength, nm(l=0.15418nm. The value of B , rad, was calculated from the difference in x-ray beam reflection angles, B =èwith 2–èa 1. A schematic image of the diffraction maximum note of the values required for calculation is shown in Fig. 1.G. P. Sedmale, A. V . Khmelev, and I. É.ShperbergaTABLE 1. Starting Powder Compositions for Preparing Mullite-Zirconia Ceramic, wt.%Powder compositiong-Al 2O 3SiO 2·n H 2OZrO 2Y 2O 3Illite clay1062.3028.005.204.50–10i 57.3025.854.704.158.00Specimens for phase composition, structure and proper-ties of the prepared ceramic materials were manufactured in the form of disks 30mm in diameter and 3mm thick, cylin-ders with a diameter of 35mm and a height of 45mm, and rods 55mm long and3mm thick from powders by axial compaction (pressure120MPa. Firing was carried outin an air atmosphere in the range from 1200to 1500°Cafter each 100°C(ina laboratory muffle furnace Nabertherm 3000, Germany, with a heating rate of 6°C/minwith soaking at the maximum temperature for 30min. Specimen density after firing was evaluated according to apparent density from the ratio of specimen weight to its volume, and also from deter-mination of open porosity and overall shrinkage according to EN 63-2:2001.The composition of phases, as for the size of crystals, and also microstructure of fired specimens were determined from x-ray phase analysis (XPAdata and scanning a scan-ning electron microscope (JSM-T200,Japan data after each firing temperature cycle. Thermal shock resistance was de-termined according to EN820-3:2004,using ceramic rod specimens fired at 1400°C.Specimens were studied after each 200°Cin the range 500–1000°C.Thermal shock resis-tance after firing cycle was evaluated from the change in elasticity modulus and ultimate strength in bending.Elasticity modulus was determined in a Buzz-o-sonic in-strument (firmBuzz-Mac International LLC, USA accord-ing tot eh principle of measuring shock wave propagation with a ceramic specimens placed perpendicular to two paral-lel installed metal bases, covered with a thin polymer layer. Shock waves within a specimen were created by means of small polymer hammer, in one end of which there was a steel ball4mm in diameter, recorded by a special microphone and analyzed by means of a Fourier arrangement.Elasticity modulus E , GPa, was calculated by the equa-tionE =0.9465rf 2L 4T 1/t 2,where ris specimen density, g/cm3; f is frequency, Hz; L is specimen length, mm; T test specimen dimensions; 1is correlation value which depends on t is specimen thickness, mm.The ultimate strength in compression of ceramic speci-mens was determined according to EN 658-2:2003using a TONI Technik Controller TG0995instrument, and ultimate strength in bending was determined by a three-point method according to EN 843-1:2006using a Zwick/Rolemodel 1486instrument.Effect of Ceramic Powder Fineness on Mullite-Zirconium Ceramic Properties37Fig. 2. Microstructure of starting powder composites 10and 10i re-spectively after grinding for 4(a and 20h (b.Fig. 3. Change in crystal dimensions in relation to starting powder grinding duration for composites 10and 10i:¯and ¡ baddeleyite (correspondinglycompositions 10and 10i; tion 10i; r and ´ Y * corundum (composi-2O 3(correspondinglycompositions 10and 10i; + quartz (composition10i.Fig. 4. Most possible distribution of particles P and their aggregates in starting powder compositions 10and 10i after grinding for 4and 10h.RESULTS AND DISCUSSIONMicrophotographs are shown in Fig. 2of ceramic pow-der compositions 10and 10i, ground for 4and 24h. After 4h of grinding powder composition 10is represented by densely compacted amorphous particles of circular shape with sizes of about 3to 7–10mm, being both individual formations and in the form of agglomerates. At the same time thestruc-ture of ceramic powder 10i with additions of illite clay, ground for 24h, is in the from of amorphous agglomerates of finer particles.According to XPA data, the average size of ZrO 2mon, Y 2O 3and quartz SiO2crystals (introducedwith illite clay in powders after 4, 10and 24h of grinding with an without ad-dition of clay varies within limits 55–100nm (Fig.3. It may seen that additions of clay affects the dispersion of crys-tals in the original powder. There is especially a reduction in crystal size of baddeleyite after 24h of grinding powder and Y 2O3(lessmarkedly; a sharp reduction in the size of quartz and ZrO 2crystals in composition 10i, reaching 55–59nm (seeFig. 3. On the other hand, from the results of determin-ing the size of particles an agglomerates in ground powder using a correlation spectrometer it follows that the size of the maximum amount of particles is seen within the limits 200–520nm (Fig.4.Formation of mullite and corundum phases, and also tetragonal and monoclinic ZrO 2(accordingto XPA data in specimens sintered at different temperatures, is shown in Fig.5. It may be seen that mullite formation commences at 1200°Cand it develops actively up to 1600°C,although the first mullite phase nuclei possibly form at 1100°Cdue to the activity and amorphicity of particles in the original powder. Crystalline phases of SiO2(cristobaliteand quartz are pres-ent up to 1250°C,and at higher temperatures (1330and 1400°Ca reaction sets in promoting further mullite and also corundum formation.It should be noted that over the whole temperature range apart from a diffraction maximum from ZrO 2mon, there is formation of a clearly expressed maximum from ZrO 2tetr,Fig. 5. X-ray patterns of crystalline phase formation in a 10i speci-men in relation to sintering temperature:M is mullite 3Al 2O 3·2SiO2; C is corundum a-Al 2O 3; Q is quartz; Cr is cristobalite; Z m is ZrO 2mon; Z t is ZrO 2tetr.38Fig. 6. Microstructure of specimens of compositions 10i (a and 10(b , fired at1300°C.which points to partial stabilization of zirconium dioxide due to introduction of Y2O 3into the ZrO 2structure.The microstructure of a specimen of this ceramic, shown in Fig. 6a , is represented by densely packed crystalline for-mations, mainly mullite of prismatic and pseudo-prismatic habit; for a specimen without a clay addition (Fig.6b the shape of mullite is more clearly observed.As may be seen from data for shrinkage of specimens of composition 10i (Fig.7, the effect of grinding duration t, i.e., increase in fineness of the starting powder, is quite marked. Specimen shrinkage increases from 15to 25%with an increase in tfor the starting powder for each temperature. Such a marked difference in development of shrinkage with an increase in tmay be explained by assuming that with presence of a liquid phase there is “contraction”(drawingto-gether of particles followed by sintering by a solid-phase mechanism. An increase in shrinkage with an increase in sintering temperature to 1500°Ccauses a reduction in liquid phase viscosity and consequently acceleration of ion diffu-sion, leading to specimen contraction during cooling. A simi-lar observation is also given by the authors in [4].By analyzing the change in apparent density rapp and ul-timate strength in compression sco (Fig.8 it may be noted that a significant role in increasing specimen rapp (upto 3.0and ~2.6g/cm3correspondingly for compositions 10i and 10 is played byaddition of illite clay, which is particularly typical for specimens ground for 10and 24h. This is ex-plained by more active diffusion and reaction of particles in the presence fo a liquid phase, whose formation is pro-moted by addition of illite clay. A positive role is also pro-posed for addition of illite clay on the transformation ZrO 2tetr ®ZrO 2mon on cooling specimens. At the sameG. P. Sedmale, A. V . Khmelev, and I. É.ShperbergaFig. 7. Change in shrinkage Y for specimens of composition 10i:t is temperature; tis starting powder grinding time.Fig. 8. Change in apparent density rapp (––and strength in com-pression sco (——.time, ceramic specimens without addition of illite clay have lower values of rapp since in this case sintering is determined mainly by the activity and amorphicity of particles in the starting powder.A more intense increase in rfirst 4h of grinding app and sshould co of specimens of powders after the also be noted. A further increase in grinding duration (t>10h is less effec-tive, which is probably due to agglomeration of particles. Addition of illite clay at a high level promotes an increase in the value of sco , reaching a maximum value of165MPa. An increase in saddition co to 98MPa is also demonstrated by specimens without of illite clay from powders after 24h of grinding, although the lower values of this index are due to presence of internal pores within specimens, which is indi-cated by the power values of rapp .The elasticity modulus E of specimens after thermal shock DT , particularly with an increase in the temperature range during thermal shock, and also specimens prepared from finer powders, has a tendency to increase (Fig.9. Such a clear difference in the value of E for specimens is appar-ently connected mainly with phase transformations of ZrO [6,11](ZrOwith im-2provement and 2mon >ZrO growth 2tetr, and in all probability of prismatic crystalline mullite for-mations. For specimens with addition of clay the value of E increased by 2–3GPa or more uniformly, particularly with a sharper temperature drop (800/20and 1000/20.For speci-Effect of Ceramic Powder Fineness on Mullite-Zirconium Ceramic Properties39Fig. 9. Change in elasticity modulus E for specimens of composi-tion 10in relation to difference in temperature interval DT with ther-mal shock. Specimen firing temperature1400°C.Fig. 10. Change in ultimate strength in bending sben of specimens without addition (a and with addition of illite clay (b made from powders ground for 4, 10and 24h in relation to temperature DT . Specimen firing temperature 1400°C.mens after the first thermal shock cycle (500/20a similar tendency is retained.A similar tendency is observed for the ultimate strength in bending sben of specimens after thermal shock. As may be seen from Fig. 10a, the overall tendency of a change in sben involves a marked increase after thermal shock. For exam-ple, whereas for an original specimens (after24h grinding of starting powder the value of sben is25MPa, with an in-crease in DT sben reaches 42.5MPa. It may be proposed that compliance of specimen to a sharp change in temperature followed by rapid b rapid “freezing”of the structure pro-motes a marked or total transfer ZrO 2mon >ZrO 2tetr, and to a certain extent agrees with expressions provided in [10].Changes of sben of specimens with addition of clay (Fig.10b are more uniform. The previous tendency is ob-served towards a more marked increase in sof powders after 24h of grinding, and also ben of specimens with an increase in DT , which is also explained by ZrO 2polymorphic transfor-mation. CONCLUSIONResults of development of high-temperature mullite-zir-conia ceramic using activated powders, ground for different times without or with addition of illite clay, showed that the particle size of the starting powder is determined by grinding duration. Use of different methods for evaluating powder particle size, and also particle agglomeration in a powder, gives different results. It is clear that the size of crystal parti-cles is ~50–100nm, whereas for amorphous particles and aggregates it is 200–500nm. An increase in activity and amorphicity of ground particles markedly promotes forma-tion of mullite phase starting from 1200°C,and also a transi-tion of the monoclinic modification of ZrO 2into tetragonal, particularly with a high firing temperature.It has been established that specimens have relatively high shrinkage (15–25%,which increases considerably with an increase in temperature and starting powder grinding duration.The apparent density and ultimate strength in compres-sion of specimens are governed both by the duration of start-ing powder grinding and also presence of illite clay within it. After 24h of starting powder grinding these indices for spec-imens without addition of illite clay reach 2.55g/cm3and 80MPa; for specimens with additions they increase to 2.95g/cm3and 15MPa respectively.Elasticity modulus and ultimate strength in bending for specimens with an increased temperature difference during thermal shock, both for specimens of powder with prolonged grinding (10and 24h have a tendency towards a marked in-crease, particularly for specimens without illite clay.It is assumed that the tendency of ceramic specimens to-wards a sharp temperature drop leads to rapid “freezing”of the structure, promoting retention of the high-temperature tetragonal modification of ZrO 2. REFERENCES1. G. P. Sedmali, I. É.Sperberger, A. V . Khmelev, et al., “F orma-tion of ceramic in the system Al Tekhn. 2O 3–SiOKeram. 2–ZrO, 2in the presence ofmineralizers,”Ogneupory No. 5, 18–23(2008.2. G. Sedmale, I. Sperberga, U. Sedmalis, et al., “Formationof high-temperature crystalline phases in ceramics from illite cla y and dolomite,”J. Eur. Ceram. Soc. , 26, No. 15, 3351–3355(2006.40 G. P. Sedmale, A. V. Khmelev, and I. É. Shperberga 3. N. Behmanesh and S. H. Manesh, “Role of mechanical activation of precursors in solid-state processing of nano-structured mullite phas e,” J. of Alloys and Compounds, 450, 421 – 425 (2008. 4. Y. Lin and Yi. Chen, “Fabrication of mullite composites by cyclic infiltration and reactionsintering,” Materials Science and Engineering A, 298, 179 – 186 (2001. 5. L. B. Kong, T. S. Zhang, J. Marr, et al., “Anisotropic grain growth of mullite in high-energy ball milling powders doped with transition metal oxides,”,” J. Eur. Ceram. Soc., 23, 2247 – 2256 (2003. 6. E. Medvedovski, “Alumina-mullite ceramics for structuring applications,” Ceramics International, 32, 369 –375 (2006. 7. C. Aksel, “The effect of mullite on mechanical properties and thermal shock behavior of alumina-mullite refractory materials,” Ceramics International, 29, 183 – 188 (2003. 8. S. Junaid, S. Quazi, and R. Andrian, “Use of wid e-angle x-ray diffraction to measure shape and size of dispersed colloidal particles,” J. of Colloid and Interface Science, 338, No. 1, 105 – 110 (2009. 9. W. Yoon, P. Sarin, and W. M. Kriven, “Growth of textured mullite fibers using a quadrupole lamp furn ace,”,” J. Eur. Ceram. Soc., 28, 455 – 463 (2008. 10. N. M. Rendtorft, L. B. Garrido, and E. F. Aglietti, “Thermal shock behavior of dense mullite-zirconia composites obtained by two processing routes,” Ceramics International, 34, 2017 – 2024 (2008.。

氧化锆增韧氧化铝复合陶瓷制备及性能研究

氧化锆增韧氧化铝复合陶瓷制备及性能研究

氧化锆增韧氧化铝复合陶瓷制备及性能研究邓茂盛【摘要】本实验以纳米3Y-TZP和微米Al2O3为主要原料,采用常压烧结法制备致密的纳米ZTA复相陶瓷材料.当3Y-TZP含量为30wt%时,其相对密度达到最高,如烧结温度为1 400℃,试样的相对密度高达96.35%.在烧结温度范围内,试样中的颗粒会随着烧结温度的升高而增大,Al2O3颗粒随着3Y-TZP含量的增加而变小.纳米级的3Y-TZP颗粒会形成“内晶型”结构.在烧结温度为1 450℃时,含30wt%3Y-TZP的试样抗弯强度高达441.22 MPa.【期刊名称】《陶瓷》【年(卷),期】2018(000)010【总页数】6页(P30-35)【关键词】复相陶瓷;烧结温度;晶相组成;抗弯强度;硬度【作者】邓茂盛【作者单位】榆林市新科技开发有限公司陕西榆林718100【正文语种】中文【中图分类】TQ174.75氧化铝陶瓷材料是现代无机非金属材料中的一个重要组成部分,其具有其它许多材料所没有的优良的性能。

然而,由于氧化铝陶瓷存在室温强度低、断裂韧度差、脆性大的缺点,使其应用范围受到一定的限制[1]。

而氧化锆具有好的断裂韧性,其可以通过相变增韧来提高材料的力学性能,人们根据此原因研制出氧化锆增韧氧化铝复合陶瓷[2]。

近年来,纳米复合材料的研究成为材料科学领域的一个热点,尤其是以氧化铝为基体的陶瓷[3]。

ZTA复相纳米陶瓷逐渐发展起来,利用相变增韧和第二相纳米颗粒增韧的叠加作用来改善Al2O3力学性能,被广泛应用于各项领域。

本研究是以纳米3Y-TZP和微米Al2O3为原料,采用液相烧结方式制备3Y-TZP/Al2O3复相陶瓷。

在最佳烧结条件下,研究不同含量的纳米3Y-TZP对3Y-TZP/Al2O3复相陶瓷的致密化、相组成、显微结构以及力学性能的影响,并对其复相陶瓷的增韧机理进行探讨。

1 实验内容1.1 实验原料实验所用的原料如表1所示。

表1 实验所用的原料表名称化学式生产厂家纯度八水氧氯化锆ZrOCl2·8H2O国药集团化学试剂有限公司分析纯,纯度≥99.0%六水硝酸钇Y(NO3)3·6H2O国药集团化学试剂有限公司分析纯,纯度≥99.0%二氧化钛TiO2国药集团化学试剂有限公司化学纯,纯度≥98.0%二氧化锰MnO2天津市福晨化学试剂厂分析纯,纯度≥85.0%氧化铝Al2O3浙江省乐清市超微细化工有限公司—无水乙醇C2H5OH国药集团化学试剂有限公司分析纯,纯度≥99.7%氨水NH3·H2O天津市福晨化学试剂厂分析纯,氨含量25%~28%聚乙二醇1000H(OCH2CH2)nOH国药集团化学试剂有限公司化学纯PVA[C2H4OCH]n自制5g/100ml去离子水H2O自制—1.2 试样的配方样品的编号采用以下方式:以组份中的质量百分比进行编号。

不同铝硅比对莫来石材料显微结构及性能的影响

不同铝硅比对莫来石材料显微结构及性能的影响

不同铝硅比对莫来石材料显微结构及性能的影响第47卷第4期人工晶体学报Vol.47 No.4 2018 年4 月______________________JOURNAL OF SYNTHETIC CRYSTALS_______________________April,2018不同错娃比对莫来石材料显微结构及性能的影响胡其国,顾幸勇,董伟霞,罗婷,邱柏欣(景德镇陶瓷大学材料科学与工程学院,景德镇333403)摘要:选用铝矾土作为铝源,煤矸石为硅源,氟化铝和五氧化二钒为添加剂,通过固相反应原位制备了主晶相为莫来石相的晶体。

利用X射线衍射仪和扫描电子显微镜以及相应的EDS等手段对莫来石进行了表征分析,并考察了在不同铝硅比的条件下对所制试样的显气孔率、吸水率、体积密度、抗折强度以及显微结构的变化特征。

结果表明:当铝矾土与煤矸石的铝硅摩尔比为3.05: 2时,显气孔率为23. 6%、吸水率为10.55%、体积密度为2. 3 ^cm3、抗折强度为114 MPa,试样的综合性能最优。

关键词:铝硅比;原位合成;莫来石;显微结构中图分类号:TB332 文献标识码:A 文章编号:1000-985X (2018) 04-0806-04Effect of Different Al-Si Ratios on MulliteMaterials Microstructure and Its PropertiesHU Qi-guo, GU Xing-yong, DONG Wei-xia, LUO Ting, QIU Bo-xin(School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China)A bstract : Mullite main phase were prepared by solid state reaction using the bauxite and the gangue asthe source of aluminum and silicon source respectively, aluminum fluoride and vanadium pentoxide as the additive. The mullite structure was characterized by X-ray diffraction ( XRD)and scanning electron microscopy (SEM) , and the corresponding EDS. Effects of different aluminum-silicon ratios on the porosity, water absorption, bulk density, flexural strength and microstructure of the samples were studied. The results show that when the molar ratio of bauxite and coal gangue was 3. 05?2, the optimum values of the sample such as the apparent porosity of 23. 6% ,the water absorption of 10. 55% ,the bulk density of 2. 3 g/cm3and the flexural strength of 114 MPa were obtained.Key w o rd s:Al-Si ratio;in-situ synthesis;m ullite;microstructure1引言莫来石(3A1203 ? 2Si02)作为一种重要的陶瓷材料,具有高的熔点,高的机械强度,较低的热膨胀系数,以及良好的化学稳定性和热稳定性的一些突出特点,因而得到了广泛的应用[1_3]。

氧化锆增韧氧化铝 成分

氧化锆增韧氧化铝 成分

氧化锆增韧氧化铝成分
氧化锆增韧氧化铝陶瓷(ZTA)是一种特殊的陶瓷材料,其主要成分是氧化铝(Al2O3)和氧化锆(ZrO2)。

1.氧化铝:这是ZTA陶瓷的基体材料,具有优良的机械性能和化学稳定性。

氧化铝陶瓷本身硬度高、耐磨性好、耐腐蚀性强,被广泛应用于各种领域。

2.氧化锆:这是ZTA陶瓷的增韧相,通常以颗粒形式分布在氧化铝基体中。

氧化锆具有高韧性、高强度和高耐磨性等特点,能够有效提高氧化铝陶瓷的韧性。

当受到外力作用时,氧化锆颗粒会发生相变(从四方相向单斜相转变),吸收能量并阻止裂纹扩展,从而提高陶瓷的整体强度和韧性。

在ZTA陶瓷中,氧化铝和氧化锆的比例可以根据需要进行调整。

一般来说,氧化锆的含量在10%-50%之间。

这种复合材料的性能优于单一材料,具有更高的机械强度、更好的耐磨性和更稳定的化学性能。

因此,ZTA陶瓷被广泛应用于各种要求高性能和可靠性的领域,如机械、化工、电子等。

锆英石-莫来石复合材料的抗热震性和抗疲劳性

锆英石-莫来石复合材料的抗热震性和抗疲劳性

46 ・
REF RACT ORI ES & L I ME
A u g . 2 0 1 3
Vo 1 . 3பைடு நூலகம் NO . 4
锆 英 石一 莫 来 石 复 合材 料 的 抗 热震 性 和抗 疲 劳性
摘 要 :锆英石一 莫来石( Z r S i O 一 3 A 1 : 0 , ・ 2 S i O ) 复合材料是许多工业 中应 用的耐火材料 。由于有时该材 料的疲
和强度 所涉 及到 的机 理 。加 工 出 了具有 S i C晶须 的
锆 英 石复 合材 料 , K o n d o h对该 复 合 材 料 进 行 研 究 ,
也取 得 了较 好 的 机械 性 能 。D e n g证 实 , 将 2 0 %S i C
或T i C颗 粒加 入到 锆英 石} 昆合料 中提 高 了抗 裂 纹 的 扩展 性 。研究 了莫来 石一 锆英 石颗 粒 ( MZ ) 对采用 泥 浆浇 注法 制 备 的锆 英 石 复 合 材 料 的 抗 热 震 性 的 影 响 。当 MZ的 比例 超过 2 5 %( 质量 ) 时, 就不 能 将 该
能 再加 上 良好 的 机械性 能使 这种 耐火 材料 成为 应用 结 构 陶瓷有潜 力 的选 择 材 料 , 其 广 泛 应 用 于玻 璃 工
业 和熔 盐工 业 。抗热震 性 是 由于材料 损坏 或破 坏程 度 影 响锆英 石性 能 的一种 性能 。 由于热震 条 件而影
响锆英 石 基耐火 材料 的损 坏有 时使 其应 用受 到 了限
( T F R) 。虽 然 研 究 的 显 微结 构 的 构 造 不 同 , 但 是 该 组 材 料 的 实 验 性 能 几乎 相 同 。另 外 , 在T F R 中评 价 的 稍 有 的 一 点

过氧化氢对陶瓷的影响

过氧化氢对陶瓷的影响

过氧化氢对陶瓷的影响英文回答:The effect of hydrogen peroxide on ceramics can vary depending on the specific type of ceramic and the concentration of hydrogen peroxide used. Generally, hydrogen peroxide is a strong oxidizing agent and can react with certain components of ceramics, leading to changes in their properties.One possible effect of hydrogen peroxide on ceramics is bleaching. Hydrogen peroxide has bleaching properties and can be used to remove stains or discoloration from ceramics. For example, if a ceramic plate has coffee stains, applying hydrogen peroxide to the stains can help to lighten or remove them.However, hydrogen peroxide can also have a negative effect on ceramics. It can react with certain components of the ceramic, such as metal oxides or glazes, and cause themto break down or deteriorate. This can result in changes in the appearance, texture, or strength of the ceramic. For instance, if a ceramic vase has a metallic glaze, prolonged exposure to hydrogen peroxide may cause the glaze to fade or become damaged.Furthermore, hydrogen peroxide can be corrosive to ceramics in high concentrations or over long periods of time. It can gradually erode the surface of the ceramic, leading to pitting or cracking. This is especially true for delicate or porous ceramics that are more susceptible to chemical damage. As an example, if a ceramic figurine is regularly cleaned with a strong hydrogen peroxide solution, it may eventually develop small cracks or lose its original smoothness.中文回答:过氧化氢对陶瓷的影响取决于具体的陶瓷类型和过氧化氢的浓度。

氧化锆的热导率

氧化锆的热导率

氧化锆(Zirconia)是一种常用的陶瓷材料,具有许多优异的性质,如高熔点、高硬度、低热膨胀系数等。

关于氧化锆的热导率,以下是一些基本信息:
1.晶体结构对热导率的影响:氧化锆存在多种晶体结构,其中最常见的是单斜晶体相
(monoclinic phase)、四方晶体相(tetragonal phase)和立方晶体相(cubic phase)。

不同晶体结构的氧化锆其热导率有所差异。

2.温度对热导率的影响:氧化锆的热导率通常随着温度的升高而增加。

在常温下,氧
化锆的热导率较低,约为2-3 W/(m·K)。

3.杂质和缺陷对热导率的影响:杂质和缺陷对氧化锆的热导率有一定的影响。

例如,
添加适量的稀土离子等杂质可以改善氧化锆的热导率。

需要注意的是,氧化锆的热导率受到多种因素的综合影响,包括晶体结构、温度、杂质、缺陷等。

因此,在具体应用中需要综合考虑这些因素,并进行相应的实验和测试以获取准确的热导率数值。

SIC晶须颗粒3YSZZrO2---两种常用的陶瓷增强增韧材料

SIC晶须颗粒3YSZZrO2---两种常用的陶瓷增强增韧材料

SIC晶须颗粒3YSZZrO2---两种常用的陶瓷增强增韧材料陶瓷材料作为技术革命的新材料,早在十几年前就引起了一些发达国家的竞相关注。

陶瓷材料的致命缺点是它的脆性,低可靠性和低重复性,这些不足严重影响了陶瓷材料的应用范围。

只有改善陶瓷的断裂韧性,提供其可靠性和使用寿命,才能使陶瓷材料真正地成为一种广泛应用的新型材料。

因此,陶瓷增强增韧技术也一直是技术人的热点讨论话题。

常用的两种陶瓷增韧方法和材料包括:1)贝塔相SIC碳化硅晶须和颗粒增韧在陶瓷材料中加入碳化硅晶须来改善陶瓷材料的脆性,增强陶瓷材料的韧度和强度,使陶瓷基复合材料能显著提高冲击韧性和抗震性,降低陶瓷的脆性,同时陶瓷有保护纤维,使之在高温下不被氧化,因此具有很高的高温强度和弹性模量。

陶瓷碳化硅晶须是具有一定长径比且缺陷很少的陶瓷小单晶,因而具有很高的强度,是一种非常理想的陶瓷基复合材料的增韧增强体。

陶瓷碳化硅晶须的宏观形态是絮状的粉末,制备复合材料时,直接将晶须分散后与基体粉末混合均匀即可。

混合好的粉末同样用热压烧结的方法,即可制得致密的晶须增韧陶瓷基复合材料。

2)纳米氧化锆陶瓷的相变增韧相变增韧效果显著,主要应用于氧化锆陶瓷中。

3YSZ加钇纳米二氧化锆。

相变增韧ZrO2长石质陶瓷是一种极有发展前途的新型结构陶瓷,它主要是利用ZrO2相变特性来提高陶瓷材料的断裂韧性和抗弯强度,使其具有优良的力学性能、低的导热系数和良好的抗热震性。

它还可以用来显著提高脆性材料的韧性和强度,是复合材料和复合陶瓷中重要的增韧剂。

ZrO2陶瓷突出的性能,使它成为目前使用面最广的氧化物陶瓷之一。

以ZrO2材料为主的增韧陶瓷在机械、电子、石油、化工、航天、纺织、精密测量仪器、精密机床、生物工程和医疗器械等行业有着广泛的应用前景,由于部分稳定氧化锆具有热导率低、强度和韧性好、弹性模量低、抗热冲击性和工作温度(1100℃ )高,所以用于制造狄索尔发动机零件、内燃机零件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EFFECT OF CERAMIC POWDER FINENESSON MULLITE-ZIRCONIUM CERAMIC PROPERTIESG .P.Sedmale,1A.V .Khmelev,1and I.É.Shperberga 1Translated from Novye Ogneupory ,No.1,pp.41–46,January 2011.Original article submitted October 29,2010.Results are provided for a study of the development of high-temperature mullite-zirconium ceramic with use of activated ceramic powders prepared by grinding for different times with addition of illite clay,and from pure oxide powders.It is shown that increased activity and amorphicity of ground particles considerably pro-motes formation of mullite phase at 1200°C,and also transition of the monoclinic modification of ZrO 2to tetragonal,particularly with an increase in firing temperature.It is proposed that as a result of rapid “freezing”the structure retains the high-temperature modification of ZrO 2,having a tendency with slow ceramic cooling to transform into the monoclinic modification.Keywords:mullite-zirconium ceramic,illite clay,grinding,particle size.INTRODUCTIONMullite-zirconia (mullite-corundum)ceramic is one of the materials used extensively in high-temperature produc-tion processes.A distinguishing feature of mullite-zirconia ceramic is the retention of high strength,including at ele-vated temperature and with temperature falls.The set of these properties predetermines further application of the ce-ramic and use of it in high-temperature production processes.It has been established [1]that mullite-zirconia ceramic may be prepared from mixed starting compositions,includ-ing g-Al 2O 3,silica-gel,ZrO 2mon,Y 2O 3with addition of 7.75–8.75wt.%illite clay,promoting sintering and forma-tion of a mullite phase at lower temperatures [2].On the other hand,the importance is indicated in [3,4]of the degree of grinding of the starting powders.It has been established grinding ceramic powders leads to destruction of the particle crystal lattice,and as a consequence to amorphization.Here higher sintering indices are achieved for ceramic material and correspondingly density,and ultimate strength in bend-ing and compression.However,a distinguishing feature of rapid grinding [3]is formation of coarse agglomerates con-sisting of particles strongly sintered to each other.It has been proposed that agglomeration is due to heat liberated during grinding.Therefore,as indicated in [5],the duration of grind-ing should severely limited and determined by experimentfor each specific case.According to the authors of the pres-ent articles,grinding duration for starting powders is 5–6h.It is also noted [6]that grinding of starting powder pro-motes crystallization of mullite and tegtragonal ZrO 2in ce-ramic material.After a short period of grinding (4–6h)rapid mullite formation during firing is observed at 1180–1280°C;further mullite formation occurs over the ex-tent of the next 350°C.It has been established [7]that with an average content of particles with a size of 0.5m m in the starting powder the increase in ultimate strength in compression and even elas-ticity modulus was about 30%compared with a specimen containing particles with a size of more than 5m m.It has been noted that the size of mullite crystal particle that form,which are 50–70nm,and sometimes 80–95nm,is of con-siderable importance.The aim of this work includes determining the effect of ceramic powder fineness,including with addition of illite clay,on formation and development of high-temperature crystalline phases (mullite and ZrO 2),and the mechanical properties of mullite-zirconia ceramic.STUDY METHODSThe starting powder was prepared from a mixture con-sisting of synthetic materials,i.e.,g -Al 2O 3prepared from calcined Al(OH)3at 550°C,amorphous SiO 2,ZrO 2mon,and Y 2O 3.A mineral raw material was used in one part of the Refractories and Industrial Ceramics Vol.52,No.1,May,2011351083-4877/11/05201-0035©2011Springer Science+Business Media,Inc.1Riga Technical University,Institute of Silicate Materials,Riga,Latvia.starting powder as an additional component,i.e.illite clay containing about 65%illite fraction.The starting powder compositions are provided in Table 1.The chemical and mineral compositions,and also the av-erage grain size of illite clay are provided below:Chemical composition,%:SiO 2...............................50.5Al 2O 3...............................20.8Fe 2O 3...............................7.5TiO 2................................1.2CaO ................................1.9MgO................................3.6K 2O ................................6.0Na 2O ...............................0.1D m cal (1000°C)..........................8.4Mineral composition,wt.p:illite K 0.5(H 3O)0.5Al 2(OH)2[(Al,Si)4O 10]·n H 2O .......65–70quartz SiO 2..........................18–20calcite CaCO 3..........................5–6goethite a -FeOOH .......................7–8kaolinite Al 2(OH)4[Si 2O 5]...................5–7Content,%,particles with sizes,mm:63–20..............................20.520–6.3..............................21.56.3–2.0.............................28.5<2.0...............................29.5The starting powder mixes were ground and homoge-nized in a laboratory planetary mill for 4,10and 24h,using corundum balls as the grinding bodies.The size of ground powder particles was determined by means of an SEM mi-croscope (model JSM-T200,Japan),and the average particle distribution was evaluated by means of a photon correlation spectrometer using a strongly diluted suspension of 10–2N KCl (40mg KCl +100ml H 2O);the surfactant used was Fairy washing substance.In order to determine the crystal-line particle size an x-ray diffractometer (model Rigaku,Ja-pan,with Cu Ka-radiation with a scanning interval 2è=10–60°and a speed of 4°/min)was used.The size of crystal particles D ,nm,in the original ground powders was determined by the Sherrer equation [8]:D =k l /B cos q ,where k is Bolzmann constant (k =0.87–1.0);l is x-ray beam wavelength,nm (l =0.15418nm).The value of B ,rad,was calculated from the difference in x-ray beam reflection angles,B =è2–è1.A schematic image of the diffraction maximum with a note of the values required for calculation is shown in Fig.1.Specimens for phase composition,structure and proper-ties of the prepared ceramic materials were manufactured in the form of disks 30mm in diameter and 3mm thick,cylin-ders with a diameter of 35mm and a height of 45mm,and rods 55mm long and 3mm thick from powders by axial compaction (pressure 120MPa).Firing was carried out in an air atmosphere in the range from 1200to 1500°C after each 100°C (in a laboratory muffle furnace Nabertherm 3000,Germany,with a heating rate of 6°C/min with soaking at the maximum temperature for 30min).Specimen density after firing was evaluated according to apparent density from the ratio of specimen weight to its volume,and also from deter-mination of open porosity and overall shrinkage according to EN 63-2:2001.The composition of phases,as for the size of crystals,and also microstructure of fired specimens were determined from x-ray phase analysis (XPA)data and scanning a scan-ning electron microscope (JSM-T200,Japan)data after each firing temperature cycle.Thermal shock resistance was de-termined according to EN820-3:2004,using ceramic rod specimens fired at 1400°C.Specimens were studied after each 200°C in the range 500–1000°C.Thermal shock resis-tance after firing cycle was evaluated from the change in elasticity modulus and ultimate strength in bending.Elasticity modulus was determined in a Buzz-o-sonic in-strument (firm Buzz-Mac International LLC,USA)accord-ing tot eh principle of measuring shock wave propagation with a ceramic specimens placed perpendicular to two paral-lel installed metal bases,covered with a thin polymer layer.Shock waves within a specimen were created by means of small polymer hammer,in one end of which there was a steel ball 4mm in diameter,recorded by a special microphone and analyzed by means of a Fourier arrangement.Elasticity modulus E ,GPa,was calculated by the equa-tionE =0.9465r f 2L 4T 1/t 2,where r is specimen density,g/cm 3;f is frequency,Hz;L is specimen length,mm;T 1is correlation value which depends on test specimen dimensions;t is specimen thickness,mm.The ultimate strength in compression of ceramic speci-mens was determined according to EN 658-2:2003using a TONI Technik Controller TG0995instrument,and ultimate strength in bending was determined by a three-point method according to EN 843-1:2006using a Zwick/Role model 1486instrument.36G.P.Sedmale,A.V .Khmelev,and I.É.ShperbergaTABLE 1.Starting Powder Compositions for Preparing Mullite-Zirconia Ceramic,wt.%Powder compositiong -Al 2O 3SiO 2·n H 2OZrO 2Y 2O 3Illite clay1062.3028.00 5.20 4.50–10i 57.3025.85 4.70 4.158.00Fig.1.Schematic image of diffraction maximum with marked value for calcu-lating crystal particle size by the Sherrer equation.RESULTS AND DISCUSSIONMicrophotographs are shown in Fig.2of ceramic pow-der compositions 10and 10i,ground for 4and 24h.After 4h of grinding powder composition 10is represented by densely compacted amorphous particles of circular shape with sizes of about 3to 7–10m m,being both individual formations and in the form of agglomerates.At the same time the struc-ture of ceramic powder 10i with additions of illite clay,ground for 24h,is in the from of amorphous agglomerates of finer particles.According to XPA data,the average size of ZrO 2mon,Y 2O 3and quartz SiO 2crystals (introduced with illite clay)in powders after 4,10and 24h of grinding with an without ad-dition of clay varies within limits 55–100nm (Fig.3).It may seen that additions of clay affects the dispersion of crys-tals in the original powder.There is especially a reduction in crystal size of baddeleyite after 24h of grinding powder and Y 2O 3(less markedly);a sharp reduction in the size of quartz and ZrO 2crystals in composition 10i,reaching 55–59nm (see Fig.3).On the other hand,from the results of determin-ing the size of particles an agglomerates in ground powder using a correlation spectrometer it follows that the size of the maximum amount of particles is seen within the limits 200–520nm (Fig.4).Formation of mullite and corundum phases,and also tetragonal and monoclinic ZrO 2(according to XPA data)in specimens sintered at different temperatures,is shown in Fig.5.It may be seen that mullite formation commences at 1200°C and it develops actively up to 1600°C,although the first mullite phase nuclei possibly form at 1100°C due to the activity and amorphicity of particles in the original powder.Crystalline phases of SiO 2(cristobalite and quartz)are pres-ent up to 1250°C,and at higher temperatures (1330and 1400°C)a reaction sets in promoting further mullite and also corundum formation.It should be noted that over the whole temperature range apart from a diffraction maximum from ZrO 2mon,there is formation of a clearly expressed maximum from ZrO 2tetr,Effect of Ceramic Powder Fineness on Mullite-Zirconium Ceramic Properties37Fig.2.Microstructure of starting powder composites 10and 10i re-spectively after grinding for 4(a )and 20h (b).Fig.3.Change in crystal dimensions in relation to starting powder grinding duration for composites 10and 10i:¯and ¡)baddeleyite (correspondingly compositions 10and 10i);*)corundum (composi-tion 10i);r and ´)Y 2O 3(correspondingly compositions 10and 10i);+)quartz (composition10i).Fig.4.Most possible distribution of particles P and their aggregates in starting powder compositions 10and 10i after grinding for 4and 10h.Fig.5.X-ray patterns of crystalline phase formation in a 10i speci-men in relation to sintering temperature:M is mullite 3Al 2O 3·2SiO 2;C is corundum a -Al 2O 3;Q is quartz;Cr is cristobalite;Z m is ZrO 2mon;Z t is ZrO 2tetr.which points to partial stabilization of zirconium dioxide due to introduction of Y 2O 3into the ZrO 2structure.The microstructure of a specimen of this ceramic,shown in Fig.6a ,is represented by densely packed crystalline for-mations,mainly mullite of prismatic and pseudo-prismatic habit;for a specimen without a clay addition (Fig.6b )the shape of mullite is more clearly observed.As may be seen from data for shrinkage of specimens of composition 10i (Fig.7),the effect of grinding duration t ,i.e.,increase in fineness of the starting powder,is quite marked.Specimen shrinkage increases from 15to 25%with an increase in t for the starting powder for each temperature.Such a marked difference in development of shrinkage with an increase in t may be explained by assuming that with presence of a liquid phase there is “contraction”(drawing to-gether)of particles followed by sintering by a solid-phase mechanism.An increase in shrinkage with an increase in sintering temperature to 1500°C causes a reduction in liquid phase viscosity and consequently acceleration of ion diffu-sion,leading to specimen contraction during cooling.A simi-lar observation is also given by the authors in [4].By analyzing the change in apparent density r app and ul-timate strength in compression s co (Fig.8)it may be noted that a significant role in increasing specimen r app (up to 3.0and ~2.6g/cm 3correspondingly for compositions 10i and 10)is played by addition of illite clay,which is particularly typical for specimens ground for 10and 24h.This is ex-plained by more active diffusion and reaction of particles in the presence fo a liquid phase,whose formation is pro-moted by addition of illite clay.A positive role is also pro-posed for addition of illite clay on the transformation ZrO 2tetr ®ZrO 2mon on cooling specimens.At the sametime,ceramic specimens without addition of illite clay have lower values of r app since in this case sintering is determined mainly by the activity and amorphicity of particles in the starting powder.A more intense increase in r app and s co of specimens of powders after the first 4h of grinding should also be noted.A further increase in grinding duration (t >10h)is less effec-tive,which is probably due to agglomeration of particles.Addition of illite clay at a high level promotes an increase in the value of s co ,reaching a maximum value of 165MPa.An increase in s co to 98MPa is also demonstrated by specimens without addition of illite clay from powders after 24h of grinding,although the lower values of this index are due to presence of internal pores within specimens,which is indi-cated by the power values of r app .The elasticity modulus E of specimens after thermal shock D T ,particularly with an increase in the temperature range during thermal shock,and also specimens prepared from finer powders,has a tendency to increase (Fig.9).Such a clear difference in the value of E for specimens is appar-ently connected mainly with phase transformations of ZrO 2[6,11](ZrO 2mon >ZrO 2tetr),and in all probability with im-provement and growth of prismatic crystalline mullite for-mations.For specimens with addition of clay the value of E increased by 2–3GPa or more uniformly,particularly with a sharper temperature drop (800/20and 1000/20).For speci-38G.P.Sedmale,A.V .Khmelev,and I.É.ShperbergaFig.6.Microstructure of specimens of compositions 10i (a )and 10(b ),fired at1300°C.Fig.8.Change in apparent density r app (––)and strength in com-pression s co (——).Fig.7.Change in shrinkage Y for specimens of composition 10i:t is temperature;t is starting powder grinding time.mens after the first thermal shock cycle(500/20)a similar tendency is retained.A similar tendency is observed for the ultimate strength in bending s ben of specimens after thermal shock.As may be seen from Fig.10a,the overall tendency of a change in s ben involves a marked increase after thermal shock.For exam-ple,whereas for an original specimens(after24h grinding of starting powder)the value of s ben is25MPa,with an in-crease in D T s ben reaches42.5MPa.It may be proposed that compliance of specimen to a sharp change in temperature followed by rapid b rapid“freezing”of the structure pro-motes a marked or total transfer ZrO2mon>ZrO2tetr,and to a certain extent agrees with expressions provided in[10].Changes of s ben of specimens with addition of clay (Fig.10b)are more uniform.The previous tendency is ob-served towards a more marked increase in s ben of specimens of powders after24h of grinding,and also with an increase in D T,which is also explained by ZrO2polymorphic transfor-mation.CONCLUSIONResults of development of high-temperature mullite-zir-conia ceramic using activated powders,ground for different times without or with addition of illite clay,showed that the particle size of the starting powder is determined by grinding e of different methods for evaluating powder particle size,and also particle agglomeration in a powder, gives different results.It is clear that the size of crystal parti-cles is~50–100nm,whereas for amorphous particles and aggregates it is200–500nm.An increase in activity and amorphicity of ground particles markedly promotes forma-tion of mullite phase starting from1200°C,and also a transi-tion of the monoclinic modification of ZrO2into tetragonal, particularly with a high firing temperature.It has been established that specimens have relatively high shrinkage(15–25%),which increases considerably with an increase in temperature and starting powder grinding duration.The apparent density and ultimate strength in compres-sion of specimens are governed both by the duration of start-ing powder grinding and also presence of illite clay within it. After24h of starting powder grinding these indices for spec-imens without addition of illite clay reach2.55g/cm3and 80MPa;for specimens with additions they increase to 2.95g/cm3and15MPa respectively.Elasticity modulus and ultimate strength in bending for specimens with an increased temperature difference during thermal shock,both for specimens of powder with prolonged grinding(10and24h)have a tendency towards a marked in-crease,particularly for specimens without illite clay.It is assumed that the tendency of ceramic specimens to-wards a sharp temperature drop leads to rapid“freezing”of the structure,promoting retention of the high-temperature tetragonal modification of ZrO2.REFERENCES1.G.P.Sedmali,I.É.Sperberger,A.V.Khmelev,et al.,“Forma-tion of ceramic in the system Al2O3–SiO2–ZrO2in the presence of mineralizers,”Ogneupory Tekhn.Keram.,No.5,18–23 (2008).2.G.Sedmale,I.Sperberga,U.Sedmalis,et al.,“Formation ofhigh-temperature crystalline phases in ceramics from illite clay and dolomite,”J.Eur.Ceram.Soc.,26,No.15,3351–3355 (2006).Effect of Ceramic Powder Fineness on Mullite-Zirconium Ceramic Properties39 Fig.9.Change in elasticity modulus E for specimens of composi-tion10in relation to difference in temperature interval D T with ther-mal shock.Specimen firing temperature1400°C.Fig.10.Change in ultimate strength in bending s ben of specimenswithout addition(a)and with addition of illite clay(b)made frompowders ground for4,10and24h in relation to temperature D T.Specimen firing temperature1400°C.3.N.Behmanesh and S.H.Manesh,“Role of mechanical activa-tion of precursors in solid-state processing of nano-structured mullite phase,”J.of Alloys and Compounds,450,421–425 (2008).4.Y.Lin and Yi.Chen,“Fabrication of mullite composites by cy-clic infiltration and reaction sintering,”Materials Science and Engineering A,298,179–186(2001).5.L.B.Kong,T.S.Zhang,J.Marr,et al.,“Anisotropic graingrowth of mullite in high-energy ball milling powders doped with transition metal oxides,”,”J.Eur.Ceram.Soc.,23, 2247–2256(2003).6.E.Medvedovski,“Alumina-mullite ceramics for structuring ap-plications,”Ceramics International,32,369–375(2006).7.C.Aksel,“The effect of mullite on mechanical properties andthermal shock behavior of alumina-mullite refractory materi-als,”Ceramics International,29,183–188(2003).8.S.Junaid,S.Quazi,and R.Andrian,“Use of wide-angle x-raydiffraction to measure shape and size of dispersed colloidal par-ticles,”J.of Colloid and Interface Science,338,No.1, 105–110(2009).9.W.Yoon,P.Sarin,and W.M.Kriven,“Growth of textured mul-lite fibers using a quadrupole lamp furnace,”,”J.Eur.Ceram.Soc.,28,455–463(2008).10.N.M.Rendtorft,L.B.Garrido,and E.F.Aglietti,“Thermalshock behavior of dense mullite-zirconia composites obtained by two processing routes,”Ceramics International,34, 2017–2024(2008).40G.P.Sedmale,A.V.Khmelev,and I.É.Shperberga。

相关文档
最新文档