2012年普通高等学校招生全国统一考试——文数(四川卷)
2012年普通高等学校招生全国统一考试四川卷
2012年普通高等学校招生全国统一考试(四川卷)语文第一部分(选择题共30分)一、(12分,每小题3分)1.下列词语中加点的字,读音全部正确的一组是A.折.(zhé)耗绰.(chuò)约水泵.(bèng)流水淙.(cóng)淙B.募.(mǜ)集缜.(zhěn)密慰藉.(jiè) 风驰电掣.(chè)C.露.(lòu)面纤.(xiān)细抚恤.(xǜ) 弦.(xuān)外之音D.栅.(zhà)栏蜷.(juǎn)缩款识.(zhì) 敷衍塞.(sè)责2.下列词语中,没有错别字的一组是A.讳疾忌医微言大义万事具备,只欠东风B.罄竹难书两全其美一言既出,驷马难追C.掷地有声曲意逢迎桃李不言,下自成蹊D.至高无上原型必露失之东隅,收之桑榆3.下列各句中,加点词语使用恰当的一句是A.在施工过程中,因疏忽造成的安全事故如期而至....,人员伤亡严重,救援队伍很快赶到现场,克服困难抢救危重人员,并对轻伤者进行了处理。
B.2011年8月,科幻作家徐浩若受邀到成都举办讲座,几十位科幻创作爱好者聆听了他的报告,会后我有幸向他垂询..了有关科幻创作的问题。
C.一项对大学毕业生发展状况的调查表明,无论..他们在校成绩多么优秀,走上工作岗位后都将面临各种挑战,需要用勤奋、智慧与坚韧去应对。
D.在维也纳金色大厅,经常有不同肤色、不同语言的人们会聚在这里,他们各具民族风格与艺术特色的优美歌声在大厅内交相辉映....,久久回荡。
4.下列各句中,没有语病的一句是A.我国首座自主建造、设计、开发的第六代深水半潜式钻井平台,在我国南海海域正式开钻,标志着我国海洋石油工业深水战略迈出了实质性步伐。
B.近年来世界艺术品拍卖价格屡创新高,许多有眼光的国际大商人纷纷购买、收藏有价值的艺术品,希望以这种投资方式实现资产保值和增值。
C.1999~2011年间,我国造林6643.36万公顷,人工林面积位居世界第一,但是土地沙漠化、植被覆盖率和森林病虫害等依然十分严重,令人担忧。
2012年普通高等学校招生全国统一考试四川卷
2012年普通高等学校招生全国统一考试(四川卷)文科综合(地理部分)本套试卷参与重绘的老师姓名:第一部分(选择题)图1是我国亚热带某旅游名山景观照片。
该山山顶海拔3099米,属山地针叶林带。
读图回答1~2题。
1. 形成图中构造地貌的地质作用是 A. 断裂上升 B. 褶皱弯曲 C. 冰川堆积 D. 风力侵蚀2. 该山山顶能够出现可供游客欣赏的景观是 A. 人间四月芳菲尽,山寺桃花始盛开 B. 晨起开门雪满山,雪晴云淡日光寒 C. 层层梯田叠交错,犹如海上泛碧波D. 春蚕作茧桑园绿,睡起日斜闻竹鸡 图1 图2为亚洲某国年降水量分布图。
读图回答3~5题。
山峰城市河流国界年等降水量线(mm )湖泊图 23. 据图示信息推断,甲、乙、丙、丁四城市中,人口数量最多的应是A. 甲城市B. 乙城市C. 丙城市D. 丁城市 4. 针对该国面临的突出生态环境问题,应采取的主要防治措施是A. 调整农作物熟制B. 大面积营造水土保持林C. 广泛建设人工水域D. 实施林草结合的防风固沙工程 5. 下列结论的依据,所用图示信息正确的是 A. 河流稀少,有内流河,所以该国为内陆国 B. 中、东部城市分布较多,故该国中、东部为平原 C. 位于温带地区,导致该国1月平均气温在0℃以下D. 降水稀少且呈带状分布,使该国植被景观东西延伸、南北更替 表1为某地气候相关数据。
读表回答6~7题。
表16. 影响该地气温特征的主导因素是A. 纬度位置B. 海陆位置C. 地形D. 植被 7. 该地易发生的主要自然灾害是A. 雪灾B. 台风C. 泥石流D. 暴雨洪涝 图3中四条曲线分别表示北美、南美、澳大利亚和非洲四大陆西岸纬度0°~40°范围内年降水量分布状况。
读图回答8~9题。
8. 表示北美大陆西岸降水状况的是A.①曲线B. ②曲线C. ③曲线D. ④曲线 9. M 对应的地点年降水量少的主要原因是A. 纬度低,蒸发旺盛B. 盛行东北信风,水汽含量少C. 终年受副热带高压控制,盛行下沉气流D. 沿岸有势力很强的寒流流经,降温减湿明显图3图4是以极点为中心的东半球图。
2012年四川高考数学文科试题及答案(Word全解析版)-精品
绝密★启用前2012年普通高等学校招生全国统一考试(四川卷)数 学(文史类)本试题卷分第一部分(选择题)和第二部分(非选择题)两部分.第1部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案打在答题卡上,在本试题卷.草稿纸上答题无效,满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.参考公式:如果事件A .B 互斥,那么 球是表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A .B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343V R π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k kn kn n P k C P P -=-第一部分(选择题 共60分)1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上. 2.本大题共12小题,每小题5分,共60分.一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目的要求的.1.设集合{,}A a b =,{,,}B b c d =,则A B =(A ){}b(B ){,,}b c d(C ){,,}a c d(D ){,,,}a b c d2.7(1)x +的展开式中2x 的系数是(A )21(B )28(C )35(D )423.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为 (A )101(B )808(C )1212(D )20124.函数(0,1)x y a a a a =->≠的图象可能是5.如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC .ED 则sin CED ∠= (A (B(C (D6.下列命题正确的是(A )若两条直线和同一个平面所成的角相等,则这两条直线平行 (B )若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 (C )若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 (D )若两个平面都垂直于第三个平面,则这两个平面平行 7.设a 、b 都是非零向量,下列四个条件中,使||||=a ba b 成立的充分条件是 (A )a ∥b 且||||=a b (B )=-a b(C )a ∥b (D )2=a b8.若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y =+的最大值是(A )12 (B )26 (C )28 (D )339.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y .若点M 到该抛物线焦点的距离为3,则||OM =(A )(B )(C )4(D )10.如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45 角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠= ,则A 、P 两点间的球面距离为(A)R (B )4Rπ(C)R(D )3R π11.方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有(A )28条 (B )32条 (C )36条(D )48条12.设函数3()(3)1f x x x =-+-,{}n a 是公差不为0的等差数列,127()()()14f a f a f a ++⋅⋅⋅+=,则127a a a ++⋅⋅⋅+=(A )0(B )7(C )14(D )21第二部分(非选择题 共90分)注意事项:1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.2.本部分共10小题,共90分.二.填空题:本大题共4小题,每小题4分,共16分.13.函数()f x =的定义域是____________.(用区间表示)14.如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________.15.椭圆2221(5x y a a +=为定值,且a >的的左焦点为F ,直线x m =与椭圆相交于点A 、B ,FAB ∆的周长的最大值是12,则该椭圆的离心率是_________. 16.设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<;②若111b a-=,则1a b -<;③若1=,则||1a b -<;④若33||1a b -=,则||1a b -<. 其中的真命题有____________.(写出所有真命题的编号)三.解答题:本大题共6个小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分12分)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p . (Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值; (Ⅱ)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.18.(本小题满分12分)已知函数21()cos sin cos 2222x x x f x =--. (Ⅰ)求函数()f x 的最小正周期和值域;(Ⅱ)若()f α,求sin 2α的值.19.(本小题满分12分)如图,在三棱锥P ABC -中,90APB ∠= ,60PAB ∠= ,AB BC CA ==,点P 在平面ABC 内的射影O 在AB 上.(Ⅰ)求直线PC 与平面ABC 所成的角的大小; (Ⅱ)求二面角B AP C --的大小.20.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设10a >,100λ=,当n 为何值时,数列1{lg }na 的前n 项和最大?21.(本小题满分12分)如图,动点M 与两定点(1,0)A -、(1,0)B 构成M AB ∆,且直线MA MB 、的斜率之积为4,设动点M 的轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设直线(0)y x m m =+>与y 轴交于点P ,与轨迹C 相交于点Q R 、,且||||PQ PR <,求||||PR PQ 的取值范围.22.(本小题满分14分)已知a 为正实数,n 为自然数,抛物线22na y x =-+与x 轴正半轴相交于点A ,设()f n 为该抛物线在点A 处的切线在y 轴上的截距.(Ⅰ)用a 和n 表示()f n ; (Ⅱ)求对所有n 都有()1()11f n nf n n -≥++成立的a 的最小值;(Ⅲ)当01a <<时,比较111(1)(2)(2)(4)()(2)f f f f f n f n ++⋅⋅⋅+---与(1)(1)6(0)(1)f f n f f -+⋅-的大小,并说明理由.参考答案一.选择题1【答案】选D .【解析】∵{,}A a b =,{,,}B b c d =,∴A B = {,,,}a b c d . 2【答案】选A .【解析】7234567(1)17213535217x x x x x x x x +=+++++++,2x 的系数是21. 3【答案】选B .【解析】根据题意,任何一名驾驶员被抽取到的概率为121968=,则这四个社区驾驶员的总人数1(12212543)8088N =+++÷=.4【答案】选C .【解析】函数x y a a =-过定点(1,0),故C 项满足条件.5【答案】选B .【解析】45CED CEB ∠=-∠ ,sin sin )CED CEB CEB ∠=∠-∠==. 6 【答案】选C .【解析】根据线面关系可知C 项正确.7 【答案】选D .【解析】||||=a b a b 表示a 与b 是同向的非零单位向量,则||||=a ab b 的一个充分条件是λ=a b ,其中0λ>. 8【答案】选C .【解析】作出该不等式组表示的平面区域,当34z x y =+表示的直线过点(4,4)时,z 最大,即min 344428z =⨯+⨯=. 9【答案】选B .【解析】设抛物线的方程为22y px =(0p >),焦点(0)2p F ,,准线:2pl x =-.∵抛物线上的点0(2)M y ,到:2p l x =-的距离等于它到焦点(0)2p F ,的距离, ∴122pp -=-⇒=,24y x =,故(2M 或(2M -,,||OM =10【答案】选A .【解析】由题意可知,AOB BCD ⊥平面平面,则cos cos cos AOP AOB BOP AOP ∠=∠∠=∠= AP R = 11 【答案】选B .【解析】首先,00a b ≠≠,;其次,2a b c ,,没有大于1的公约数.①当0c =时,方程化为22b y x a =,{2123}a b ∈-,,,,,即2{2123}{149}a b ∈-∈,,,,,,,如下:222222222221(i)1{223}:4(ii)2{123}:4(iii)2{2131112234423}:24b a y x a b a y x a y x y x y x y x y x y x y b a y x a x y x =-====∈-==-∈==∈-====-=,,,,,,,,,,;,,;,,,,,243y x =,22229(iv)3{2999122},2:.b a y x a y x y x y x =-===∈-=,,,,;,这类中,不同的抛物线有110N =条.②当0c ≠时,方程化为22b x cy a+=,{2123}a b c ∈-,,,,,, 即2{2123}{149}a c b ∈-∈,,,,,,,, 抛物线有如下5类:2222222(i)1{22232322222233}:3x x x x x x y y y y x c b a y y c ay ++-+-+===+=∈-====--,,,;,;,,,,;22222224(ii)2{123}42434143414211:2233x x x x x x x cb ac y y y ay y y y ++++++======∈=+=-,,,,,,;,;,.222224(iii)2{24143424321213}1:x x cb ac x x x y y ay y y +++=∈-=-+====--,,,;,,,,22424133x x y y -+==;,.22222229(iv)3{212}91929292929122:1122x x x x x x y y x c b a y y y c y ay ++-+-+====+=∈--=-==,,,,,,;,;,.这类中,不同的抛物线有222N =条. 共有102232N =+=条. 12【答案】选D .【解析】函数3()(3)1f x x x =-+-关于点(3,2)对称,即当126x x +=时,12()()4f x f x +=,∵{}n a 是公差不为0的等差数列,∴17263542a a a a a a a +=+=+=,猜想:当43a =时,{}n a 满足127()()()14f a f a f a ++⋅⋅⋅+=,故此时12721a a a ++⋅⋅⋅+=.二.填空题13【答案】填1(,)2-∞.【解析】由120x ->得12x <,故1(,)2x ∈-∞.14【答案】填2π. 【解析】取CN 中点K ,连接1MK A K 、,则1//2MK DN MK DN =,.设正方体的棱长为a,则1132DN MK A M a A K ====,,,,22219541cos 0a a a A MK +-∠==,190A MK ∠= . 15【答案】填23.【解析】设椭圆的右焦点为F ',连接F A F B ''、,则FAB ∆的周长|||||||||||'||'|412l FA FB AB FA FB F A F B a =++≤+++==,(当且仅当A 、F '、B 共线时“=”成立).此时3a =,则离心率23e =.16【答案】填①④.【解析】因为,a b 为正实数,由221a b -=知1a >,则11a b a b -=<+,①正确;由111b a-=,不妨取4a =,45b =,则1a b ->,②错误;由1=,取4a =,1b =,则||1a b ->,③错误;由33||1a b -=,不妨设0a b >>,则3311a b =+>,则221||1a b a ab b-=<++,④正确.三.解答题17【解析】本题主要考查相对独立事件、独立重复事件、互斥事件等概念及相关运算,考查运用概率知识和方法解决实际问题的能力.(Ⅰ)设“至少有一个系统不发生故障”为事件C ,那么.149()1()11050P C P C p =-=-⨯=,解得15p =. (或111149()(1)(1)(1)(1)11010101050P C p p p p =--+-+-=-=,解得15p =.)(Ⅱ)设“系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D ,那么2233111972243()C (1)(1)1010101000250P D =⋅-+-==. 答:系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率243250.18【解析】本小题主要考查三角函数的性质、两角和的正(余)弦公式、二倍角公式等基础知识、考查运算能力,考查化归与转化等数学思想.(Ⅰ)21()cos sin cos 2222x x x f x =--111(1cos )sin 222x x =+--)4x π=+.所以函数()f x 的最小正周期是2π,值域为[.(Ⅱ)由(Ⅰ)知,())4f παα=+=,所以3cos()45πα+=. 所以sin 2cos(2)cos2()24ππααα=-+=-+218712cos ()142525πα=-+=-=.19【解析】本小题主要考查线面关系、直线与平面所成的角、二面角等基础知识,考查思维能力、空间想象能力,并考查应用向量知识解决数学问题的能力. 连接OC ,∠OPC 为直线PC 与平面ABC 所成的角,设AB 的中点为D ,连接PD 、CD .因为AB BC CA ==,所以CD AB ⊥,因为90APB ∠= ,60PAB ∠= ,所以PAD ∆为等边三角形不妨设PA=2,则1,4OD OP AB ===.所以CD =,OC =,在R tO C ∆中,9t a n PO OCD CO ∠===即直线PC 与ABC 平面所成的角等于(. (Ⅱ)过D 作DE AP ⊥于E ,连结CE .由已知可得CD ⊥平面PAB .所以CED ∠为B AP C--的平面角.由(Ⅰ)知DE Rt CDE ∆中,tan 2CD CED DE ∠===,,二面角B AP C --的大小为arctan 2(或.20【解析】本小题主要考查等比数列、等差数列、对数等基础知识,考查思维能力、运算能力、分析问题和解决问题的能力,并考查方程、分类与整合、化归与转化等数学思想.(Ⅰ)取1n =,得211122a S a λ==,11(2)0a a λ-=,若10a =,则0n S =.当2n ≥时,1000n n n a S S -=-=-=,所以0n a =. 若10a ≠,则12a λ=.当2n ≥时,22n n a S λ=+,1122n n a S λ--=+,两式相减得122n n n a a a --=, 所以12(2)n n a a n -=≥,从而数列{}n a 是等比数列,所以1112222nn n n a a λλ--=⋅=⋅=.综上,当10a =时,0n a =;当10a ≠时,2nn a λ=.(Ⅱ)当10a >,100λ=时,令1lgn n b a =,由(Ⅰ)有,100lg 2lg 22n n b n ==-. 所以数列{}n b 是单调递减的等差数列(公差为lg 2-).1266100100lg lg lg10264b b b >>>==>= ,当7n >时,77100100lg lg lg102128n b b <==<=,故数列1{lg }n a 的前6项和最大.21【解析】本小题主要考查直线、双曲线、轨迹方程的求法等基础知识,考查思维能力、运算能力,考查函数、分类与整合等数学思想,并考查思维的严谨性.(Ⅰ)设M 的坐标为(,)x y ,当1x =-时,直线MA 的斜率不存在;当1x =时,直线MB 的斜率不存在,于是1x ≠±.此时,MA 的斜率为1y x +,MB 的斜率为1y x -. 由题意,有1y x +41yx ⋅=-,化简可得,22440x y --=. 故动点M 的轨迹为C 的方程为22440x y --=(1x ≠±).(Ⅱ)联立22,440y x m x y =+⎧⎨--=⎩消去y ,可得223240x mx m ---=.(*) 对于方程(*),其判别式222(2)12(4)16480m m m ∆=----=+>, 而当-1或1为方程(*)的根时,m 的值为-1或1. 结合题设(0m >)可知,0m >且1m ≠.设Q R 、的坐标分别为(,)Q Q x y 、(,)R R x y ,则Q x 、R x 为方程(*)的两根. 因为||||PQ PR <,所以||||Q R x x <,Q x =R x所以||||1||||R Q x PR PQ x ===+,12,所以113<<,且513≠, 所以||||13||||R Q x PR PQ x <=<,且||||5||||3R Q x PR PQ x =≠. 综上所述,||||PR PQ 的取值范围是55(1,)(,3)33.22【解析】本小题主要考查导数的运用、不等式、数列等基础知识,考查思维能力、运算能力、分析和解决问题的能力和创新意识,考查函数、化归与转化、特殊与一般等数学思想方法.(Ⅰ)令202na x -+=,得x x ==A .由'2y x =-知,点A 处的切线方程为y x =-.令0x =,得n y a =,∴()n f n a =. (Ⅱ)由(Ⅰ)知()n f n a =,则()1()11f n nf n n -≥++成立的充要条件是21n a n ≥+,即知,21n a n ≥+对于所有的n 成立,特别地,取n =1得到3a ≥.当3a =,n ≥1时,13(12)1221n n n na C n ==+=+⋅+≥+ .当n =0时,21n a n =+.故3a =时,()1()11f n nf n n -≥++对所有n 都成立.所以满足条件的a 的最小值为3. (Ⅲ)由(Ⅰ)知()k f k a =. 下面证明:111(1)(1)6(1)(2)(2)(4)()(2)(0)(1)f f n f f f f f n f n f f -+++⋅⋅⋅+>⋅----.首先证明:当01x <<时,216x x x >-, 设函数2()6()1g x x x x =-+,01x <<,则2()18()3g x x x '=-.当203x <<时,()0g x '<;当213x <<时,()0g x '>. 故()g x 在(0,1)上的最小值min 21()()039g x g ==>,所以当01x <<时,()0g x >,即得216x x x >-. 由01a <<知*01()k a k <<∈N ,因此216k k ka a a>-,从而 111(1)(2)(2)(4)()(2)f f f f f n f n +++---2242111n na a a a a a =+++--- 12(1)(1)6()661(0)(1)n na a f f n a a a a f f +--+>+++=⋅=⋅-- .。
2012四川高考数学卷(含答案)
2012年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B+=+24S Rp=如果事件相互独立,那么其中R表示球的半径()()()P A B P A P B? 球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)k k n kn nP k C p p k n-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x+的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii-=()A、1B、1-C、iD、i-3、函数29,3()3ln(2),3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B C D5、函数1(0,1)xy a a aa=->≠的图象可能是()6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2012年高考真题及答案详解(四川省)
8.对下列句子丨加点词癿解释,丌正确癿一 项是 A.习丼子业辄鄙乀曰 鄙:以为羞耻。 B.自劾求退 劾:检丼揭发。 C.必宥尔,无恐 宥:宽恕。 D.上官按乀丌得实 按:查验。 8.A 【解析】本题考查理解常见文言实词在 文中的意义的能力。根据上下文语境,都推 测许曾裕应当为朝廷重用。鄙:轻视,看丌 起。
4.B【解析】考查辨析幵修改病 句癿能力。A项语序丌当,“许 多有眼光癿国际大商人”改为 “国际上许多有眼光癿大商人”。 C项搭配丌当,“植被覆盖率” 不“十分严重,令人担忧”丌搭 配,关联词“但是”使用也丌当。 D项成分残缺。
二、(9分,每小题3分) 阅读下面癿文字,完成5~7题。 警惕汞污染 1953年,日本水俣湾附近发现了一种“怪病”,称为“水俣病”。这种病症最实出现在猫身上,病猫步态丌 稳,抽搐、麻痹,甚至跳海而死。丌丽,陆续发现了患这种病症癿人。患者步履蹒跚,手足麻痹乃至变 形,神经错乤甚至死亡。后来发现,这丌是传染病,而是工业废水排放污染造成癿公害病。水俣湾一家 化工厂生产氯乙烯呾醋酸忆烯使用了含汞癿催化剂,排放癿废水丨含有大量癿汞。其丨有癿是甲基汞, 有癿是无机汞,而无机汞会不水体戒水生物癿有机物反应生成甲基汞。甲基汞癿脂溶性非常强,可以在 生物体内逐渐富集幵通过食物链最终迚入人体,被肠胃吸收,侵害人癿丨枞神经细胞。公叵呾政府对水 俣病癿认定叧考虑直接接触甲基汞所导致癿症状,而这种症状不甲基汞通过食物链迚入人体所导致癿症 状丌完本相同。因此,叧有部分水俣病患者获得认定。 水体丨汞污染是人类健庩癿隐患。因为水丨癿微 量汞,经过水丨食物链(如:浮游植物浮游动物小鱼大鱼)癿逐级转秱,在食物链顶级生物体内可以富 集到数千至数十万倍。以美国金枟鱼罐头为例,1953年含汞量为0.08PPM[注],到了2005年就增长 至1.79PPM。对以鳌鱼呾鲸为主要食物来源癿法罗群岛居民癿追踪调查发现,他们癿血汞含量可能是全 丐界人群丨最高癿,达到6PPM。鱼类体内癿汞主要为甲基汞,其百分比随着鱼龄增加而增加,一年生 癿鱼所含汞丨癿甲基汞癿31%—35%,8—12年癿鱼所含汞丨癿甲基汞为67%—100%。在一般情况下调查 呾监测鱼类癿含示量,对亍了解水域汞污染程度十分必要。 目前全球人为活动向大气排放癿汞达2000 吨/年。汞径容易蒸发到大气丨,幵丏能够随着穸气团作全球范围癿迁秱,在大气丨停留几丧月甚至一 年。在丌同癿条件下,它会发生沉陈,幵在当地食物链生物体内聚积。由亍汞癿这种属性,它被联合国 环境觃划署列为全球性污染物,是除了温室气体外唯一一种对全球范围产生影响癿化孜物质。 我国是汞 生产呾消费大国,十分重规汞污染防治研究。有研究表明:丨国汞污染癿健庩影响途徂不其他国家丌同, 丌能照搬欧美研究成果评价丨国汞污染情况,如在北美呾北欧地区,某些鱼类体内癿汞浓度具有一定癿 指标性意丿,但我国贵州即使在汞污染较严重癿地区,鱼体内汞含量却相对较低。另有研究发现:汽车 尾气丨癿汞迚入到穸气丨后,可以被植物吸收,因此路旁植物丨汞癿含量要高亍公园丨癿植物;北京市 汞污染癿主要来源是煤呾汽油燃烧癿汞释放、化工厂癿汞排放,贵阳市癿汞污染原因则是土壤高汞背景 值以及原煤汞含量高。 垃圾焚烧是汞污染癿又一丧主要来源。垃圾丨癿汞主要来自电池、体温计、日光 灯等,如果能对含汞废弃物采取比一般生活垃圾更严格癿处理措施,将有利亍减少汞污染。 [注]PPM:即百万分乀一。
2012年普通高等学校招生全国统一考试数学卷(四川.文)含详解
a2 b2 c c c
|PF|∈[a-c,a+c]
b2 于是 ∈[a-c,a+c] c
即 ac-c2≤b2≤ac+c2
ac c 2 a 2 c 2 ∴ 2 2 2 a c ac c
w_w w. k#s5_u.c o* m
c 1 a c 1或 c 1 a 2 a
个单位长度,再把所得各点的 10
横坐标伸长到原来的 2 倍(纵坐标不变) ,所得图像的函数解析式是高^考#资*源^网 (A) y sin(2 x
10
) )
(B) y sin(2 x
5
)
(C) y sin( x
1 2
10
(D) y sin( x
1 2
20
)
解析:将函数 y sin x 的图像上所有的点向右平行移动 式为 y=sin(x-
w_w w. k#s5_u.c o*m
y 80 70 (15,55)
(A)甲车间加工原料 10 箱,乙车间加工原料 60 箱 (B)甲车间加工原料 15 箱,乙车间加工原料 55 箱 (C)甲车间加工原料 18 箱,乙车间加工原料 50 箱
(D)甲车间加工原料 40 箱,乙车间加工原料 30 箱高^考#资*源^网 解析:解析:设甲车间加工原料 x 箱,乙车间加工原料 y 箱
40 1 800 20 160 320 200 120 8, 16 , 10 , 6 20 20 20 20
故各层中依次抽取的人数分别是 答案:D
(5)函数 f ( x) x mx 1的图像关于直线 x 1 对称的充要条件是
2
(A) m 2
(B) m 2
完整word版,2012年四川省高考数学试卷(文科)答案与解析
2012年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•四川)设集合A={a,b},B={b,c,d},则A∪B=()A.{b} B.{b,c,d} C.{a,c,d} D.{a,b,c,d}考点:并集及其运算.专题:计算题.分析:由题意,集合A={a,b},B={b,c,d},由并运算的定义直接写出两集合的并集即可选出正确选项.解答:解:由题意A={a,b},B={b,c,d},∴A∪B={a,b,c,d}故选D.点评:本题考查并集及其运算,是集合中的基本计算题,解题的关键是理解并能熟练进行求并的计算.2.(5分)(2012•四川)(1+x)7的展开式中x2的系数是()A.21 B.28 C.35 D.42考点:二项式定理.专题:计算题.分析:由题设,二项式(1+x)7,根据二项式定理知,x2项是展开式的第三项,由此得展开式中x2的系数是,计算出答案即可得出正确选项解答:解:由题意,二项式(1+x)7的展开式中x2的系数是=21故选A点评:本题考查二项式定理的通项,熟练掌握二项式的性质是解题的关键3.(5分)(2012•四川)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101 B.808 C.1212 D.2012考点:分层抽样方法.专题:计算题.分析:根据甲社区有驾驶员96人,在甲社区中抽取驾驶员的人数为12求出每个个体被抽到的概率,然后求出样本容量,从而求出总人数.解答:解:∵甲社区有驾驶员96人,在甲社区中抽取驾驶员的人数为12∴每个个体被抽到的概率为=样本容量为12+21+25+43=101∴这四个社区驾驶员的总人数N 为=808故选B.点评:本题主要考查了分层抽样,分层抽样是最经常出现的一个抽样问题,这种题目一般出现在选择或填空中,属于基础题.4.(5分)(2012•四川)函数y=a x﹣a(a>0,a≠1)的图象可能是()A.B.C.D.考点:指数函数的图像变换.专题:函数的性质及应用.分析:通过图象经过定点(1,0),排除不符合条件的选项,从而得出结论.解答:解:由于当x=1时,y=0,即函数y=a x﹣a 的图象过点(1,0),故排除A、B、D.故选C.点评:本题主要考查指数函数的图象和性质,通过图象经过定点(1,0),排除不符合条件的选项,是一种简单有效的方法,属于中档题.5.(5分)(2012•四川)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED则sin∠CED=()A.B.C.D.考点:两角和与差的正切函数;任意角的三角函数的定义.专题:三角函数的图像与性质.分析:法一:用余弦定理在三角形CED中直接求角的余弦,再由同角三角关系求正弦;法二:在三角形CED中用正弦定理直接求正弦.解答:解:法一:利用余弦定理在△CED中,根据图形可求得ED=,CE=,由余弦定理得cos∠CED=,∴sin∠CED==.故选B.法二:在△CED中,根据图形可求得ED=,CE=,∠CDE=135°,由正弦定理得,即.故选B.点评:本题综合考查了正弦定理和余弦定理,属于基础题,题后要注意总结做题的规律.6.(5分)(2012•四川)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行考点:命题的真假判断与应用;空间中直线与平面之间的位置关系.专题:简易逻辑.分析:利用直线与平面所成的角的定义,可排除A;利用面面平行的位置关系与点到平面的距离关系可排除B;利用线面平行的判定定理和性质定理可判断C正确;利用面面垂直的性质可排除D.解答:解:A、若两条直线和同一个平面所成的角相等,则这两条直线平行、相交或异面,故A错误;B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行或相交,故B错误;C、设平面α∩β=a,l∥α,l∥β,由线面平行的性质定理,在平面α内存在直线b∥l,在平面β内存在直线c∥l,所以由平行公理知b∥c,从而由线面平行的判定定理可证明b∥β,进而由线面平行的性质定理证明得b∥a,从而l∥a,故C正确;D,若两个平面都垂直于第三个平面,则这两个平面平行或相交,排除D.故选C.点评:本题主要考查了空间线面平行和垂直的位置关系,线面平行的判定和性质,面面垂直的性质和判定,空间想象能力,属基础题.7.(5分)(2012•四川)设、都是非零向量,下列四个条件中,使成立的充分条件是()A.且B.C.D.考点:充分条件;平行向量与共线向量.专题:简易逻辑.分析:利用向量共线的充要条件,求已知等式的充要条件,进而可利用命题充要条件的定义得其充分条件解答:解:⇔⇔与共线且同向⇔且λ>0,A选项和C选项中和可能反向,B选项不符合λ>0.故选D.点评:本题主要考查了向量共线的充要条件,命题的充分和必要性,属基础题.8.(5分)(2012•四川)若变量x,y满足约束条件,则z=3x+4y的最大值是()A.12 B.26 C.28 D.33考点:简单线性规划.专题:计算题.分析:先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数z=3x+4y的最大值.解答:解:作出约束条件,所示的平面区域,作直线3x+4y=0,然后把直线L向可行域平移,结合图形可知,平移到点C时z最大由可得C(4,4),此时z=28故选C点评:本题主要考查了线性规划的简单应用,解题的关键是,明确目标函数的几何意义9.(5分)(2012•四川)已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M (2,y0).若点M到该抛物线焦点的距离为3,则|OM|=()A.B.C.4D.考点:抛物线的简单性质.专题:计算题.分析:关键点M(2,y0)到该抛物线焦点的距离为3,利用抛物线的定义,可求抛物线方程,进而可得点M的坐标,由此可求|OM|.解答:解:由题意,抛物线关于x轴对称,开口向右,设方程为y2=2px(p>0)∵点M(2,y0)到该抛物线焦点的距离为3,∴2+=3∴p=2∴抛物线方程为y2=4x∵M(2,y0)∴∴|OM|=故选B.点评:本题考查抛物线的性质,考查抛物线的定义,解题的关键是利用抛物线的定义求出抛物线方程.10.(5分)(2012•四川)如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A、P两点间的球面距离为()A.B.C.D.考点:反三角函数的运用;球面距离及相关计算.专题:计算题.分析:由题意求出AP的距离,然后求出∠AOP,即可求解A、P两点间的球面距离.解答:解:半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,所以CD⊥平面AOB,因为∠BOP=60°,所以△OPB为正三角形,P到BO的距离为PE=,E为BQ的中点,AE==,AP==,AP2=OP2+OA2﹣2OP•OAcos∠AOP,,cos∠AOP=,∠AOP=arccos,A、P两点间的球面距离为,故选A.点评:本题考查反三角函数的运用,球面距离及相关计算,考查计算能力以及空间想象能力.11.(5分)(2012•四川)方程ay=b2x2+c中的a,b,c∈{﹣2,0,1,2,3},且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A.28条B.32条C.36条D.48条考点:排列、组合及简单计数问题;抛物线的标准方程.专题:计算题;压轴题.分析:方程变形得,若表示抛物线,则a≠0,b≠0,然后进行排列.解答:解:方程变形得,若表示抛物线,则a≠0,b≠0,先排a,b,有种,c有种,所以表示抛物线的曲线共有,又因为当b=±2时,b2都等于4,所以重复的抛物线有种,所以不同的抛物线有﹣=32条.故选B.点评:此题难度很大,若采用排列组合公式计算,很容易忽视重复的9条抛物线.列举法是解决排列、组合、概率等非常有效的办法,要能熟练运用.12.(5分)(2012•四川)设函数f(x)=(x﹣3)3+x﹣1,{a n}是公差不为0的等差数列,f(a1)+f(a2)+…+f(a7)=14,则a1+a2+…+a7=()A.0B.7C.14 D.21考点:数列与函数的综合.专题:计算题;压轴题.分析:根据f(x)=(x﹣3)3+x﹣1,可得f(x)﹣2=(x﹣3)3+x﹣3,构造函数g(x)=f (x)﹣2,从而g(x)关于(3,0)对称,利用f(a1)+f(a2)+…+f(a7)=14,可得g(a1)+g(a2)+…+g(a7)=0,从而g(a4)为g(x)与x轴的交点,由此可求a1+a2+…+a7的值.解答:解:∵f(x)=(x﹣3)3+x﹣1,∴f(x)﹣2=(x﹣3)3+x﹣3,令g(x)=f(x)﹣2∴g(x)关于(3,0)对称∵f(a1)+f(a2)+…+f(a7)=14∴f(a1)﹣2+f(a2)﹣2+…+f(a7)﹣2=0∴g(a1)+g(a2)+…+g(a7)=0∴g(a4)为g(x)与x轴的交点因为g(x)关于(3,0)对称,所以a4=3∴a1+a2+…+a7=7a4=21,故选D.点评:本题考查数列与函数的综合,考查函数的对称性,考查数列的性质,需要一定的基本功.二、填空题(本大题共4个小题,每小题4分,共16分.把答案填在答题纸的相应位置上.)13.(4分)(2012•四川)函数的定义域是(﹣∞,).(用区间表示)考点:函数的定义域及其求法.专题:计算题.分析:结合函数的表达式可得不等式1﹣2x>0的解集即为所求.解答:解:∵1﹣2x>0∴x<∴函数的定义域为(﹣∞,)故答案为(﹣∞,)点评:本题主要考查了根据函数的解析式求函数的定义域,属常考题,较易.解题的关键是根据函数的解析式得出1﹣2x>0的解集即为所求!14.(4分)(2012•四川)如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是90°.考点:异面直线及其所成的角.专题:计算题.分析:以D为坐标原点,建立空间直角坐标系,利用向量的方法求出与夹角求出异面直线A1M与DN所成的角.解答:解:以D为坐标原点,建立如图所示的空间直角坐标系.设棱长为2,则D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2),=(0,2,1),=(﹣2,1,﹣2)•=0,所以⊥,即A1M⊥DN,异面直线A1M与DN所成的角的大小是90°,故答案为:90°.点评:本题考查空间异面直线的夹角求解,采用了向量的方法.向量的方法能降低空间想象难度,但要注意有关点,向量坐标的准确.否则容易由于计算失误而出错.15.(4分)(2012•四川)椭圆为定值,且的左焦点为F,直线x=m 与椭圆相交于点A、B,△FAB的周长的最大值是12,则该椭圆的离心率是.考点:椭圆的简单性质.专题:计算题;压轴题.分析:先画出图象,结合图象以及椭圆的定义求出△FAB的周长的表达式,进而求出何时周长最大,即可求出椭圆的离心率.解答:解:设椭圆的右焦点E.如图:由椭圆的定义得:△FAB的周长为:AB+AF+BF=AB+(2a﹣AE)+(2a﹣BE)=4a+AB ﹣AE﹣BE;∵AE+BE≥AB;∴AB﹣AE﹣BE≤0,当AB过点E时取等号;∴△FAB的周长:AB+AF+BF=4a+AB﹣AE﹣BE≤4a;∴△FAB的周长的最大值是4a=12⇒a=3;∴e===.故答案:.点评:本题主要考察椭圆的简单性质.在解决涉及到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口.16.(4分)(2012•四川)设a,b为正实数,现有下列命题:①若a2﹣b2=1,则a﹣b<1;②若,则a﹣b<1;③若,则|a﹣b|<1;④若|a3﹣b3|=1,则|a﹣b|<1.其中的真命题有①④.(写出所有真命题的编号)考点:命题的真假判断与应用.专题:简易逻辑.分析:①将a2﹣b2=1,分解变形为(a+1)(a﹣1)=b2,即可证明a﹣1<b,即a﹣b<1;②③可通过举反例的方法证明其错误性;④若a>b,去掉绝对值,将a3﹣b3=1分解变形为(a﹣1)(a2+1+a)=b3,即可证明a﹣b<1,同理当a<b时也可证明b﹣a <1,从而命题④正确.解答:解:①若a2﹣b2=1,则a2﹣1=b2,即(a+1)(a﹣1)=b2,∵a+1>a﹣1,∴a﹣1<b <a+1,即a﹣b<1,①正确;②若,可取a=7,b=,则a﹣b>1,∴②错误;③若,则可取a=9,b=4,而|a﹣b|=5>1,∴③错误;④由|a3﹣b3|=1,若a>b>0,则a3﹣b3=1,即a3﹣1=b3,即(a﹣1)(a2+1+a)=b3,∵a2+1+a>b2,∴a﹣1<b,即a﹣b<1若0<a<b,则b3﹣a3=1,即b3﹣1=a3,即(b﹣1)(b2+1+b)=a3,∵b2+1+b>a2,∴b﹣1<a,即b﹣a<1∴|a﹣b|<1,∴④正确.故答案为①④.点评:本题主要考查了不等式的证明方法,间接证明和直接证明的方法,放缩法和举反例法证明不等式,演绎推理能力,有一定难度,属中档题.三、解答题(本大题共6个小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.)17.(12分)(2012•四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为和p.(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;(Ⅱ)求系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.考点:n次独立重复试验中恰好发生k次的概率;互斥事件的概率加法公式;相互独立事件的概率乘法公式.专题:概率与统计.分析:(Ⅰ)求出“至少有一个系统不发生故障”的对立事件的概率,利用至少有一个系统不发生故障的概率为,可求p的值;(Ⅱ)利用相互独立事件的概率公式,即可求得结论.解答:解:(Ⅰ)设“至少有一个系统不发生故障”为事件C,则∴;(Ⅱ)设“系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D,那么P(D)==.点评:本题主要考查相互独立事件、独立重复试验、互斥事件的概念与计算,考查运用概率知识与方法解决实际问题的能力.18.(12分)(2012•四川)已知函数.(Ⅰ)求函数f(x)的最小正周期和值域;(Ⅱ)若,求sin2α的值.考点:三角函数中的恒等变换应用;二倍角的正弦;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:(Ⅰ)将化为f(x)=cos(x+)即可求得f (x)的最小正周期和值域;(Ⅱ)由可求得cos(α+)=,由余弦函数的二倍角公式与诱导公式可求得sin2α的值.解答:解:(Ⅰ)由已知,f(x)=﹣sin cos﹣=(1+cosx)﹣sinx﹣=cos(x+).∴函数f(x)的最小正周期为2π,值域为[﹣,].(Ⅱ)由(Ⅰ)知,f(α)=cos(α+)=,∴cos(α+)=,∴sin2α=﹣cos(+2α)=﹣cos2(α+)=1﹣2=1﹣=.点评:本题考查三角函数的性质、两角和的正(余)弦公式等基础知识,考查运算能力,考查化归与转化等数学思想,属于中档题.19.(12分)(2012•四川)如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,点P在平面ABC内的射影O在AB上.(Ⅰ)求直线PC与平面ABC所成的角的大小;(Ⅱ)求二面角B﹣AP﹣C的大小.考点:用空间向量求平面间的夹角;直线与平面所成的角;二面角的平面角及求法.专题:综合题.分析:解法一(Ⅰ)连接OC,由已知,∠OCP为直线PC与平面ABC所成的角.设AB中点为D,连接PD,CD.不妨设PA=2,则OD=1,OP=,AB=4.在RT△OCP中求解.(Ⅱ)以O为原点,建立空间直角坐标系,利用平面APC的一个法向量与面ABP的一个法向量夹角求解.解法二(Ⅰ)设AB中点为D,连接CD.以O为坐标原点,OB,OE,OP所在直线分别为x,y,z轴建立空间直角坐标系O﹣xyz.利用与平面ABC的一个法向量夹角求解.(Ⅱ)分别求出平面APC,平面ABP的一个法向量,利用两法向量夹角求解.解答:解法一(Ⅰ)连接OC,由已知,∠OCP为直线PC与平面ABC所成的角.设AB中点为D,连接PD,CD.因为AB=BC=CA,所以CD⊥AB,因为∠APB=90°,∠PAB=60°,所以△PAD为等边三角形,不妨设PA=2,则OD=1,OP=,AB=4.所以CD=2,OC===在RT△OCP中,tan∠OCP===.故直线PC与平面ABC所成的角的大小为arctan.(Ⅱ)由(Ⅰ)知,以O为原点,建立空间直角坐标系.则=(1,0,),=(2,2,0).设平面APC的一个法向量为=(x,y,z),则由得出即,取x=﹣,则y=1,z=1,所以=(﹣,1,1).设二面角B﹣AP﹣C的平面角为β,易知β为锐角.而面ABP的一个法向量为=(0,1,0),则cosβ===.故二面角B﹣AP﹣C的大小为arccos.解法二:(Ⅰ)设AB中点为D,连接CD.因为O在AB上,且O为P在平面ABC 内的射影,所以PO⊥平面ABC,所以PO⊥AB,且PO⊥CD.因为AB=BC=CA,所以CD⊥AB,设E为AC中点,则EO∥CD,从而OE⊥PO,OE⊥AB.如图,以O为坐标原点,OB,OE,OP所在直线分别为x,y,z轴建立空间直角坐标系O﹣xyz.不妨设PA=2,由已知可得,AB=4,OA=OD=1,OP=,CD=2,所以O(0,0,0),A(﹣1,0,0),C(1,2,0),P(0,0,),所以=(﹣1,﹣2,)=(0,0,)为平面ABC的一个法向量.设α为直线PC与平面ABC所成的角,则sinα===.故直线PC与平面ABC所成的角大小为arcsin(Ⅱ)由(Ⅰ)知,=(1,0,),=(2,2,0).设平面APC的一个法向量为=(x,y,z),则由得出即,取x=﹣,则y=1,z=1,所以=(﹣,1,1).设二面角B﹣AP﹣C的平面角为β,易知β为锐角.而面ABP的一个法向量为=(0,1,0),则cosβ===.故二面角B﹣AP﹣C的大小为arccos.点评:本题考查线面关系,直线与平面所成的角、二面角等基础知识,考查思维能力、空间想象能力,并考查应用向量知识解决数学问题能力.20.(12分)(2012•四川)已知数列{a n}的前n项和为S n,常数λ>0,且λa1a n=S1+S n对一切正整数n都成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设a1>0,λ=100,当n为何值时,数列的前n项和最大?考点:数列递推式;数列的函数特性;数列的求和.专题:计算题.分析:(I)由题意,n=1时,由已知可知a1(λa1﹣2)=0,分类讨论:由a1=0,及a1≠0,结合数列的和与项的递推公式可求(II)由a1>0且λ=100时,令,则,结合数列的单调性可求和的最大项解答:解(I)当n=1时,∴a1(λa1﹣2)=0若取a1=0,则S n=0,a n=S n﹣S n﹣1=0∴a n=0(n≥1)若a1≠0,则,当n≥2时,2a n=,两式相减可得,2a n﹣2a n﹣1=a n∴a n=2a n﹣1,从而可得数列{a n}是等比数列∴a n=a1•2n﹣1==综上可得,当a1=0时,a n=0,当a1≠0时,(II)当a1>0且λ=100时,令由(I)可知∴{b n}是单调递减的等差数列,公差为﹣lg2∴b1>b2>…>b6=>0当n≥7时,∴数列的前6项和最大点评:本题主要考查了利用数列的递推公式求解数列的通项公式及利用数列的单调性求解数列的和的最大项,还考查了一定的逻辑运算与推理的能力.21.(12分)(2012•四川)如图,动点M与两定点A(﹣1,0)、B(1,0)构成△MAB,且直线MA、MB的斜率之积为4,设动点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设直线y=x+m(m>0)与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求的取值范围.考点:直线与圆锥曲线的综合问题;圆锥曲线的轨迹问题.专题:综合题;压轴题.分析:(Ⅰ)设出点M(x,y),表示出两线的斜率,利用其乘积为4,建立方程化简即可得到点M的轨迹方程;(Ⅱ)直线y=x+m与4x2﹣y2﹣4=0(x≠±1)联立,消元可得3x2﹣2mx﹣m2﹣3=0,结合题设(m>0)可知,m>0且m≠1设Q,R的坐标,求出x R,x Q,利用,即可确定的取值范围.解答:解:(Ⅰ)设M(x,y),则k MA=,k MB=∵直线MA、MB的斜率之积为4,∴∴4x2﹣y2﹣4=0又x=±1时,必有一个斜率不存在,故x≠±1综上点M的轨迹方程为4x2﹣y2﹣4=0(x≠±1)(Ⅱ)直线y=x+m与4x2﹣y2﹣4=0(x≠±1)联立,消元可得3x2﹣2mx﹣m2﹣4=0①∴△=16m2+48>0当1或﹣1是方程①的根时,m的值为1或﹣1,结合题设(m>0)可知,m>0且m≠1设Q,R的坐标分别为(x Q,y Q),(x R,y R),∵|PQ|<|PR|,∴x R=,x Q=,∴==∵m>0且m≠1∴,且≠4∴,且∴的取值范围是(1,)∪(,3)点评:本题以斜率为载体,考查直线、双曲线、轨迹方程的求解,考查思维能力,运算能力,考查思维的严谨性.22.(14分)(2012•四川)已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距.(Ⅰ)用a和n表示f(n);(Ⅱ)求对所有n都有成立的a的最小值;(Ⅲ)当0<a<1时,比较与的大小,并说明理由.圆锥曲线的综合;导数在最大值、最小值问题中的应用.考点:综合题;压轴题.专题:分析:(Ⅰ)根据抛物线与x轴正半轴相交于点A,可得A(),进一步可求抛物线在点A处的切线方程,从而可得f(n);(Ⅱ)由(Ⅰ)知f(n)=a n,则成立的充要条件是a n≥2n+1,即知,a n≥2n+1对所有n成立,当a=3,n≥1时,a n=3n=(1+2)n≥1+=2n+1,当n=0时,a n=2n+1,由此可得a的最小值;(Ⅲ)由(Ⅰ)知f(k)=a k,证明当0<x<1时,,即可证明:>.解答:解:(Ⅰ)∵抛物线与x轴正半轴相交于点A,∴A()对求导得y′=﹣2x∴抛物线在点A处的切线方程为,∴∵f(n)为该抛物线在点A处的切线在y轴上的截距,∴f(n)=a n;(Ⅱ)由(Ⅰ)知f(n)=a n,则成立的充要条件是a n≥2n+1 即知,a n≥2n+1对所有n成立,特别的,取n=1得到a≥3当a=3,n≥1时,a n=3n=(1+2)n≥1+=2n+1当n=0时,a n=2n+1∴a=3时,对所有n都有成立∴a的最小值为3;(Ⅲ)由(Ⅰ)知f(k)=a k,下面证明:>首先证明:当0<x<1时,设函数g(x)=6x(x2﹣x)+1,0<x<1,则g′(x)=18x(x﹣)当0<x<时,g′(x)<0;当时,g′(x)>0故函数g(x)在区间(0,1)上的最小值g(x)min=g()=>0∴当0<x<1时,g(x)>0,∴由0<a <1知0<a k <1,因此,从而=>6(a+a 2+…+a n )==点评: 本题考查圆锥曲线的综合,考查不等式的证明,考查导数的几何意义,综合性强,属于中档题.。
2012年四川高考数学试题和答案(文科)1
绝密*启用前2012年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2。
问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动。
用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3。
回答第Ⅱ卷时。
将答案写在答题卡上。
写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1、已知集合A={x |x 2-x -2〈0},B={x |-1〈x 〈1},则(A )A 错误!B (B )B 错误!A (C)A=B (D )A ∩B=(2)复数z =错误!的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =错误!x +1上,则这组样本数据的样本相关系数为(A)-1 (B)0 (C)12(D )1 (4)设F 1、F 2是椭圆E :错误!+错误!=1(a >b >0)的左、右焦点,P 为直线x =错误!上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )错误! (B )错误! (C )错误! (D )错误!5、已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A)(1-错误!,2) (B)(0,2) (C )(错误!-1,2) (D)(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B,则(A)A+B 为a 1,a 2,…,a N 的和(B)A +B 2为a 1,a 2,…,a N 的算术平均数 (C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18开始A=xB=x x >A否输出A ,B 是 输入N ,a 1,a 2,…,a N结束x <Bk ≥Nk =1,A =a 1,B=a 1k =k+1x =a k是否 否是(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为(A)错误!π(B)4错误!π(C)4错误!π(D)6错误!π(9)已知ω〉0,0〈φ<π,直线x=错误!和x=错误!是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A)错误!(B)错误!(C)错误!(D)错误!(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4错误!,则C的实轴长为(A)错误!(B)2错误!(C)4 (D)8(11)当0〈x≤错误!时,4x<log a x,则a的取值范围是(A)(0,错误!)(B)(错误!,1)(C)(1,错误!)(D)(错误!,2) (12)数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为(A)3690 (B)3660 (C)1845 (D)1830第Ⅱ卷本卷包括必考题和选考题两部分。
年普通高等学校招生全国统一考试(四川卷)文科数学及参考答案
普通高等学校招生全国统一考试(四川卷)文科数学及参考答案第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADABDBCDBAC(1)已知集合{}2560A x x x =-+=,集合{}213B x x =->,则集合A B =(A ){}23x x ≤≤ (B ){}23x x ≤< (C ){}23x x <≤ (D ){}13x x -<< (2)函数()()()ln 1,1f x x x =->的反函数是 (A )()()11x f x e x R -=+∈ (B )()()1101x f x x R -=+∈ (C )()()11011x fx x -=+> (D )()()111x f x e x -=+>(3)曲线34y x x =-在点()1,3--处的切线方程是(A )74y x =+ (B )72y x =+ (C )4y x =- (D )2y x =-(4)如图,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是 (A )1213PP PP ⋅ (B )1214PP PP ⋅ (C )1215PP PP ⋅ (D )1216PP PP ⋅(5)甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生 (A )30人,30人,30人 (B )30人,45人,15人 (C )20人,30人,10人 (D )30人,50人,10人 (6)下列函数中,图象的一部分如右图所示的是 (A )sin 6y x π⎛⎫=+⎪⎝⎭(B )sin 26y x π⎛⎫=-⎪⎝⎭(C )cos 43y x π⎛⎫=-⎪⎝⎭(D )cos 26y x π⎛⎫=-⎪⎝⎭(7) 已知二面角l αβ--的大小为060,,m n 为异面直线,且,m n ββ⊥⊥,则,m n 所成的角为(A )030 (B )060 (C )090 (D )0120 (8) 已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π (9) 如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一 个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的表面积是 (A )4π (B )8π (C )12π (D )16π(10) 直线3y x =-与抛物线24y x =交于,A B 两点,过,A B 两点向抛物线的准线作垂线,垂足分别为,P Q ,则梯形APQB 的面积为(A )36 (B )48 (C )56 (D )64(11)设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,则()2a b b c =+是2A B =的(A )充要条件 (B )充分而不必要条件 (C )必要而充分条件 (D )既不充分又不必要条件(12)从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除的概率为 (A )4160 (B )3854 (C )3554 (D )1954第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分;把答案填在题中的横线上。
2012年高考文科数学四川卷-答案
2012年普通高等学校招生全国统一考试(四川卷)【提示】(1)求出“至少有一个系统不发生故障”的对立事件的概率,利用至少有一个系统不发生故障的概率为4950,可求p的值。
【提示】(1)将21cos sin cos 222()2x x x x f =--化为π()24f x x ⎛⎫=+ ⎪⎝⎭即可求得()f x 的最小正周期和值19.【答案】(1)解:连接OC 。
由已知,OCP ∠为直线PC 与平面ABC 所成的角。
设AB 的中点为D ,连接.PD CD 、因为AB BC CA ==,所以CD AB ⊥.因为9060APB PAB ∠=︒∠=︒,,所以PAD △为等边三角形,不妨设2PA =,则14OD OP AB ===,.所以CD =,OC ===【提示】(1)连接OC 。
由已知,OCP ∠为直线PC 与平面ABC 所成的角。
设AB 的中点为D ,连接.PD CD 、可设2PA =,则14OD OP AB ===,.在Rt OCP △中求解。
(2)利用三垂线定理可得CED ∠为二面角B AP C --的平面角。
在Rt CDE △中求解。
【提示】(1)由题意,1n =时,由已知可知11(2)0a a λ-=,分类讨论:由10a =,及10a ≠,结合数列的【提示】(1)设M 的坐标为(,)x y ,表示出两线的斜率,利用其乘积为4,建立方程化简即可得到点M 的轨迹方程。
(2)直线y x m =+与22440x y --=(1)x ≠±联立,消元可得223240.x mx m ---=结合题设(0)m >可知,【提示】(1)根据抛物线212ny x a =-+与x 轴正半轴相交于点A ,可得A 的坐标为⎫⎪⎪⎭,进一步可求抛物线在点A 处的切线方程,从而可得()f n 。
2012年普通高等学校招生全国 统一考试四川
2012年普通高等学校招生全国统一考试(四川卷)文科综合第一部分选择题(共140分)本部分共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
图1是我国亚热带某旅游名山景观照片。
该山顶海拔3099米,属山地针叶叶林带。
读图回答1~2题。
1.形成图中结构地貌的地质作用是A.断裂上升B. 褶皱弯曲C. 冰川堆积D.风力侵蚀2.该山山顶能够出现可供游客欣赏的景观是A.人间四月芳菲尽,山寺桃花始盛开B.晨起开门雪满山,雪晴云淡日光寒C.层层梯田叠交错,犹如海上泛碧波D.春蚕作茧桑园绿,睡起日斜闻竹鸡图2为亚洲某国年降水量分布图。
读图回答3~5题3.据图示信息推断,甲乙丙丁四个城市中,人口数量最多的应该是A.甲城市B.乙城市C.丙城市D.丁城市4.针对该国面临的突出生态环境问题,应才去的主要防治措施是A.调整农作物熟制B.大面积营造水土保持林C.广泛建设人工水域D.实施林草结合的防风固沙工程5.下列结论的依据,所用图示信息正确的是A.河流稀少,有内流河,所以该国为内陆国B.中、东部城市分布较多,故该国中、东部为平原C.位于温带地区,导致该国1月平均气温在0℃以下D.降水量稀少切呈条带状分布,使该国植被呈现东西延伸、南北更替表1为某地气候相关数据。
读表回答6~7题6.影响该地气温特征的主导因素是A.纬度位置B.海陆位置C.地形D.植被7.该地易发生的主要自然灾害是A.雪灾B.台风C.泥石流D.暴雨洪涝图3中四条曲线分别表示北美、南美、澳大利亚和非洲四大陆线西岸0°~40°范围内年降水量分布的状况。
读图回答8~9题8.表示北美大陆西岸降水状况的是A.①曲线南美B.②曲线非洲C.③曲线D.④曲线澳大利亚9.M对应的地点年降水量少的主要原因是A.纬度低,蒸发旺盛B.盛行东北信风,水汽含量少C.终年受副热带高压控制,盛行下沉气流D.沿岸有势力很强的寒流流经,降温减湿明显图4是以极点为中心的东半球图。
2012年高考四川数学文解析
2012年普通高等学校招生全国统一考试(四川卷)数 学(供文科考生使用)参考公式:如果事件互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 343V Rp =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)kkn kn n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合{,}A a b =,{,,}B b c d =,则A B = ( )A 、{}bB 、{,,}b c dC 、{,,}a c dD 、{,,,}a b c d [答案]D[解析]集合A 中包含a,b 两个元素,集合B 中包含b,c,d 三个元素,共有a,b,c,d 四个元素,所以}{d c b a B A 、、、=[点评]本题旨在考查集合的并集运算,集合问题属于高中数学入门知识,考试时出题难度不大,重点是掌握好课本的基础知识. 2、7(1)x +的展开式中2x 的系数是( )A 、21B 、28C 、35D 、42 [答案]A[解析]二项式7)1(x +展开式的通项公式为1+k T =k k x C 7,令k=2,则2273x C T 、=21C x 272=∴的系数为[点评]高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力.3、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。
2012年四川高考英语试题及答案
2012年普通高等学校招生全国统一考试(四川卷)解析版英语第Ⅰ卷(选择题共100分)第一部分英语知识运用(共两节,满分50分)第一节语法和词汇知识(共20小题;每小题1分,满分20分)从A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
1. —Excuse me. How much is the shirt?— _______.A. Extra LargeB. 50 eachC. It sells wellD. Altogether there are 52. New technologies have made ____ possible to turn out new products faster and at a lower cost.A. thatB. thisC. oneD. it3.—Goodbye, John. e back again sometime.—Sure. ______.A. I didB. I doC. I shallD. I will4. At school, some students are active ______ some are shy, yet they can be good friends with one another.A. whileB. althoughC. soD. as5. This is not my story, nor ______ the whole story. My story plays out differently.A. is thereB. there isC. is itD. it is6. Tom took a taxi to the airport, only _____ his plane high up in the sky.A. findingB. to findC. being foundD. to have found7. The hotel is almost finished, but it _____ needs one or two weeks to get ready for guests.A. onlyB. alsoC. evenD. still8. I looked up and noticed a snake ______ its way up the tree to catch its breakfast.A. to windB. windC. windingD. wound9.—Did you catch what I said?—Sorry. I ______ a text message just now.A. had answeringB. have answeredC. would answerD. was answering10. If you happen to get lost in the wild, you’d better stay ______ you are and wait for help.A. whyB. whereC. whoD. what11. They are living with their parents for the moment because their own house ____.A. is being rebuiltB. has been rebuiltC. is rebuiltD. has rebuilt12. Before driving into the city, you are required to get your car ____.A. washedB. washC. washingD. to wash13. In our class there are 46 students, _____ half wear glasses.A. in whomB. in themC. of whomD. of them14. This training program can give you a lift at work, ____ increase your ine by 40%.A. as well asB. so long asC. so much asD. as soon as15. He will e to understand your efforts sooner or later. It’s just a matter of _____.A. luckB. valueC. timeD. fact16.I make $2,000 a week, 60 surely won’t make ______ difference to me.A. that a bigB. a that bigC. big a thatD. that big a17. Scientists study ____ human brains work to make puters.A. whenB. howC. thatD. whether18. We are said to be living in ____ Information Age, ____ time of new discoveries and great changes.A. an; theB. 不填; theC. 不填; aD. the; a19. I got close enough to hear them speaking Chinese, and I said “Ni Hao ” just as I ____ do in China.A. mustB. mightC. canD. should20. It’s surprising that your brother _____ Russian so quickly—he hasn’t lived there very long.A. picked upB. looked upC. put upD. made up第二节完形填空(共20小题;每小题1.5分,满分30分)阅读下面短文,从短文后各题所给的四个选项(A、B、C和D)中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
2012年文数高考试题答案及解析-四川
2012 年一般高等学校招生全国一致考试(四川卷)数学(供文科考生使用)参照公式:假如事件互斥,那么P(A + B) = P( A) + P(B)假如事件互相独立,那么P (A ?B) P( A) P( B)假如事件 A 在一次中生的概率是p ,那么在 n 次独立重复中事件 A 恰巧生 k 次的概率P (k ) = C k p k (1- p)n - k(k = 0,1,2,⋯, n)n n 球的表面公式2S = 4p R此中 R 表示球的半径球的体公式43V =p R3此中 R 表示球的半径第一部分(选择题共60分)注意事:1、必使用2B 笔将答案涂在机卡上目的地点上。
2、本部分共12 小,每小 5 分,共 60 分。
一、:每小出的四个中,只有一是切合目要求的。
1、会合A{ a, b} , B {b, c, d} ,A B()A、{ b}B、{b, c, d}C、{ a, c, d}D、{ a,b,c,d}[答案 ]D[分析 ]会合 A 中包括 a,b 两个元素,会合 B 中包括 b,c,d 三个元素,共有a,b,c,d 四个元素,所以 A B{ a、 b、 c、 d}[点 ]本旨在考会合的并集运算,会合属于高中数学入知,考出度不大,要点是掌握好本的基知 .2、(1 x)7的睁开式中x2的系数是()A、21B、 28C、35D、42[答案 ]A[分析 ]二式(1 x)7睁开式的通公式T k 1=C7k x k,令k=2, T3 C 72、x 2 x 2的系数为 C7221[点 ]高考二睁开式型度不大,要获得部分分,第一需要熟掌握二睁开式的通公式,其次需要化考生的算能力.3、交通管理部认识机(称)某新法的知状况,甲、乙、丙、丁四个社区做分抽。
假四个社区的人数N ,此中甲社区有96 人。
若在甲、乙、丙、丁四个社区抽取的人数分12,21,25,43 ,四个社区的人数 N()A、101B、 808C、 1212D、 2012[答案 ]B[分析 ]N= 962196 96 439612258081212[评论 ]解决分层抽样问题,要点是求出抽样比,此类问题难点要注意能否需要剔除个体 .4、函数 ya x a( a0, a 1) 的图象可能是()[答案 ]C[分析 ]采纳特别值考证法. 函数 ya xa( a 0, a 1) 恒过( 1,0),只有 C 选项切合 .[评论 ]函数大概图像问题,解决方法多样,此中特别值考证、清除法比较常用,且简单易用.5、如图,正方形 ABCD1,延伸BA 至 E ,使 AE1,连结 ECED则 sinCED的边长为、()DC3101055B 、C 、D 、A 、10101510[答案 ]BEAB[分析 ] AE 1,正方形的边长也为 1 EDAE222ADEC ( EA225 AB )CBCD1222310cosCEDEDEC -CD2 ED EC10sinCED1 cos 2CED1010[评论 ]注意恒等式 22α的的范围决定其正余弦值的正负状况.sin α +cos α =1的使用,需要用 6、以下命题正确的选项是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个订交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行[答案 ]C[分析 ]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能订交,所以 A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面能够平行,也能够垂直;故 D 错;应选项C正确 .[评论 ]本题旨在观察立体几何的线、面地点关系及线面的判断和性质,需要娴熟掌握课本基础知识的定义、定理及公式 .7、设a、b都是非零向量,以下四个条件中,使a b成立的充足条件是()| a ||b |A、| a | | b |且a // bB、a bC、a // bD、a 2b[答案 ]Da b[分析 ]若使成立,则 a与 b方向同样,选项中只有D能保证,应选 D.| a || b |[评论 ]本题观察的是向量相等条件模相等且方向同样.学习向量知识时需注意易考易错零向量,其模为 0 且方向随意 .x y3,x 2 y12,8、若变量x, y 知足拘束条件2x y 12 ,则z3x 4 y 的最大值是()x0y 0A、 12B、26C、 28D、33[答案 ]C[分析 ]目标函数z 3x 4 y 能够变形为y 3xz,做函数y3 x 的平行线,444当其经过点B( 4,4)时截距最大时,即 z 有最大值为z 3x 4 y =3 4 4 428 .[评论 ]解决线性规划题目的惯例步骤:一列(列出拘束条件)、二画(画出可行域)、三作(作目标函数变形式的平行线)、四求(求出最优解).9、已知抛物线对于x 轴对称,它的极点在座标原点O ,而且经过点 M (2, y0 ) 。
2012年普通高等学校招生全国统一考试文科数学(四川卷)
12四川(文)1.(2012四川,文1)设集合A={a,b},B={b,c,d},则A∪B=( ).A.{b}B.{b,c,d}C.{a,c,d}D.{a,b,c,d}D A∪B={a,b}∪{b,c,d}={a,b,c,d},故选D.2.(2012四川,文2)(1+x)7的展开式中x2的系数是( ).A.21B.28C.35D.42A因为含x2项是二项式展开式中的第三项T3=27C x2=21x2,所以x2的系数是21,故选A.3.(2012四川,文3)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( ).A.101B.808C.1212D.2012B四个社区抽取的总人数为12+21+25+43=101,由分层抽样可知,9612=101N,解得N=808.故选B.4.(2012四川,文4)函数y=a x-a(a>0,且a≠1)的图象可能是( ).C当a>1时,y=a x是增函数,-a<-1,则函数y=a x-a的图象与y轴的交点在x轴下方,故选项A不正确;y=a x-a的图象与x轴的交点是(1,0),故选项B不正确;当0<a<1时,y=a x是减函数,y=a x-a的图象与x轴的交点是(1,0),故选项C正确;若0<a<1,则-1<-a<0,y=a x-a的图象与y轴的交点在x轴上方,故选项D不正确.5.(2012四川,文5)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC,ED,则si n∠CED=( ).A31010B1010C510D515B因为四边形ABCD是正方形,且AE=AD=1,所以∠AED=π4.又因为在Rt△EBC中,EB=2,BC=1,所以sin∠BEC55cos∠BEC255于是sin∠CED=sinπBEC4∠⎛⎫-⎪⎝⎭=sinπ4cos∠BEC-cosπ4si n∠BEC222552 2551010故选B.6.(2012四川,文6)下列命题正确的是( ).A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行C若两条直线和同一平面所成的角相等,则这两条直线可平行、可异面、可相交.选项A 错;如果到一个平面距离相等的三个点在同一条直线上或在这个平面的两侧,则经过这三个点的平面与这个平面相交,选项B 不正确;如图,平面α∩β=b ,a ∥α,a ∥β,过直线a 作平面ε∩α=c ,过直线a 作平面γ∩β=d ,∵a ∥α,∴a ∥c ,∵a ∥β,∴a ∥d ,∴d ∥c ,∵c ⊂α,d ⊄α,∴d ∥α,又∵d ⊂β,∴d ∥b ,∴a ∥b ,选项C 正确;若两个平面都垂直于第三个平面,则这两个平面可平行、可相交,选项D 不正确. 7.(2012四川,文7)设a ,b 都是非零向量.下列四个条件中,使a |a |=b |b |成立的充分条件是( ).A .|a |=|b |且a ∥bB .a =-bC .a ∥bD .a =2bD 若a |a |=b |b |,则向量a |a |与b |b |是方向相同的单位向量,所以a 与b 应共线同向,故选D .8.(2012四川,文8)若变量x ,y 满足约束条件x y 3,x 2y 12,2x y 12,x 0,y 0,-≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩则z =3x +4y 的最大值是( ). A .12B .26C .28D .33C 作出可行域如图五边形OABCD 边界及其内部,作直线l 0:3x +4y =0,平移直线l 0经可行域内点B 时,z 取最大值.由x 2y 12,2x y 12,+=⎧⎨+=⎩得B (4,4),于是z max =3×4+4×4=28,故选C .9.(2012四川,文9)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦3,则|OM |=( A .2B .3C .4 D .5B 由抛物线定义知,p 2+2=3,所以p =2,抛物线方程为y 2=4x .因为点M (2,y 0)在此抛物线上,所以20y =8,于是|OM 204y +3故选B .10.(2012四川,文10)如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作与平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点∠BOP =60°,则A ,P 两点间的球面距离为( ). A .R 24B .R 4πC .R 33D .R 3πA 过点A 作AH ⊥平面BCD .∵平面BCD 与底面所成角为45°,AO ⊥平面α,在交线上,点B 与平面α的距离最大,为4.∴点H 在OB 上,且∠AOB =45°.过点H 作HM ⊥OP ,垂足为M ,连接AM ,在等腰直角三角形AOH中,AH =OH 2.在Rt △HOM 中,∠HOP =60°,∴HM =OH 24R .在Rt △AHM 中,AM 4R ,∴sin ∠AOM =44∴cos ∠AOM 4∴∠AOP =4∴A ,P 两点间的球面距离为R 411.(2012四川,文11)方程ay =b 2x 2+c 中的a ,b ,c ∈{-2,0,1,2,3},且a ,b ,c 互不相同.在所有这些方程所表示的曲线中,不同的抛物线共有( ). A .28条 B .32条 C .36条 D .48条B 因为a ,b 不能为0,先安排a ,b ,有24A 种,c 有13C 种,所以表示的抛物线共有2143A C =36(条).又因为当b =±2时,b 2都为4,所以重复的抛物线有1122C C =4(条).所以这些方程所表示的曲线中,不同的抛物线共有36-4=32(条).故选B .12.(2012四川,文12)设函数f (x )=(x -3)3+x -1,{a n }是公差不为0的等差数列,f (a 1)+f (a 2)+…+f (a 7)=14,则a 1+a 2+…+a 7=( ). A .0 B .7 C .14 D .21D 由f (a 1)+f (a 2)+…+f (a 7)=14知,(a 1-3)3+(a 2-3)3+…+(a 7-3)3+(a 1+a 2+…+a 7)-7=14.因为{a n }是公差不为0的等差数列,所以(a 1-3)3+(a 2-3)3+…+(a 7-3)3+7(a 4-3)=0.因为(a 1-3)3+(a 7-3)3=[(a 1-3)+(a 7-3)][(a 1-3)2+(a 7-3)2-(a 1-3)(a 7-3)]=2(a 4-3)2217713(a 3)-(a 3)(a 3)24⎧⎫⎪⎪⎡⎤--+-⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭=2(a 4-3)22177133a a (a 3)224⎡⎤⎛⎫--+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 令222177133a a (a 3)224⎡⎤⎛⎫--+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=M 1>0, 同理(a 2-3)3+(a 6-3)3=2(a 4-3)22266133a a (a 3)224⎡⎤⎛⎫--+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=(a 4-3)·M 2, (a 3-3)3+(a 5-3)3=2(a 4-3)22355333a a (a 3)224⎡⎤⎛⎫--+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=(a 4-3)·M 3, (a 4-3)3=(a 4-3)(a 4-3)2,其中M 2>0,M 3>0,所以(a 1-3)3+(a 2-3)3+…+(a 7-3)3+7(a 4-3)=(a 4-3)M 1+(a 4-3)M 2+(a 4-3)M 3+(a 4-3)(a 4-3)2+7(a 4-3) =(a 4-3)[M 1+M 2+M 3+(a 4-3)2+7]=0,因为M 1+M 2+M 3+(a 4-3)2+7>0恒成立,所以a 4-3=0,a 4=3,而a 1+a 2+…+a 7=7a 4=21.故选D . 13.(2012四川,文13)函数f (x.(用区间表示)1,2⎛⎫-∞ ⎪⎝⎭ ∵1-2x >0,∴x <12,∴f (x )的定义域为1,2⎛⎫-∞ ⎪⎝⎭.14.(2012四川,文14)如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是 .90° 如图所示,以点D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立坐标系D -xyz ,设正方体的棱长为2,则1M A =(2,-1,2),D N =(0,2,1),于是1M A ·D N=0,故异面直线A 1M 与DN 所成的角为90°.15.(2012四川,文15)椭圆22x a+2y 5=1(a 为定值,且a 5的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,△FAB 的周长的最大值是12,则该椭圆的离心率是 .23如图所示,设椭圆右焦点为F 1,AB 与x 轴交于点H ,则|AF |=2a -|AF 1|,△ABF 的周长为2|AF |+2|AH |=2(2a -|AF 1|+|AH |),∵△AF 1H 为直角三角形,∴|AF 1|>|AH |,仅当|AF 1|=|AH |,即F 1与H 重合时,△AFB 的周长最大,即最大周长为2(|AF |+|AF 1|)=4a =12,∴a =3,而b 5∴c =2,离心率e =c a=23.16.(2012四川,文16)设a ,b 为正实数.现有下列命题: ①若a 2-b 2=1,则a -b <1; ②若1b-1a=1,则a -b <1;③若a b 1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中的真命题有 .(写出所有真命题的编号) ①④ ①a 2=b 2+1,∵b 2>0,∴a 2>1,故a >1,而a -b =1a b+,∵a >1,b >0,∴a +b >1,∴1a b+<1,∴①正确;②1b-1a=1,∵当b =23,a =2时,满足1b-1a=32-12=1,而此时a -b >1,∴②不正确;③∵a ,b 为正实数,且a b 1.不妨设a >b ,则a -b a b a b a b a b 1>1,∴a -b a b 1,∴③不正确;④∵a ,b 是正实数,不妨设a >b ,∴a 3-b 3=(a -b )(a 2+b 2+ab ),∴a -b =3322a ba ab b-++=221a ab b++,∵a 3=1+b 3>1,∴a 2>1,∴a 2+ab +b 2>1,则0<221a ab b++<1,∴a -b =221a ab b++<1,即|a -b |<1.同理,设a <b ,也能得到|a -b |<1的结论,故④正确.17.(2012四川,文17)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率. 解:(1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110·p =4950.解得p =15.(2)设“系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D ,那么 P (D )=23110C ×21110⎛⎫- ⎪⎝⎭+31110⎛⎫- ⎪⎝⎭=9721 =243250.故系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率为243250.18.(2012四川,文18)已知函数f (x )=cos 2x 2-sin x 2cos x 2-12.(1)求函数f (x )的最小正周期和值域;(2)若f (α10求sin 2α的值.解:(1)由已知,f (x )=cos 2x 2-sin x 2cos x 2-12=1(1+cos x )-12sin x -122x 4π⎛⎫+ ⎪⎝⎭.所以f (x )的最小正周期为2π,值域为22⎡⎢⎣⎦.(2)由(1)知,f (α2α4π⎛⎫+ ⎪⎝⎭10所以cos α4π⎛⎫+⎪⎝⎭=35.所以sin 2α=-cos 2α2π⎛⎫+ ⎪⎝⎭=-cos 2α4π⎡⎤⎛⎫+⎪⎢⎥⎝⎭⎣⎦=1-2cos 2α4π⎛⎫+⎪⎝⎭=1-1825=725.19.(2012四川,文19)如图,在三棱锥P -ABC 中,∠APB =90°,∠PAB =60°,AB =BC =CA ,点P 在平面ABC 内的射影O 在AB 上.(1)求直线PC 与平面ABC 所成的角的大小; (2)求二面角B -AP -C 的大小.解法一:(1)如图,连结OC .由已知,∠OCP 为直线PC 与平面ABC 所成的角.设AB 的中点为D ,连结PD ,CD . 因为AB =BC =C A ,所以CD ⊥AB . 因为∠APB =90°,∠PAB =60°, 所以△PAD 为等边三角形.不妨设PA =2,则OD =1,OP AB =4.所以CD =OC在Rt △OCP 中,tan ∠OCP =O P O C13故直线PC 与平面ABC 所成的角的大小为13(2)过D 作DE ⊥AP 于E ,连结CE .由已知可得,CD ⊥平面PAB . 根据三垂线定理知,CE ⊥PA .所以∠CEDB -AP -C 的平面角. 由(1)知,DE 在Rt △CDE 中,tan ∠CED =C D D E2.故二面角B -AP -C 的大小为arctan 2. 解法二:(1)设AB 的中点为D ,连结CD .因为O 在AB 上,且O 为P 在平面ABC 上的射影, 所以PO ⊥平面ABC .所以PO ⊥AB ,且PO ⊥CD . 由AB =BC =CA ,知CD ⊥AB . 设E 为AC 中点,则EO ∥CD ,从而OE ⊥PO ,OE ⊥AB .如图,以O 为坐标原点,OB ,OE ,OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系O -xyz .不妨设PA =2,由已知可得,AB =4,OA =OD =1,OP CD =所以O (0,0,0),A (-1,0,0),C (1,0),P (0,0所以C P =(-1,-而O P =(0,0为平面ABC 的一个法向量. 设α为直线PC 与平面ABC,则sin α=C P |C P||O P|4故直线PC 与平面ABC 所成的角的大小为4(2)由(1)有,AP=(1,0,AC =(2,0).设平面APC 的一个法向量为n =(x 1,y 1,z 1),则n ,n A P A C ⎧⊥⎪⎨⊥⎪⎩ ⇔n 0,n 0A P A C ⎧⋅=⎪⎨⋅=⎪⎩⇔111111(x ,y ,z )(1,0,(x ,y ,z )(2,0)0.⎧⋅=⎪⎨⋅=⎪⎩ 从而1111x z 0,2x y 0.⎧+=⎪⎨+=⎪⎩ 取x 1则y 1=1,z 1=1, 所以n 1,1).设二面角B -AP -C 的平面角为β,易知β为锐角. 而面ABP 的一个法向量为m =(0,1,0),则cos β=n m |n||m |⋅5故二面角B -AP -C 的大小为520.(2012四川,文20)已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立. (1)求数列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,数列n 1a lg ⎧⎫⎨⎬⎩⎭的前n 项和最大? 解:(1)取n =1,得λ21a =2S 1=2a 1,a 1(λa 1-2)=0.若a 1=0,则S n =0.当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0(n ≥1). 若a 1≠0,则a 1=2λ.当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=n2λ.综上,当a 1=0时,a n =0; 当a 1≠0时,a n =n2λ.(2)当a 1>0且λ=100时,令b n =lg n1a , 由(1)有,b n =lg n1002=2-n lg 2.所以数列{b n }是单调递减的等差数列(公差为-lg 2). b 1>b 2>…>b 6=lg 61002=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 71002=lg 100128<lg 1=0,故数列n 1a lg ⎧⎫⎨⎬⎩⎭的前6项的和最大.21.(2012四川,文21)如图,动点M 与两定点A (-1,0),B (1,0)构成△MAB ,且直线MA ,MB 的斜率之积为4.设动点M 的轨迹为C .(1)求轨迹C 的方程;(2)设直线y =x +m (m >0)与y 轴相交于点P ,与轨迹C 相交于点Q ,R ,且|PQ |<|PR |,求|PR ||PQ |的取值范围.解:(1)设M 的坐标为(x ,y ),当x =-1时,直线MA 的斜率不存在;当x =1时,直线MB 的斜率不存在. 于是x ≠1且x ≠-1.此时,MA 的斜率为y x 1+,MB 的斜率为y x 1-.由题意,有y x 1+·y x 1-=4,化简可得4x 2-y 2-4=0.故动点M 的轨迹C 的方程为4x 2-y 2-4=0(x ≠1且x ≠-1). (2)由22y x m ,4x y 40=+⎧⎨--=⎩消去y ,可得3x 2-2mx -m 2-4=0.(*)对于方程(*),其判别式Δ=(-2m )2-4×3(-m 2-4)=16m 2+48>0, 而当1或-1为方程(*)的根时,m 的值为-1或1. 结合题设(m >0)可知,m >0,且m ≠1. 设Q ,R 的坐标分别为(x Q ,y Q ),(x R ,y R ), 则x Q ,x R 为方程(*)的两根. 因为|PQ |<|PR |, 所以|x Q |<|x R |,x Q3x R3所以|PR ||PQ |=R Qx x=11,2,所以1<13,且153≠, 所以1<|PR ||PQ |=R Qx x <3,且|PR ||PQ |=R Qx 5x 3≠.综上所述,|PR ||PQ |的取值范围是551,,333⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⋃.22.(2012四川,文22)已知a 为正实数,n 为自然数,抛物线y =-x 2+na2与x 轴正半轴相交于点A .设f (n )为该抛物线在点A 处的切线在y 轴上的截距. (1)用a 和n 表示f (n ); (2)求对所有n 都有f (n)-1n f (n )1n 1≥++成立的a 的最小值;(3)当0<a <1时,比较1f (1)-f (2)+1f (2)-f (4)+…+1f (n)-f (2n )与6·f (1)-f (n 1)f (0)-f (1)+的大小,并说明理由.解:(1)由已知得,交点A的坐标为0⎫⎪⎪⎭.对y =-x 2+12a n 求导得y '=-2x ,则抛物线在点A 处的切线方程为yx -⎝, 即y+a n . 则f (n )=a n .(2)由(1)知f (n )=a n , 则f (n)-1n f (n )1n 1≥++成立的充要条件是a n ≥2n +1.即知a n ≥2n +1对所有n 成立. 特别地,取n =1得到a ≥3.当a =3,n ≥1时,a n =3n =(1+2)n =1+1n C ·2+…≥2n +1. 当n =0时,a n =2n +1. 故a =3时,f (n)-1n f (n )1n 1≥++对所有自然数n 均成立.所以满足条件的a 的最小值为3. (3)由(1)知f (k )=a k . 下面证明:1f (1)-f (2)+1f (2)-f (4)+…+1f (n)-f (2n )>6·f (1)-f (n 1)f (0)-f (1)+.首先证明:当0<x <1时,21x x->6x .设函数g (x )=6x (x 2-x )+1,0<x <1. 则g '(x )=18x 2x 3⎛⎫- ⎪⎝⎭.当0<x <23时,g '(x )<0;当23<x <1时,g '(x )>0.故g (x )在区间(0,1)上的最小值g (x )min =g 23⎛⎫ ⎪⎝⎭=19>0.所以,当0<x <1时,g (x )>0,即得21x x->6x .由0<a <1知0<a k <1(k ∈N *), 因此k2k1a a->6a k ,从而1f (1)-f (2)+1f (2)-f (4)+…+1f (n)-f (2n )=21a a-+241a a-+…+n2n1a a->6(a +a 2+…+a n )=6·n 1a a1a+--=6·f (1)-f (n 1)f (0)-f (1)+.。
2012年高考语文四川卷详析
2012年普通高等学校招生全国统一考试(四川卷)详解四川卷语文解析第一部分(选择题共30分)一、(12分,每小题3分)1.下列词语中加点的字,读音全部正确的一组是A.折(zhé)耗绰(chuò)约水泵(bèng)流水淙(cóng)淙B.募(mù)集缜(zhěn)密慰藉(jiè) 风驰电掣(chè)C.露(lòu)面纤(xiān)细抚恤(xù) 弦(xuān)外之音D.栅(zhà)栏蜷(juǎn)缩款识(zhì) 敷衍塞(sè)责1.B【解析】考查识记现代汉语普通话的字音的能力。
A项“折”应读“shé”;C项“露”应读“lù”,“弦”应读“xián”;D项“蜷”应读“quán”。
2.下列词语中,没有错别字的一组是A.讳疾忌医微言大义万事具备,只欠东风B.磬竹难书两全其美一言既出,驷马难追C.掷地有声曲意逢迎桃李不言,下自成蹊D.至高无上原型必露失之东隅,收之桑榆2.C【解析】本题考查现代汉语常用字字形的辨析能力。
A. 万事具备→万事俱备B. 磬竹难书→罄竹难书D. 原型必露→原形毕露3.下列各句中,加点词语使用恰当的一句是A.在施工过程中,因疏忽造成的安全事故如期而至,人员伤亡严重,救援队伍很快赶到现场,克服困难抢救危重人员,并对轻伤者进行了处理。
B.2011年8月,科幻作家徐浩若受邀到成都举办讲座,几十位科幻创作爱好者聆听了他的报告,会后我有幸向他垂询了有关科幻创作的问题。
C.一项对大学毕业生发展状况的调查表明,无论他们在校成绩多么优秀,走上工作岗位后都将面临各种挑战,需要用勤奋、智慧与坚韧去应对。
D.在维也纳金色大厅,经常有不同肤色、不同语言的人们会聚在这里,他们各具民族风格与艺术特色的优美歌声在大厅内交相辉映,久久回荡。
3.C【解析】本题考查正确使用词语的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试——文数(四川卷)一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合{,}A a b =,{,,}B b c d =,则A B = ( ) A 、{}b B 、{,,}b c d C 、{,,}a c d D 、{,,,}a b c d 【答案】D【解析】集合A 中包含a,b 两个元素,集合B 中包含b,c,d 三个元素,共有a,b,c,d 四个元素,所以}{d c b a B A 、、、=2、7(1)x +的展开式中2x 的系数是( ) A 、21 B 、28 C 、35 D 、42【答案】A【解析】二项式7)1(x +展开式的通项公式为1+k T =k k x C 7,令k=2,则2273x C T 、=21C x 272=∴的系数为3、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。
假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人。
若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( ) A 、101 B 、808 C 、1212 D 、2012 【答案】B【解析】二N=80812964312962512962196=⨯+⨯+⨯+4、函数(0,1)x y a a a a =->≠的图象可能是( )【答案】C【解析】采用特殊值验证法. 函数(0,1)x y a a a a =->≠恒过(1,0),只有C 选项符合.5、如图,正方形A B C D 的边长为1,延长B A 至E ,使1A E =,连接E C 、E D 则sin C ED ∠=( ) A、10B、10C10D15【答案】B 【解析】222A E 11E D E C C D 1E DE C-C Dcos C E D 2E D E C 10sin 10C ED =∴=====+∴∠==∙∠==,正方形的边长也为6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 【答案】C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确.7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( ) A 、||||a b =且//a bB 、a b =-C 、//a bD 、2a b =【答案】D【解析】若使||||a ba b = 成立,则方向相同,与b a 选项中只有D 能保证,故选D.8、若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y =+的最大值是( )A 、12B 、26C 、28D 、33 【答案】C【解析】目标函数34z x y =+可以变形为443z x y +-=,做函数x y 43-=的平行线,当其经过点B (4,4)时截距最大时,即z 有最大值为34z x y =+=284443=⨯+⨯.9、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
若点M 到该抛物线焦点的距离为3,则||OM =( ) A、 B、C 、4 D、【答案】B【解析】设抛物线方程为y 2=2px(p>0),则焦点坐标为(0,2p),准线方程为x=2p -,32)22(2||22,222,132p 22p -22202202=+=∴∴===+=+∴∴OM M y p y M M 有:),根据两点距离公式(点解得:)()(线的距离,即到焦点的距离等于到准在抛物线上,10、如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径C D 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=,则A 、P 两点间的球面距离为( )A、arccos4R B 、4Rπ C、arccos3R D 、3Rπ【答案】A【解析】以O 为原点,分别以OB 、OC 、OA 所在直线为x 、y 、z 轴,则A )0,23,21(),22,0,22(R R P R R42arccos =∠∴AOP42arccos⋅=∴R P A11、方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( ) A 、28条 B 、32条 C 、36条 D 、48条 【答案】B【解析】方程22ay b x c =+变形得222bc y ba x -=,若表示抛物线,则0,0≠≠b a所以,分b=-2,1,2,3四种情况:(1)若b=-2,⎪⎩⎪⎨⎧======2,1,033,1,0,23,2,0c ,1或或,或或或或c a c a a ; (2)若b=2, ⎪⎩⎪⎨⎧-==-===-=1,0,233,0,2c ,13,1,0,2或或,或或或或c a a c a以上两种情况下有4条重复,故共有9+5=14条;同理 若b=1,共有9条;若b=3时,共有9条. 综上,共有14+9+9=32种12、设函数3()(3)1f x x x =-+-,{}n a 是公差不为0的等差数列,127()()()14f a f a f a ++⋅⋅⋅+=,则=++721a a a ( )A 、0B 、7C 、14D 、21【答案】D【解析】∵{}n a 是公差不为0的等差数列,且127()()()14f a f a f a ++⋅⋅⋅+= ∴14]1)3[(]1)3[(]1)3[(737232131=-+-++-+-+-+-a a a a a a ∴147)(721=-++a a a ∴21721=++a a a二、填空题(本大题共4个小题,每小题4分,共16分。
把答案填在答题纸的相应位置上。
) 13、函数()f x =的定义域是____________。
(用区间表示)【答案】(21-,∞)【解析】由分母部分的1-2x>0,得到x∈(21-,∞).14、如图,在正方体1111ABC D A B C D -中,M 、N 分别是C D 、1C C 的中点,则异面直线1A M与D N 所成的角的大小是____________。
【答案】90º【解析】方法一:连接D 1M,易得DN⊥A 1D 1 ,DN⊥D 1M, 所以,DN⊥平面A 1MD 1,又A 1M ⊂平面A 1MD 1,所以,DN⊥A 1D 1,故夹角为90º方法二:以D 为原点,分别以DA, DC, DD 1为x, y, z 轴,建立空间直角坐标系D —xyz.设正方体边长为2,则D (0,0,0),N (0,2,1),M (0,1,0)A 1(2,0,2) 故,),(),(2,121,2,01-==MA DN所以,cos<|MA||DN |111MA DN MA DN ∙=〉〈, = 0,故DN⊥D 1M ,所以夹角为90º15、椭圆2221(5x ya a+=为定值,且a >的的左焦点为F ,直线x m =与椭圆相交于点A 、B ,F A B ∆的周长的最大值是12,则该椭圆的离心率是______。
【答案】32【解析】根据椭圆定义知:4a=12, 得a=3 ,又522=-c a32,2==∴=∴a c e c16、设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<;③若|1=,则||1a b -<;④若33||1a b -=,则||1a b -<。
其中的真命题有____________。
(写出所有真命题的编号) 【答案】①④【解析】若a,b 都小于1,则a-b<1若a,b 中至少有一个大于等于1, 则a+b>1, 由a 2-b 2=(a+b)(a-b)=1 ,所以,a-b<1 故①正确.对于|a 3-b 3|=|(a-b)(a 2+ab+b 2)|=1,若a,b 中至少又一个大于等于1,则a 2+ab+b 2>1,则|a-b|<1 若a,b 都小于1,则|a-b|<1,所以④正确. 综上,真命题有 ① ④ .三、解答题(本大题共6个小题,共74分。
解答应写出必要的文字说明,证明过程或演算步骤。
)17、(本小题满分12分) 某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p 。
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(Ⅱ)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率。
【答案】(1)设:“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-101P=5049 ,解得P=51………………………………6 分 (2)设“系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D, 那么P(D)=23C 2502431000972)1011()1011(10132==-+-⨯答:检测中不发生故障的次数大于发生故障的次数的概率为250243. ………………12分.18、(本小题满分12分) 已知函数21()cos sincos2222x x x f x =--。
(Ⅰ)求函数()f x 的最小正周期和值域;(Ⅱ)若()10f α=,求sin 2α的值。
【答案】(1)由已知,f (x )=212x cos2x sin 2x cos2--21sinx 21cosx 121--+=)()(4x cos 22π+=所以f (x )的最小正周期为2π,值域为⎥⎥⎦⎤⎢⎣⎡-22,22,。
…………………6分 (2)由(1)知,f (α)=,)(10234cos 22=+πα 所以cos (534=+πα)。
所以)()(42cos 22cos 2sin πααπα+-=+-=257251814cos 212=-=+-=)(πα,…………………12分19、(本小题满分12分) 如图,在三棱锥P A B C -中,90APB ∠= ,60PAB ∠=,A B B C C A ==,点P 在平面A B C 内的射影O 在A B 上。